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Abstract

Punning is a creative way to make conversa-
tion enjoyable and literary writing elegant. In
this paper, we focus on the task of generating a
pun sentence given a pair of homophones. We
first find the constraint words supporting the
semantic incongruity for a sentence. Then we
rewrite the sentence with explicit positive and
negative constraints. Our model achieves the
state-of-the-art results in both automatic and
human evaluations. We further make an er-
ror analysis and discuss the challenges for the
computational pun models.

1 Introduction

In this work, we mainly study the homophonic puns
where two meanings relying on the same (or sim-
ilar) sounding signs. As Figure 1 shows, the pun
exploits the sound similarity between “tuna” and
“tune”. The word (“tuna”) appearing in the sen-
tence that triggers humor is a pun word, while its
homophonic word (“tune”) is the alternative word.
The semantics of the homophones are expressed
by two words independently (“whistling”, “fisher-
man”). On the surface, there is one interpretation:
“the fisherman had no tuna”. Implied by “whistling”
and the pronunciation of “tuna”, there is another
interpretation:“the whistling fisherman sang out of
tune”.

Early models for pun generation are mainly re-
lying on templates (Lessard and Levison, 1992;
Binsted and Ritchie, 1994, 1997; Lessard, 1992;
McKay, 2002; Ritchie et al., 2007; Hong and Ong,
2009). To improve the diversity of generated puns,
Yu et al. (2018) propose a neural approach to gener-
ate puns conditioning on two meanings of the target
word. Based on it, Luo et al. (2019) introduce a
word sense classifier as the discriminator to gener-

∗ The two authors contributed equally to this paper. Con-
tribution was done at Peking University.

Figure 1: An example of a homophonic pun.

ate homographic puns by adversarial generative net-
work. However, neural generative models usually
mimic the norm and the generated sentences are
lack of novelty. To make the generated puns more
creative, He et al. (2019) first sample a sentence
containing the alternative word from the corpus.
They then replace the alternative word with the pun
word and insert a topic word. This retrieve-and-edit
approach is brilliant. However, the part-of-speech
(POS) tags of the pun words and its alternative
words are different in 46.08% puns in the gold pun
dataset (Miller et al., 2017). Directly replacing the
alternative word with the pun word usually leads
to grammar errors in the generated sentence. As
there are tons of sentences containing the alterna-
tive word, it is also necessary to rank the sentences
purposefully.

To address the issues above, we propose a con-
straint selection algorithm to extract the candidate
sentence containing the alternative word and its
corresponding constraints. Then our lexically con-
strained rewriting model (LCR) generates puns by
rewriting the normal sentences with constraints. In
this way, the different semantic meanings of two
homophones are expressed naturally in a generated
sentence. Both automatic and human evaluation
results demonstrate the efficacy of our model1.

2 Our Method

The framework of our model is shown in Figure 2.
Given a pair of homophones, we retrieve sentences
containing the alternative word (“tune”) and pun
word (“tuna”). Next, we extract the most suitable

1https://github.com/ArleneYuZhiwei/LCR.
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Figure 2: Overview of our pun generation process.

weak word (“boy”) and the corresponding support
word (“fisherman”) to form constraints. Positive
constraints contain the pun word and its support
word. Negative constraints contain the alternative
word and its weak word. Finally, we rewrite the
candidate sentence with lexical constraints to gen-
erate a homophonic pun.

2.1 Constraints Extraction
Incongruity is a leading theory in computational
humor. We achieve it by rewriting the sentences
with lexical constraints. For each pair of homo-
phones, we obtain a set of candidate sentences C.
For the i-th candidate sentence, we extract words
weakly related to the alternative word to compose
the weak word vocabulary Wi. The words in the
whole corpus which have the same POS tag with
each word w in Wi and are strongly related to the
pun word compose the support word vocabulary
Si,w. We use Point-wise Mutual Information (PMI)
to evaluate the relatedness between two words (e.g.
x, y) (Church and Hanks, 1990) :

PMI(x, y) = log2
p(x, y)

p(x) · p(y)
. (1)

To make the pun words more plausible, we hope to
replace the weak word with a support word. Keep
||Wi|| = nw words with lowest PMI scores in Wi

and ||Si,w|| = ns words with highest PMI scores
in Si,w. For each sentence, there are nw ∗ ns pairs
of possible constraints. To keep the edited sen-
tences grammatical, we need to select one pair
which results in the most reasonable modifications.
As Algorithm 1 shows, for each homophone pair,

Algorithm 1 Constraint Selection Algorithm.
Require: C: a set of candidate sentences contain-
ing the alternative word a
Require: M : a trained CBOW model. via denotes
the input vector of word a. voa denotes the output
vector of word a. vicontext denotes the average input
vectors of the words in the context.
Require: W : a list of the weak word vocabulary
sets.
Require: S : a list of the support word vocabulary
sets.
Require: p : corresponding pun word
Sim(x, y) calculates the cosine similarity between
two vectors x, y.
R = ∅
For any sentence Ci ∈C:
context = the set consisting of the words in Ci
excluding a.

For any weak word w in Wi:
For any support word s in Si,n:
q ← the set consists of the words in

context excluding w and including p.
Scorei,w,s ← Sim(viw, v

i
s) +

Sim(vos , v
i
q)− Sim(vip, v

i
s)

R← R ∪ Scorei,w,s
Return Ci, w, s where Scorei,w,s = maxR

we go through the corpus and calculate scores for
their candidate sentences. We train a Continuous
Bag of Words model (CBOW) to obtain the word
embeddings (Mikolov et al., 2013). Inspired by
Mao et al. (2018), we use OUT-IN vectors to mea-
sure the similarity between a word and its given
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contexts, and use IN-IN vectors to measure the
similarity between two words.2 The support word
should play the same role as the weak word and
fits the contexts well. For a specific support word,
its contexts are likely to contain all the words in
the candidate sentence except for the alternative
word and its weak word. So we remove these two
words and add the pun word to form the potential
contexts q. We calculate the similarity between the
support word and its potential contexts q, to evalu-
ate the fitness of the support word. In practice, Si,w
always contains inflections of the pun word, which
can make the generated sentences redundant and
less likely to be a pun. So the similarity between
the pun word and its support word is negatively
correlated to the final score. In our case, we do not
consider verbs as weak words.3

2.2 Lexically Constrained Rewriting
With the extracted constraints, we further gener-
ate homophonic puns by rewriting the candidate
sentence. Following Hu et al. (2019a), we train a
generator in an end-to-end way. Given a source
sentence x, the generator aims to rewrite it as ỹ.
In the end-to-end model, ỹ maximizes the condi-
tional probability given by a model θ and an input
sequence x:

ỹ = argmaxypθ(y|x), y ∈ Y (2)

where Y is the space of possible outputs. Tradi-
tional beam search can not guarantee the outputs
conformed to the constraints.

Researchers propose algorithms to place con-
straints in natural and meaningful ways (Hokamp
and Liu, 2017; Post and Vilar, 2018). However,
previous works ignore the situation that some con-
straints may share a prefix. To avoid repeating,
the constraints that have not been generated are
organized into a trie. For positive constraints, there
is a counter to indicate that how many times the
constraint must be generated. When a constraint
is generated, its counter is decremented. For neg-
ative constraints, the trie does not need any coun-
ters. At each time step, the generation of an active
phrase is blocked by setting the costs of all word
IDs marked in the current node to infinity. Hy-
potheses are ranked by sentence number, number
of unmet constraints, and sequence scores. We

2IN vectors are input vectors of a trained CBOW model.
OUT vectors are output vectors of a trained CBOW model.

3Replacing verbs can result in the transformations of other
words, which changes the candidate sentence to a great extent.

keep the top-k hypotheses. In this way, both pos-
itive constraints and negative constraints can be
satisfied without repeating. We call our model Lex-
ically Constrained Rewriting Model (LCR).

3 Experiments

3.1 Data Set

We use PARABANK (Hu et al., 2019b), a large-
scale English paraphrase dataset to train the rewrit-
ing model. Following previous work (He et al.,
2019), we use BookCorpus (Zhu et al., 2015) as
retrieval corpus. And we use the homophone pairs
in 2017 SemEval task 7 (Doogan et al., 2017) for
testing.

3.2 Experimental Setting

We train a CBOW model on BookCorpus with
a context window (width = 5) to learn 300-
dimensional word vectors. In our constraint se-
lection algorithm, we keep w = 3 weak words for
each sentence and s = 5 support words for each
weak word. In the decoding phrase, we set the
beam size k = 5.

3.3 Baseline Models

RE: Retrieve a sentence containing the pun word.
RE+S: Sample one sentence containing the alter-
native word and replace it with the corresponding
pun word.
NJD (Yu et al., 2018): Retrained the model on the
BookCorpus. Use two homophones as the inputs
for decoding.
SURGEN (He et al., 2019): Given a pair of homo-
phones, their retrieve-and-edit approach generates
a homophonic pun.

3.4 Evaluation Metrics

3.4.1 Automatic Evaluation
Following Yu et al. (2018), the diversity is mea-
sured by the ratio of distinct unigrams (d.-1%)
and bigrams (d.-2%). w.-num denotes the num-
ber of distinct words in the outputs. As Table 1
shows, the neural model NJD tends to generate
normal sentences and obtains the lowest scores.
It generates sentences using very limited vocabu-
lary. Gold puns sometimes share the similar struc-
ture, for example : “old storekeepers never die ,
they just sale away” and “old school superinten-
dents never die , they just lose their principals”,
which causes a lower diversity and fewer w.-num.
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Models w.-num d.-1(%) d.-2(%)
RE 7,628 46.76 88.75

RE+S 7,129 42.88 87.07
SURGEN 6,650 45.40 88.18

NJD 4,435 23.86 49.36
LCR 7,062 56.00 93.22

GOLD 6,432 48.10 87.18

Table 1: Results of automatic evaluation.

Models Gram. Flue. Pun. Fun. Overall
RE 4.51 4.14 1.44 1.27 2.87

RE+S 4.32 3.85 2.77 1.43 3.11
NJD 3.75 3.41 1.74 1.31 2.49

SURGEN 4.13 3.72 2.71 1.84 2.91
LCR 4.50 4.11 2.82 2.15 3.35

GOLD 4.69 4.52 4.01 3.57 4.29

Table 2: Results of human evaluation.

RE outputs human-written sentences retrieved in
the corpus and shows good diversity. By swap-
ping the alternative words with corresponding pun
words, RE+S obtains equivalent diversity to RE.
Our model (LCR) rewrites retrieved sentences with
constraints and generates sentences with creativity
and highest diversity.

3.4.2 Human Evaluation
Pun is a creative form of language which is hard
to evaluate automatically. For a comprehensive
evaluation, we ask annotators to do the human eval-
uation. We randomly sampled 100 outputs of dif-
ferent models including gold puns and ask native
speakers to score the sentences from 1 to 5 on five
aspects: (1) Grammar (Gram.) Is the sentence
grammatically correct? (2) Fluency (Flue.) Is the
sentence fluent and easy to understand? (3) Pun
(Pun.) Is this sentence a pun? (4) Funniness (Fun.)
How funny is the sentence? (5) Overall How is
the overall quality of this pun? Table 2 shows the
results of human evaluation. Our model (LCR)
outperforms other models in terms of Pun, Funni-
ness and Overall quality as a pun. As RE outputs
human-written sentences in BookCorpus, it obtains
highest scores in two terms: Grammar and Fluency.
The sentences from RE are grammatical and fluent
but lack of ambiguity. Thus, it obtains the low-
est scores in Pun and Funniness. With a swap of
pun word and alternative word, RE+S introduces
incongruity to the retrieved sentences and makes
them funnier. However, when the usages of pun
word and alternative word are different, a swap
makes the sentences not readable and decreases the
Grammar and Fluency. NJD is a neural language

model. Given two homophones, it generates sen-
tences according to the limited input knowledge,
which always leads to sentences of low quality.
SURGEN edits the sentences generated by RE+S.
Topic words are inserted in the sentences to benefit
pun generation. However, due to inconsistent types,
the topic words sometimes do not fit in its contexts.
The similar issue appears when directly swapping
the alternative word with pun word. LCR care-
fully chooses support words which fit the contexts
and place them naturally by rewriting the sentences
with constraints. The generated sentences are both
interesting and grammatical.

3.5 Case Study

Figure 3: Examples of model outputs.

Examples generated by different models are in
Figure 3. The sentence generated by RE can only
be interpreted in one way. RE+S and SURGEN
introduce grammar errors by directly replacing al-
ternative words with pun words. The sentence gen-
erated by NJD is fragmentary and cannot inspire
people to think about another interpretation. LCR
can generate fluent puns. GOLD pun triggers hu-
mor in a similar way.

3.6 Error Analysis

We analyze our model outputs one by one and list
the overall situation in Figure 4. We find there are
mainly five reasons for unsuccessful pun genera-
tion:

(1) Imperfect Constraints: Pun is a creative lan-
guage full of imagination. Extracting strongly re-
lated words as support words sometimes does not
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Figure 4: Overview of error types.

work. For example, given “maid-made”, “a china
doll was marked in tiny letters : maid in usa” is
a good pun. However, “doll” is not so related to
“maid” and we cannot extract it as a support word.

(2) Sense Drift: When rewriting the sentences
with constraints, the word collocations can be mod-
ified and the sense of the alternative word will dis-
appear, e.g. when “air” means “a distinctive but
intangible quality surrounding a person or thing”, it
is always used as “... an air of”, “have a ... air”. We
rewrite the candidate sentence (“... and with an air
of freedom however specious.”) with constraints
(negative constraints: “air”, “freedom”; positive
constraints: “err”, “principle”). The model outputs
“principles err ... and with an atmosphere of liberty,
however specious”. Instead of the expected colloca-
tion “an err of ...”, it turns out to be “an atmosphere
of liberty”. The expected sense of “air” disappears
and “principles err” cannot trigger people to think
of another interpretation.

(3) Incomplete Elimination: When the usages
of the given homophone pair are very different, an
inflection of the alternative word will be decoded in
the result to keep the original semantic meaning of
the input sentence. For example, given “sum-sun”,
the candidate is “add one more likeness ... let me
and my sun beget a man”. Our model rewrite it
as “sum up one more likeness, ... let me and my
sunshine beep a man”.

(4) Semantic Inconsistency: The generated sen-
tence is grammatical but the semantic of the sen-
tence is full of contradictions, e.g. “brilliant mourn-
ing lights in the old town”, where “mourning” is
conflicted with “brilliant” emotionally.

(5) Grammar Error: When the usages of two
homophones are similar, pun word will replace the
alternative word in the rewriting process. How-
ever, the alternative word has its own collocations
and causes the grammar error in the output texts,

e.g., given “zinc-sink”, the model outputs “his en-
emy’s solution could zinc (sink) him into deep
dejection”. There is much room for our model to
improve the semantic consistency by introducing
related modules.

4 Conclusion

In this work, we propose to generate homophonic
puns with lexically constrained rewriting. We re-
trieve sentences containing the alternative word as
candidate sentences. And then we use constraint
selection algorithm to rank candidate sentences
and choose support word to imply the semantics
of the pun word. Finally we rewrite the sentence
with constraints. Our model outperforms previous
works on the task of homophonic pun generation.
However,as discussion in error analysis, there are
several challenges to solve in the future.
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