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Abstract

We show that Reinforcement Learn-
ing (RL) methods for solving Text-Based
Games (TBGs) often fail to generalize on un-
seen games, especially in small data regimes.
To address this issue, we propose Context
Relevant Episodic State Truncation (CREST)
for irrelevant token removal in observation
text for improved generalization. Our method
first trains a base model using Q-learning,
which typically overfits the training games.
The base model’s action token distribution
is used to perform observation pruning that
removes irrelevant tokens. A second boot-
strapped model is then retrained on the pruned
observation text. Our bootstrapped agent
shows improved generalization in solving
unseen TextWorld games, using 10x-20x
fewer training games compared to previous
state-of-the-art (SOTA) methods despite
requiring fewer number of training episodes.1

1 Introduction

Reinforcement Learning (RL) methods are increas-
ingly being used for solving sequential decision-
making problems from natural language inputs,
like text-based games (Narasimhan et al., 2015; He
et al., 2016; Yuan et al., 2018; Zahavy et al., 2018)
chat-bots (Serban et al., 2017) and personal con-
versation assistants (Dhingra et al., 2017; Li et al.,
2017; Wu et al., 2016). In this work, we focus on
Text-Based Games (TBGs), which require solving
goals like “Obtain coin from the kitchen”, based
on a natural language description of the agent’s
observation of the environment. To interact with
the environment, the agent issues text-based action
commands (“go west”) upon which it receives a re-
ward signal used for training the RL agent. TBGs
serve as testbeds for interactive real-world tasks

1Our code is available at:
www.github.com/IBM/context-relevant-pruning-textrl

Goal: Who’s got a virtual machine and is about
to play through an fast paced round of textworld?
You do! Retrieve the coin in the balmy kitchen.

Observation: You’ve entered a studio. You try
to gain information on your surroundings by
using a technique you call “looking.” You need
an unguarded exit ? you should try going east.
You need an unguarded exit? You should try go-
ing south. You don’t like doors? Why not try
going west, that entranceway is unblocked.
Bootstrapped Policy Action: go south

Figure 1: Our method retains context-relevant tokens
from the observation text (shown in green) while prun-
ing irrelevant tokens (shown in red). A second policy
network re-trained on the pruned observations general-
izes better by avoiding overfitting to unwanted tokens.

like virtual-navigation agents on cellular phones at
a shopping mall with user rating as the reward.

Traditional text-based RL methods focus on the
problems of partial observability and large action
spaces. However, the topic of generalization to un-
seen TBGs is less explored in the literature. We
show that previous RL methods for TBGs often
show poor generalization to unseen test games. We
hypothesize that such overfitting is caused due to
the presence of irrelevant tokens in the observation
text, which might lead to action memorization. To
alleviate this problem, we propose CREST, which
first trains an overfitted base model on the original
observation text in training games using Q-learning.
Subsequently, we apply observation pruning for
each training game, such that observation tokens
that are not semantically related to the base pol-
icy’s action tokens are pruned. Finally, we re-train
a bootstrapped policy on the pruned observation
text using Q-learning that improves generalization
by removing irrelevant tokens. Figure 1 shows an
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Figure 2: (a) Overview of Context Relevant Episodic State Truncation (CREST) module using Token Relevance
Distribution for observation pruning. Our method shows better generalization from 10x-20x less number of training
games and faster learning with fewer episodes on (b) “easy” and (c) “medium” validation games.

illustrative example of our method. Experimen-
tal results on TextWorld games (Côté et al., 2018)
show that our proposed method generalizes to un-
seen games using almost 10x-20x fewer training
games compared to SOTA methods; and features
significantly faster learning.

2 Related Work

LSTM-DQN (Narasimhan et al., 2015) is the first
work on text-based RL combining natural lan-
guage representation learning and deep Q-learning.
LSTM-DRQN (Yuan et al., 2018) is the state-of-
the-art on TextWorld CoinCollector games, and
addresses the issue of partial observability by us-
ing memory units in the action scorer. Fulda et al.
(2017) proposed a method for affordance extrac-
tion via word embeddings trained on a Wikipedia
corpus. AE-DQN (Action-Elimination DQN) – a
combination of a Deep RL algorithm with an action
eliminating network for sub-optimal actions – was
proposed by Zahavy et al. (Zahavy et al., 2018).
Recent methods (Adolphs and Hofmann, 2019;
Ammanabrolu and Riedl, 2018; Ammanabrolu and
Hausknecht, 2020; Yin and May, 2019; Adhikari
et al., 2020) use various heuristics to learn better
state representations for efficiently solving com-
plex TBGs.

3 Our Method

3.1 Base model
We consider the standard sequential decision-
making setting: a finite horizon Partially Observ-

able Markov Decision Process (POMDP), repre-
sented as (s, a, r, s′), where s is the current state,
s′ the next state, a the current action, and r(s, a)
is the reward function. The agent receives state
description st that is a combination of text describ-
ing the agent’s observation and the goal statement.
The action consists of a combination of verb and
object output, such as “go north”, “take coin”, etc.
The overall model has two modules: a represen-
tation generator, and an action scorer as shown in
Figure 2. The observation tokens are fed to the
embedding layer, which produces a sequence of
vectors xt = {xt1, xt2, ..., xtNt

}, where Nt is the
number of tokens in the observation text for time-
step t. We obtain hidden representations of the
input embedding vectors using an LSTM model
as hti = f(xti, h

t
i−1). We compute a context vec-

tor (Bahdanau et al., 2014) using attention on the
jth input token as,

etj = vT tanh(Whh
t
j + battn) (1)

αt
j = softmax(etj) (2)

where Wh, v and battn are learnable parameters.
The context vector at time-step t is computed
as the weighted sum of embedding vectors as
ct =

∑Nt
j=1 α

t
jh

t
j . The context vector is fed into

the action scorer, where two multi-layer percep-
trons (MLPs), Q(s, v) and Q(s, o) produce the
Q-values over available verbs and objects from
a shared MLP’s output. The original works of
Narasimhan et al. (2015); Yuan et al. (2018) do
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Table 1: Average success rate of various methods on 20 unseen test games. Experiments were repeated on three
random seeds. Our method trained on almost 20× fewer data has a similar success rate to state-of-the-art methods.

Methods
Easy Medium Hard

N25 N50 N500 N50 N100 N500 N50 N100
LSTM-DQN (no att) 0.0 0.03 0.33 0.0 0.0 0.0 0.0 0.0

LSTM-DRQN (no att) 0.17 0.53 0.87 0.02 0.0 0.25 0.0 0.0
LSTM-DQN (+attn) 0.0 0.03 0.58 0.0 0.0 0.0 0.0 0.0

LSTM-DRQN (+attn) 0.32 0.47 0.87 0.02 0.06 0.82 0.02 0.08
LSTM-DRQN (+attn+dropout) 0.58 0.80 1.0 0.02 0.37 0.85 0.0 0.33

Ours (ConceptNet+no att) 0.47 0.5 0.98 0.75 0.67 0.97 0.62 0.92
Ours (Word2vec+att) 0.67 0.82 1.0 0.57 0.92 0.95 0.77 0.92

Ours (Glove+att) 0.70 0.97 1.0 0.67 0.72 0.90 0.1 0.63
Ours (ConceptNet+att) 0.82 0.93 1.0 0.67 0.95 0.97 0.93 0.88

not use the attention layer. LSTM-DRQN replaces
the shared MLP with an LSTM layer so that the
model remembers previous states, thus addressing
the partial observability in these environments.

Q-learning (Watkins and Dayan, 1992; Mnih
et al., 2015) is used to train the agent. The param-
eters of the model are updated by optimizing the
following loss function obtained from the Bellman
equation (Sutton et al., 1998),

L =

∥∥∥∥Q(s, a)− Es,a

[
r + γmax

a′
Q(s′, a′)

]∥∥∥∥
2
(3)

where Q(s, a) is obtained as the average of verb
and object Q-values, γ ∈ (0, 1) is the discount
factor. The agent is given a reward of 1 from the
environment on completing the objective. We also
use episodic discovery bonus (Yuan et al., 2018)
as a reward during training that introduces curios-
ity (Pathak et al., 2017) encouraging the agent to
uncover unseen states for accelerated convergence.

3.2 Context Relevant Episodic State
Truncation (CREST)

Traditional LSTM-DQN and LSTM-DRQN meth-
ods are trained on observation text containing irrel-
evant textual artifacts (like “You don’t like doors?”
in Figure 1), that leads to overfitting in small data
regimes. Our CREST module removes unwanted
tokens in the observation that do not contribute to
decision making. Since the base policy overfits on
the training games, the action commands issued by
it can successfully solve the training games, thus
yielding correct (observation text, action command)
pairs for each step in the training games. Therefore,
by only retaining tokens in the observation text
that are contextually similar to the base model’s

(b) Medium games (N50)

Observation: You've entered a
cookhouse. You begin to take stock of
what's in the room. You need an
unguarded exit? You should try going
north. There is an exit to the south. Don't
worry, it is unguarded. There is a coin on
the floor.

Observation: You find yourself in a
launderette. An usual kind of place. The
room seems oddly familiar, as though it
were only superficially different from the
other rooms in the building. There is an exit
to the east. Don't worry, it is unguarded.
There is an unguarded exit to the west.

(a) Easy games (N50)

Figure 3: Ranking of context-relevant tokens from ob-
servation text by our token relevance distribution.

action command, we can remove unwanted tokens
in the observation, which might otherwise cause
overfitting. Figure 2(a) shows an overview of our
method.

We use three embeddings to obtain token rele-
vance: (1) Word2Vec (Mikolov et al., 2013); (2)
Glove (Pennington et al., 2014); and (3) Concept-
net (Liu and Singh, 2004).

The distance between tokens is computed using
cosine similarity, D(a, b).
Token Relevance Distribution (TRD): We run in-
ference on the overfitted base model for each train-
ing game (indexed by k) and aggregate all the ac-
tion tokens issued for that particular game as the
Episodic Action Token Aggregation (EATA), Ak.
For each token wi in a given observation text ok

t

at step t for the kth game, we compute the Token
Relevance Distribution (TRD), C as:

C(wi,Ak) = max
aj∈Ak

D(wi, aj) ∀ wi ∈ ok
t , (4)

where the ith token wi’s score is computed as the
maximum similarity to all tokens in Ak. This rele-
vance score is used to prune irrelevant tokens in the
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Figure 4: Comparison of validation performance for various thresholds on (a) easy and (b) medium games, (c) Our
method trained on L15 games and tested on L20 and L25 games significantly outperforms the previous methods.

observation text by creating a hard attention mask
using a threshold value. Figure 3 presents examples
of TRD’s from observations highlighting which to-
kens are relevant for the next action. Examples of
token relevance are shown in the appendix.
Bootstrapped model: The bootstrapped model is
trained on the pruned observation text by removing
irrelevant tokens using TRDs. The same model ar-
chitecture and training methods as the base model
are used. During testing, TRDs on unseen games
are computed as C(wi,G), by global aggregation
of action tokens, G =

⋃
kAk, that combines the

EATA for all training games. This approach retains
all relevant action tokens to obtain the training do-
main information during inference, assuming sim-
ilar domain distribution between training and test
games.

4 Experimental Results

Setup: We used easy, medium, and hard modes
of the Coin-collector Textworld (Côté et al., 2018;
Yuan et al., 2018) framework for evaluating our
model’s generalization ability. The agent has to
collect a coin that is located in a particular room.
We trained each method on various numbers of
training games (denoted by N#) to evaluate gener-
alization ability from a few numbers of games.
Quantitative comparison: We compare the per-
formance of our proposed model with LSTM-
DQN (Narasimhan et al., 2015) and LSTM-
DRQN (Yuan et al., 2018).

Figure 2(b) and 2(c) show the reward of various
trained models, with increasing training episodes
on easy and medium games. Our method shows im-
proved out-of-sample generalization on validation
games with about 10x-20x fewer training games

(500 vs. 25, 50) with accelerated training using
drastically fewer training episodes compared to
previous methods.

We report performance on unseen test games in
Table 1. Parameters corresponding to the best val-
idation score are used. Our method trained with
N25 and N50 games for easy and medium levels
respectively achieves performance similar to 500
games for SOTA methods. We perform an abla-
tion study with and without attention in the policy
network and show that the attention mechanism
alone does not substantially improve generaliza-
tion. We also compare the performance of various
word embeddings for TRD computation and find
that ConceptNet gives the best generalization per-
formance.
Dropout: In Table 1, we also compare the perfor-
mance of dropout (with probability 0.5) that ran-
domly masks activations from the encoded state
representation. We find that dropout improves
performance compared to vanilla LSTM-DRQN.
However, our method outperforms the model with
dropout because dropout randomly drops tokens in
an uninformed fashion. Our method uses a prior
action token distribution from overfitted games to
effectively remove irrelevant tokens.
Pruning threshold: In this experiment, we test our
method’s response to changing threshold values for
observation pruning. Figure 4(a) and Figure 4(b)
reveals that thresholds of 0.5 for easy games and
0.7 for medium games give the best validation per-
formance. A very high threshold might remove rel-
evant tokens, leading to failure in training, whereas
a low threshold value would retain the most irrele-
vant tokens, leading to over-fitting.
Zero-shot transfer: In this experiment, agents



3006

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
le

va
nc

e 
Sc

or
e

kn
ife

on
io

n
st

ov
e

co
un

te
r

ch
op

ea
st

no
rth

cil
an

tro
ca

rro
t

ch
ee

se
pe

pp
er

co
ok

bo
ok

wa
te

r
pa

rs
le

y
ap

pl
e

we
st

fri
dg

e
ba

na
na

m
ea

l
ta

bl
e

po
ta

to
ov

en
so

ut
h

Figure 5: Token relevance scores for nouns in the test
set for cooking games. The tokens having a score close
to 1.0 correspond to overlaps between the train and test
games. The other tokens were unseen during training.
Our method can retain most tokens related to cooking
using a threshold of 0.4, based on the training action
token distribution obtained from an oracle.

trained on games with quest lengths of 15 rooms
were tested on unseen game configurations with
quest lengths of 20 and 25 rooms, respectively,
without retraining, to study the zero-shot transfer-
ability of our learned agents to unseen configura-
tions. The results in the bar charts of Figure 4(c) for
N50 easy games show that our proposed method
can generalize to unseen game configurations sig-
nificantly better than previous state-of-the-art meth-
ods on the coin-collector game.
Generalizability to other games: In the above
experimental section, we reported results on the
coin-collector environment, where the nouns and
verbs used in the train and test games have substan-
tial overlap. We now present a discussion on our
method’s generalizability to other games, where
the context-relevant tokens for a given game may
never have occurred in any training game.

To test our method’s generalizability, we per-
formed experiments on the cooking games consid-
ered in Adolphs and Hofmann (2019). A sample
observation from these games looks like this: “You
see a fridge. The fridge contains some water, a
diced cilantro and a diced parsley. You wonder
idly who left that here. Were you looking for an
oven? Because look over there, it’s an oven. Were
you looking for a table? Because look over there,
it’s a table. The table is massive. On the table you
make out a cookbook and a knife. You see a counter.
However, the counter, like an empty counter, has
nothing on it.” The objective of this game is to
prepare a meal by following the recipe found in the
kitchen, and then eat it.

We took 20 train and 20 test games from the
cooking domain, all featuring unseen items in the
test observations. Training action commands were
obtained from the oracle walkthrough games pro-
vided as part of the cooking world games, and not
from the overfitted train games (since in this experi-
ment we were evaluating the generalizability of the
method across unseen tokens). From the training
games, we obtain noun action tokens: {“onion”,
“potato”, “parsley”, “apple”, “counter”, “pepper”,
“meal”, “water”, “fridge”, “carrot”}. Using our to-
ken relevance (TRD) method (using ConceptNet
embeddings) described in Section 3.2, we obtain
scores for unseen cooking related nouns during test
as: {“banana”: 0.45, “cheese”: 0.48, “chop”: 0.39,
“cilantro”: 0.71, “cookbook”: 0.30, “knife”: 0.13,
“oven”: 0.52, “stove”: 0.48, “table”: 0.43}.

Although these nouns were absent in the training
action distribution, our proposed method can assign
a high score to all these words (except “knife”),
since they are similar in concept to the training
actions. An appropriate threshold (for eg. th=0.4)
can retain most tokens, as shown in Figure 5. The
threshold value can be automatically tuned us-
ing validation games, as discussed in Section 4.
Additionally, we believe that sampling action to-
kens from overfitted training games (our proposed
method) instead of from an oracle (used for this
result) would improve action token diversity and
successfully retain more context-relevant words.
Thus, assuming some overlap between training and
testing knowledge domains, our method is gener-
alizable and can reduce overfitting for RL in NLP
tasks.

5 Conclusion

We present a method for improving generalization
in TBGs by removing irrelevant tokens from ob-
servation texts. Our bootstrapped model – trained
on the salient observation tokens – obtains gener-
alization performance similar to SOTA methods –
with 10x-20x fewer training games – due to better
generalization; and shows accelerated convergence.
In this paper, we have restricted our analysis to
TBGs that feature similar domain distributions in
train and test games. In the future, we will focus
our attention on the topic of generalization in the
presence of domain differences such as novel ob-
jects; and given goal statements in test games that
were not seen by the agent during training.
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Côté, Mikuláš Zelinka, Marc-Antoine Rondeau, Ro-
main Laroche, Pascal Poupart, Jian Tang, Adam
Trischler, and William L Hamilton. 2020. Learn-
ing dynamic knowledge graphs to generalize on text-
based games. arXiv preprint arXiv:2002.09127.

Leonard Adolphs and Thomas Hofmann. 2019.
Ledeepchef: Deep reinforcement learning agent
for families of text-based games. arXiv preprint
arXiv:1909.01646.

Prithviraj Ammanabrolu and Matthew Hausknecht.
2020. Graph constrained reinforcement learning
for natural language action spaces. arXiv preprint
arXiv:2001.08837.

Prithviraj Ammanabrolu and Mark O Riedl. 2018.
Playing text-adventure games with graph-based
deep reinforcement learning. arXiv preprint
arXiv:1812.01628.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.
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