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Abstract

Open-domain dialogue generation suffers
from the data insufficiency problem due to the
vast size of potential responses. In this pa-
per, we propose to explore potential responses
by counterfactual reasoning. Given an ob-
served response, the counterfactual reasoning
model automatically infers the outcome of an
alternative policy that could have been taken.
The resulting counterfactual response synthe-
sized in hindsight is of higher quality than the
response synthesized from scratch. Training
on the counterfactual responses under the ad-
versarial learning framework helps to explore
the high-reward area of the potential response
space. An empirical study on the DailyDialog
dataset shows that our approach significantly
outperforms the HRED model as well as the
conventional adversarial learning approaches.

1 Introduction

Open-domain dialogue generation (Shang et al.,
2015a; Vinyals and Le, 2015; Sordoni et al., 2015a)
intends to produce coherent responses given dia-
logue history. Nevertheless, it suffers from data
insufficiency problem as there may exist many po-
tential responses for a given dialogue history (Li
et al., 2016). An ideal way of exploring the po-
tential responses is to train the model by chatting
with real users, which is usually time-consuming
and labor-intensive in practice. Although replac-
ing a real user with a user simulator could address
the issue, the simulator only roughly approximates
real user statistics, and its development process is
costly (Su et al., 2016).

In contrast, humans could independently reason
potential responses based on past experiences from
the true environment. Having observed a response,
one might naturally ask himself or herself: “What
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Dialogue History: 
What are you up to this Friday?

Observed Response:
 Well, I have the day off from work.

Counterfactual Response: 
I am going to gym with a friend.

what if I respond
differently

Figure 1: An example of a counterfactual response,
which is a potential response inferred in hindsight from
given observed response.

would happen if I respond differently, while every-
thing else in the environment remains the same.”
Answering the question will result in a potential
response (as an example in Figure 1), and it is bene-
ficial for improving future decision making (Roese,
1997). The potential response inferred in hind-
sight is called a counterfactual response, where the
concept “counterfactual” describes the posterior
process of reasoning the outcome of alternative ac-
tions (i.e., a different responding policy) that could
have been taken while keeping everything else un-
changed (Buesing et al., 2019).

Motivated by this, we propose a counterfactual
off-policy training (COPT) approach to explore po-
tential responses. Building upon the adversarial
learning framework, COPT casts a dialogue gen-
erator as a structural causal model (SCM), which
describes a generation process with two ingredi-
ents: scenarios and causal mechanisms (Wright,
1920; Buesing et al., 2019). The scenario is a ran-
dom noise variable that captures all unobserved
yet relevant aspects of the environment, i.e., user
profiles. The causal mechanism is a deterministic
function that takes a scenario and dialogue history
as input and outputs a response. In this way, rea-
soning a counterfactual response in an observed
response’s environment can be achieved by feed-
ing the scenario of the observed response into the
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causal mechanism. After generating the counterfac-
tual response, the generator will receive a reward
from a discriminator and optimize itself accord-
ingly.

Intuitively, a counterfactual response is synthe-
sized by grounding the model in the scenario where
an observed response occurs, rather than the sce-
nario sampled from scratch as standard adversarial
learning-based approaches. This improves the qual-
ity of the synthesized responses and subsequently
benefits the model that learns from the synthesis.
To verify the effectiveness of our approach, we con-
duct experiments on the public available DailyDia-
log dataset (Li et al., 2017b). Experimental results
show that our approach significantly outperforms
previous adversarial learning-based approaches in
both automatic and human evaluations. The contri-
butions of this paper are summarized as follows:

• We connect the concept of counterfactual rea-
soning with the dialogue generation by casting
the dialogue generation model as a structural
causal model.

• Our counterfactual response is of higher qual-
ity than the response synthesized from scratch
in standard adversarial learning-based dia-
logue generation model.

• Our approach is model-agnostic and can be
applied to any adversarial learning-based dia-
logue generation model.

2 Related Work

Dialogue Generation Data-driven dialogue sys-
tems can be roughly divided into two categories:
retrieval-based (Leuski et al., 2006; Ji et al., 2014;
Yan et al., 2016) and generation-based (Shang et al.,
2015b; Sordoni et al., 2015b; Vinyals and Le, 2015).
Responses of retrieval-based methods come from a
fixed candidate response set and thus are incapable
of being customized. The generation-based meth-
ods can create new responses, but the vanilla se-
quence to sequence model tends to produce generic
responses (Li et al., 2016).

One way to address the generic response prob-
lem is by introducing external knowledge, such as
keywords (Mou et al., 2016; Zhu et al., 2019b), top-
ics (Xing et al., 2017), persona information (Zhang
et al., 2019; Song et al., 2019), and retrieved candi-
date responses (Song et al., 2018; Wu et al., 2019;
Zhu et al., 2019a). Another way is to optimize

the architecture of networks. There are two ar-
chitectures widely employed in this research line:
the variational auto-encoder (Bowman et al., 2016;
Zhao et al., 2017) and the generative adversarial
network (Goodfellow et al., 2014; Li et al., 2017a;
Zhang et al., 2018; Xu et al., 2018; Tuan and Lee,
2019). Our approach falls into the latter category.
The differences between our approach and other ad-
versarial learning-based approaches are as follows.
First, we cast the dialogue generation model as an
SCM to explore potential responses in the envi-
ronment where observed responses occur. Second,
we learn on counterfactual responses that inferred
from the SCM. Third, a pre-trained behavior policy
is involved during the generation process, making
our approach an off-policy algorithm and benefits
the exploration of potential responses.

Counterfactual Reasoning The counterfactual
reasoning is a concept derived from psychology. It
describes the human capacity to learn from experi-
ence by reasoning the outcome of an alternative ac-
tion that could have been taken (Pearl and Macken-
zie, 2018). Combined with the SCM, counterfac-
tual reasoning improves the performance of policy
evaluation in reinforcement learning (Buesing et al.,
2019; Oberst and Sontag, 2019). In the area of NLP,
counterfactual reasoning in previous work is mainly
used for data augmentation (Qin et al., 2019; Fu
et al., 2020; Kaushik et al., 2020), which rewrites
the original data given a counterfactual label or
condition. In this paper, we connect the concept of
counterfactual reasoning with the dialogue genera-
tion and are the first to cast a generation model as
an SCM under the adversarial learning framework.

3 Method

We cast a dialogue generation model as an SCM
to explore potential responses by counterfactual
reasoning during the training process. We will first
review the concept of the SCM (Sec. 3.2), and then
introduce our COPT approach (Sec. 3.3).

3.1 Notation

We use capital letters for random variables (e.g.,
V ), lowercase letters for instances of random vari-
ables (e.g., v), and bold letters for vectors (e.g.,
V = {V1, ..., VN}). During the training process,
we denote the response generated by COPT as
counterfactual response. In contrast, the response
of standard adversarial learning-based dialogue
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Figure 2: An example of an SCM and an intervention.
Left: An SCM with random variables V , scenarios
U , and causal mechanisms F represented by colored
squares. Right: A new SCM after taking an interven-
tion on the left SCM. The original causal mechanism
f2(V1,U2) (denoted by the orange square) is replaced
by fT2 (V1,U2) (denoted by the purple square).

generation (i.e., REGS Li et al., 2017a) is denoted
as standard response.

3.2 Background: Structural Causal Model

A structural causal model over random variables
V = {V1, ...,VN} consists of independent noise
random variables U = {U1, ...,UN} with dis-
tribution PU and deterministic functions F =
{f1, ..., fN} such that Vi = fi(PAi,Ui), where
PAi ⊂ V are the parents of Vi in a given
DAG (Buesing et al., 2019). U is called scenarios,
and F is called causal mechanisms. Figure 2 (Left)
shows an example of an SCM. Each random vari-
able Vi is determined by its parents in V , Ui, and
fi, e.g., V2 = f2(V1,U2).

During the training process, we cast a dialogue
generation model as an SCM over two random
variables: dialogue history X and response Y .
This is achieved by converting the conditional dis-
tribution P (Y |X) into a deterministic function
Y = fπ(X,U) (for more details see Sec. 3.3).
The scenarioU is a random noise variable that cap-
tures all unobserved yet relevant properties, like
user profiles. The causal mechanism is denoted as
fπ to highlight the role of the policy (parameters) π
of the model. The dialogue generation SCM makes
it possible to sample counterfactual responses in
the scenario where observed responses occur. This
improves the quality of synthesized responses and
subsequently helps the model to explore the high-
reward area of the potential response space in the
training process.

Intervention in SCM Given an SCM, an inter-
vention T is defined as the replacement of some
causal mechanisms. Figure 2 shows an exam-
ple of intervention. The original causal mecha-
nism f2(V1,U2) in the left SCM is replaced with
fT2 (V1,U2), resulting in a new SCM in the right.
Accordingly, intervention in our dialogue gener-

ation SCM denotes the update of the policy. For
instance, the update from the behavior policy µ that
generates observed responses to the target policy π
that we aim to learn is the intervention of replacing
fµ(X,U) with fπ(X,U).

Counterfactual Reasoning in SCM Given an
SCM and observed a variable Vi = vi, counter-
factual reasoning answers the question: “What
the variable Vi would have been if I take an in-
tervention T while remaining everything else un-
changed”. In this way, generating a counterfactual
response can be seen as querying: “Having ob-
served a response Y = y, what the response Y
would have been if I take an intervention by follow-
ing the target policy π, rather than the behavior
policy µ that generates the observed responses”.

Typically, counterfactual reasoning answers the
question by the following steps (as Figure 3):

• Observed Y = y when X = x, infer the
scenario u in hindsight from Y = fµ(X,U).

• Take an intervention by replacing the causal
mechanism fµ(X,U) with fπ(X,U).

• Reason a counterfactual response ŷ =
fπ(x,u) by the resulting new SCM.

In the following sections, we denote an observed
response from the training set as Y and a model-
generated response as Ŷ .

3.3 Counterfactual Off-Policy Training
Our COPT approach is model-agnostic and can
be applied to any adversarial learning-based dia-
logue generation model. Without loss of generality,
we take the combination of COPT and the reward
for every generation step (REGS) model (Li et al.,
2017a) as an example in this section. It consists
of two main components: a generator G and a dis-
criminator D.

Generator The generator G is a sequence to se-
quence (Seq2Seq) model (Sutskever et al., 2014)
equipped with the attention mechanism (Bahdanau
et al., 2015; Luong et al., 2015). During the en-
coding process, G reads the dialogue history into
hidden states using an encoder LSTM (Hochreiter
and Schmidhuber, 1997):

Hi = LSTM(Xi,Hi−1), (1)

where Xi is the i-th word of the dialogue history,
and Hi denotes the corresponding hidden state.
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Observed Response: 
Well, I have the day off from work.

Counterfactual Response: 
 I’m going to the gym with a friend.

Message:  Hey. What are you up to this Friday?

u Discriminator

Reward

Figure 3: The architecture of our COPT approach. π is the target policy that we aim to learn. µ is the behavior
policy that generates observed responses. First, we infer the scenario u where the observed response occurs. Then
we update the policy from µ to π, which can be seen as an intervention on the left SCM and results in the right SCM.
Then, the counterfactual response is reasoned in the inferred scenario u by the causal mechanism Y = fπ(X,U).

At the j-th decoding time step, the hidden states
are summarized into a context vector Cj by the
attention mechanism. Subsequently, G predicts the
distribution of the next word over the vocabulary
by a decoder LSTM:

Sj = LSTM([ e(Ŷj−1),Cj ],Sj−1), (2)

P π
j (Ŷj |X, Ŷ1:j−1) = softmax(Sj ·O), (3)

where the bracket [·,·] denotes concatenation, and
e(·) denotes the embedding of a word. Sj is the
j-th hidden state of the decoder LSTM. Ŷj−1 is
the word generated in the previous time step. O is
the output matrix. We use the superscript in P π

j to
highlight the role of the policy (parameters of G).

Adversarial learning-based dialogue generation
model is optimized according to the reward of re-
sponses sampled from P π

j (Ŷj |X, Ŷ1:j−1) ∈ R|V |
(abbreviated as P π

j in the following), where |V |
is the vocabulary size. Using the Gumbel-Max
Trick (Luce, 2012), the sampling process can be
achieved by:

Ŷj =argmaxŶj (logP
π
j +Uj), (4)

where the element ofUj follows the standard Gum-
bel distribution. In this way, the generator turns into
a Gumbel-Max SCM (Oberst and Sontag, 2019),
whose scenarios and causal mechanisms are repre-
sented by Uj and Equation 4, respectively.

From the perspective of the SCM, each response
is generated in a scenario. For instance, a standard
response is produced in a scenario sampled from
scratch. In contrast, the scenario for a counterfac-
tual response is inferred from an observed response
y = {yj | yj = argmaxyj (log p

∗
j + uj)}, where

* is the user’s policy that generates the observed
response in the true environment. However, the
user’s policy is not available in practice, which hin-
ders the posterior inference of the scenario. To this
end, we introduce a behavior policy µ instead and
learn it by minimizing the MLE loss on observed
responses. In this way, an observed response can be
seen as generating in a scenario uj while following
the policy µ: yj = argmaxyj (log p

µ
j + uj).

According to Oberst and Sontag (2019), there
are two ways to infer the scenario uj in hindsight
from yj = argmaxyj (log p

µ
j + uj) given yj and

µ. One way is the rejection sampling, which sam-
ples uj from the standard Gumbel distribution and
rejects those where yj 6= argmaxyj (log p

µ
j + uj).

The other way of the posterior inference makes
use of the properties of the shifted Gumbel g =
log pµj + uj : the maximum of g follows the stan-
dard Gumbel distribution and is independent with
the argmax of g (Maddison et al., 2014). Therefore,
g can be obtained by first sampling a maximum and
then sampling the remaining elements truncated at
the maximum. And uj is subsequently computed
by subtracting log pµj from g. We employ the sec-
ond method to infer the scenario in COPT because
it is more time-efficient than rejection sampling1.

Given the scenario inferred from the observed re-
sponse, COPT reasons the counterfactual response
by feeding the dialogue history and the scenario
into the SCM (Equation 4). Then the discriminator
evaluates the counterfactual response and returns

1In our experiments, using the second sampling method
takes 0.79 seconds training on a batch when the batch size
is 64. In contrast, the rejection sampling takes roughly 1.45
hours, making it hard to be used in practice.
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a reward to the generator. Note that the counter-
factual response and the SCM are utilized for the
training process. During the inference process, re-
sponses are generated in the same way as the stan-
dard adversarial learning-based dialogue genera-
tion (beam search or sampling from P π

j , we use
the former in our approach) because the observed
response is not available.

Discriminator The discriminator D provides a
reward for each generation step. It takes as input
the dialogue history X , the word Ỹj produced in
the current generation step, and the prefix Ỹ1:j−1
in previous steps, where Ỹ ∈ {Y , Ŷ } can be ei-
ther an observed response or a model-generated re-
sponse. The output reward D(Ỹj |X, Ỹ1:j−1) is the
probability that Ỹj is human-generated. Concretely,
D first readsX and Ỹ1:j with an encoder-decoder
model. Then, it computes the reward by a Multi-
Layer Perceptron (MLP), which takes as input the
last hidden state of the decoder.

Adversarial Learning We train G and D un-
der the adversarial learning framework, where
G tries to fool D by generating human-like re-
sponses while D aims to distinguish between
model-generated and human-generated (the ob-
served) responses. Since a response is a sequence
of discrete tokens, we pass by the gradient of D to
G using the policy gradient algorithm. In this way,
G converts into an agent whose partially generated
response and parameters define a state and a policy,
respectively. At each generation step, the agent
takes an action by producing a word and observes
a reward from D to update its policy.

Note that there are two policies in COPT: the
target policy that we aim to learn and the behavior
policy used for the reasoning of scenarios. The be-
havior policy is pre-trained and then froze during
adversarial learning because it aims to maximize
the likelihood of a fixed set of observed responses.
Introducing the behavior policy makes COPT an
off-policy approach because the counterfactual re-
sponse, from which the target policy learns, is not
entirely based on the target policy itself.

The goal of the generator is to minimize
the negative expected reward: JG(θ) =
−EŶ1:j∼GD(Ŷj |X, Ŷ1:j−1), where θ is the param-
eters of π. The gradient of θ can be derived by the

Algorithm 1 Counterfactual Off-Policy Training
1: Pre-train π and µ with MLE loss;
2: Pre-trainD on positive instances sampled from

observed responses, and negative instances
generated by pre-trained π;

3: for epoch in number of epochs do
4: for g in g-steps do
5: Infer u from an observed response;
6: Generate a counterfactual response in u;
7: Optimize θ according to Equation 5;
8: end for
9: for d in d-steps do

10: Sample positive instances from observed
responses;

11: Sample negative instances from responses
generated by π;

12: Update φ according to Equation 6;
13: end for
14: end for

likelihood ratio trick (Williams, 1992):

5JG(θ) =− EŶ1:j∼GD(Ŷj |X, Ŷ1:j−1)

· 5 logGπ(Ŷj |X, Ŷ1:j−1), (5)

where Gπ(Ŷj |X, Ŷ1:j−1) is the probability of gen-
erating Ŷj with the policy π givenX and Ŷ1:j−1.

The discriminator distinguishes between ob-
served responses and model-generated responses.
This is achieved by minimizing the following loss:

JD(φ) =− EY1:j∼S logD(Yj |X,Y1:j−1) (6)

− EŶ1:j∼G log(1−D(Ŷj |X, Ŷ1:j−1)),

where φ is the parameters of D. As a positive
instance, Y1:j is a prefix randomly sampled from
observed response set S. A negative instance Ŷ1:j

for training D is a prefix of a standard response,
rather than a counterfactual response. This is be-
cause the latter is of higher quality than the former
(as shown in Sec. 4.7).

Pre-training Initialized with different parame-
ters, π and µ are pre-trained on the training set
with MLE loss. The pre-training of D depends on
the specific model that COPT applied to. For exam-
ple, REGS pre-trains D on the prefix of a response.
In contrast, the discriminator of StepGAN (Tuan
and Lee, 2019) is randomly initialized during the
adversarial learning process. The overall algorithm
of COPT is summarized as Algorithm 1.
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Training Dialogues 11,118
Validation Dialogues 1,000

Test Dialogues 1,000
Average Tokens Per Dialogue 114.7
Average Tokens Per Utterance 14.6

Table 1: Statistics of the DailyDialog dataset.

4 Experiments

4.1 Data
The experiments are conducted on the DailyDia-
log dataset (Li et al., 2017b).2 It is a multi-turn
dialogue dataset and covers various topics of daily
life. The dataset has already been divided into train-
ing, validation, and test sets, as shown in Table 1.
Given a dialogue that consists of K utterances, we
divide it into K-1 instances. Each instance has at
most three continuous utterances. The last utter-
ance is the response, and the previous utterances
are concatenated as the dialogue history.

4.2 Baselines
We compare COPT with the following dialogue
generation models:

• HRED (Serban et al., 2016): The hierarchical
recurrent encoder-decoder. An implementa-
tion by Park et al. (2018) is available3.

• REGS (Li et al., 2017a): Reward for every
generation step. Its discriminator is trained
on partially generated responses to provide a
reward for each generation step.

• DPGAN (Xu et al., 2018): The diversity-
promoting GAN introduces a language model
based discriminator to encourage the genera-
tion of informative responses.4

• StepGAN (Tuan and Lee, 2019): The step-
wise GAN trains the discriminator by maxi-
mizing the average of state-action values of
observed responses. During the adversarial
learning process, the discriminator assigns
scores for every generation step in the same
way as REGS.

Distinct from previous approaches, COPT casts a
dialogue generation model as an SCM and trains it

2http://yanran.li/dailydialog
3https://github.com/ctr4si/A-Hierarchical-Latent-

Structure-for-Variational-Conversation-Modeling
4https://github.com/lancopku/DPGAN

Model Time (s/epoch)

HRED 84
DPGAN 608
REGS 912
REGS+COPT 1,215
StepGAN 951
StepGAN+COPT 1,244

Table 2: The average training time (in seconds per
epoch) on a single GPU.

on counterfactual responses. It is model-agnostic
and can be applied to any adversarial learning-
based dialogue generation model, such as REGS,
DPGAN, and StepGAN.

4.3 Training Details

We implement REGS, StepGAN, and their variants
with COPT using OpenNMT (Klein et al., 2017),
an open-source framework for building sequence
to sequence models. We manually tune the param-
eters according to the perplexity on the validation
set. The vocabulary consists of the most frequent
10,000 words. Including more words (up to 17,438,
the total number of DailyDialog vocabulary) ob-
serves no improvement but takes more time for
training. We use 300 dimensional GloVe (Penning-
ton et al., 2014) vectors to initialize word embed-
dings. Both the encoder and the decoder are a
two-layer LSTM in G and a single layer LSTM in
D. The number of hidden units is 500.

During the adversarial learning process, we use
the ADAM algorithm to alternately optimizeG and
D for one batch and five batches. The batch size is
64. We have tested the learning rate from 1e-6 to
1e-3. REGS+COPT and StepGAN+COPT achieve
the best performance on 1e-5. The number of pa-
rameters for all the baselines is in a range of 21M
to 26M. Equipping an adversarial learning baseline
with COPT will introduce extra parameters with the
same amount of the generator’s parameters. Con-
tributed by the behavior policy, the parameters are
learned by pre-training, and COPT will not increase
the number of trainable parameters in adversarial
learning. Table 2 shows the average training time.
COPT may increase the training time due to the
posterior inference of scenarios. But it facilitates
the exploration of the high-reward area of the po-
tential response space and subsequently improves
the quality of responses.
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Model Dist-1 Dist-2 BLEU-1 BLEU-2 BLEU-3 BLEU-4

HRED (Serban et al., 2016) 0.011 0.045 33.01 4.54 1.05 0.29
DPGAN (Xu et al., 2018) 0.002 0.008 31.61 3.74 0.43 0.06

REGS (Li et al., 2017a) 0.021 0.097 38.39 6.85 2.00 0.68
REGS+COPT 0.026 0.116 39.80 7.67 2.34 0.77

StepGAN (Tuan and Lee, 2019) 0.018 0.097 34.76 6.51 1.97 0.60
StepGAN+COPT 0.026 0.117 43.83 8.43 2.66 0.95

Table 3: Automatic evaluation results of distinct-1 (Dist-1), distinct-2 (Dist-2), and BLEU scores.

Dialogue History A: This is our counter-offer.
B: We are sincere to make business with you, but the difference between your
counter-offer and our price is too great.

HRED A: We can do that, but you can take a look at this one.
DPGAN A: Think that the will be, but he said that they had a think we have a good job

in a. Me, I am sure that I can be able to have a look at the first course.
REGS A: If you are willing to withdraw money, we can offer you a private vehicle.
REGS+COPT A: If you are willing to pay a commission fee, we can offer you $5 % discount.
StepGAN A: What do you mean by that?
StepGAN+COPT A: In that case, we can offer you a discount.

Table 4: An example of generated responses given dialogue history between person A and B.

4.4 Evaluation Metrics

Automatic Evaluation We evaluate the diversity
and the relevance of generated responses using dis-
tinct (Li et al., 2016) and BLEU (Papineni et al.,
2002), respectively. The distinct-k is the number
of distinct k-grams normalized by the number of
words of responses. Since BLEU might correlate
weakly with human judgments of quality in the
single-reference setting (Liu et al., 2016), we use
the multi-reference DailyDialog test set (Gupta
et al., 2019), where each instance is augmented
with four human-written diverse responses.5

Human Evaluation The human evaluation is
conducted on 200 instances randomly sampled
from the test set. We create a project on Amazon
Mechanical Turk (Buhrmester et al., 2016) (AMT)
and employ five AMT workers to give a preference
between two responses generated by our approach
and a baseline.6 To maintain the quality of the
evaluation, the task is visible to workers whose ap-
prove rate is greater than 95%, and the number of
approved is greater than 500.

5https://github.com/prakharguptaz/multirefeval
6https://requester.mturk.com/

4.5 Results

Table 3 shows the results of automatic evaluation.
Both REGS and StepGAN outperform HRED in
distinct-1 and distinct-2, indicating that adversarial
learning is beneficial for improving the diversity of
responses. There is no increase in DPGAN com-
pared with HRED in our experiments. We believe
this is because the scale of the DailyDialog dataset
is not large enough for sufficiently training the lan-
guage model based discriminator. For the same
reason, COPT is not added to DPGAN. After in-
troducing COPT, both distinct-1 and distinct-2 in
REGS and StepGAN further increase, and the im-
provement is significant (t-test, p <0.01). This
suggests that COPT is model-agnostic to adversar-
ial learning-based approaches and helps to promote
the diversity. In terms of BLEU in Table 3, both
REGS and StepGAN achieve higher BLEU scores
with COPT, and the improvements of BLEU-1 and
BLEU-2 are significant (p <0.05). This demon-
strates the effectiveness of COPT in improving the
relevance of responses. The less significant result
of BLEU-3 and BLEU-4 is mainly due to the spar-
sity of tri-grams and four-grams, which are harder
to be covered by references than uni-grams and
bi-grams.

The human evaluation results are shown in Ta-
ble 5. Our approach is clearly preferred as it
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Figure 4: Reward distribution and the average reward of the counterfactual response (w/ COPT) and the standard
response (w/o COPT). The y-axis in (a) and (b) is the percentage, and the x-axis corresponds to three reward
intervals in different epochs, including: Low reward interval [0.00, 0.33], Middle reward interval (0.33, 0.66], and
High reward interval (0.66, 1.00]. The y-axis in (c) and (d) is the reward, and the x-axis corresponds to epochs.

Win Tie Lose

REGS+COPT vs. HRED 63.15 13.20 23.65
REGS+COPT vs. REGS 32.28 43.81 23.92
StepGAN+COPT vs. HRED 65.95 15.38 18.67
StepGAN+COPT vs. StepGAN 45.69 20.91 33.40

Table 5: Wins, losses, and ties (in %) of our approach
against baselines based on the human evaluation.

has more winning instances than losing instances
(p <0.01). The results indicate that COPT helps
improve the quality of responses. Following Zhou
et al. (2018) and Ke et al. (2018), we measure the
agreement of annotators using inter-rater consis-
tency. The percentage of instances that at least
three annotators have the same preference (3/5
agreement) is 84.18%. The percentage for 4/5
agreement is 46.89%.

4.6 Case Study

Table 4 shows an example of responses generated
by baselines and our approach. The response of
DPGAN sometimes is not fluent and can be very
long. We believe this is also because the scale of the
DailyDialog dataset is not enough for the language
model discriminator. The response of HRED is not
as informative as that of our approach. Its first part
is generic, and what the pronoun “that” refers to is
not clear. The response of StepGAN is not infor-

mative enough as well. In contrast, the response
of REGS is quite informative, but its content is not
entirely relevant to the dialogue history. After in-
troducing COPT, the responses of REGS+COPT
and StepGAN+COPT propose offering a discount
to address Person B’s concern of the price, which
is both informative and relevant.

4.7 Analysis

To further analyze COPT’s effectiveness in explor-
ing the high-reward area of the potential response
space during the training process, we compare the
reward of a counterfactual response and a standard
response on the same 10,000 randomly sampled
training instances. However, the comparison be-
tween the two types of responses could be biased
if their rewards are computed by different discrim-
inators. Besides, the quality of responses is deter-
mined not only by the way they generated (with
or without COPT) but also by the generator. To
focus on the analysis of COPT and eliminate the
bias between generators and discriminators, we
generate and evaluate the two types of responses
using an identical generator and its corresponding
discriminator. Here, we use REGS+COPT and
StepGAN+COPT as testbeds because they could
generate both the two types of responses.

Figure 4 shows the distribution of rewards and
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the average reward. The percentage of counterfac-
tual responses in the high reward interval (0.66,
1.00] is higher than that of standard responses.
Meanwhile, counterfactual responses generated
with COPT achieve a higher average than standard
responses. The results demonstrate the effective-
ness of the counterfactual response in exploring the
high-reward area of the potential response space
during the training process. Note that the distribu-
tion and the average between different epochs are
not comparable due to the update of the discrimi-
nator as the training processes.

5 Conclusion

We propose a model-agnostic approach, COPT, that
can be applied to any adversarial learning-based
dialogue generation models. In contrast to existing
approaches, it learns on counterfactual responses
inferred from the structural causal model, taking
advantage of observed responses. This helps the
model to explore the high-reward area of the po-
tential response space. Experiments show that the
COPT significantly improves the quality of the gen-
erated responses, which demonstrates the effective-
ness of this approach.
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Rojas-Barahona, Stefan Ultes, David Vandyke,
Tsung-Hsien Wen, and Steve Young. 2016. On-
line active reward learning for policy optimisation
in spoken dialogue systems. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2431–2441, Berlin, Germany. Association for Com-
putational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the Twenty-Eighth Conference
on Neural Information Processing Systems, pages
3104–3112.

Yi-Lin Tuan and Hung-Yi Lee. 2019. Improv-
ing conditional sequence generative adversarial net-
works by stepwise evaluation. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
27(4):788–798.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Journal of Machine Learning,
3(8):229–256.

Sewall Wright. 1920. The relative importance of hered-
ity and environment in determining the piebald pat-
tern of guinea-pigs. Proceedings of the National
Academy of Sciences of the United States of Amer-
ica, 6(6):320.

Yu Wu, Furu Wei, Shaohan Huang, Zhoujun Li, and
Ming Zhou. 2019. Response generation by context-
aware prototype editing. In Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelli-
gence.

Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang,
Ming Zhou, and Wei-Ying Ma. 2017. Topic aware
neural response generation. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelli-
gence, volume 17, pages 3351–3357.

Jingjing Xu, Xuancheng Ren, Junyang Lin, and
Xu Sun. 2018. Diversity-promoting GAN: A cross-
entropy based generative adversarial network for di-
versified text generation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3940–3949.

Rui Yan, Yiping Song, and Hua Wu. 2016. Learning
to respond with deep neural networks for retrieval-
based human-computer conversation system. In Pro-
ceedings of the 39th International ACM SIGIR Con-
ference on Research and Development in Informa-
tion Retrieval, pages 55–64.

Wei-Nan Zhang, Qingfu Zhu, Yifa Wang, Yanyan Zhao,
and Ting Liu. 2019. Neural personalized response
generation as domain adaptation. World Wide Web,
22(4):1427–1446.

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan,
and Bill Dolan. 2018. Generating informative and
diverse conversational responses via adversarial in-
formation maximization. In Proceedings of the
Thirty-Second Conference on Neural Information
Processing Systems, pages 1810–1820.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi.
2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoen-
coders. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 654–664, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Hao Zhou, Tom Young, Minlie Huang, Haizhou Zhao,
Jingfang Xu, and Xiaoyan Zhu. 2018. Com-
monsense knowledge aware conversation generation
with graph attention. In the 27th International
Joint Conference on Artificial Intelligence and the
23rd European Conference on Artificial Intelligence,
pages 4623–4629.

Qingfu Zhu, Lei Cui, Wei-Nan Zhang, Furu Wei, and
Ting Liu. 2019a. Retrieval-enhanced adversarial
training for neural response generation. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3763–3773,
Florence, Italy. Association for Computational Lin-
guistics.

Qingfu Zhu, Weinan Zhang, Lei Cui, and Ting Liu.
2019b. Order-sensitive keywords based response
generation in open-domain conversational systems.
ACM Transactions on Asian and Low-Resource Lan-
guage Information Processing (TALLIP), 19(2):1–
18.

https://doi.org/10.3115/v1/N15-1020
https://doi.org/10.3115/v1/N15-1020
https://doi.org/10.3115/v1/N15-1020
https://doi.org/10.3115/v1/N15-1020
https://doi.org/10.18653/v1/P16-1230
https://doi.org/10.18653/v1/P16-1230
https://doi.org/10.18653/v1/P16-1230
https://www.aclweb.org/anthology/D18-1428
https://www.aclweb.org/anthology/D18-1428
https://www.aclweb.org/anthology/D18-1428
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P19-1366
https://doi.org/10.18653/v1/P19-1366

