
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 303–313,
November 16–20, 2020. c©2020 Association for Computational Linguistics

303

Near-imperceptible Neural Linguistic Steganography
via Self-Adjusting Arithmetic Coding

Jiaming Shen, Heng Ji, Jiawei Han
Department of Computer Science, University of Illinois Urbana-Champaign, IL, USA

{js2, hengji, hanj}@illinois.edu

Abstract
Linguistic steganography studies how to hide
secret messages in natural language cover
texts. Traditional methods aim to transform a
secret message into an innocent text via lexical
substitution or syntactical modification. Re-
cently, advances in neural language models
(LMs) enable us to directly generate cover text
conditioned on the secret message. In this
study, we present a new linguistic steganogra-
phy method which encodes secret messages us-
ing self-adjusting arithmetic coding based on a
neural language model. We formally analyze
the statistical imperceptibility of this method
and empirically show it outperforms the pre-
vious state-of-the-art methods on four datasets
by 15.3% and 38.9% in terms of bits/word and
KL metrics, respectively. Finally, human eval-
uations show that 51% of generated cover texts
can indeed fool eavesdroppers.1

1 Introduction
Privacy is central to modern communication sys-
tems such as email services and online social net-
works. To protect privacy, two research fields are
established: (1) cryptography which encrypts se-
cret messages into codes such that an eavesdrop-
per is unable to decrypt, and (2) steganography
which encodes messages into cover signals such
that an eavesdropper is not even aware a secret
message exists (Westfeld and Pfitzmann, 1999; bin
Mohamed Amin et al., 2003; Chang and Clark,
2014). One useful cover signal for steganography
is natural language text because of its prevalence
and innocuity in daily life.

Traditional linguistic steganography methods are
mostly edit-based, i.e., they try to directly edit the
secret message and transform it into an innocent
text that will not raise the eavesdropper’s suspi-
cious eyes. Typical strategies include synonym

1Code and datasets are available at https://github.
com/mickeystroller/StegaText.

Plaintext
Let’s meet in

Room 9112A at
2am tonight

Cover Text
Boris Johnson unveils

new COVID-19
lockdown rules

A public channel
monitored

by Eve (eavesdropper)

0 1 0 0 1 0 1
0 1 1 0 1 0
0 1 0 1 1 …

Ciphertext
encrypt

decrypt

encode

decode

Alice
(sender)

Bob
(receiver)

Paired Steganography Encoder-Decoder

Encoder

Decoder
Hello world !

0 1 0 0 1 0 1 0 1 1 0 Hello world !

0 1 0 0 1 0 1 0 1 1 0

Plaintext
Let’s meet in

Room 9112A at
2am tonight

0 1 0 0 1 0 1
0 1 1 0 1 0
0 1 0 1 1 …

Ciphertext Cover Text
Boris Johnson unveils

new COVID-19
lockdown rules

Figure 1: Linguistic steganography pipeline.

substitution (Topkara et al., 2006), paraphrase sub-
stitution (Chang and Clark, 2010), and syntactic
transformation (Safaka et al., 2016), applied to vari-
ous text media such as Email (Tutuncu and Hassan,
2015) and Twitter (Wilson et al., 2014). Although
being able to maintain the grammatical correctness
of output text, those edit-based methods cannot en-
code information efficiently. For example, the pop-
ular CoverTweet system (Wilson and Ker, 2016)
can only encode two bits of information in each
tweet on average.

Recent advances in neural language models
(LMs) (Józefowicz et al., 2016; Radford et al.,
2019; Yang et al., 2019a) have enabled a diagram
shift from edit-based methods to generation-based
methods which directly output a cover text by en-
coding the message reversibly in the choices of
tokens. Various encoding algorithms (Fang et al.,
2017; Yang et al., 2019b; Ziegler et al., 2019) have
been proposed to leverage neural LMs to generate
high-quality cover texts in terms of both fluency
and information hiding capacity. However, most
of the existing methods do not provide explicit
guarantees on the imperceptibility of generated
cover text (i.e., to what extent the cover text is
indistinguishable from natural texts without hidden
messages). One recent exception is the work (Dai

https://github.com/mickeystroller/StegaText
https://github.com/mickeystroller/StegaText

304

and Cai, 2019) which shows the imperceptibility
of the method in Fang et al. (2017). Neverthe-
less, for other more advanced steganography meth-
ods (Yang et al., 2019b; Ziegler et al., 2019), their
imperceptibilities still remain unknown.

In this work, we propose a new linguistic
steganography method with guaranteed impercepti-
bility. Our new method is built based on the previ-
ous study (Ziegler et al., 2019) which views each
secret message as a binary fractional number and
encodes it using arithmetic coding (Rissanen and
Langdon, 1979) with a pretrained neural LM. This
method generates cover text tokens one at a time
(c.f. Fig. 2). At each time step t, it computes a
distribution of the t-th token using the given LM;
truncates this distribution to include only top K
most likely tokens, and finally outputs the t-th to-
ken based on the secret message and the truncated
distribution. In their study, this hyperparameter K
is the same across all generation steps. We analyze
this method’s imperceptibility and show it is closely
related to the selected K. Specifically, increasing
K will improve the method’s imperceptibility at
the cost of a larger probability of generating rarely-
used tokens and slower encoding speed. When the
cover text token distribution is flat and close to the
uniform distribution, we need a large K to achieve
the required imperceptibility guarantee. When the
cover text token distribution is concentrated, we
can use a small K to avoid generating rarely-used
tokens and to increase encoding speed. As different
generation steps will witness different underlying
cover text token distributions, using a static K is
clearly sub-optimal.

To address this issue, we propose a new al-
gorithm SAAC2 which automatically adjusts K
by comparing the truncated cover text token dis-
tribution with the original LM’s output at each
generation step and selects the minimal K that
achieves the required imperceptibility. We the-
oretically prove the SAAC algorithm is near-
imperceptible for linguistic steganography and
empirically demonstrate its effectiveness on four
datasets from various domains. Furthermore, we
conduct human evaluations via crowdsourcing and
show 51% of cover texts generated by SAAC can
indeed fool eavesdropper.

Contributions. This study makes the following
contributions: (1) We formally analyze the imper-
ceptibility of arithmetic coding based steganogra-

2SAAC is short for Self-Adjusting Arithmetic Coding.

phy algorithms; (2) We propose SAAC, a new near-
imperceptible linguistic steganography method that
encodes secret messages using self-adjusting arith-
metic coding with a neural LM; and (3) Extensive
experiments on four datasets demonstrate our ap-
proach can on average outperform the previous
state-of-the-art method by 15.3% and 38.9% in
terms of bits/word and KL metrics, respectively.

2 Background

2.1 Linguistic Steganography
We consider the following scenario where Alice
(sender) wants to send Bob (receiver) a secret mes-
sage (plaintext) through a public text channel (e.g.,
Twitter and Reddit) monitored by Eve (eavesdrop-
per). This is also known as the “prisoner prob-
lem” (Simmons, 1984). Eve expects to see flu-
ent texts in this public channel and will suspect
every non-fluent text of concealing some hidden
messages. Therefore, Alice’s goal is to transform
the plaintext into a fluent cover text that can pass
through Eve’s suspicious eyes while ensuring that
only Bob can read the secret message.

To achieve this goal, Alice could take the
“encrypt-encode” approach (c.f. Fig. 1). Namely,
she first encrypts the plaintext into a ciphertext (i.e.,
a bit sequence indistinguishable from a series of fair
coin flips) and then encodes the ciphertext into the
cover text using an encoder f . When Bob receives
the cover text, he first decodes it into the cipher-
text using the decoder f−1 and then decrypts the
ciphertext into the plaintext. Linguistic steganog-
raphy research focuses on the encoding/decoding
steps, i.e., how to design the encoder that trans-
forms the bit sequence into a fluent cover text and
its paired decoder that maps the cover text back to
the original bit sequence. Note here we introduce
the middle ciphertext for two purposes. First, it in-
creases communication security as more advanced
encryption/decryption methods (e.g., AES, RSA,
etc.) can be used on top of the steganography en-
coder/decoder. Second, it enlarges the output cover
text space by removing the unnecessary restriction
that the cover text must be transformed from the
original plaintext.

2.2 Statistical Imperceptibility

Notations. A vocabulary V is a finite set of to-
kens3. A language model (LM) inputs a token

3Each token can be a single word, a subword unit, or even
a character, depending on the tokenizer choice.

305

sequence x = [x1, x2, . . . , xn] and returns the
joint probability PLM (x). From this joint prob-
ability, we can derive the conditional probability
PLM (xt+1|x1, . . . , xt) which enables us to sam-
ple a text x by drawing each token xt, t = 1, 2, . . . ,
one at a time.

A steganography encoder f inputs a language
model PLM as well as a length-L ciphertext m ∼
Unif({0, 1}L), and outputs its corresponding cover
text y = f(m;PLM). To ensure the receiver can
uniquely decode the cover text, this encoder func-
tion f must be both deterministic and invertible.
Moreover, this encoder f , together with the cipher-
text distribution and the input LM, implicitly define
a distribution of cover text y which we denote as
Q(y). When cover texts are transmitted in the
public channel, this distribution Q(y) is what an
eavesdropper would observe.

Imperceptibility. To avoid raising eavesdropper’s
suspicion, we want the cover text distribution Q to
be similar to the true natural language distribution
(i.e., what this eavesdropper would expect to see
in this public channel). Following (Dai and Cai,
2019), we formulate “imperceptibility” using the
total variation distance (TVD) as follows:

TVD(P∗LM ,Q) =
1

2
‖Q−P∗LM‖1, (1)

where P∗LM denotes the true language distribution.
As we approximate P∗LM using a LM PLM (e.g.,
OpenAI GPT-2 (Radford et al., 2019)), we further
decompose TVD(P∗LM ,Q) as follows:

TVD(P∗LM ,Q) ≤ 1

2
‖P∗LM −PLM‖1 +

1

2
‖PLM −Q‖1,

(2)

where the first term measures how good this LM is
and the second term, that is the main focus of this
study, indicates the gap induced by the steganogra-
phy encoder. Even without knowing the first term,
we can still obtain a relative imperceptibility guar-
antee based on the second term, which enables us
to compare different steganography algorithms.

Using Pinsker’s inequality (Fedotov et al., 2003),
we set the upper-bound for the total variation dis-
tance using the KL divergence4:

1

2
‖PLM −Q‖1 ≤

√
ln2
2
DKL(Q‖PLM). (3)

Then, we further decompose the right hand side of
the above inequality based on the additivity of KL

4We will consistently compute KL divergence in base 2.

divergence and obtain the following result:

1

2
‖PLM−Q‖1 ≤

√√√√ ln2
2

∞∑
t=1

DKL(Q(·|y<t)‖PLM (·|y<t)),

(4)

where y<t = [y1, . . . , yt−1] is a cover text prefix.
PLM (·|y<t) and Q(·|y<t) are distributions over
the next token yt conditioned on the prefix y<t
before and after the steganography encoding al-
gorithm, respectively. This inequality provides a
formal framework to analyze the imperceptibility
of a steganography encoder. Moreover, it implies
that in order to achieve the near-imperceptibility,
we must guarantee the encoder’s output Q(·|y<t)
being close to its input PLM (·|y<t) at all steps.

3 Self-Adjusting Arithmetic Coding

In this section, we first introduce the general arith-
metic coding and discuss its practical limitations.
We then present SAAC, a self-adjusting arithmetic
coding algorithm and analyze its imperceptibility.

3.1 Arithmetic Coding

Arithmetic coding is a method initially proposed
to compress a string of elements sampled from a
known probability distribution (Rissanen and Lang-
don, 1979). For data compression, arithmetic cod-
ing is asymptotically optimal in the sense that it
can compress information within a long string to its
entropy. In practice, it also outperforms the better-
known Huffman coding method (Huffman, 1952)
because it does not partition the input string into
blocks. Traditionally, arithmetic coding encodes
a string of elements into a bit sequence. To use
such a coding for linguistic steganography, we fol-
low (Ziegler et al., 2019) and reverse the encoding
order. Namely, we encode a bit sequence (cipher-
text) into a string of tokens (cover text) and decode
a cover text to its original ciphertext.

Encoding. During the encoding stage, we view
the bit sequence m = [m1,m2, . . . ,mL] as the
binary representation of a single number B(m) =∑L

i=1mi × 2−i. For example, if m = [1, 0, 1], we
have B(m) = 1× 2−1 + 1× 2−3 = 0.625.

The encoder generates the cover text token one
at a time. At each time step t, the encoder has
access to an underlying language model PLM and
considers three things: (1) the number B(m), (2)
the cover text prefix y<t, and (3) the current inter-
val [lt, ut) (at the beginning of the encoding pro-
cess, this interval [l1, u1) is set to [0, 1), but it will

306

0.0

1.0

0.8

Q(“A”) = 0.2

0.6

Q(“The”) = 0.2

0.45
Q(“Hello”) = 0.15

0.32
Q(“Once”) = 0.13

…
…

…
…

0.45

0.6

Q(“my”) = 0.25

Q(“world”) = 0.2

Q(“there”) = 0.2

Q(“fellow”) = 0.13

0.5625

0.5325

0.5025

0.483

0.6

0.5625

Q(“friend”) = 0.35

…
…

…
…

Q(“name”) = 0.25

Q(“cell”) = 0.12

0.586875

0.5775

0.573

0.586875

…
…

…
…

0.5775

Q(“is”) = 0.7

Q(“””) = 0.1
0.5803125

0.579375

…
…

…
…

0.5803125

0.586875

…
…

Q(“John”) = 0.2

Q(“Jimmy”) = 0.2

Q(“Alice”) = 0.2

Q(“Bob”) = 0.15

Q(“Eve”) = 0.15

0.5855625

0.58425

0.5829375

0.581953125

0.58096876

Bit Sequence : 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 0
MSB LSB

0.5

0.578125

.

……

……

……

……

……

Q(·|y<1) Q(·|y<2) Q(·|y<3) Q(·|y<4)

y1 = “Hello” y2 = “my” y3 = “name” y4 = “is” y5 = “Jimmy”

Q(·|y<5)

Figure 2: A running example of arithmetic coding. We input a bit sequence (i.e., the ciphertext) with the most
significant bit (MSB) at the left and output the encoded cover text.

change). Based on the LM and cover text prefix,
the encoder first computes the conditional distribu-
tion of the next token Q(yt|y<t). Then, it divides
the current interval [lt, ut) into sub-intervals, each
representing a fraction of the current interval pro-
portional to the conditional probability of a possible
next token. Whichever interval contains the num-
ber B(m) becomes the interval used in the next
step (i.e., [lt+1, ut+1)) and its corresponding token
becomes the cover text token yt. The encoding pro-
cess stops when all m-prefixed fractions fall into
the final interval, that is, the generated cover text
unambiguously defines the bit sequence m. Be-
fore we discuss and analyze the concrete design
of Q(·|y<t) in the next section, we first present a
running example in Figure 2.

Suppose we want to encode a bit sequence
m = [1, 0, 0, 1, 0, 1, . . .]. This bit sequence rep-
resents a fraction B(m) ∈ [0.58425, 0.58556). At
the time step t = 1, we divide the initial interval
[0, 1) and find B(m) falling into the sub-interval
[0.45, 0.6) which induces the first cover text token
y1 = “Hello”. At the time step t = 2, we further di-
vide the interval [0.45, 0.6) and observe that B(m)
belongs to the range [0.5625, 0.6) corresponding to
the second cover text token y2 = “my”. We repeat
this process until the final interval covers all binary
fractions starting with m and output the generated
cover text by then.

Decoding. During the decoding stage, we are
given a cover text y = [y1, . . . , yn] as well as
the same language model PLM used in the en-
coding stage, and aim to recover the original ci-

phertext m. We achieve this goal by reversing
the encoding process and gradually narrowing the
range of possible bit sequences. At each time step t,
the decoder first generates the conditional distribu-
tion Q(yt|y<t). Then, it divides the current inter-
val [lt, ut) (initialized to [0, 1)) into sub-intervals
based on Q(yt|y<t) and the one corresponding to
yt becomes the interval used in the next step, that is,
[lt+1, ut+1). The decoding process stops after we
process the last cover text token yn and outputs the
decoded ciphertext to be the shared common prefix
of the binary representations of ln+1 and un+1.

3.2 Imperceptibility Analysis

One important issue remained in the general arith-
metic coding procedure is how to design the con-
ditional distribution Q(·|y<t). As we discussed
in Section 2.2, this distribution should be close to
the underlying model LM. Ideally, we may just set
Q(·|y<t) to be the same as PLM (·|y<t). However,
this naïve design has several problems. First, it may
generate a rarely-used cover text token because we
are actually reading off the tokens based on the
ciphertext, instead of really sampling the LM. This
could harm the cover text fluency and raises the
eavesdropper’s suspicion. Second, PLM (·|y<t) is
a distribution over the entire vocabulary V (with a
full rank |V|) and using it to divide the [0, 1) inter-
val will quickly encounter the precision problem,
even if we implement the coding scheme using
a fixed precision binary fractions (Witten et al.,
1987). Finally, this design further slows down the
coding speed and the slow speed is the major weak-

307

ness of arithmetic coding compared to its rival Huff-
man method (Duda, 2013).

Due to the above reasons, people in practice will
truncate the LM distribution to include only top
K most likely tokens (Ziegler et al., 2019), which
leads to the following distribution:

Q(yt|y<t) ∝
{

PLM (yt|y<t) if yt ∈ TK(y<t)
0 otherwise (5)

where TK(y<t) = argtopKy′ PLM (y′|y<t). Ac-
cordingly, we have the imperceptibility of one gen-
eration step to be:

DKL(Q(yt|y<t)‖PLM (yt|y<t)) = − logZK ,

ZK =
∑

y′∈TK(y<t)

PLM (y′|y<t), (6)

where ZK is essentially the cumulative probability
of top K most likely tokens. From this equation,
we can see that the imperceptibility of arithmetic
coding depends crucially on how the underlying
LM distribution concentrates on its top K predic-
tions. Previous study uses the same K across all
generation steps and ignores the different distribu-
tion characteristics in different steps. This strat-
egy is sub-optimal because in some steps, the pre-
defined K is too small to achieve good impercepti-
bility, while in the other steps, the same K is too
large and slows down the encoding speed.

In this study, we propose a new self-adjusting
arithmetic coding algorithm SAAC to remedy the
above problem. The idea is to dynamically select
the most appropriate K that satisfies a pre-defined
per-step imperceptibility guarantee. Specifically,
the sender can set a small per-step imperceptibility
gap δ � 1 and at time step t, we set the Kt as:

Kt = min({K|
∑

y′∈TK(y<t)

PLM (y′|y<t) ≥ 2−δ}). (7)

This selected Kt is essentially the smallest K that
can achieve the imperceptibility guarantee. As we
later show in the experiment, this selected K varies
a lot in different steps, which further confirms the
sub-optimality of using a static K.

The above method guarantees that each step in-
curs no more additional imperceptibility than the
threshold δ. This makes the imperceptibility of
an entire sequence dependent on the length of bit
sequence. To achieve a length-agnostic impercepti-
bility bound, we may choose a convergent series for
per-step threshold. For example, if we set δt = δ0

t2

Dataset Drug News COVID-19 Random

Num. of Sentences 3972 6437 2000 3000
Avg. Num. of Words 19.01 14.30 24.21 —
Avg. Num. of Bits 289.75 211.08 308.65 256

Table 1: Datasets statistics.

and based on the inequality 4 we will have:

1

2
‖PLM −Q‖1 ≤

√√√√ ln2
2

∞∑
t=1

δ0
t2

=

√
π2ln2
12

δ0. (8)

This result shows our proposed SAAC algorithm
is near-imperceptible for linguistic steganography.

4 Experiments

4.1 Experiment Setups

Datasets. We conduct our experiments on four
datasets from different domains: (1) Drug (Ji and
Knight, 2018), which contains a set of Reddit com-
ments related to drugs, (2) News, which includes
a subset of news articles in the CNN/DailyMail
dataset (Hermann et al., 2015), (3) COVID-19,
which is a subset of research papers related to
COVID-19 in the CORD-19 dataset (Wang et al.,
2020), and (4) Random, which is a collection of
uniformly sampled bit sequences. The first three
datasets contain natural language texts and we con-
vert them into bit sequences5 following the same
process in Ziegler et al. (2019). Table 1 summa-
rizes the dataset statistics.

Compared Methods. We compare the following
linguistic steganography methods.
1. Bin-LM (Fang et al., 2017): This method first

splits the vocabulary V into 2B bins and repre-
sents each bin using a B-bit sequence. Then,
it chunks the ciphertext into dL/Be blocks and
encodes the t-th block by taking the most likely
token (determined by the underlying LM) that
falls in the t-th bin.

2. RNN-Stega (Yang et al., 2019b): This method
first constructs a Huffman tree for top 2H most
likely tokens at each time step t according to
PLM (·|y<t). Then, it follows the bits in ci-
phertext to sample a cover text token yt from
the constructed Huffman tree. It improves the
above Bin-LM method by encoding one or more
bits per generated cover text token.

3. Patient-Huffman (Dai and Cai, 2019): This
method improves RNN-Stega by explicitly
checking if the KL divergence between the

5This is essentially the encryption step in Fig. 1.

308

Methods Drug News COVID-19 Random

Bits/Word ↑ DKL ↓ Bits/Word ↑ DKL ↓ Bits/Word ↑ DKL ↓ Bits/Word ↑ DKL ↓
Bin-LM (B = 1) 1 1.864 1 1.922 1 1.838 1 1.185
Bin-LM (B = 2) 2 2.358 2 2.385 2 2.346 2 2.374
Bin-LM (B = 3) 3 2.660 3 2.680 3 2.659 3 2.664

RNN-Stega (H = 3) 2.370 1.015 2.387 1.015 2.368 0.999 2.378 0.991
RNN-Stega (H = 5) 3.399 0.628 3.393 0.628 3.368 0.624 3.370 0.630
RNN-Stega (H = 7) 4.202 0.424 4.202 0.426 4.197 0.426 4.163 0.422

Patient-Huffman (ε = 0.8) 1.835 0.269 1.834 0.269 1.844 0.270 1.847 0.271
Patient-Huffman (ε = 1.0) 2.147 0.360 2.154 0.361 2.142 0.357 2.148 0.358
Patient-Huffman (ε = 1.5) 2.596 0.524 2.583 0.522 2.579 0.519 2.584 0.520

Arithmetic (K = 300) 3.497 0.203 3.491 0.209 3.510 0.191 3.466 0.189
Arithmetic (K = 600) 4.247 0.162 4.240 0.166 4.289 0.146 3.599 0.160
Arithmetic (K = 900) 4.376 0.149 4.358 0.152 4.414 0.131 3.669 0.147

SAAC (δ = 0.1) 4.262 0.153 4.232 0.157 4.301 0.133 4.225 0.136
SAAC (δ = 0.05) 4.451 0.134 4.441 0.138 4.519 0.114 4.419 0.117
SAAC (δ = 0.01) 4.862 0.109 4.784 0.117 4.851 0.093 4.778 0.099

Table 2: Quantitative performance of linguistic steganography methods across all datasets. Each method has one
parameter controlling various tradeoffs (c.f. detailed discussions in Compared Method subsection) and we indicate
them in the parentheses. Larger bits/word values ↑ and smaller DKL values ↓ indicate better performance.

LM distribution and the Huffman distribution
is smaller than a specified threshold ε. If the
KL divergence is larger than ε, it samples from
the base LM distribution and patiently waits for
another opportunity.

4. Arithmetic (Ziegler et al., 2019): This method
also uses the arithmetic coding to generate cover
text tokens. At each time step t, it truncates the
PLM (·|y<t) distribution to include only top K
most likely tokens and samples one cover text
tokens from the truncated distribution.

5. SAAC: This method is our proposed Self-
Adjusting Arithmetic Coding algorithm which
automatically adjusts PLM (·|y<t) to achieve
the required imperceptibility guarantee δ.

Evaluation Metrics. We follow previous studies
and evaluate the results using two metrics:
1. Bits/word: This metric is the average number

of bits that one cover text token can encode. A
larger bits/word value indicates the algorithm
can encode information more efficiently.

2. DKL: This metric is the KL divergence between
the LM distribution and the cover text distribu-
tion. A smaller DKL value indicates the model
has better imperceptibility (c.f. Section 2.2).

Implementation Details. We implement all com-
pared methods based on the codebase in (Ziegler
et al., 2019). All the code and data are publicly
available6. Specifically, we use PyTorch 1.4.0 and
the pretrained OpenAI GPT-2 medium model in

6https://github.com/mickeystroller/
StegaText

the Huggingface library as the underlying LM for
all methods. This LM includes 345M parameters
and there is no additional parameter introduced
by steganography encoding algorithms. For base-
line method Bin-LM, we choose its block size
B in [1, 2, 3, 4, 5]. For RNN-Stega method, we
vary the Huffman tree depth H in [3, 5, 7, 9, 11].
For Patient-Huffman method, we change the pa-
tience threshold ε in [0.8, 1.0, 1.5]. For Arithmetic
method, we select its hyperparameter K ranging
from 100 to 1800 with an increment 300 and fix its
temperature parameter τ = 1. Finally, we choose
the imperceptibility gap δ in our SAAC method in
[0.01, 0.05, 0.1]. For both Arithmetic and SAAC
methods, we implement the arithmetic coding us-
ing a fixed 26-bits precision binary fractions. We
do not perform any hyperparameter search and di-
rectly report all the results in the main text.

Discussions on LM Sharing. We note that all
compared methods require the employed LM to
be shared between the sender and the receiver be-
forehand. Therefore, in practice, people typically
use a popular public language model (e.g., GPT2)
available to everyone. This allows two parties to
directly download the same LM from a centroid
place (e.g., an OpenAI hosted server) and removes
the necessity of sending the LM though some com-
munication channel.

4.2 Experiment Results

Overall Performance. Table 2 shows the over-
all performance. First, we can see all variable

https://github.com/mickeystroller/StegaText
https://github.com/mickeystroller/StegaText

309

Drug

0.01

0.005

0.02

0.04

0.08

0.16

0.32

0.64

1.28

News COVID-19 Random

K=300 K=600 K=900
D

K
L

Figure 3: DKL for static arithmetic coding with differ-
ent Ks. Note that the Y axis is in the log scale.

length coding algorithms (i.e., RNN-Stega, Patient-
Huffman, Arithmetic, SAAC) outperform the fixed
length coding algorithm Bin-LM. The Bin-LM
method achieves worse imperceptibility (i.e., larger
DKL) when it encodes message bits at higher com-
pression rate (i.e., larger Bits/Word), which aligns
with the previous theoretical result in (Dai and Cai,
2019). Second, we observe that Patient-Huffman
method improves RNN-Stega as it achieves smaller
DKL when Bits/Word is kept roughly the same.
Third, we find the arithmetic coding based meth-
ods (i.e., Arithmetic and SAAC) outperform the
Huffman tree based methods (i.e., RNN-Stega and
Patient-Huffman). Finally, we can see our proposed
SAAC method can beat Arithmetic by automati-
cally choosing the most appropriate K values and
thus achieves the best overall performance.

Comparison with Arithmetic Baseline. We fur-
ther analyze where SAAC’s gains over the Arith-
metic baseline method come from. Fig. 3 shows
the KL divergence between LM’s distribution PLM

and steganography encoder’s distribution Q across
all time steps. We can see that although most of
KL values are less than 0.08, the 95th percentiles
are all above 0.32, which means even for large
predefined K = 900, five percent of generation
steps induce KL values larger than 0.32. Fig. 4
shows three histograms of SAAC selectedKs, one
for each required imperceptibility bound δ. We
observe that these histograms have several modes
with one (largest) mode around 50 and one mode
larger than 300. This indicates that for a majority
of generation steps, choosing a K < 50 is enough
to guarantee the required imperceptibility bound
and thus fixing a static K = 300 is a big waste
for those steps. Meanwhile, the LM distributions
at some generation steps are too “flat” and we in-
deed need to use a larger K to achieve the required

Pr
ob

ab
ili

ty

0.002

0.000

0.004

0.006

0.008

0.010

0 200 400 600 800 1000 1200 1400

Selected K

� = 0.01

� = 0.05

� = 0.1

Figure 4: Histogram of selected Ks in our SAAC
method’s next token distribution Q(yt|y<t).

B
its

/W
or

d

3.00

2.50

3.50

4.00

4.50

5.00

0 300 900 1200 1500 1800

Average Selected K
100 600

Arithmetic

SAAC
0.15

0.10

0.20

0.25

0.30

0.35

0 300 900 1200 1500 1800

Average Selected K
100 600

Arithmetic

SAAC

D
K

L

Figure 5: Comparison of baseline Arithmetic method
with SAAC across (roughly) the same average Ks.
Larger bits/word values ↑ and smaller DKL values ↓
indicate better performance.

imperceptibility bound δ. Finally, we vary the im-
perceptibility bound δ and calculate the average K
selected by SAAC. Fig. 5 compares the baseline
Arithmetic method (of different predefined Ks)
with SAAC method that has the (roughly) same
average selected K. We can see that using about
the same Ks, our SAAC method can clearly out-
perform the Arithmetic baseline method in terms
of both Bits/word and DKL metrics.
Efficiency Analysis. We run all our experiments
on a machine with one single RTX 8000 GPU and
80 Intel Xeon Gold 6230 CPUs. On average, en-
coding one sentence takes Bin-LM 2.361 second,
RNN-Stega 1.617 second, Arithmetic 2.085 second,
Patient-Huffman 4.443 second, and our proposed
SAAC method 1.722 second. This result shows dy-
namic selection of step-wise K will not introduce
many computational overhead and can sometimes
even improve the efficiency of the static arithmetic
coding method.
Case Studies. We show some concrete exam-
ples of generated cover texts in Fig. 6. Follow-
ing (Ziegler et al., 2019), we use an introductory
context c for generating the first cover text token
(i.e., replace Q(·|y<1) with Q(·|[c;y<1])). This
strategy helps to improve the cover text quality and
will later also be used in the human evaluation. We
can see that those generated cover texts are flu-
ent and grammatically correct. Besides, they are

310

bipartisan bill would require a \$13 billion appropriation at the end of the
current fiscal year. Under the Act, you would not collect federal taxes on

drugs or make drug-related appropriation if you were a major
manufacturer of cannabis. The proposal will likely give Trump the

opportunity to only fund the 10 types of confiscated marijuana that the
federal government has been conducting a current drug .

Confederate troops were assigned a plaque near Berrien\'s Mill, a creek
south of New York City. His monument of Lafayette\'s power to bear arms

became the very flag of the Union government. Washington returned to
Pennsylvania in 1788 when the navy introduced Continental forces to

Britain. Five years later the \"Black Ships\" were commissioned

Generated Cover Text

Washington received his initial military training and command with the
Virginia Regiment during the French and Indian War. He was later

elected to the Virginia House of Burgesses and was named a delegate
to the Continental Congress, where he was appointed Commanding
General of the nation's Continental Army. Washington led American
forces, allied with France, in the defeat of the British at Yorktown.

molly ultra caps capped at
180mgs will have you flying

for hrs clean come down 99 of
the time . <eos>

The first tally is in. The HEROES Act, passed the House of
Representatives Friday evening, would reduce federal revenue by a net

total of \$883 billion between 2020 and 2030, according to the Joint
Committee on Taxation (JCT). It is highly unlikely that the bill will get

signed into law as is, given the White House's veto threat and Senate
Republican's view of it as hardly salvageable.

Phylogenetic analysis showed
that Bat-SARS-CoV formed a

distinct cluster with SARS-
CoV. <eos>

ContextPlaintext

Figure 6: Cover text examples generated by our SAAC method. The context is used for generating the first cover
text token (c.f. Q(·|y<1) in Fig. 2). We can see that those generated cover texts are fluent and effectively hide
messages in the original plaintexts.

……… ……
t=11 28 “said”“Following the retreat of the British , Washington \’s comrades”
t=10 1563 “comrades”“Following the retreat of the British , Washington \’s”

“Following the retreat of the British , Washington” 585t=9 “\’s”
t=8 “Washington”“Following the retreat of the British , ” 243
t=7 138 “,”“Following the retreat of the British”
t=6 “British”1059“Following the retreat of the”
t=5 “the”“Following the retreat of” 399

10t=4 “of”“Following the retreat”
“Following the” “retreat”t=3 1036

 Generated Next Token
“Following”
“the”

838
502

Select K

“Following”t=2
“”t=1

Already Generated Cover TextStep t y<t yt

Figure 7: One step-by-step example of cover text generation. When less variety exists in the next token distribution
Q(·|y<t), we will choose a smaller K (lines in blue color). Otherwise, we select a larger K (lines in pink color).

topically similar to the provided introductory con-
text and effectively hide messages in the original
plaintexts. In Fig. 7, we further show a step-by-
step generation example. We can see that in step
4, the next token distribution Q(·|y<4) following
word “retreat” exhibits less variety, and thus we
select a small K = 10. On the other hand, in step
6, the next token distribution Q(·|y<6) following
word “the” has more variety and we use a larger
K = 1059 to satisfy the required imperceptibility.

4.3 Human Evaluation

We conduct human evaluation to test whether gen-
erated cover texts can indeed fool human eaves-
droppers via crowdsourcing. First, we select 100
news articles from the CNN/DM dataset and treat
each article’s first 3 sentences as the context. Next,
we sample 100 ciphertexts uniformly at random
and pair each of them with the above 3 sentence
context. Then, for each 〈context, ciphertext〉 pair,
we generate a cover text using different steganogra-
phy methods, including RNN-Stega with Huffman
tree depths 3, 5, 7, arithmetic coding with top Ks
300, 600, 900, and SAAC with imperceptibility
gaps 0.1, 0.05, 0.01. Finally, we gather all the
generated cover texts; mix them with the original
human-written sentences (i.e., the 4th sentence in
each news article), and send them to crowd acces-

H
um

an
 J

ud
gm

en
t S

co
re

0.30

0.40

0.45

0.50

0.70

Steganography Encoding Method

0.30

0.25

0.35

True Data

0.32

0.45

0.67

0.55

0.36

0.43

H=3 H=5 H=7 K=300 K=600

0.38

K=900

0.44

0.47

0.51

�=0.1 =0.05� =0.01�

RNN-Stega Arithmetic SAAC True Data

Figure 8: Human evaluation results. Y axis shows the
percentage of cover texts (generated by one method)
that are considered by humans to be a proper continua-
tion of the context.

sors on Amazon Mechanical Turk.
In each HIT, the assessor is given one context

paired with one sentence and is asked “Given the
start of a news article: <context>, is the following
a likely next sentence: <sentence>? Yes or No?”.
We explicitly ask assessors to consider whether
this sentence is grammatically correct, contains no
factual error, and makes sense in the given context.
To ensure the quality of collected data, we require
crowd assessors to have a 95% HIT acceptance rate,
a minimum of 1000 HITs, and be located in the
United States or Canada. Moreover, we include a
simple attention check question in 20% of HITs
and filter out the results from assessors who do not

311

pass the attention check.
Fig. 8 shows the human evaluation results. First,

we can see this test itself is challenging as only
67% of time people can correctly identify the true
follow-up sentence. Second, more encouragingly,
we find the cover texts generated by our SAAC al-
gorithm can indeed fool humans 51% of times. For
those cover texts that do not pass the human test,
we analyze crowd assessor’s feedbacks and find
they are rejected mostly because they contain some
factual errors. Thus, we believe improving the gen-
eration factual accuracy is an important direction
for future linguistic steganography research.

5 Related Work

Early steganography methods (Marvel et al., 1999;
Gopalan, 2003) use image and audio as the cover
signal because they have a high information theo-
retic entropy. However, sending an image or audio
recording abruptly though a public channel will
likely cause the eavesdropper’s suspicion. Thus,
linguistic steganography methods are proposed to
leverage text as the cover signal because natural
language is prevalent and innocuous in daily life.

Linguistic steganography methods can be cate-
gorized into two types, edit-based or generation-
based (Bennett, 2004). Edit-based methods try to
directly edit the secret message and transform it
into an innocent text. Typical transformations are
synonym substitution (Topkara et al., 2006; Chang
and Clark, 2014), paraphrase substitution (Chang
and Clark, 2010; Ji and Knight, 2018), and syntac-
tic transformation (Thamaraiselvan and Saradha,
2015; Safaka et al., 2016). Instead of editing all
words in the secret message, (Zhang et al., 2014,
2015) take an entity-oriented view and focus on
encoding/decoding morphs of important entities in
the message. Finally, some work (Grosvald and
Orgun, 2011; Wilson et al., 2014) allows human
agents to assist the cover text generation process.

One major limitation of edit-based methods is
that they cannot encode information efficiently.
(Wilson and Ker, 2016) show the popular Cover-
Tweet system (Wilson et al., 2014) can encode only
two bits information in each transformed tweet on
average. To address this limitation, generation-
based methods try directly output the cover text
based on the secret message. Early study (Chap-
man and Davida, 1997) utilizes a generative gram-
mar to output the cover text. More recently, peo-
ple leverage a neural language model for linguis-

tic steganography. One pioneering work by (Fang
et al., 2017) divides the message bits into equal-
size blocks and encodes each block using one cover
text token. (Yang et al., 2019b) improves the above
method by constructing a Huffman tree and encod-
ing the message in variable length chunks via a
Huffman tree. (Dai and Cai, 2019) presents the
first theoretical analysis of the above two meth-
ods and proposes a modified Huffman algorithm.
The method most related to this study is (Ziegler
et al., 2019) where the arithmetic coding algorithm
is introduced for steganography. In this study, we
present a more formal analysis of arithmetic coding
based steganography method and propose a better
self-adjusting algorithm to achieve the statistical
imperceptibility.

6 Discussions and Future Work

This work presents a new linguistic steganography
method that encodes secret messages using self-
adjusting arithmetic coding. We formally prove
this method is near-imperceptible and empirically
show it achieves the state-of-the-art results on vari-
ous text corpora. There are several directions we
will further explore in the future. First, we may
combine the edit-based steganography with gener-
ative steganography method by first transforming
the original plaintext in a semantics-preserving way
and then encoding the transformed plaintext. Sec-
ond, we will study whether this current method is
still effective when a small-scale neural LM (e.g.,
distilGPT-2) is applied. Finally, this study assumes
a passive eavesdropper who does not modify the
transmitted cover text. Adapting the current meth-
ods to be robust to an active eavesdropper who may
alter the cover text is another interesting direction.

Acknowledgements

Research was sponsored in part by US DARPA
SocialSim Program No. W911NF-17-C-0099, NSF
IIS-19-56151, IIS-17-41317, IIS 17-04532, and
IIS 16-18481, and DTRA HDTRA11810026. Any
opinions, findings or recommendations expressed
herein are those of the authors and should not be
interpreted as necessarily representing the views,
either expressed or implied, of DARPA or the U.S.
Government. We thank anonymous reviewers for
valuable and insightful feedback.

312

References
Krista Bennett. 2004. Linguistic steganography: Sur-

vey, analysis, and robustness concerns for hiding in-
formation in text.

Ching-Yun Chang and Stephen Clark. 2010. Linguistic
steganography using automatically generated para-
phrases. In HLT-NAACL.

Ching-Yun Chang and Stephen Clark. 2014. Practical
linguistic steganography using contextual synonym
substitution and a novel vertex coding method. Com-
putational Linguistics, 40:403–448.

Mark Chapman and George I. Davida. 1997. Hiding
the hidden: A software system for concealing cipher-
text as innocuous text. In ICICS.

Falcon Z. Dai and Zheng Cai. 2019. Towards near-
imperceptible steganographic text. In ACL.

Jarek Duda. 2013. Asymmetric numeral systems: en-
tropy coding combining speed of huffman coding
with compression rate of arithmetic coding.

Tina Fang, Martin Jaggi, and Katerina J. Argyraki.
2017. Generating steganographic text with lstms. In
ACL.

Alexei A. Fedotov, Peter Harremoës, and Flemming
Topsøe. 2003. Refinements of pinsker’s inequality.
IEEE Trans. Inf. Theory, 49:1491–1498.

Kaliappan Gopalan. 2003. Audio steganography us-
ing bit modification. In International Conference on
Multimedia and Expo.

Michael Grosvald and C Orhan Orgun. 2011. Free
from the cover text: a human-generated natural lan-
guage approach to text-based steganography. Jour-
nal of Information Hiding and Multimedia Signal
Processing, 2(2):133–141.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NIPS.

David A Huffman. 1952. A method for the construc-
tion of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098–1101.

Heng Ji and Kevin Knight. 2018. Creative language
encoding under censorship. In COLING.

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. ArXiv.

Lisa M Marvel, Charles G Boncelet, and Charles T Ret-
ter. 1999. Spread spectrum image steganography. In
IEEE Transactions on image processing.

Muhalim bin Mohamed Amin, Mazleena bt. Salleh,
Subariah Ibrahim, Mohd. Rozi b. Katmin, and
M. Z. I. Shamsuddin. 2003. Information hiding
using steganography. 4th National Conference of
Telecommunication Technology, 2003. NCTT 2003
Proceedings., pages 21–25.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jorma Rissanen and Glen G. Langdon. 1979. Arith-
metic coding. IBM J. Res. Dev., 23:149–162.

Iris Safaka, Christina Fragouli, and Katerina J. Argy-
raki. 2016. Matryoshka: Hiding secret communica-
tion in plain sight. In FOCI.

Gustavus J Simmons. 1984. The prisoners’ problem
and the subliminal channel. In Advances in Cryptol-
ogy, pages 51–67. Springer.

R. Thamaraiselvan and A. Saradha. 2015. Text-
based steganography using cover text free human-
generated natural language (hgnl) approach.

Umut Topkara, Mercan Topkara, and Mikhail J. Atal-
lah. 2006. The hiding virtues of ambiguity: quantifi-
ably resilient watermarking of natural language text
through synonym substitutions. In Multimedia and
Secruity.

Kemal Tutuncu and Abdikarim Abi Hassan. 2015.
New approach in e-mail based text steganography.
International Journal of Intelligent Systems and Ap-
plications in Engineering, 3:54–56.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Darrin Eide, Kathryn
Funk, Rodney Michael Kinney, Ziyang Liu, William.
Merrill, Paul Mooney, Dewey A. Murdick, Devvret
Rishi, Jerry Sheehan, Zhihong Shen, Brandon Stil-
son, Alex D. Wade, Kuansan Wang, Christopher Wil-
helm, Boya Xie, Douglas M. Raymond, Daniel S.
Weld, Oren Etzioni, and Sebastian Kohlmeier. 2020.
Cord-19: The covid-19 open research dataset.
ArXiv, abs/2004.10706.

Andreas Westfeld and Andreas Pfitzmann. 1999. At-
tacks on steganographic systems. In Information
Hiding.

Alex Wilson, Phil Blunsom, and Andrew D. Ker. 2014.
Linguistic steganography on twitter: hierarchical
language modeling with manual interaction. In Elec-
tronic Imaging.

Alex Wilson and Andrew D. Ker. 2016. Avoiding de-
tection on twitter: embedding strategies for linguis-
tic steganography. In Media Watermarking, Security,
and Forensics.

Ian H. Witten, Radford M. Neal, and John G. Cleary.
1987. Arithmetic coding for data compression.
Commun. ACM, 30:520–540.

313

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G.
Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
2019a. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. In NeurIPS.

Zhong-Liang Yang, Xiaoqing Guo, Zi-Ming Chen,
Yongfeng Huang, and Yu-Jin Zhang. 2019b. Rnn-
stega: Linguistic steganography based on recurrent
neural networks. IEEE Transactions on Information
Forensics and Security, 14:1280–1295.

Boliang Zhang, Hongzhao Huang, Xiaoman Pan, Heng
Ji, Kevin Knight, Zhen Wen, Yizhou Sun, Jiawei

Han, and Bülent Yener. 2014. Be appropriate and
funny: Automatic entity morph encoding. In ACL.

Boliang Zhang, Hongzhao Huang, Xiaoman Pan, Su-
jian Li, Chin-Yew Lin, Heng Ji, Kevin Knight, Zhen
Wen, Yizhou Sun, Jiawei Han, and Bülent Yener.
2015. Context-aware entity morph decoding. In
ACL.

Zachary M. Ziegler, Yuntian Deng, and Alexander M.
Rush. 2019. Neural linguistic steganography. In
EMNLP.

