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Abstract

Whilst there has been growing progress in En-
tity Linking (EL) for general language, exist-
ing datasets fail to address the complex nature
of health terminology in layman’s language.
Meanwhile, there is a growing need for appli-
cations that can understand the public’s voice
in the health domain. To address this we intro-
duce a new corpus called COMETA, consist-
ing of 20k English biomedical entity mentions
from Reddit expert-annotated with links to
SNOMED CT, a widely-used medical knowl-
edge graph. Our corpus satisfies a combination
of desirable properties, from scale and cover-
age to diversity and quality, that to the best of
our knowledge has not been met by any of the
existing resources in the field. Through bench-
mark experiments on 20 EL baselines from
string- to neural-based models we shed light
on the ability of these systems to perform com-
plex inference on entities and concepts under
2 challenging evaluation scenarios. Our exper-
imental results on COMETA illustrate that no
golden bullet exists and even the best main-
stream techniques still have a significant per-
formance gap to fill, while the best solution re-
lies on combining different views of data.

1 Introduction

Social media has become a dominant means for
users to share their opinions, emotions and daily
experience of life. A large body of work has shown
that informal exchanges such as online forums can
be leveraged to supplement traditional approaches
to a broad range of public health questions such
as monitoring suicidal risk and depression (Benton
et al., 2017b), domestic abuse (Schrading et al.,
2015), cancer (Nzali et al., 2017), and epidemics
(Aramaki et al., 2011; Joshi et al., 2019).

One of the widely exercised steps to establish
a semantic understanding of social media is En-
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Figure 1: Examples of the EL inference challenges for
user generated text in the health domain.

tity Linking (EL), i.e., the task of linking entities
within a text to a suitable concept in a reference
Knowledge Graph (KG) (Liu et al., 2013; Yang and
Chang, 2015; Yang et al., 2016; Ran et al., 2018).
However, it is well-documented that poorly com-
posed contexts, the ubiquitous presence of colloqui-
alisms, shortened forms, typing/spelling mistakes,
and out-of-vocabulary words introduce challenges
for effective utilisation of social media text (Bald-
win et al., 2013; Michel and Neubig, 2018).

These challenges are exacerbated in EL for user
generated content (UGC) in the health domain for
two main reasons: lack of dedicated annotated re-
sources for training EL models, and entanglement
of the aforementioned challenges in general social
media with the inherent complexity of the health
domain and its terminology (see Table 1).

For example, in Figure 1 we show sentences
taken from social media where the semantics of the
concept linking is complex and context-dependent.
In the first case, “diagnosed with gad where by
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Input term Gold SNOMED label Challenge

scratchy throat Pharyngeal dryness Colloquial symptom
lower right abdomen Structure of right lower quadrant of abdomen Term compositionality
anti nausea meds Medicinal product acting as antiemetic agent Negated term
MSM Dimethul sulfone Alternative product name
up all night cleaning Obsessive compulsive disorder Complex inference

Table 1: Challenging examples of laymen’s terms in COMETA and their target SNOMED concepts.

benzos at”, benzos is a colloquial form of benzo-
diazepines, a type of sedative, and if correctly re-
solved can provide a contextual clue to assign the
appropriate sense to the polysemous term gad: an
abbreviation for generalised anxiety disorder rather
than e.g. glutamate decarboxylase. In the second
example, “went to get bloods done at 11 30”, the
word bloods could be interpreted literally as blood;
however, in this case it clearly refers to a blood test,
and it can be correctly resolved only by considering
the full context in which it is used.

In this paper we open up a new avenue for EL re-
search specifically targeted at the important domain
of health in social media through the release of a
new resource: the Corpus of Online Medical En-
Tities (COMETA), consisting of 20K biomedical
entity mentions in English from publicly available
and anonymous health discussions on Reddit. Each
mention has been been expert-annotated with KG
concepts1 from SNOMED CT (Donnelly, 2006)2, a
structured medical vocabulary of ca.350K concepts
widely used to code Electronic Health Records
(EHRs). As we show, COMETA provides a high
quality yet challenging benchmark for developing
EL techniques, especially for concepts not encoun-
tered during training (zero-shot concepts). Due to
its semantic diversity the corpus represents an im-
portant pathway to knowledge integration between
layman’s language, EHRs and research evidence.

Through a set of experiments we shed light on
the challenges in this domain for several EL base-
lines utilising a diverse range of techniques from ba-
sic string-matching to low-dimensional entity em-
beddings (Bojanowski et al., 2017), KG structure
embeddings (Grover and Leskovec, 2016; Agarwal
et al., 2019), and context aware BERT embeddings
(Devlin et al., 2019; Lee et al., 2020). We show

1Throughout the paper concept refers to nodes in a KG (i.e.,
SNOMED), term/entity refers to the surface form mention of
a concept in text, and context refers to the text in which a term
appears. Also, SCTID denotes SNOMED CT Identifier.

2We use the July 2019 release of the international edition.

a simple augmentation of the mainstream BERT
model with a Multi-Level Attention module can
improve its effectiveness in capturing the contex-
tual nuances of highly diverse layman’s language
in the health domain. Our experimental results
illustrate that the best solution needs to combine
multiple views of data and still heavily relies on
basic techniques, while the remaining performance
gap highlights the challenging nature of COMETA.
We summarise these challenges and underline some
of the key areas that are indispensable for further
progress in this domain.

2 Related Work and Datasets

Entity Linking. EL (Bunescu and Pasca, 2006)
is an important task that has sparked attention in
recent years due to its wide-scale potential to aid
in knowledge acquisition, e.g. the complementary
problems of cross-document coreference resolution
(Dredze et al., 2016), semantic relatedness (Dor
et al., 2018), geo-coding (Gritta et al., 2017) and
relation extraction (Koch et al., 2014).

Systems that link entities to Wikipedia (Wikifi-
cation) (Liu et al., 2013; Roth et al., 2014) and sci-
entific literature to biomedical ontologies (Zheng
et al., 2015) have been the focus of attention for
many years. Generic EL systems such as Ba-
belfy (Moro et al., 2014) and Tagme (Ferragina
and Scaiella, 2011) identify and map entities to
Wikipedia and WordNet (Miller et al., 1990) but
do not directly integrate the coding standards of
healthcare KGs such as SNOMED. Medical EL
systems such as cTAKES (Savova et al., 2010) and
MetaMap (Aronson and Lang, 2010) were designed
to perform medical EL on EHRs but limited evi-
dence e.g. (Denecke, 2014) points to a large drop
in recall on UGC such as patient forums.

Medical EL in Social Media. There are several
medical EL corpora based on scientific publica-
tions (Verspoor et al., 2012; Mohan and Li, 2019),
EHRs (Suominen et al., 2013) and death certificates
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(Goeuriot et al., 2017). However, none of these EL
corpora dealt with the challenges of UGC.

Due to under-reporting of drug side effects
(Freifeld et al., 2014) pharmacovigilance datasets
have been among the popular UGC benchmarks
for evaluating medical EL. The earliest corpus in
this domain was CADEC (Karimi et al., 2015)
where 1253 AskAPatient posts (6754 concept men-
tions) were annotated based on a search for the
drugs Diclofenac and Lipitor. Another dataset,
Twitter ADR (Nikfarjam et al., 2015), consists of
1784 posts (1280 concept mentions) based on a
search for 81 drug names, while TwiMed (Alvaro
et al., 2017) provides a comparable corpus of 1K
PubMed and 1K Twitter texts (3144 concept men-
tions) based on a search for 30 drugs. Limsopatham
and Collier (2016) introduced two Twitter datasets
(201 and 1436 concept mentions) with mappings
to the SIDER-4 database (Kuhn et al., 2016), and
RedMed (Lavertu and Altman, 2019) used Reddit
to build a lexicon of alternative spellings for 2978
drugs to improve EL on social media. Closest to
our work is MedRed (Scepanovic et al., 2020), a
medical Named Entity Recognition corpus of 2K
Reddit posts based on forums for 18 diseases. How-
ever we note several key differences to our work:
our corpus is four times larger, provides two levels
of mapping to general and context-specific con-
cepts and has a much greater diversity of concepts
rather than just symptoms and drugs (§3.3).

3 The COMETA Corpus

The COMETA corpus satisfies multiple properties
which we will explain throughout this section:
CONSISTENCY. COMETA has been annotated

by biomedical experts to a high quality using
SNOMED CT concepts (SCTIDs) - a standard
for clinical information interchange (§3.2);

SCALE AND SCOPE. To the best of our knowl-
edge, with at 20K concept mentions, it is the
largest UGC corpus for medical EL. Annotated
entities cover a wide range of concepts includ-
ing symptoms, diseases, anatomical expressions,
chemicals, genes, devices and procedures across
a range of conditions (§3.3);

DISTRIBUTION. We release the full corpus along
with two sampling strategies (Stratified and Zero-
shot) to prevent over-optimistic reporting of per-
formance (Tutubalina et al., 2018): while Strat-
ified is designed to show the ability of systems
to recognise known concepts with possibly novel

mentions, Zero-shot is designed to test for recog-
nising novel concepts (§3.4).

3.1 Collection

In order to build our corpus, we crawled health-
themed forums on Reddit using Pushshift (Baum-
gartner et al., 2020) and Reddit’s own APIs. We
choose forums satisfying strict constraints, i.e. se-
lecting subreddits where: (i) new content was
posted daily, (ii) the quality of the content was
sufficient (e.g. avoiding spam-ridden forums), (iii)
the focus was the personal experiences or ques-
tions of the users.3 Applying these criteria, we
selected a list of 68 subreddits (see Appendix A.1
for the full list) and crawled all the threads from
2015 to 2018, obtaining a collection of more than
800K discussions. This collection was then pruned
by removing deleted posts, comments by bots or
moderators, and so on.

In order to obtain the candidate entities, we
trained the Flair NER system (Akbik et al., 2018)
on a corpus of patient discussions from the health
forum HealthUnlocked4; we then used this system
to find medical entities in a random sub-sample
of 100K discussions of our Reddit set, resulting in
over 65K distinct named entities being discovered.

Following the standard practices for ethical
health research in social media outlined in (Benton
et al., 2017a), we then anonymised the corpus to
preserve, as far as possible, the privacy of the users.
We removed personally identifiable data from mes-
sages and we selected terms that were mentioned
by at least five users to avoid using terminology
particular to a specific user.

Finally, after anonymisation, we hired two pro-
fessional annotators with Ph.D. qualification in the
biomedical domain to annotate the most popular
8K tagged entities with SNOMED concepts.

3.2 Consistency

The annotation process consisted of two steps:
FIRST STEP. We showed the first annotator an en-

tity and up to six random sentences in which it
appeared. If the entity was unambiguous, e.g. left

3For example, acceptable subreddits were
r/health, r/cancer, r/mentalhealth, but not
r/medical news/.

4The data for this system was provided by HealthUn-
locked (https://healthunlocked.com/) and cannot
be publicly released in compliance with our data access agree-
ment. The usage of this data was approved by the University
of Cambridge’s School of Humanities and Social Sciences
Ethics Committee.

https://healthunlocked.com/)
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ankle, the annotator had to associate it to the rele-
vant SCTID (e.g. SCTID: 51636004 – Left Ankle)
and up to three sentences correctly representing
it. Moreover, the first annotator was required to
mark NER system mistakes (e.g., wrong type,
wrong span, or non-medical entity) to ensure the
inclusion of high quality entities. Only 2.1% of
the entities were rejected, confirming the quality
of our NER system.

SECOND STEP. The second annotator then tack-
led the ambiguous entities, selecting up to three
possible specific senses, and associating each
sense to the relevant examples. This way, we
obtained two levels of annotation: The General
level, concerned with the literal meaning of the
term, and the Specific level, which takes into ac-
count the context in which the entity appears.

For example in the sentence “Regarding my eyes,
I’m not experiencing cloudiness.”, the literal inter-
pretation of the entity cloudiness corresponds to
the General SNOMED concept SCTID: 81858005
– Cloudy (qualifier value); however, a context-
sensitive assignment which takes into account the
word eyes maps the entity to the Specific concept
SCTID: 246636008 – Hazy vision. The specific
level requires contextual information to be effec-
tively incorporated in the linking step, hence con-
stitutes a more challenging EL task.

The final corpus contains 20015 entities, each
are assigned a General and Specific SCTIDs and
accompanied by an example sentence from Reddit
where the entity is used. We also provide the link
to the Reddit thread where the sentence appears
(see Appendix A.2 for a sample). Also, contrary to
other corpora, we exclude NIL entities, i.e. entities
without a corresponding concept in SNOMED.

3.2.1 Assessing Annotation Quality
Similar to Mohan and Li (2019), we assessed the
quality of the annotation process by asking two
pairs of assessors5 to assess the quality of 1K ran-
dom annotations (500 per pair of assessors).

Assessor Guidelines. We asked the assessors to
evaluate the correctness of the expert assigned con-
cepts on a discrete scale [1, 5], 1 being completely
incorrect, and 5 being completely correct assign-
ments. For example, mapping “chronic back pain”
in the sentence “I have chronic low back pain.” to

53 senior Ph.D. graduates and a PhD candidate in NLP.
Note that there was no overlap between Annotators and As-
sessors.

Clinical finding (44.41%)

Substance (23.08%)Body structure (10.93%)

Procedure (7.81%)
Pharmaceutical/biologic

product (3.67%)
Physical object (3.40%)
Qualifier value (3.12%)

Observable entity (1.96%)
Other (1.62%)

Figure 2: The semantic diversity of SNOMED con-
cepts in COMETA.

SCTID: 134407002 – Chronic back pain entails a
score of 5, to SCTID: 61968008 – Syringe entails a
score of 1, and to SCTID: 77568009 – Back entails
a score of 3, since the selected node is not correct
but it identifies the location of the concept; see Ta-
ble 8 in the Appendix A.3 for more details on the
instructions we provided to the assessors.

Outcome. Out of 1K examples, both assessors
assigned the maximum score of 5 to 93.5% and
at least 4 to 96.8% of both the general and spe-
cific level annotations. This is a good indication
of the quality of the annotations and is in line with
Mohan and Li (2019)’s findings. Further investiga-
tion of weakly scored entities (3.2% of examples)
highlights the unique challenges that emerge in this
domain. We provide two representative examples:
EXAMPLE 1. Regarding the entity “UI” in the

sentence “If you’re having GI problems, UI is-
sues and/or ED issues please get the breath test
for H.Pylori.”, the annotator assigned the SCTID:
68566005 – Urinary tract infectious disease. One
assessor agreed with the annotator’s judgement
on considering “UI” as an abbreviation of “Uri-
nary infection”, while the other assessor assigned
only a score of 3, considering it as the abbrevi-
ation of “Urinary incontinence”. Given the sen-
tence, however, both interpretations are plausible.

EXAMPLE 2. Consider the entity “pissed off ” in
the sentence “And to top it off my stomach be-
comes bloated and pissed off.”. Here, “pissed off ”
is used figuratively to indicate some form of dis-
comfort; however, the annotator assigned SCTID:
75408008 – Feeling angry which both assessors
flagged as incorrect. Nevertheless, both assessors
couldn’t suggest a better SNOMED concept, as
this phrase does not identify a precise disease.

These ambiguities exemplify why performing EL
in the UGC domain can be hard even for humans
and highlight the complexity found in laymen’s
medical conversations.
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3.3 Scale and Scope

The corpus contains 6404 unique terms, 19911
unique example strings, 3645 unique general con-
cepts (SCTIDs), and 4003 unique specific concepts
(SCTIDs). Each general and specific concept is
represented on average with more than 1 surface
form, while some concepts had more than 15 sur-
face forms, like for example SCTID: 5935008 –
Oral contraception, SCTID: 225013001 – Feeling
bad, and SCTID: 34000006 – Chrohn’s Disease.

Additionally, each concept was accompanied by
an average of at least 5 example sentences (median
of 3), while 4.5% of entities were linked to different
general and specific SNOMED concepts (i.e., due
to polysemy or contextual cues). We note that 31
entities are associated to more than one general
SCTID, while 453 are associated to more than one
specific SCTID.

As illustrated in Figure 2, the most popular
SNOMED domains in COMETA are Clinical find-
ing (44.4%), Substance (23.1%), Body structure
(10.9%), Procedure (7.8%), and Pharmaceutical /
biologic product (3.7%), covering more than 90%
of all the entities in the corpus (see Appendix A.4
for more details).

3.4 Distribution

We provide the COMETA corpus in two different
sampled splits:

STRATIFIED SPLIT. Each SNOMED concept ap-
pearing in the test/development sets, appears at
least once in the training set. The stratification
by SCTID results in 100% coverage of concepts
in test/development, but on the surface form it
covers only 58% of the entities in the test set.

ZERO-SHOT SPLIT. Development and test sets
contain only novel concepts for which no training
data was available.

In other words, the Stratified split is designed to en-
sure that the model encounters the same concepts in
the training, development and test set, but possibly
with different surface forms; the Zero-Shot split,
instead, exposes models to unseen terms and con-
cepts in the development and testing sets, making it
the hardest of the two settings (§4). We argue that
Zero-Shot is a more realistic setting since obtaining
training data that covers all 350K SNOMED con-
cepts involves a very expensive annotation effort.
The statistics for the splits are shown in Table 2.

Training Dev Test

Stratified General 13489 2176 4350
Specific 13441 2205 4369

Zero-Shot General 14062 1958 3995
Specific 13714 2018 4283

Table 2: Number of examples in COMETA’s splits.

4 Experiments and Results

In this section we conduct a diverse set of EL exper-
iments, where we apply different simple and com-
plex paradigms to link the annotated entities (and
the sentences in which they appear) with the corre-
sponding SNOMED concepts. We follow previous
works in biomedical entity linking and use top-k
Accuracy (k ∈ {1, 10}) to evaluate performance
of EL systems (D’Souza and Ng, 2015). Note that
Acc@10 is only computed for systems returning a
ranked list and measures if the correct concept is
contained within the top 10 concepts returned by
the system. We also report Mean Reciprocal Rank
(MRR, Craswell (2018)), which instead measures
the position of the correct concept in the list of con-
cepts returned by the system. Details about training
as well as model and hardware configurations are
available in Appendix A.5.

Our baselines cover both string/dictionary-based
algorithms (§4.1) which are good at capturing
surface-level similarities, and neural models capa-
ble of incorporating contextual information (§4.2),
where we experiment with a new Multi-Level
Attention mechanism based on BERT to allow
more efficient incorporation of context. Finally, to
achieve the best possible performance, we combine
these models in a back-off setting where we lever-
age the benefits of each paradigm (§4.3). When
describing the results, we will report the results
on the general split and place the results on the
specific split in parentheses.

4.1 Dictionary and String-based Baselines
As a first step, we experimented with a set of naı̈ve
systems based on string matching and edit dis-
tance.6 These baselines ignore the context around
the entities, since they simply try to match entities
against SNOMED labels.

Dictionary. A lookup table is built by traversing
the training data, recording every entity and its cor-
responding SCTID, and directly applied on the test

6For this set of experiments, we transform all entities and
labels to lower-case.
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Acc@1

# Method Stratified Split Zero-Shot Split

s.1 Dictionary .51 (.45) 0 (0)

s.2 Exact matching .40 (.38) .37 (.35)
s.3 Levenshtein ratio .49 (.47) .52 (.49)
s.4 Stoilos distance .51 (.49) .53 (.51)

s.5 cTAKES .51 (.48) .53 (.47)
s.6 QuickUMLS .31 (.30) .43 (.38)

Table 3: Comparison for Dictionary, String-Matching,
cTAKES and QuickUMLS baselines on stratified and
zero-shot splits for general and (specific) levels.

set. If an entity is mapped to multiple SNOMED
labels, the dictionary records the most frequent one.

String-Matching Edit-Distance. For every
term, a string-matching search is conducted on
its surface form against all the SNOMED node
labels. Note that every SNOMED node has
multiple alternative surface forms resulting in
2-36 comparisons per each entity. We count
as a hit if the entity is matched with any of
the node’s surface forms based on exact match,
Levenshtein ratio or Stolois distance, two strong
string matching heuristics, which are defined as
follows: given two strings x, y the Levenshtein
ratio (or normalised Levenshtein distance, Yujian
and Bo (2007)) is defined as Lev(x,y)

max(|x|,|y|) where Lev
is the Levenshtein distance (Levenshtein, 1966)
between x and y; the Stoilos distance (Stoilos et al.,
2005) is defined as the similarity of two strings
as comm(x, y) − diff(x, y) + winkler(x, y)
where the first and second terms are commonality
and difference scores computed based on lengths of
substrings of x, y that are matched/unmatched and
the third term is Jaro-Winkler distance (Winkler,
1999). Both edit distance metrics were tuned to
offer the best trade-off between true and false
positives in the development set; further details are
provided in Appendix A.6.

cTAKES. cTAKES (Savova et al., 2010) is a
heavily engineered system for processing clinical
text. We report on its EL pipeline which is based
on several dictionary-based and advanced string
matching techniques for resolving abbreviations,
acronyms, spelling variants, and synonymy.7

QuickUMLS. QuickUMLS (Soldaini and Go-
harian, 2016) is a fast approximate dictionary

7We also experimented with feeding the full text (including
the entity) to cTAKES, but results were substantially worse.

matching system for medical concept extraction
using SimString (Okazaki and Tsujii, 2010) as
its back-end. We restrict its search space to the
SNOMED CT subset of UMLS. As QuickUMLS
predicts UMLS CUI instead of SCTID, we map pre-
dicted CUIs to SCTIDs through the UMLS api.8

When multiple plausible mappings exist, we count
a hit if anyone of them matches.9

Results. Table 3 summarises the results for the
dictionary and string-based baselines. The dictio-
nary method can serve as a strong baseline on the
Stratified split, where its performance is barely
matched by the more complex string-matching
techniques. The most complex strategy, Stoilos
distance, outperforms the other string-based tech-
niques, and interestingly is on par with the highly
complex cTAKES system while performing signifi-
cantly better than QuickUMLS. It is worth noting
that cTAKES obtained 95.7% in an EL task on an
EHR dataset (Savova et al., 2010), highlighting the
greater difficulty of the task when performed on
the layman’s language typical of UGC.

Additionally, contrary to cTAKES, none of the
string-based baselines are relying on external re-
sources which might offer an improvement in
resolving some abbreviations or acronyms that
our string-based systems miss and cTAKES dis-
ambiguates correctly (e.g. “ADHD” to SCTID:
406506008 – Attention deficit hyperactivity dis-
order). We leave further exploitation of such re-
sources for future work.

4.2 Neural-based Baselines

For our neural setting, we define the problem
as a cross-space mapping task by representing
COMETA entities (along with their contexts) and
SNOMED concepts using different text- and graph-
based representation learning techniques, and then
mapping the learned representations from the tex-
tual space to SNOMED concepts space.

Entity Embeddings. We experimented both
with “traditional” and contextual embedding tech-
niques. To generate the entity embeddings we
use FastText (FT, Bojanowski et al. (2017)) and
BioBERT (Lee et al., 2020), a PubMed-specialised
version of BERT (Devlin et al., 2019). The former

8https://documentation.uts.nlm.nih.
gov/rest/home.html

9Unlike cTAKES, we found that feeding the full text to
QuickUMLS yields slightly better results than using the entity
only.

https://documentation.uts.nlm.nih.gov/rest/home.html
https://documentation.uts.nlm.nih.gov/rest/home.html
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was trained and the latter was further specialised
on the set of 800K Reddit discussions described
earlier (§3.1).10 In the case of multi-word terms,
their embeddings were generated via averaging.11

The dimensionality of the embeddings was 300 for
FastText and 768 for BERT, and we denote them
as FT-term and BERT-term, respectively. Note that
we acknowledge there are alternative options of
BioBERT like SciBERT (Beltagy et al., 2019) and
ClinicalBERT (Alsentzer et al., 2019). In our own
experiments, we discovered that the further spe-
cialisation on Reddit discussions is more important
than the choice of base model. That said, we leave
explorations of other ∗BERT models on COMETA
for future work.

Multi-Level Attention for BERT. As noted by
Ethayarajh (2019) the deeper BERT goes, the more
“contextualized” its representation becomes. How-
ever, interpreting semantics of entities requires con-
textual knowledge in different degrees and always
taking the last layer’s output may not be the best so-
lution. In order to address this issue, we propose a
Multi-Level Attention (denoted as BERT-termMLA)
module on top of BERT to further enhance the
representation extracted from BERT by learning
how much to attend to each layer for producing
an entity representation. The attention weights of
the i-th layer is computed as ai = [ Bi · A ]+,
where [·]+ = max(0, ·), and Bi ∈ Rd denotes
the representation from the i-th level of BERT, d
denotes the dimensionality (i.e., here d = 768),
and A ∈ Rd denotes a trainable attention memory
vector. We further normalise ai using a softmax
layer, wi

def
= softmax(ai). Finally, a weighted

sum over all layers produces the attention-fused
representation, i.e. BERT-termMLA =

∑L
i wiBi.

Concept Embeddings. We experimented by em-
bedding SNOMED concepts with two modalities:
(i) their labels, to exploit textual information, and
(ii) their corresponding nodes in the KG, to incor-
porate the graph structure. Label embeddings were
produced by running FastText (denoted as FT-label)
and BERT (denoted as BERT-label) on the label,

10Note that BERT here is used as a feature extractor. We
tried finetuning BERT jointly with the alignment model, but
performance got worse due to overfitting. We leave properly
finetuned BERT models on COMETA as future work.

11We tried replacing the entity embeddings with sentence
embeddings via RNN/transformers, however, the performance
was much worse. We speculate this was due to polluting the
informative signal of an entity with its surrounding words. We
leave further exploration of this to future work.

both trained as described above; for concepts with
multiple labels (e.g., SCTID: 61685007 - Lower
extremity, Lower limb, Leg), the mean of the label
representations is used. For node embeddings, we
based our choice of model on the findings reported
in Agarwal et al. (2019) and opted for their best re-
ported model for SNOMED, i.e. node2vec (Grover
and Leskovec, 2016) with the suggested parameters
and vector size 300.12

Ensemble Embeddings. We also considered
several embeddings that integrate multiple views
of the data via (i) concatenation (denoted as
⊕) of the entity embeddings (e.g, FT-term ⊕
BERT-termMLA), and (ii) concatenation of label
and node2vec embeddings for concepts (e.g., FT-
label ⊕ BERT-label ⊕ node2vec).

Alignment Model. We adopt a linear transfor-
mation followed by ReLU (Nair and Hinton, 2010)
for aligning entity and concept embeddings, and
we train the model with a max-margin triplet loss:

L =
∑
p∈P

max
t̄∈T \{t}

[ α− s(p, t) + s(p, t̄) ]+ (1)

where α (= 0.2) is a pre-set margin, s(·, ·) is the
cosine similarity, P and T are the sets of all predic-
tions and target embeddings in a mini-batch, and
given a prediction p and its corresponding ground
truth t, t̄ denotes a negative target embedding.

Results. The results of the neural baselines are
presented in Table 4. All individual baselines (n.1
to n.4) fall behind the string-matching methods on
Acc@1. This can be due the fact that on average
for each entity-concept pair there are less than 4
examples even in the stratified training set, making
it difficult for the trained model to generalise well.
This issue is more evident in the zero-shot setting.

The ensemble neural baselines compensate for
the lack of training signal by leveraging multiple
views of the data. As expected, combining both
surface and node embeddings of the concepts (n.5)
offers a slight improvement, but still fails to match
the string-matching baselines. Finally, concatena-
tion of the entity embeddings with our proposed
BERT-termMLA representation, and of the label em-
beddings with BERT-label (n.6) outperforms all

12We also compared node2vec with more sophisticated
model of Kartsaklis et al. (2018) but we observed worse per-
formance. We speculate this is due to the reliance of their
model on the presence of textual definitions in SNOMED
labels, which is only available in < 4% of SNOMED nodes.
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Stratified Split Zero-Shot Split

# term embeddings concept embeddings Acc@1 Acc@10 MRR Acc@1 Acc@10 MRR

n.1 FT-term FT-label .40 (.38) .71 (.70) .51 (.49) .21 (.20) .53 (.51) .31 (.30)
n.2 FT-term node2vec .17 (.12) .36 (.31) .24 (.19) .01 (.03) .09 (.11) .04 (.06)
n.3 BERT-term BERT-label .32 (.29) .58 (.56) .41 (.39) .24 (.23) .50 (.50) .32 (.32)
n.4 BERT-termMLA BERT-label .38 (.35) .66 (.63) .48 (.45) .29 (.27) .56 (.52) .38 (.35)

n.5∗∗ n.1 n.1 ⊕ n.2 .47 (.42) .76 (.73) .57 (.49) .12 (.12) .37 (.41) .20 (.22)
n.6∗∗ n.1∗ ⊕ n.4 n.1 ⊕ n.2 ⊕ n.3 .67 (.61) .88 (.86) .74 (.70) .36 (.33) .66 (.63) .46 (.43)

* : A transformation is applied to FT-term ([ W · FT-term + b ]+) before concatenation.
** : Alignment model used for these marked cases is just a linear transformation (without ReLU).

Table 4: Comparison for neural-based baselines on stratified and zero-shot splits for general and (specific) levels.

previous baselines on the stratified split, but still
falls behind the string-based baselines on zero-shot.

Compared to Acc@1, while the overall ranking
of models remains the same, MRR and Acc@10
are more forgiving. The significant gap between
Acc@1 and Acc@10 suggests that a re-ranking
step (Liu, 2009) applied to top-10 candidates could
further boost the performance. We leave further
exploration of this idea to our future work.

4.3 Back-off Baselines

To obtain the best possible performance, we ex-
perimented with a deterministic back-off proce-
dure (denoted as +) that applies the Dictionary and
backs-off to a String-Matching model (§4.1) and
finally to the best ensemble model (§4.2; model n.6
in Table 4) for handling the missed cases.

Results. Table 5 reports the Back-off baseline
results. The immediate gain on performance com-
pared to each individual counterpart indicates that
each model is equipped to tackle only a subset of
the underlying challenges in the data. The back-off
model combining dictionary, Stoilos distance, and
the ensemble neural approach achieves our best
performance across both splits (model b.8 in Ta-
ble 5). As expected, the neural baselines contribute
much less in the Zero-Shot split with a meagre
4%(3%) improvement, compared to the 8%(7%)
increase on the Stratified split. Even if their over-
all contribution is limited, we were able to verify
that our neural baselines are actually able to exploit
the context as expected. For example w.r.t. the
issues typical of the UGC domain we identified
in Section 1, we found neural methods helpful in
resolving acronyms (“UTIs” to SCTID: 68566005
– Urinary Tract Infection), colloquial synonyms
(“bloodwork” to SCTID: 396550006 – Blood Test),
compositionality (“drenched in sweat” to SCTID:

Acc@1

# Method Stratified Split Zero-Shot Split

b.1 s.1 + s.2 .66 (.59) .37 (.35)
b.2 s.1 + s.3 .70 (.64) .52 (.49)
b.3 s.1 + s.4 .71 (.65) .53 (.51)

b.4 s.1 + n.6 .77 (.70) .36 (.33)
b.5 s.2 + n.6 .71 (.67) .53 (.49)
b.6 s.1 + s.2 + n.6 .79 (.73) .53 (.49)
b.7 s.1 + s.3 + n.6 .79 (.72) .56 (.53)
b.8 s.1 + s.4 + n.6 .79 (.72) .57 (.54)

Table 5: Back-off baselines on stratified and zero-shot
splits for general and (specific) levels.

415690000 – Sweating), complex inference (e.g.,
“Oral Cancer” to SCTID: 363505006 – Malignant
tumour of oral cavity), or even spelling errors com-
bined with alternative product names (“Remicaid”
to SCTID: 386891004 – Infliximab, i.e. the active
principle of Remicade). This last example is specif-
ically interesting, since the label Remicade is not
present in SNOMED but the pre-training of embed-
dings on medical texts (§4.2) allowed the neural
baselines to pick up the correct node.

5 Discussion

The COMETA corpus introduces a challenging sce-
nario for entity linking systems from both ML and
NLP perspectives. In this section we summarise
these challenges, our findings, and shed light on
aspects that demand future attention:

Domain-Specific Language. EL systems simi-
lar to our baselines are not uncommon in the
biomedical domain: Furrer et al. (2019) used a sim-
ilar dictionary-BERT ensemble model to achieve
the best performance in the 2019 CRAFT Shared
Task (Baumgartner et al., 2019) on biomedical liter-
ature. However, in their case, the neural component
offered a much higher contribution highlighting
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the underlying challenges in medical layman’s lan-
guage. Additionally, probing our proposed Multi-
Level Attention for BERT, we observed that a more
flexible utilisation of context is effective in under-
standing the diverse contextual cues.

Low-Resource Regime and Learning. Com-
pared to similar corpora, COMETA has the largest
scale. However, from a learning perspective the
lack of sufficient regularity in the data could still
leave its toll at test phase. This is a natural conse-
quence of high productivity of layman’s language
in social media, while emerging and unforeseen
topics such as pandemics (i.e., COVID19) could
also contribute to the problem. In fact, we observed
the daunting task that systems face in the zero-shot
setting, where in the absence of sufficient training
signal, string-based methods offer a strong base-
line which is hard to beat for neural counterparts.
While we artificially control this in the stratified
split we still believe the zero-shot setting draws a
more detailed picture of challenges an EL system
needs to tackle in a real-world scenario. Further
exploration of solutions such as transfer learning
across domains (i.e., from medical literature to lay-
man’s domain) is beyond the focus of this work,
nonetheless COMETA provides the framework for
designing and testing such solutions.

Cross-Modality Alignment. While Agarwal
et al. (2019) report superior performance of
node2vec embeddings on several graph-based tasks
on SNOMED, this success does not translate into
EL as it relies on mapping across modalities (i.e.,
text-to-graph). Alternatively, when we replaced
the node2vec with concept-label embeddings (pro-
duced by FT/BERT) the performance was signifi-
cantly improved. This suggests that aligning differ-
ent modalities may require a more complex align-
ment model or stronger training signals. We leave
further exploration of this to future work.

6 Conclusion

We presented COMETA, a unique corpus for its
scale and coverage which is curated to maintain
high quality annotations of medical terms in lay-
man’s language on Reddit with concepts from
SNOMED knowledge graph. Different evaluation
scenarios were designed to compare the perfor-
mance of conventional dictionary/string-matching
techniques against the mainstream neural counter-
parts and revealed that these models complement

each other very well and the best performance is
achieved by combining these paradigms. Nonethe-
less, the missing performance of 28-46% (depend-
ing on the evaluation scenario) encourages future
research on this area to take this corpus as a chal-
lenging yet reliable evaluation benchmark for fur-
ther development of models specific to this domain.

COMETA is available by contacting the last
author via e-mail or following the instructions
on https://www.siphs.org/. We release the
pre-trained embeddings and the code to repli-
cate our baselines online at https://github.com/
cambridgeltl/cometa.
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A Appendices

A.1 Full List of Subreddits
Table 6 reports the list of 68 subreddits crawled for
COMETA.

A.2 Example from COMETA
Table 7 provides examples from COMETA and
illustrates the structure of each line in the corpus.

A.3 Example from Assessor Guidelines
Table 8 provides an example from the guideline
sent to assessors.

A.4 Distribution of Concepts in Stratified
and Zero-Shot Splits

Figure 3 provides the detailed distribution of
SNOMED Concepts in Stratified and Zero-Shot
splits.

A.5 Reproducibility
Table 9 and Table 10 describe the hardware and
hyperparameters used for the experiments we de-
scribe.

A.6 Stoilos Distance
The commonality function comm(x, y), is defined
as

comm(x, y) =
2 ·

∑
i |max common substring|

(|x|+ |y|)/2

Where the max common substring between x, y
is computed in an iterative manner: first, that of
the original x, y are computed; then the common
sub-string is removed and search is done again for
the next max common substring until a threshold
of length 3 is met (common sub-strings with < 3
length are not considered).

The difference function, diff(x, y), is based on
the unmatched part of x, y from the last step. We
denote them as ux, uy. And the length of them are
normalised using a Hamacher product (Hamacher
et al., 1978) (a parametric triangular norm):

diff(x, y) =
|ux|·|uy|

p+(1−p)(|ux|+|uy|−|ux|·|uy|)

We choose p = 0.6.
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healthIT hepc Cirrhosis breastcancer
AskDocs T1D scoliosis Colic
DiagnoseMe diabetes health PsoriaticArthritis
cancer Constipated cfs Thritis
ChronicPain Constipation DuaneSyndrome fibro
dementia migraine atrialfibrillation HiatalHernia
flu panicdisorder insomnia PCOS
mentalhealth benzorecovery DSPD Urology
MultipleSclerosis Psoriasis braincancer multiplemyeloma
STD ClotSurvivors Hypermobility leukemia
transplant rheumatoid GERD lymphoma
birthcontrol Sciatica seizures AskaPharmacist
menstruation urticaria dialysis mastcelldisease
antidepressants crazyitch ChronicIllness obgyn
Allergies pancreatitis askdentists askadentist
FoodAllergies CrohnsDisease Dentistry HealthInsurance
Allergy Ovariancancer Antibiotics hearing

Table 6: The list of the 68 subreddits used as a source for the corpus.

ID Term General SCTID Specific SCTID Example Subreddit
int str int int str str

. . . . . . . . . . . . . . . . . .
i acid 34957004 34957004 I burned myself with acid AskDocs
i+ 1 acid 34957004 698065002 acid in my throat cancer
. . . . . . . . . . . . . . . . . .

Table 7: The structure of the dataset; column names are denoted by bold text, and column types are denoted by
monospaced text. The released dataset contains two additional columns, marking the label for the corresponding
General and Specific SCTID respectively. However, since a label may appear in multiple nodes, we recommend to
always use SCTIDs to retrieve the target nodes.
Please note that the data in this table is used for illustration purposes only and it might not be contained in the
released corpus.
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Quality Evaluation Term Proposed Node Explanation

5:Excellent The SNOMED node
matches exactly the term
or is a synonym of the
term.

Chronic back
pain

Chronic back pain,
134407002

Exact match.

4:Good The SNOMED node is
conceptually similar and
taxonomically close (1-2
edges) to the target term,
e.g. is a close ances-
tor/descendant or a sib-
ling.

Chronic back
pain

Back pain,
161891005

‘Back pain’ is the
direct ancestor of
‘Chronic back pain’.

3:Fair The SNOMED node is
conceptually related and
reasonably close (1 to
3 edges) to the target
term, both taxonomically
or via attributes (finding
site, etc.)

Chronic back
pain

Back, 77568009 ‘back’ is the ‘finding
site’ of ‘Chronic back
pain’.

2:Poor The SNOMED node is
conceptually distant
from the term, and there
is a reasonably long (3-4
edges) path from it to the
correct node

Chronic back
pain

Torso, 22943007 ‘Chronic Back Pain’ is
located in the ‘Torso’,
so they are somewhat
related, and the two
nodes are not far (dis-
tance 3)

1:Very Poor The SNOMED node is
completely unrelated
with the term, and the path
between the correct node
and the target one is very
long (> 5).

Chronic back
pain

Syringe, 61968008 ‘Chronic Back Pain’
and ‘Syringe’ have
high distance (5),
and the concepts are
completely unrelated.

Table 8: An example from assessor guidelines.

https://browser.ihtsdotools.org/?perspective=full&conceptId1=134407002&edition=MAIN/2020-03-09&release=&languages=en
https://browser.ihtsdotools.org/?perspective=full&conceptId1=134407002&edition=MAIN/2020-03-09&release=&languages=en
https://browser.ihtsdotools.org/?perspective=full&conceptId1=161891005&edition=MAIN/2020-03-09&release=&languages=en
https://browser.ihtsdotools.org/?perspective=full&conceptId1=161891005&edition=MAIN/2020-03-09&release=&languages=en
https://browser.ihtsdotools.org/?perspective=full&conceptId1=77568009&edition=MAIN/2020-03-09&release=&languages=en
https://browser.ihtsdotools.org/?perspective=full&conceptId1=22943007&edition=MAIN/2020-03-09&release=&languages=en
https://browser.ihtsdotools.org/?perspective=full&conceptId1=61968008&edition=MAIN/2020-03-09&release=&languages=en
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hardware specification

RAM 64 GB
CPU AMD R© Ryzen 9 3900x 12-core 24-thread
GPU NVIDIA R© GeForce RTX 2080 Ti (11 GB) × 2

Table 9: Hardware specifications of the machine used to run our experiments.

hyper-parameters search space

optimiser {AdamW∗, Adam}
learning rate {1e-4∗, 5e-4, 1e-5†}
batch size {64∗, 128, 256}
training epochs {30, 50∗, 100}
α in Eq. (1) {0.05, 0.1, 0.2∗}
threshold for Levenshtein (b.7) [0.10, 0.20]
threshold for Stoilos (b.8) [0.05, 0.10]
BERT pre-training global step {10k, 100k∗}
BERT pre-training max seq length {64∗, 128}

Table 10: This table lists the search space for hyper-parameters; ∗ denotes the ones used to obtain the performance
described in this publication if not specified otherwise. † identifies parameters used only for models n.5 and n.6.
More details can be found in the source code available online at redacted. Details of the two optimisers are
specified in Loshchilov and Hutter (2019) and Kingma and Ba (2015).

Stratified General Stratified Specific

Zeroshot General Zeroshot Specific

Clinical finding
Substance
Body structure

Procedure
Pharmaceutical / biologic product
Qualifier value

Physical object
Observable entity
Other

Figure 3: The categories in the dataset by split. The outer pie is the training set, the middle pie is the test set, the
inner pie is the development set.


