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Abstract

Complex reasoning over text requires under-
standing and chaining together free-form pred-
icates and logical connectives. Prior work has
largely tried to do this either symbolically or
with black-box transformers. We present a
middle ground between these two extremes:
a compositional model reminiscent of neural
module networks that can perform chained log-
ical reasoning. This model first finds relevant
sentences in the context and then chains them
together using neural modules. Our model
gives significant performance improvements
(up to 29% relative error reduction when com-
bined with a reranker) on ROPES, a recently-
introduced complex reasoning dataset.

1 Introduction

Performing chained inference over natural lan-
guage text is a long-standing goal in artificial in-
telligence (Grosz et al., 1986; Reddy, 2003). This
kind of inference requires understanding how nat-
ural language statements fit together in a way that
permits drawing conclusions. This is very chal-
lenging without a formal model of the semantics
underlying the text, and when polarity needs to be
tracked across many statements.

For instance, consider the example in Figure 1
from ROPES (Lin et al., 2019), a recently released
reading comprehension dataset that requires apply-
ing information contained in a background para-
graph to a new situation. To answer the question,
one must associate each category of flowers with a
polarity for having brightly colored petals, which
must be done by going through the information
about pollinators given in the situation and linking
it to what was said about pollinators and brightly
colored petals in the background paragraph, along
with tracking the polarity of those statements.

∗ Work done during an internship at Allen Institute for
Artificial Intelligence.

Background: Scientists think that the earliest flowers

attracted insects and other animals, which spread pollen

from flower to flower. This greatly increased the efficiency

of fertilization over wind-spread pollen, which might or

might not actually land on another flower. To take bet-

ter advantage of this animal labor , plants evolved traits

such as brightly colored petals to attract pollinators. In

exchange for pollination, flowers gave the pollinators nec-

tar.

Situation: Last week, John visited the national park

near his city. He saw many flowers. His guide explained

him that there are two categories of flowers, category A

and category B. Category A flowers spread pollen via wind,

and category B flowers spread pollen via animals.

Question: Which category of flowers would be more

likely to have brightly colored petals?

Answer: category B
(a)

SELECT

CHAIN

CHAIN

PREDICT

background question situation

category B

(b)

Figure 1: (a) An example in ROPES; (b) the chained
reasoning that our model performs on the example. The
model first (softly) selects relevant parts of the back-
ground and question, then successively chains them,
making a prediction after including the situation in the
chaining.

Prior work addressing this problem has largely
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either used symbolic reasoning, such as markov
logic networks (Khot et al., 2015) and integer lin-
ear programming (Khashabi et al., 2016), or black-
box neural networks (Jiang et al., 2019; Jiang and
Bansal, 2019). Symbolic methods give some mea-
sure of interpretability and the ability to handle
logical operators to track polarity, but they are brit-
tle, unable to handle the variability of language.
Neural networks often perform better on practical
datasets, as they are more robust to paraphrase, but
they lack any explicit notion of reasoning and are
hard to interpret.

We present a model that is a middle ground
between these two approaches: a compositional
model reminiscent of neural module networks that
can perform chained logical reasoning. The pro-
posed model is able to understand and chain to-
gether free-form predicates and logical connectives.
The proposed model is inspired by neural module
networks (NMNs), which were proposed for vi-
sual question answering (Andreas et al., 2016b,a).
NMNs assemble a network from a collection of
specialized modules where each module performs
some learnable function, such as locating a ques-
tion word in an image, or recognizing relationships
between objects in the image. The modules are
composed together specific to what is asked in the
question, then executed to obtain an answer. We
design general modules that are targeted at the rea-
soning necessary for ROPES and compose them
together to answer questions.

We design three kinds of basic modules to learn
the neuro-symbolic multi-step inference over ques-
tions, situations, and background passages. The
first module is called SELECT, which determines
which information (in the form of spans) is essen-
tial to the question; the second module is called
CHAIN, which captures the interaction from mul-
tiple statements; the last one is called PREDICT,
which assigns confidence scores to potential an-
swers. The three basic modules can be instantiated
separately and freely combined.

In this paper, we investigate one possible combi-
nation as our multi-step inference on ROPES. The
results show that with the multi-step inference, the
model achieves significant performance improve-
ment. Furthermore, when combined with a rerank-
ing architecture, the model achieves a relative error
reduction of 29% and 8% on the dev and test sets in
the ROPES benchmark. As ROPES is a relatively
new benchmark, we also present some analysis of

the data, showing that the official dev set is likely
better treated as an in-domain test, while the official
test set is more of an out-of-domain test set.1

2 Model

We first describe the baseline system, a typical
QA span extractor built on ROBERTA (Liu et al.,
2019), and then present the proposed system with
multi-step inference. Furthermore, we introduce a
reranker with multi-step inference given the output
of the baseline system.

Following the standard usage of ROBERTA, we
concatenate the background, the situation and ques-
tion with two special determiners [S:] and [Q:] to
be a long passage P = [CLS] B [S:] S [SEP]
[SEP] [Q:] Q [SEP], where the background B and
situation S are regarded as the first segment and
the question Q is the second segment, and [CLS]
and [SEP] are the reserved tokens in ROBERTA.

2.1 Baseline

Our baseline system is a span extractor built on the
top of ROBERTA. Given the passage representa-
tions from ROBERTA PROBERTA = [x0, ..., xn−1],
two scores are generated for each token by span
scorer, showing the chance to be the start and the
end of the answer span:

S̄, Ē = QA score(PROBERTA),

where S̄ = [s̄, s̄1, ...s̄n−1] and Ē =
[ē0, ē1, ..., ēn−1] (0 ≤ k < n)2are the scores of
the start and the end of answer spans, respectively.
QA score(·) : Rdx ⇒ R2 is a linear function,
where dx is the output dimension of ROBERTA.
The span with highest start and end scores is
extracted as the answer by span extractor:

[s0, s1, ..., sn] = SOFTMAX([s̄0, s̄1, ..., s̄n])

[e0, e1, ..., en] = SOFTMAX([ē0, ē1, ..., ēn])

i∗, j∗ = arg max
i,j

si + ej (0 ≤ i ≤ j < n),

where the spani∗,j∗ is the answer.

1Model code is available at https://github.com/
LeonCrashCode/allennlp/blob/transf-exp1/
allennlp/models/transformer_mc/roberta_
models.py

2The answer spans always appear in the situation and ques-
tion passage, so we mask the scores for the background pas-
sage.

https://github.com/LeonCrashCode/allennlp/blob/transf-exp1/allennlp/models/transformer_mc/roberta_models.py
https://github.com/LeonCrashCode/allennlp/blob/transf-exp1/allennlp/models/transformer_mc/roberta_models.py
https://github.com/LeonCrashCode/allennlp/blob/transf-exp1/allennlp/models/transformer_mc/roberta_models.py
https://github.com/LeonCrashCode/allennlp/blob/transf-exp1/allennlp/models/transformer_mc/roberta_models.py
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2.2 Multi-Step Inference for ROPES
Instead of a simple span prediction head on top
of ROBERTA, our proposed multi-step inference
model uses a series of neural modules targeted at
chained inference. Like the baseline, our model
begins with encoded ROBERTA passage represen-
tations PROBERTA, but replaces the QA score func-
tion with a MS-Inference function, which similarly
outputs a span start and end score for each encoded
token xk:

S̄, Ē = MS-Inference(PROBERTA)

The MS-Inference(·) function consists of sev-
eral modules. These modules SELECT relevant
information from parts of the passage, CHAIN the
selected text together, then PREDICT the answer
to the question given the result of the chaining.
These modules are applied on PROBERTA which is
decomposed into BROBERTA, SROBERTA,QROBERTA,
denoting the token representations of ROBERTA

for the background, the situation and the question,
respectively.

As most of the questions in ROPES require the
same basic reasoning steps, we use a fixed combi-
nation of these modules to answer every question,
instead of trying to predict the module layout for
each question, as was done in prior work (Hu et al.,
2017). This combination is shown in Figure 2: we
SELECT important parts of the question passage,
and CHAIN them with the background passage to
find a likely part of the background that supports
answering the question (marked as red). Then we
SELECT important parts of the background pas-
sage, which are combined with previous results
that we have (marked as blue), and we CHAIN the
combined information to find relevant parts of the
situation passage (marked as green), and finally
PREDICT an answer (marked as black), which is
most often found in the situation text. The intu-
ition for how these modules work together to piece
together the information necessary to answer the
question is shown in Figure 1. The actual opera-
tions performed by each of these modules is de-
scribed below.

SELECT The select module, i.e. z =
SELECT(Y ), where Y ∈ Rn×dx and z ∈ Rdx ,
aims to find the important parts of its input and
summarize in a single vector. It first uses a learned
linear scoring function, f(·) : Rdx ⇒ R, to
determine which parts of its input are most impor-
tant, then converts those scores into a probability

SROBERTA BROBERTA QROBERTA X

SELECT
Y

SELECT
Y

CHAIN
Y Z

CHAIN
Y Z

PREDICT
Z

S

Figure 2: Multi-step inference model, where ⊗ is the
operation to collect multiple vectors as a list, Z, Y are
the interfaces of the modules, and X is a token repre-
sentation to be scored as start/end of the answer span in
the QA systems, or a candidate span representation to
be scored in the reranking systems.

distribution using a SOFTMAX operation, and
computes a weighted sum of the inputs:

W = f(Y )

A = SOFTMAX(W )

z = ATY,

CHAIN The chain module, i.e. z =
CHAIN(Y, Z), computes the interaction be-
tween an input matrix Y and a list of the input
vectors Z = [z0, z1, ..., zl−1], where Y ∈ Rn×dx ,
zk ∈ Rdk and dk is the dimension of the kth input
vector (0 ≤ k < l), and again outputs a summary
vector of this interaction z ∈ Rdx . Intuitively, this
module is supposed to chain together the inputs Y
and Z and return a summary of the result. This is
done with the following operations:

z′ = g([z0; z1; ...; zl−1])

z = ATTENTION(z′, Y, Y ),

where g(·) : R(d0+d1+...+dl−1) ⇒ Rdx is a linear
function, ; is the concatenation, and attention(·) is
instantiated with the multi-head attention:

ATTENTION(z′, Y, Y ) = [att1; att2; ...; atth]WO

attk = att(z′WQ
k , Y WK

k , Y W V
k )

att(Q,K, V ) = SOFTMAX(
QKT

√
dx

)V,
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where WO,WQ
k ,WK

k and W V
k are trainable pa-

rameters.

PREDICT The predict module, i.e. S =
PREDICT(Z,X), takes the list of output vectors
Z = [z0, z1, ..., zm−1] from previous modules,
where zk ∈ Rdk(0 ≤ k < m) and m is the
number of previous modules, and the candidates
X = [x0, x1, ..., xn−1], where xk ∈ Rd

x and n is
the number of candidates, and produces scores for
the candidates. In our base model, each candidate
is a token in the situation or question, and the score
is a pair of numbers representing span start and
end probabilities for that token. When we use this
module in a re-ranker (Section 2.3), the candidates
X are already encoded spans, and so we produce
just one number for each span. The PREDICT mod-
ule simply uses a linear scoring function on the
concatenation of its inputs:

S =[s0, s1, ..., sn−1]

sk =SCORE([z0; z1; ...; zl;xk]),

where SCORE(·) : R1×(d0+d1+...+dm−1+dx) ⇒ Rr

is a linear function, ; is the concatenation and r = 2
if the module is used to extract spans, while r = 1
if the module is used to score candidates for the
reranker.

Full model Our full model combines these mod-
ules in the following way to compute span start and
end scores for each token (depicted graphically in
Figure 2):

SROBERTA,BROBERTA, QROBERTA = PROBERTA

X = [SROBERTA;QROBERTA]

z0 = SELECT(QROBERTA)

z1 = SELECT(BROBERTA)

z2 = CHAIN(BROBERTA, [z0])

z3 = CHAIN(SROBERTA, [z1, z2])

S̄, Ē = S = PREDICT([z0, z1, z2, z3], X)

2.3 Multi-Step Reranker
Most questions in ROPES have only two or three
reasonable candidate answers (in Figure 1 these
are “category A” and “category B”), and we find
that the baseline model is able to reliably find these
answers, though it has a hard time selecting be-
tween them. This suggests that a reranker that only
focuses on deciding which of the candidates is cor-
rect could be effective. To do this, we take the top c
spans output by the baseline system and score these

candidates directly using our MS-Inference model
instead of producing span start and end scores for
each input token.

Scoring spans instead of tokens To feed the
candidate spans into our multi-step inference
model, we represent each span as a single vector by
concatenating its endpoint tokens: x(i,j) = [xi;xj ].
We take all c candidates and concatenate them to-
gether as X , instead of X = [S;Q] as is done in
our base model. Similarly, PREDICT(Z,X) out-
puts a single score Ō per candidate instead of a
pair of start and end probabilities.

Ensemble We additionally use an ensemble strat-
egy for the reranker. We train several rerankers and
build a voting system where each reranker makes
a vote for the candidate to be the best answer. The
candidate with the most votes is chosen the best
answer through the voting system.

3 Data bias in ROPES

We experiment with ROPES (Lin et al., 2019), a re-
cently proposed dataset which focuses on complex
reasoning over paragraphs for document compre-
hension. We noticed a very severe drop in per-
formance between the ROPES dev and test sets
during initial experiments, and we performed an
analysis of the data to figure out the cause. ROPES
used an annotator split to separate the train, dev,
and test sets in order to avoid annotator bias (Geva
et al., 2019), but we discovered that this led to a
large distributional shift between train/dev and test,
which we explore in this section. In light of this
analysis, we recommend treating the dev set as an
in-domain test set, and the original test set as an
out-of-domain test.

Answer types Our analysis is based on look-
ing at the syntactic category of the answer phrase.
We use the syntactic parser of Kitaev and Klein
(2018) to obtain constituent trees for the passages
in ROPES. We take the constituent label of the
lowest subtree that covers the answer span3 as the
answer type.

The four most frequent answer types in ROPES
are noun phrase (NP), verb phrase (VP), adjective
phrase (ADJP) and adverb phrase (ADVP). Table 1
shows examples for each type. Most NP answers

3 The passages could have more than one span that matches
the answer; we use the last occurrence of the answer span for
our analysis.
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Type Passage

NP
...The child poured two spoonfuls of sugar into cup A and three spoonfuls of sugar
into cup B... Which cup has a higher concentration of sugar ?
...They labeled it as plant B . They wanted to find out what makes a plant drought-
resistant... In which plant there would be more water loss ?

VP
...In test B he used higher concentration of reactants. Now, he needs to know about
the science... Would test B increase or decrease the frequency...
...induced higher respiration rate in sample A. Then he induced no respiration rate in
sample B... make their own glucose or acquire it from other organisms ?

ADJP
... patient A and patient B. John found out that patient A had more LDL, but patient B
had more HDL... B have higher or lower risk of heart attack than patient A?
...visible light. He noted microwaves as case A, infrared as case B, and visible light as
case C...Would case A have longer or shorter wavelengths than case B?

ADVP
...Sample A was a strong acid, and sample B was a weak acid. David needed to
...sample A lose a proton less or more easily than sample B?
...There is only one ice cube left so she takes it out and sets it in the glass on the table.
She then refills...in the ice cube moving closer together or farther apart ?

Others
...Their mother takes them to see a doctor and to have their testosterone tested. The
tests reveal that...Will Jimothy finish his growth spurt before or after Dwight?
...He cut down on how much he eats every day and monitors his calorie intake, making
sure that he is...Given Greg’s BMI us 41, is he considered obese, yes or no?

Table 1: The examples in ROPES, where the bold red spans are answers.

come from the situation, while the other answer
types typically come from the question.

Bias The distribution of answer types in the
train/dev/test sets of ROPES are shown in Table 2.
We found that the distribution in the train set is sim-
ilar to development set, where most of the answers
are NPs (85%), with ADJP being the second most
frequent. However, the test set has a very differ-
ent distribution over answer types, where less than
half of the answers NPs, and there are more VPs,
ADJPs, ADVPs, and other types.

This distributional shift over answer types be-
tween train/dev and test raises challenges for read-
ing comprehension systems; to perform well on
test, the model must predict a significant number
of answers from the question instead of from the
situation, which only rarely happens in the train-
ing data. Given this distributional shift, it seems
fair to characterize the official test as somewhat
out-of-domain for the training data.

4 Experiments

In this section, we evaluate the performance of our
proposed model relative to baselines on ROPES.

Answer type Train Dev Test

NP 84.17 85.19 47.19
VP 3.35 1.24 17.37

ADJP 9.20 10.25 19.36
ADVP 2.50 3.32 10.23
Others 0.78 0.00 5.85

Table 2: The percentage (%) of question types in
ROPES.

Train Dev Test

# of backgrounds 513 51 171
# of situations 1,409 203 300
# of questions 10,924 1,688 1,710

Table 3: The ROPES dataset

4.1 Settings

Data We use the 10,924 questions as our training
set, and 1,688 questions as dev set and 1,710 ques-
tions as test set, where each question has only one
answer, which is a span from either the situation
or the question. Table 3 shows the statistics on
the ROPES benchmark. Due to the severe distri-
butional shift between dev and test (described in
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parameter value
hidden size 1024
batch size 8
gradient accumulation 16
epoch 10
learning rate 1e-5
weight decay rate 0.1
warming up ratio 0.06
optimizer adam
doc stride 150
maximum pieces 384

Table 4: The hyperparameters

Section 3), we additionally set up an experiment
using the dev set as an in-domain test set, by parti-
tioning the training set into train (9,824 questions)
and train-dev (1,100 questions).

Training Following the settings of prior work
(Lin et al., 2019), we fine-tune the ROBERTA-
LARGE pre-trained transformer. The hidden sizes
of all layers are set to 1024 which is the same to the
output dimension of ROBERTA-LARGE, and the
number of heads on multi-step attentions is 8. All
the models share the same hyperparameters that
are shown in Table 4.4

Metrics Though ROPES was released using both
exact match (EM) and F1 as metrics, we only re-
port EM here, as F1 has been shown to correlate
poorly with human judgments on ROPES (Chen
et al., 2019a). F1 assumes that answers that share
many overlapping words are likely similar; while
this is largely true on SQuAD (Rajpurkar et al.,
2016), where this particular F1 score was intro-
duced, it is not true on ROPES, where things like
Village A and Village B are both plausible answers
to a question. All the systems are trained in three
runs with different random seeds, and we post the
average performance over the three runs.

4.2 Results

Table 5 shows the performance of the three systems.
The multi-step system and multi-step reranker out-
perform the baseline system with 8.1% and 11.7%
absolute EM accuracy on dev set, respectively, and
with 2.4% and 2.0% EM accuracy on test set, re-
spectively, showing that with multi-step inference,
the system can achieve improvements. With the

4The hyperparamters are manually tuned according to the
performance on dev dataset.

Model Dev Test Dev-test

Baseline 59.7 55.4 56.2
Multi-step 67.8 57.8 61.6
Multi-step reranker 71.4 57.4 63.4

+ensemble 73.3 58.8 65.2

Table 5: The exact match scores by three systems. For
the first two columns, we performed model selection
on dev; for the third column, we performed model se-
lection on a separate train-dev set.

ensemble, the multi-step reranker performs best on
dev and test sets.

As can be seen, the improvement of our model
on the dev set is quite large. While performance
is also better on the official test set, the gap is not
nearly so large. To understand whether this was due
to overfitting to the dev set or to the distributional
shift mentioned in Section 3, Table 5 also shows the
results on dev-test, our split that treats the official
dev set as a held-out test set. Here, we still see large
gains of 7.2% EM from our model, suggesting that
it is indeed a distributional shift and not overfitting
that is the cause of the difference in performance
between the original dev and test sets. Properly
handling the distributional shift in the ROPES test
set is an interesting challenge for future work.

4.3 Analysis and Discussion

We conduct detailed analysis in this section, study-
ing (1) the impact of various components of our
model, (2) the gap between results on development
and test set, (3) the strategy for sampling candi-
dates for the reranker, and (4) the errors that the
models cannot cover.

Ablation Study We perform an ablation study on
the multi-step system and the multi-step reranker.
Table 6 shows the results on dev set by various
ablated systems. The performances of two sys-
tems drop down without any one module due to
the property of the chained reasoning. The perfor-
mance of the multi-step system without Q SELECT

or B CHAIN drops (around) more than that of the
multi-step system without B SELECT or S CHAIN

(around -2.1% EM ). So Q SELECT module and B
CHAIN play relatively more important roles. The
performance of the multi-step reranker without Q
SELECT, B SELECT or S CHAIN drops (around -
5.9% EM) more than that of the multi-step reranker
without B CHAIN (-3.7% EM).
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Model EM

Multi-step 67.8
w/o Q SELECT 62.8 (-5.0)
w/o B CHAIN 62.3 (-5.5)
w/o B SELECT 65.9 (-1.9)
w/o S CHAIN 65.5 (-2.3)

Multi-step reranker 71.4
w/o Q SELECT 65.8 (-5.6)
w/o B CHAIN 67.7 (-3.7)
w/o B SELECT 64.9 (-6.5)
w/o S CHAIN 65.7 (-5.7)

Table 6: The ablation results on development. Q SE-
LECT denotes the question SELECT module; B CHAIN
denotes the CHAIN module applied on the background
and the question; B SELECT denotes the background
SELECT module; S CHAIN denotes the CHAIN module
applied on the situation and the previous chained rea-
soning.

Model NP VP ADJP ADVP avg

Baseline 60.0 38.1 60.4 62.7 53.03
Multi-step 68.8 39.7 61.3 72.6 58.65
Multi-step reranker 71.8 38.1 63.8 75.0 60.52

+ensemble 75.0 42.9 61.3 78.6 62.75

Table 7: The exact match accuracy of most four fre-
quent question types in test dataset. avg is the weighted
accuracy in terms of frequency of the four kinds of
questions.

Answer Types We break down the overall accu-
racy by answer type, which is shown in Table 7. All
three systems perform substantially better on NP,
ADJP, and ADVP questions than on VP questions.
The main reason is that the VP questions are associ-
ated with complex and long answers, e.g., acquire
it from other organisms or make their own glucose.
The major improvements happen on answering NP
and ADVP questions, which explains the gap be-
tween the scores on the development set, with a
large amount of NP questions, and the test set, with
relatively more VP questions. The analysis can
inspire the future work of investigating the specific
inference programs for specific-type questions.

Candidate Sampling In order to train the
reranker, we need training data with high-diversity
candidates. However, a well-trained model does
not generate similar candidates for the training set
to what it generates for the dev and test sets, due to
overfitting to the training set. In order to get useful

EM
10-fold 84.1
5-fold 82.4
2-fold 75.9
3-turn 59.9

Table 8: The average accuracy on training data for the
multi-step reranker.

k train dev test
1 59.9 59.7 55.4
2 81.4 64.8 61.9
3 92.0 97.4 80.2
4 93.8 98.3 83.6
5 94.9 98.7 85.9
10 96.1 99.4 88.5

Table 9: The oracle scores for top k candidates.

candidates for the training set, we need a model
that was not trained on the data that it generates
candidates for. We investigate four strategies based
on cross-validation to generate training data candi-
dates: 10-fold, 5-fold, 2-fold and 3-turn. With the
k-fold method, the training data is partitioned into
k parts, and (k − 1) parts are used to train a model
that generates candidates answers for the remain-
ing part. With the k-turn method, the training data
is partitioned into k parts, and the ith part is used
to train a model that generates candidate answers
for (i + 1)th part.

Table 8 shows the average accuracy on training
data. The accuracy on training data generated by
k-fold self-sampling method is very high, and they
are not consistent with the dev and test set. The
accuracy on training data generated by the 3-turn
self-sampling method is most similar to the accu-
racy on dev set (59.7% EM) and test set (55.4%
EM) by the baseline system. We adopt the 3-turn
self-sampling method for our experiments.

Table 9 shows the oracle of top k candidates
on train, development and test set. Because or-
acle scores are the upper bound of the reranker,
there is a trade-off that the upper bound is lower
as fewer candidates are sampled, while the noise
increases as more incorrect candidates are sampled.
We found that top 3 provides a good trade-off for
the reranker on the development set, giving a large
jump over just two candidates, and this is what we
used during our main experiments.
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Error Analysis and Future Work We analyze
some errors that our proposed model made, aim-
ing to discover the questions that our model could
not cover. Table 10 shows some questions that our
proposed model gives incorrect answers. The ques-
tions require model to get the numeric information
from the passage, and then compare the numeric
relation (e.g. larger, smaller and equal) and target
the effect of the relation in the background passage,
where positive correlation between the prices and
the sold number in example 1, positive correlation
between the tolerance degree and usage times in
example 2 and negative correlation between the
crash rate the the number of cyclists in example
3. It seems that the model is not sensitive to the
numeric information and their reasonings.

Also, the situations give more than two entities
with their related information, and although the
questions narrow down the multiple choices to two
choices, the systems are still distracted by these
question-irrelevant entities. The distraction comes
from the difficulty of associating the relevant in-
formation with the correct entities. Future work
can be motivated by the discovery to design more
modules to deal with this phenomenon.

5 Related Work

Neural Module Networks were originally pro-
posed for visual question answering tasks (Andreas
et al., 2016b,a), and recently have been used on
several reading comprehension tasks (Jiang et al.,
2019; Jiang and Bansal, 2019; Gupta et al., 2020),
where they specialize the module functions such
as FIND and COMPARE to retrieve the relevant
entities with or without supervised signals for Hot-
potQA (Yang et al., 2018) or DROP (Dua et al.,
2019). As ROPES is quite different from these
datasets, the modules that we choose to use are
also different, focusing on chained inference.

Multi-Hop Reasoning There are several
datasets constructed for multi-hop reasoning e.g.
HOTPOTQA (Yang et al., 2018; Jiang et al., 2019;
Jiang and Bansal, 2019; Min et al., 2019; Feldman
and El-Yaniv, 2019), QANGAROO (Welbl et al.,
2018; Chen et al., 2019b; Zhuang and Wang, 2019;
Tu et al., 2019) and WIKIHOP (Welbl et al., 2018;
Song et al., 2018; Das et al., 2019; Asai et al.,
2019) which aims to get the answer across the
documents. The term “multi-hop” reasoning on
these datasets is similar to relative information
retrieval, where one entity is bridged to another

Example 1
Background: ... For many of the works, the price goes

up as the edition sells out...

Situation: ...By the end of the week, they started to sell

out. There were only 2 of the Mona Lisa,...,120 of The

Kiss, 150 of The Arnolfini Portrait...

Question: Which limited edition most likely had it’s

price increased: The Kiss or Mona Lisa ?

Answer: The Kiss

Ours:Mona Lisa

Example 2
Background: ...The tolerance for a drug goes up as

one continues to use it after having a positive experience

with a certain amount the first time...

Situation: ... Chris used it 12 times,...,Jimmy used it

42 times, Antonio used it 52 times, Danny used it 62 times,

...

Question: Who has a higher tolerance for roach:

Jimmy or Antonio ?

Answer: Antonio

Ours: Jimmy

Example 3
Background: ... That is to say, the crash rate per

cyclist goes down as the cycle volume increases...

Situation: ...Day 1 had 500 cyclists left. Day 2 had

400 cyclists left. Day 3 had 300 cyclists left. Day 4 had

200 cyclists left....

Question: What day had a lower crash rate per cyclist:

Day 1 or Day 2 ?

Answer: Day 1

Ours: Day 2

Table 10: The examples of the answers to the questions
by the multi-step reranker.

entity with one hop. Differently, the multi-step
reasoning on ROPES aims to do reasoning over
the effects of a passage (background and situation
passage) and then give the answer to the question
in the specific situation, without retrieval on the
background passage.

Models beyond Pre-trained Transformer As
the emergence of fully pre-trained transformer (Pe-
ters et al., 2018; Devlin et al., 2019; Liu et al., 2019;
Radford et al.; Dai et al., 2019; Yang et al., 2019),
most of NLP benchmarks got new state-of-the-art
results by the models built beyond the pre-trained
transformer on specific tasks (e.g. syntactic pars-
ing, semantic parsing and GLUE) (Wang et al.,
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2018; Kitaev and Klein, 2018; Zhang et al., 2019;
Tsai et al., 2019). Our work is in the same line
to adopt the advantages of pre-trained transformer,
which has already collected contextualized word
representation from a large amount of data.

6 Conclusion

We propose a multi-step reading comprehension
model that performs chained inference over nat-
ural language text. We have demonstrated that
our model substantially outperforms prior work on
ROPES, a challenging new reading comprehension
dataset. We have additionally presented some anal-
ysis of ROPES that should inform future work on
this dataset. While our model is not a neural mod-
ule network, as our model uses a single fixed layout
instead of different layouts per question, we believe
there are enough similarities that future work could
explore combining our modules with those used
in other neural module networks over text, leading
to a single model that could perform the necessary
reasoning for multiple different datasets.
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