
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 2226–2241,
November 16–20, 2020. c©2020 Association for Computational Linguistics

2226

Masking as an Efficient Alternative to Finetuning
for Pretrained Language Models

Mengjie Zhao†*, Tao Lin‡*, Fei Mi‡, Martin Jaggi‡, Hinrich Schütze†

† LMU Munich, Germany ‡ EPFL, Switzerland
mzhao@cis.lmu.de, {tao.lin, fei.mi, martin.jaggi}@epfl.ch

Abstract

We present an efficient method of utilizing pre-
trained language models, where we learn selec-
tive binary masks for pretrained weights in lieu
of modifying them through finetuning. Exten-
sive evaluations of masking BERT, RoBERTa,
and DistilBERT on eleven diverse NLP tasks
show that our masking scheme yields perfor-
mance comparable to finetuning, yet has a
much smaller memory footprint when several
tasks need to be inferred. Intrinsic evaluations
show that representations computed by our bi-
nary masked language models encode informa-
tion necessary for solving downstream tasks.
Analyzing the loss landscape, we show that
masking and finetuning produce models that
reside in minima that can be connected by a
line segment with nearly constant test accu-
racy. This confirms that masking can be uti-
lized as an efficient alternative to finetuning.

1 Introduction

Finetuning a large pretrained language model like
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019b), and XLNet (Yang et al., 2019) often yields
competitive or even state-of-the-art results on NLP
benchmarks (Wang et al., 2018, 2019). Given an
NLP task, standard finetuning stacks a linear layer
on top of the pretrained language model and then
updates all parameters using mini-batch SGD. Vari-
ous aspects like brittleness (Dodge et al., 2020) and
adaptiveness (Peters et al., 2019) of this two-stage
transfer learning NLP paradigm (Dai and Le, 2015;
Howard and Ruder, 2018) have been studied.

Despite the simplicity and impressive perfor-
mance of finetuning, the prohibitively large number
of parameters to be finetuned, e.g., 340 million in
BERT-large, is a major obstacle to wider deploy-
ment of these models. The large memory foot-
print of finetuned models becomes more prominent

* Equal contribution.

when multiple tasks need to be solved – several
copies of the millions of finetuned parameters have
to be saved for inference.

Recent work (Gaier and Ha, 2019; Zhou et al.,
2019) points out the potential of searching neural
architectures within a fixed model, as an alternative
to optimizing the model weights for downstream
tasks. Inspired by these results, we present mask-
ing, a simple yet efficient scheme for utilizing pre-
trained language models. Instead of directly updat-
ing the pretrained parameters, we propose to select
weights important to downstream NLP tasks while
discarding irrelevant ones. The selection mecha-
nism consists of a set of binary masks, one learned
per downstream task through end-to-end training.

We show that masking, when being applied to
pretrained language models like BERT, RoBERTa,
and DistilBERT (Sanh et al., 2019), achieves per-
formance comparable to finetuning in tasks like
part-of-speech tagging, named-entity recognition,
sequence classification, and reading comprehen-
sion. This is surprising in that a simple subselec-
tion mechanism that does not change any weights
is competitive with a training regime – finetuning
– that can change the value of every single weight.
We conduct detailed analyses revealing important
factors and possible reasons for the desirable per-
formance of masking.

Masking is parameter-efficient: only a set of 1-
bit binary masks needs to be saved per task after
training, instead of all 32-bit float parameters in
finetuning. This small memory footprint enables
deploying pretrained language models for solving
multiple tasks on edge devices. The compactness of
masking also naturally allows parameter-efficient
ensembles of pretrained language models.

Our contributions: (i) We introduce masking,
a new scheme for utilizing pretrained language
models by learning selective masks for pretrained
weights, as an efficient alternative to finetuning.

2227

We show that masking is applicable to models like
BERT/RoBERTa/DistilBERT, and produces perfor-
mance on par with finetuning. (ii) We carry out
extensive empirical analysis of masking, shedding
light on factors critical for achieving good perfor-
mance on eleven diverse NLP tasks. (iii) We study
the binary masked language models’ loss landscape
and language representations, revealing potential
reasons why masking has task performance compa-
rable to finetuning.

2 Related Work

Two-stage NLP paradigm. Pretrained language
models (Peters et al., 2018; Devlin et al., 2019; Liu
et al., 2019b; Yang et al., 2019; Radford et al.,
2019) advance NLP with contextualized repre-
sentation of words. Finetuning a pretrained lan-
guage model (Dai and Le, 2015; Howard and
Ruder, 2018) often delivers competitive perfor-
mance partly because pretraining leads to a bet-
ter initialization across various downstream tasks
than training from scratch (Hao et al., 2019). How-
ever, finetuning on individual NLP tasks is not
parameter-efficient. Each finetuned model, typi-
cally consisting of hundreds of millions of floating
point parameters, needs to be saved individually.
Stickland and Murray (2019) use projected atten-
tion layers with multi-task learning to improve effi-
ciency of finetuning BERT. Houlsby et al. (2019)
insert adapter modules to BERT to improve mem-
ory efficiency. The inserted modules alter the for-
ward pass of BERT, hence need to be carefully
initialized to be close to identity.

We propose to directly pick parameters appro-
priate to a downstream task, by learning selective
binary masks via end-to-end training. Keeping the
pretrained parameters untouched, we solve several
downstream NLP tasks with minimal overhead.

Binary networks and network pruning. Bi-
nary masks can be trained using the “straight-
through estimator” (Bengio et al., 2013; Hinton,
2012). Hubara et al. (2016), Rastegari et al. (2016),
Hubara et al. (2017), inter alia, apply this tech-
nique to train efficient binarized neural networks.
We use this estimator to train selective masks for
pretrained language model parameters.

Investigating the lottery ticket hypothesis (Fran-
kle and Carbin, 2018) of network pruning (Han
et al., 2015a; He et al., 2018; Liu et al., 2019c; Lee
et al., 2019; Lin et al., 2020), Zhou et al. (2019)
find that applying binary masks to a neural network

is a form of training the network. Gaier and Ha
(2019) propose to search neural architectures for re-
inforcement learning and image classification tasks,
without any explicit weight training. This work
inspires our masking scheme (which can be inter-
preted as implicit neural architecture search (Liu
et al., 2019c)): applying the masks to a pretrained
language model is similar to finetuning, yet is much
more parameter-efficient.

Perhaps the closest work, Mallya et al. (2018)
apply binary masks to CNNs and achieve good per-
formance in computer vision. We learn selective
binary masks for pretrained language models in
NLP and shed light on factors important for ob-
taining good performance. Mallya et al. (2018)
explicitly update weights in a task-specific classi-
fier layer. In contrast, we show that end-to-end
learning of selective masks, consistently for both
the pretrained language model and a randomly ini-
tialized classifier layer, achieves good performance.
Radiya-Dixit and Wang (2020) investigate finetun-
ing of BERT by employing a number of techniques,
including what they call sparsification, a method
similar to masking. Their focus is analysis of fine-
tuning BERT whereas our goal is to provide an
efficient alternative to finetuning.

3 Method

3.1 Background on Transformer and
finetuning

The encoder of the Transformer architecture
(Vaswani et al., 2017) is ubiquitously used when
pretraining large language models. We briefly re-
view its architecture and then present our masking
scheme. Taking BERT-base as an example, each
one of the 12 transformer blocks consists of (i)
four linear layers1 WK , WQ, WV , and WAO for
computing and outputting the self attention among
input wordpieces (Wu et al., 2016). (ii) two lin-
ear layers WI and WO feeding forward the word
representations to the next transformer block.

More concretely, consider an input sentence X ∈
RN×d where N is the maximum sentence length
and d is the hidden dimension size. WK , WQ, and
WV are used to compute transformations of X:

K = XWK ,Q = XWQ,V = XWV ,

1We omit the bias terms for brevity.

2228

and the self attention of X is computed as:

Attention(K,Q,V) = softmax(
QKT

√
d

)V.

The attention is then transformed by WAO, and
subsequently fed forward by WI and WO to the
next transformer block.

When finetuning on a downstream task like se-
quence classification, a linear classifier layer WT ,
projecting from the hidden dimension to the output
dimension, is randomly initialized. Next, WT is
stacked on top of a pretrained linear layer WP (the
pooler layer). All parameters are then updated to
minimize the task loss such as cross-entropy.

3.2 Learning the mask

Given a pretrained language model, we do not
finetune, i.e., we do not update the pretrained
parameters. Instead, we select a subset of the
pretrained parameters that is critical to a down-
stream task while discarding irrelevant ones with
binary masks. We associate each linear layer Wl

∈ {Wl
K ,W

l
Q,W

l
V ,W

l
AO,W

l
I ,W

l
O} of the l-th

transformer block with a real-valued matrix Ml

that is randomly initialized from a uniform distri-
bution and has the same size as Wl. We then pass
Ml through an element-wise thresholding function
(Hubara et al., 2016; Mallya et al., 2018), i.e., a
binarizer, to obtain a binary mask Ml

bin for Wl:

(ml
bin)i,j =

{
1 if ml

i,j ≥ τ
0 otherwise

, (1)

where ml
i,j ∈Ml, i, j indicate the coordinates of

the 2-D linear layer and τ is a global thresholding
hyperparameter.

In each forward pass of training, the binary mask
Ml

bin (derived from Ml via Eq. 1) selects weights in
a pretrained linear layer Wl by Hadamard product:

Ŵl := Wl �Ml
bin .

In the corresponding backward pass of training,
with the associated loss functionL, we cannot back-
propagate through the binarizer, since Eq. 1 is a
hard thresholding operation and the gradient with
respect to Ml is zero almost everywhere. Similar
to the treatment2 in Bengio et al. (2013); Hubara

2Bengio et al. (2013); Hubara et al. (2016) describe it as
the “straight-through estimator”, and Lin et al. (2020) provide
convergence guarantee with error feedback interpretation.

et al. (2016); Lin et al. (2020), we use ∂L(Ŵl)

∂Ml
bin

as a

noisy estimator of ∂L(Ŵ
l)

∂Ml to update Ml, i.e.:

Ml ←Ml − η ∂L(Ŵ
l)

∂Ml
bin

, (2)

where η refers to the step size. Hence, the whole
structure can be trained end-to-end.

We learn a set of binary masks for an NLP task
as follows. Recall that each linear layer Wl is
associated with a Ml to obtain a masked linear
layer Ŵl through Eq. 1. We randomly initialize an
additional linear layer with an associated Ml and
stack it on top of the pretrained language model.
We then update each Ml through Eq. 2 with the
task objective during training.

After training, we pass each Ml through the
binarizer to obtain Ml

bin, which is then saved for
future inference. Since Ml

bin is binary, it takes only
≈ 3% of the memory compared to saving the 32-
bit float parameters in a finetuned model. Also,
we will show that many layers – in particular the
embedding layer – do not have to be masked. This
further reduces memory consumption of masking.

3.3 Configuration of masking

Our masking scheme is motivated by the obser-
vation: the pretrained weights form a good ini-
tialization (Hao et al., 2019), yet a few steps of
adaptation are still needed to produce competitive
performance for a specific task. However, not every
pretrained parameter is necessary for achieving rea-
sonable performance, as suggested by the field of
neural network pruning (LeCun et al., 1990; Has-
sibi and Stork, 1993; Han et al., 2015b). We now
investigate two configuration choices that affect
how many parameters are “eligible” for masking.

Initial sparsity of Ml
bin. As we randomly initial-

ize our masks from uniform distributions, the spar-
sity of the binary mask Ml

bin in the mask initializa-
tion phase controls how many pretrained parame-
ters in a layer Wl are assumed to be irrelevant to
the downstream task. Different initial sparsity rates
entail different optimization behaviors.

It is crucial to better understand how the initial
sparsity of a mask impacts the training dynamics
and final model performance, so as to generalize
our masking scheme to broader domains and tasks.
In §5.1, we investigate this aspect in detail. In prac-
tice, we fix τ in Eq. 1 while adjusting the uniform
distribution to achieve a target initial sparsity.

2229

Which layers to mask. Different layers of pre-
trained language models capture distinct aspects of
a language during pretraining, e.g., Tenney et al.
(2019) find that information on part-of-speech tag-
ging, parsing, named-entity recognition, semantic
roles, and coreference is encoded on progressively
higher layers of BERT. It is hard to know a priori
which types of NLP tasks have to be addressed in
the future, making it non-trivial to decide layers to
mask. We study this factor in §5.2.

We do not learn a mask for the lowest embed-
ding layer, i.e., the uncontextualized wordpiece em-
beddings are completely “selected”, for all tasks.
The motivation is two-fold. (i) The embedding
layer weights take up a large part, e.g., almost 21%
(23m/109m) in BERT-base-uncased, of the total
number of parameters. Not having to learn a se-
lective mask for this layer reduces memory con-
sumption. (ii) Pretraining has effectively encoded
context-independent general meanings of words in
the embedding layer (Zhao et al., 2020). Hence,
learning a selective mask for this layer is unnec-
essary. Also, we do not learn masks for biases
and layer normalization parameters as we did not
observe a positive effect on performance.

4 Datasets and Setup

Datasets. We present results for masking BERT,
RoBERTa, and DistilBERT in part-of-speech tag-
ging, named-entity recognition, sequence classifi-
cation, and reading comprehension.

We experiment with part-of-speech tagging
(POS) on Penn Treebank (Marcus et al., 1993),
using Collins (2002)’s train/dev/test split. For
named-entity recognition (NER), we conduct ex-
periments on the CoNLL-2003 NER shared task
(Tjong Kim Sang and De Meulder, 2003).

For sequence classification, the following
GLUE tasks (Wang et al., 2018) are evaluated:
Stanford Sentiment Treebank (SST2) (Socher et al.,
2013), Microsoft Research Paraphrase Corpus
(MRPC) (Dolan and Brockett, 2005), Corpus of
Linguistic Acceptability (CoLA) (Warstadt et al.,
2019), Recognizing Textual Entailment (RTE) (Da-
gan et al., 2005), and Question Natural Language
Inference (QNLI) (Rajpurkar et al., 2016).

In addition, we experiment on sequence classifi-
cation datasets that have publicly available test sets:
the 6-class question classification dataset TREC
(Voorhees and Tice, 2000), the 4-class news classi-
fication dataset AG News (AG) (Zhang et al., 2015),

and the binary Twitter sentiment classification task
SemEval-2016 4B (SEM) (Nakov et al., 2016).

We experiment with reading comprehension
on SWAG (Zellers et al., 2018) using the official
data splits. We report Matthew’s correlation coef-
ficient (MCC) for CoLA, micro-F1 for NER, and
accuracy for the other tasks.

Setup. Due to resource limitations and in the
spirit of environmental responsibility (Strubell
et al., 2019; Schwartz et al., 2019), we conduct
our experiments on the base models: BERT-base-
uncased, RoBERTa-base, and DistilBERT-base-
uncased. Thus, the BERT/RoBERTa models we use
have 12 transformer blocks (0–11 indexed) produc-
ing 768-dimension vectors; the DistilBERT model
we use has the same dimension but contains 6 trans-
former blocks (0–5 indexed). We implement our
models in PyTorch (Paszke et al., 2019) with the
HuggingFace framework (Wolf et al., 2019).

Throughout all experiments, we limit the max-
imum length of a sentence (pair) to be 128 after
wordpiece tokenization. Following Devlin et al.
(2019), we use the Adam (Kingma and Ba, 2014)
optimizer of which the learning rate is a hyperpa-
rameter while the other parameters remain default.
We carefully tune the learning rate for each setup:
the tuning procedure ensures that the best learn-
ing rate does not lie on the border of our search
grid, otherwise we extend the grid accordingly. The
initial grid is {1e-5, 3e-5, 5e-5, 7e-5, 9e-5}.

For sequence classification and reading compre-
hension, we use [CLS] as the representation of the
sentence (pair). Following Devlin et al. (2019), we
formulate NER as a tagging task and use a linear
output layer, instead of a conditional random field
layer. For POS and NER experiments, the represen-
tation of a tokenized word is its last wordpiece (Liu
et al., 2019a; He and Choi, 2020). Note that a 128
maximum length of a sentence for POS and NER
means that some word-tag annotations need to be
excluded. Appendix §A shows our reproducibil-
ity checklist containing more implementation and
preprocessing details.

5 Experiments

5.1 Initial sparsity of binary masks

We first investigate how initial sparsity percentage
(i.e., fraction of zeros) of the binary mask Ml

bin in-
fluences performance of a binary masked language
model on downstream tasks. We experiment on
four tasks, with initial sparsities in {1%, 3%, 5%,

2230

1 5 15 25 35 45 55 65 75 85 95
Initial Mask Sparsity (%)

0.0

0.2

0.4

0.6

0.8

Ta
sk

 P
er

fo
rm

an
ce

Task
RTE
MRPC
CoLA
SST2

Figure 1: Dev set performance of masking BERT when
selecting different amounts of pretrained parameters.

10%, 15%, 20%, . . . , 95%}. All other hyperparam-
eters are controlled: learning rate is fixed to 5e-5;
batch size is 32 for relatively small datasets (RTE,
MRPC, and CoLA) and 128 for SST2. Each exper-
iment is repeated four times with different random
seeds {1, 2, 3, 4}. In this experiment, all trans-
former blocks, the pooler layer, and the classifier
layer are masked.

Figure 1 shows that masking achieves decent per-
formance without hyperparameter search. Specif-
ically, (i) a large initial sparsity removing most
pretrained parameters, e.g., 95%, leads to bad per-
formance for the four tasks. This is due to the
fact that the pretrained knowledge is largely dis-
carded. (ii) Gradually decreasing the initial sparsity
improves task performance. Generally, an initial
sparsity in 3% ∼ 10% yields reasonable results
across tasks. Large datasets like SST2 are less sen-
sitive than small datasets like RTE. (iii) Selecting
almost all pretrained parameters, e.g., 1% sparsity,
hurts task performance. Recall that a pretrained
model needs to be adapted to a downstream task;
masking achieves adaptation by learning selective
masks – preserving too many pretrained parameters
in initialization impedes the optimization.

5.2 Layer-wise behaviors

Neural network layers present heterogeneous char-
acteristics (Zhang et al., 2019) when being applied
to tasks. For example, syntactic information is
better represented at lower layers while semantic
information is captured at higher layers in ELMo
(Peters et al., 2018). As a result, simply masking
all transformer blocks (as in §5.1) may not be ideal.

We investigate the task performance when apply-
ing the masks to different BERT layers. Figure 2
presents the optimal task performance when mask-
ing only a subset of BERT’s transformer blocks on
MRPC, CoLA, and RTE. Different amounts and

indices of transformer blocks are masked: “bottom-
up” and “top-down” indicate to mask the targeted
amount of transformer blocks, either from bottom
or top of BERT.

We can observe that (i) in most cases, top-down
masking outperforms bottom-up masking when ini-
tial sparsity and the number of masked layers are
fixed. Thus, it is reasonable to select all pretrained
weights in lower layers, since they capture gen-
eral information helpful and transferable to various
tasks (Liu et al., 2019a; Howard and Ruder, 2018).
(ii) For bottom-up masking, increasing the number
of masked layers gradually improves performance.
This observation illustrates dependencies between
BERT layers and the learning dynamics of masking:
provided with selected pretrained weights in lower
layers, higher layers need to be given flexibility to
select pretrained weights accordingly to achieve
good task performance. (iii) In top-down mask-
ing, CoLA performance increases when masking a
growing number of layers while MRPC and RTE
are not sensitive. Recall that CoLA tests linguistic
acceptability that typically requires both syntactic
and semantic information3. All of BERT layers are
involved in representing this information, hence
allowing more layers to change should improve
performance.

5.3 Comparing finetuning and masking

We have investigated two factors – initial sparsity
(§5.1) and layer-wise behaviors (§5.2) – that are
important in masking pretrained language models.
Here, we compare the performance and memory
consumption of masking and finetuning.

Based on observations in §5.1 and §5.2, we
use 5% initial sparsity when applying masking to
BERT, RoBERTa, and DistilBERT. We mask the
transformer blocks 2–11 in BERT/RoBERTa and 2–
5 in DistilBERT. WP and WT are always masked.
Note that this global setup is surely suboptimal for
some model-task combinations, but our goal is to
illustrate the effectiveness and the generalization
ability of masking. Hence, conducting extensive
hyperparameter search is unnecessary.

For AG and QNLI, we use batch size 128. For
the other tasks we use batch size 32. We search the
optimal learning rate per task as described in §4,

3For example, to distinguish acceptable caused-motion
constructions (e.g., “the professor talked us into a stupor”)
from inacceptable ones (e.g., “water talked it into red”), both
syntactic and semantic information need to be considered
(Goldberg, 1995).

2231

4 6 8 10
of masked blocks

80

85

Ac
cu

ra
cy

Masking (bottom-up), 5% sparsity
Masking (top-down), 5% sparsity
Masking (bottom-up), 15% sparsity
Masking (top-down), 15% sparsity
Fine-tuning

4 6 8 10
of masked blocks

52.5
55.0
57.5

M
CC

Masking (bottom-up), 5% sparsity
Masking (top-down), 5% sparsity
Masking (bottom-up), 15% sparsity
Masking (top-down), 15% sparsity
Fine-tuning

4 6 8 10
of masked blocks

60

70

Ac
cu

ra
cy

Masking (bottom-up), 5% sparsity
Masking (top-down), 5% sparsity
Masking (bottom-up), 15% sparsity
Masking (top-down), 15% sparsity
Fine-tuning

Figure 2: The impact of masking different transformer blocks of BERT for MRPC (left), CoLA (middle), and
RTE (right). The number of masked blocks is shown on the x-axis; that number is either masked “bottom-up” or
“top-down”. More precisely, a bottom-up setup (red) masking 4 blocks means we mask the transformer blocks
{0, 1, 2, 3}; a top-down setup (blue) masking 4 blocks means we mask the transformer blocks {8, 9, 10, 11}. WP

and WT are always masked.

MRPC SST2 CoLA RTE QNLI SEM TREC AG POS NER SWAG
3.5k 67k 8.5k 2.5k 108k 4.3k 4.9k 96k 38k 15k 113k

BERT
Finetuning 86.1 ± 0.8 93.3 ± 0.2 59.6 ± 0.8 69.2 ± 2.7 91.0 ± 0.6 86.6 ± 0.3 96.4 ± 0.2 94.4 ± 0.1 97.7 ± 0.0 94.6 ± 0.2 80.9 ± 1.7
Masking 86.8 ± 1.1 93.2 ± 0.5 59.5 ± 0.1 69.5 ± 3.0 91.3 ± 0.4 85.9 ± 0.5 96.0 ± 0.4 94.2 ± 0.0 97.7 ± 0.0 94.5 ± 0.1 80.3 ± 0.1

RoBERTa
Finetuning 89.8 ± 0.5 95.0 ± 0.3 62.1 ± 1.7 78.2 ± 1.1 92.9 ± 0.2 90.2 ± 0.5 96.2 ± 0.4 94.7 ± 0.0 98.1 ± 0.0 94.9 ± 0.1 83.4 ± 0.8
Masking 88.5 ± 1.1 94.5 ± 0.3 60.3 ± 1.3 69.2 ± 2.1 92.4 ± 0.1 90.1 ± 0.1 95.9 ± 0.5 94.5 ± 0.1 98.0 ± 0.0 93.9 ± 0.1 82.1 ± 0.2

DistilBERT
Finetuning 85.4 ± 0.5 91.6 ± 0.4 55.1 ± 0.3 62.2 ± 3.0 89.0 ± 0.8 85.9 ± 0.2 95.7 ± 0.6 94.2 ± 0.1 97.6 ± 0.0 94.1 ± 0.1 72.5 ± 0.2
Masking 86.0 ± 0.3 91.3 ± 0.3 53.1 ± 0.7 61.6 ± 1.5 89.2 ± 0.2 86.6 ± 0.6 95.9 ± 0.6 94.2 ± 0.1 97.6 ± 0.0 94.1 ± 0.2 71.0 ± 0.0

Table 1: Dev set task performances (%) of masking and finetuning. Each experiment is repeated four times with
different random seeds and we report mean and standard deviation. Numbers below dataset name (second row) are
the size of training set. For POS and NER, we report the number of sentences.

and they are shown in Appendix §A.4.

Performance comparison. Table 1 reports per-
formance of masking and finetuning on the dev
set for the eleven NLP tasks. We observe that ap-
plying masking to BERT/RoBERTa/DistilBERT
yields performance comparable to finetuning. We
observe a performance drop4 on RoBERTa-RTE.
RTE has the smallest dataset size (train: 2.5k; dev:
0.3k) among all tasks – this may contribute to the
imperfect results and large variances.

Our BERT-NER results are slightly worse than
Devlin et al. (2019). This may be due to the fact
that “maximal document context” is used by Devlin
et al. (2019) while we use sentence-level context
of 128 maximum sequence length5.

Rows “Single” in Table 2 compare performance
of masking and finetuning BERT on the test set of
SEM, TREC, AG, POS, and NER. The same setup
and hyperparameter searching as Table 1 are used,
the best hyperparameters are picked on the dev set.
Results from Sun et al. (2019); Palogiannidi et al.
(2016) are included as a reference. Sun et al. (2019)

4Similar observations were made: DistilBERT has a 10%
accuracy drop on RTE compared to BERT-base (Sanh et al.,
2019); Sajjad et al. (2020) report unstableness on MRPC and
RTE when applying their model reduction strategies.

5Similar observations were made: https://github.
com/huggingface/transformers/issues/64

MRPC
SS

T2
CoLARTEQNLI

SE
M
TR

ECAG
PO

S
NER

SW
AG

Task

250

500

750

1000

1250

of

 P
ar

am
et

er
s (

m
illi

on
)

Finetuning
Masking

(a) Number of parameters.

MRPC
SS

T2
CoLARTEQNLI

SE
M
TR

ECAG
PO

S
NER

SW
AG

Task

1000

2000

3000

4000

5000

De
vi

ce
 S

to
ra

ge
 (M

B) Finetuning
Masking

(b) Memory consumption.

Figure 3: The accumulated number of parameters and
memory required by finetuning and masking to solve
an increasing number of tasks.

employ optimizations like layer-wise learning rate,
producing slightly better performance than ours.
Palogiannidi et al. (2016) is the best performing
system on task SEM (Nakov et al., 2016). Again,
masking yields results comparable to finetuning.

Memory comparison. Having shown that task
performance of masking and finetuning is compa-
rable, we next demonstrate one key strength of
masking: memory efficiency. We take BERT-base-
uncased as our example. Figure 3 shows the ac-
cumulated number of parameters in million and
memory in megabytes (MB) required when an in-
creasing number of downstream tasks need to be
solved using finetuning and masking. Masking re-

https://github.com/huggingface/transformers/issues/64
https://github.com/huggingface/transformers/issues/64

2232

SEM TREC AG POS NER Memory (MB)

Masking
Single 12.03 3.30 5.62 2.34 9.85 447
Ensem. 11.52 3.20 5.28 2.12 9.19 474

Finetun.
Single 11.87 3.80 5.66 2.34 9.85 438
Ensem. 11.73 2.80 5.17 2.29 9.23 1752

Sun et al. (2019) n/a 2.80 5.25 n/a n/a n/a

Palogiannidi et al. (2016) 13.80 n/a n/a n/a n/a n/a

Table 2: Error rate (%) on test set and model size com-
parison. Single: the averaged performance of four mod-
els with different random seeds. Ensem.: ensemble of
the four models.

quires a small overhead when solving a single task
but is much more efficient than finetuning when
several tasks need to be inferred. Masking saves a
single copy of a pretrained language model contain-
ing 32-bit float parameters for all the eleven tasks
and a set of 1-bit binary masks for each task. In
contrast, finetuning saves every finetuned model so
the memory consumption grows linearly.

Masking naturally allows light ensembles of
models. Rows “Ensem.” in Table 2 compare ensem-
bled results and model size. We consider the en-
semble of predicted (i) labels; (ii) logits; (iii) proba-
bilities. The best ensemble method is picked on dev
and then evaluated on test. Masking only consumes
474MB of memory – much smaller than 1752MB
required by finetuning – and achieves comparable
performance. Thus, masking is also much more
memory-efficient than finetuning in an ensemble
setting.

6 Discussion

6.1 Intrinsic evaluations

§5 demonstrates that masking is an efficient alter-
native to finetuning. Now we analyze properties
of the representations computed by binary masked
language models with intrinsic evaluation.

One intriguing property of finetuning, i.e., stack-
ing a classifier layer on top of a pretrained language
model then update all parameters, is that a linear
classifier layer suffices to conduct reasonably ac-
curate classification. This observation implies that
the configuration of data points, e.g., sentences
with positive or negative sentiment in SST2, should
be close to linearly separable in the hidden space.
Like finetuning, masking also uses a linear classi-
fier layer. Hence, we hypothesize that upper layers
in binary masked language models, even without
explicit weight updating, also create a hidden space
in which data points are close to linearly separable.

Figure 4 uses t-SNE (Maaten and Hinton, 2008)

20 0 20

40

20

0

20

40
BERT-SST2

Gold Labels
Positive
Negative

40 20 0 20

20

0

20

40
BERT-SST2

Gold Labels
Positive
Negative

20 10 0 10 20

20

10

0

10

20

ROBERTA-SST2

Gold Labels
Positive
Negative

10 0 10
60

40

20

0

20

40

ROBERTA-SST2

Gold Labels
Positive
Negative

Figure 4: t-SNE visualization of the representation of
[CLS] computed by the topmost transformer block in
pretrained (left), finetuned (top right), and masked (bot-
tom right) BERT/RoBERTa. We use scikit-learn
(Pedregosa et al., 2011) and default t-SNE parameters.

SST2 SEM
SST2 41.8 -13.4
SEM 20.0 11.5

(a) Masking

SST2 SEM
SST2 41.8 -10.1
SEM 18.9 12.2

(b) Finetuning

Table 3: Generalization on dev (%) of binary masked
and finetuned BERT. Row: training dataset; Column:
evaluating dataset. Numbers are improvements against
the majority-vote baseline: 50.9 for SST2 and 74.4 for
SEM. Results are averaged across four random seeds.

to visualize the representation of [CLS] computed
by the topmost transformer block in pretrained,
finetuned, and masked BERT/RoBERTa, using the
dev set examples of SST2. The pretrained mod-
els’ representations (left) are clearly not separable
since the model needs to be adapted to downstream
tasks. The sentence representations computed by
the finetuned (top right) and the binary masked
(bottom right) encoder are almost linearly separa-
ble and consistent with the gold labels. Thus, a lin-
ear classifier is expected to yield reasonably good
classification accuracy. This intrinsic evaluation
illustrates that binary masked models extract good
representations from the data for the downstream
NLP task.

6.2 Properties of the binary masked models

Do binary masked models generalize? Fig-
ure 4 shows that a binary masked language model
produces proper representations for the classifier
layer and hence performs as well as a finetuned
model. Here, we are interested in verifying that

2233

Figure 5: Scores s of two sets of masks, trained with
two different tasks, of layer WO in transformer blocks
2 (left) and 11 (right) in BERT. A large s means that
the two masks are dissimilar.

the binary masked model does indeed solve down-
stream tasks by learning meaningful representa-
tions – instead of exploiting spurious correlations
that generalize poorly (Niven and Kao, 2019; Mc-
Coy et al., 2019). To this end, we test if the binary
masked mode is generalizable to other datasets of
the same type of downstream task. We use the two
sentiment classification datasets: SST2 and SEM.
We simply evaluate the model masked or finetuned
on SST2 against the dev set of SEM and vice versa.
Table 3 reports the results against the majority-vote
baseline. The finetuned and binary masked models
of SEM generalize well on SST2, showing ≈ 20%
improvement against the majority-vote baseline.

On the other hand, we observe that the knowl-
edge learned on SST2 does not generalize to SEM,
for both finetuning and masking. We hypothesize
that this is because the Twitter domain (SEM) is
much more specific than movie reviews (SST2).
For example, some Emojis or symbols like “:)” re-
flecting strong sentiment do not occur in SST2, re-
sulting in unsuccessful generalization. To test our
hypothesis, we take another movie review dataset
IMDB (Maas et al., 2011), and directly apply the
SST2-finetuned- and SST2-binary-masked- mod-
els on it. Masking and finetuning achieve accuracy
84.79% and 85.25%, which are comparable and
both outperform the baseline 50%, demonstrating
successful knowledge transfer.

Thus, finetuning and masking yield models with
similar generalization ability. The binary masked
models indeed create representations that contain
valid information for downstream tasks.

Analyzing masks. We study the dissimilarity be-
tween masks learned by different BERT layers and
downstream tasks. For the initial and trained binary
masks Mt,init

bin and Mt,trained
bin of a layer trained on

task t ∈ {t1, t2}. We compute:

s =

∥∥∥Mt1,trained
bin −Mt2,trained

bin

∥∥∥
1∥∥∥Mt1,trained

bin −Mt1,init
bin

∥∥∥
1
+
∥∥∥Mt2,trained

bin −Mt2,init
bin

∥∥∥
1

,

where ‖W‖1 =
∑m

i=1

∑n
j=1 |wi,j |. Note that for

the same random seed, Mt1,init
bin and Mt2,init

bin are
the same. The dissimilarity s measures the differ-
ence between two masks as a fraction of all changes
brought about by training. Figure 5 shows that, af-
ter training, the dissimilarities of masks of higher
BERT layers are larger than those of lower BERT
layers. Similar observations are made for finetun-
ing: top layer weights in finetuned BERT are more
task-specific (Kovaleva et al., 2019). The figure
also shows that the learned masks for downstream
tasks tend to be dissimilar to each other, even for
similar tasks. For a given task, there exist differ-
ent sets of masks (initialized with different random
seeds) yielding similar performance. This observa-
tion is similar to the results of evaluating the lottery
ticket hypothesis on BERT (Prasanna et al., 2020;
Chen et al., 2020): a number of subnetworks exist
in BERT achieving similar task performance.

6.3 Loss landscape

Training complex neural networks can be viewed
as searching for good minima in the highly non-
convex landscape defined by the loss function (Li
et al., 2018). Good minima are typically depicted
as points at the bottom of different locally convex
valleys (Keskar et al., 2016; Draxler et al., 2018),
achieving similar performance. In this section, we
study the relationship between the two minima ob-
tained by masking and finetuning.

Recent work analyzing the loss landscape sug-
gests that the local minima in the loss landscape
reached by standard training algorithms can be con-
nected by a simple path (Garipov et al., 2018; Got-
mare et al., 2018), e.g., a Bézier curve, with low
task loss (or high task accuracy) along the path. We
are interested in testing if the two minima found by
finetuning and masking can be easily connected in
the loss landscape. To start with, we verify the task
performance of an interpolated model W(γ) on
the line segment between a finetuned model W0

and a binary masked model W1:

W(γ) = W0 + γ(W1 −W0), 0 ≤ γ ≤ 1 .

We conduct experiments on MRPC and SST2
with the best-performing BERT and RoBERTa

2234

0.0 0.2 0.4 0.6 0.8 1.0

0.84

0.86

0.88

0.90
Ac

cu
ra

cy

BERT RoBERTa

0.0 0.2 0.4 0.6 0.8 1.0
0.920

0.925

0.930

0.935

0.940

0.945

0.950

Ac
cu

ra
cy

BERT RoBERTa

0.0 0.2 0.4 0.6 0.8 1.0

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

BERT, finetuning
BERT, masking

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

BERT, finetuning
BERT, masking

Figure 6: Mode connectivity results on MRPC (left)
and SST2 (right). Top images: dev set accuracy of an
interpolated model between the two minima found by
finetuning (γ=0) and masking (γ=1). Bottom images:
accuracy of an interpolated model between pretrained
(γ=0) and finetuned/masked (γ=1) BERT.

models obtained in Table 1 (same seed and training
epochs); Figure 6 (top) shows the results of mode
connectivity, i.e., the evolution of the task accuracy
along a line connecting the two candidate minima.

Surprisingly, the interpolated models on the
line segment connecting a finetuned and a binary
masked model form a high accuracy path, indicat-
ing the extremely well-connected loss landscape.
Thus, masking finds minima on the same connected
low-loss manifold as finetuning, confirming the ef-
fectiveness of our method. Also, we show in Fig-
ure 6 (bottom) for the line segment between the
pretrained BERT and a finetuned/masked BERT,
that mode connectivity is not solely due to an over-
parameterized pretrained language model. Bézier
curves experiments show similar results, cf. Ap-
pendix §B.

7 Conclusion

We have presented masking, an efficient alternative
to finetuning for utilizing pretrained language mod-
els like BERT/RoBERTa/DistilBERT. Instead of
updating the pretrained parameters, we only train
one set of binary masks per task to select criti-
cal parameters. Extensive experiments show that
masking yields performance comparable to fine-
tuning on a series of NLP tasks. Leaving the pre-
trained parameters unchanged, masking is much
more memory efficient when several tasks need
to be solved. Intrinsic evaluations show that bi-
nary masked models extract valid and generaliz-
able representations for downstream tasks. More-
over, we demonstrate that the minima obtained by

finetuning and masking can be easily connected
by a line segment, confirming the effectiveness of
applying masking to pretrained language models.
Our code is available at: https://github.com/

ptlmasking/maskbert.
Future work may explore the possibility of ap-

plying masking to the pretrained multilingual en-
coders like mBERT (Devlin et al., 2019) and XLM
(Conneau and Lample, 2019). Also, the binary
masks learned by our method have low sparsity
such that inference speed is not improved. De-
veloping methods improving both memory and in-
ference efficiency without sacrificing task perfor-
mance can open the possibility of widely deploying
the powerful pretrained language models to more
NLP applications.

Acknowledgments

We thank the anonymous reviewers for the insight-
ful comments and suggestions. This work was
funded by the European Research Council (ERC
#740516), SNSF grant 200021_175796, as well as
a Google Focused Research Award.

References
Yoshua Bengio, Nicholas Léonard, and Aaron

Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Si-
jia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. 2020. The lottery ticket hypoth-
esis for pre-trained bert networks. arXiv preprint
arXiv:2007.12223.

Michael Collins. 2002. Discriminative training meth-
ods for hidden Markov models: Theory and ex-
periments with perceptron algorithms. In Proceed-
ings of the 2002 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2002),
pages 1–8. Association for Computational Linguis-
tics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
7059–7069.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Work-
shop, pages 177–190. Springer.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors,

https://github.com/ptlmasking/maskbert
https://github.com/ptlmasking/maskbert
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
https://doi.org/10.3115/1118693.1118694
https://doi.org/10.3115/1118693.1118694
https://doi.org/10.3115/1118693.1118694
http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning.pdf
http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning.pdf

2235

Advances in Neural Information Processing Systems
28, pages 3079–3087. Curran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith.
2020. Fine-tuning pretrained language models:
Weight initializations, data orders, and early stop-
ping.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Felix Draxler, Kambis Veschgini, Manfred Salmhofer,
and Fred A Hamprecht. 2018. Essentially no bar-
riers in neural network energy landscape. arXiv
preprint arXiv:1803.00885.

Jonathan Frankle and Michael Carbin. 2018. The lot-
tery ticket hypothesis: Finding sparse, trainable neu-
ral networks.

Adam Gaier and David Ha. 2019. Weight agnostic neu-
ral networks. In Advances in Neural Information
Processing Systems, pages 5365–5379.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin,
Dmitry P Vetrov, and Andrew G Wilson. 2018. Loss
surfaces, mode connectivity, and fast ensembling of
dnns. In Advances in Neural Information Process-
ing Systems, pages 8789–8798.

Adele E Goldberg. 1995. Construction grammar. Wi-
ley.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming
Xiong, and Richard Socher. 2018. A closer
look at deep learning heuristics: Learning rate
restarts, warmup and distillation. arXiv preprint
arXiv:1810.13243.

Song Han, Jeff Pool, John Tran, and William Dally.
2015a. Learning both weights and connections for
efficient neural network. In NeurIPS - Advances
in Neural Information Processing Systems, pages
1135–1143.

Song Han, Jeff Pool, John Tran, and William Dally.
2015b. Learning both weights and connections
for efficient neural network. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 28, pages 1135–1143. Curran Asso-
ciates, Inc.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2019. Visu-
alizing and understanding the effectiveness of BERT.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4143–
4152, Hong Kong, China. Association for Computa-
tional Linguistics.

Babak Hassibi and David G. Stork. 1993. Second order
derivatives for network pruning: Optimal brain sur-
geon. In S. J. Hanson, J. D. Cowan, and C. L. Giles,
editors, Advances in Neural Information Processing
Systems 5, pages 164–171. Morgan-Kaufmann.

Han He and Jinho D. Choi. 2020. Establishing Strong
Baselines for the New Decade: Sequence Tagging,
Syntactic and Semantic Parsing with BERT. In
Proceedings of the 33rd International Florida Ar-
tificial Intelligence Research Society Conference,
FLAIRS’20. Best Paper Candidate.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu,
and Yi Yang. 2018. Soft filter pruning for acceler-
ating deep convolutional neural networks. In Inter-
national Joint Conference on Artificial Intelligence
(IJCAI), pages 2234–2240.

Geoffrey Hinton. 2012. Neural networks for machine
learning.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799,
Long Beach, California, USA. PMLR.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2016. Bina-
rized neural networks. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems
29, pages 4107–4115. Curran Associates, Inc.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2017. Quantized
neural networks: Training neural networks with low
precision weights and activations. The Journal of
Machine Learning Research, 18(1):6869–6898.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. 2016. On large-batch training for deep learn-
ing: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
https://doi.org/10.18653/v1/D19-1424
https://doi.org/10.18653/v1/D19-1424
http://papers.nips.cc/paper/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon.pdf
http://papers.nips.cc/paper/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon.pdf
http://papers.nips.cc/paper/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon.pdf
https://www.flairs-33.info
https://www.flairs-33.info
https://www.flairs-33.info
http://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf
http://papers.nips.cc/paper/6573-binarized-neural-networks.pdf

2236

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4356–4365, Hong Kong, China. Association for
Computational Linguistics.

Yann LeCun, John S. Denker, and Sara A. Solla. 1990.
Optimal brain damage. In D. S. Touretzky, editor,
Advances in Neural Information Processing Systems
2, pages 598–605. Morgan-Kaufmann.

Namhoon Lee, Thalaiyasingam Ajanthan, and
Philip HS Torr. 2019. SNIP: Single-shot net-
work pruning based on connection sensitivity. In
ICLR - International Conference on Learning
Representations.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. 2018. Visualizing the loss landscape
of neural nets. In Advances in Neural Information
Processing Systems, pages 6389–6399.

Tao Lin, Sebastian U. Stich, Luis Barba, Daniil
Dmitriev, and Martin Jaggi. 2020. Dynamic model
pruning with feedback. In International Conference
on Learning Representations.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang,
and Trevor Darrell. 2019c. Rethinking the value of
network pruning. In ICLR - International Confer-
ence on Learning Representations.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik.
2018. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights. In The Eu-
ropean Conference on Computer Vision (ECCV).

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. SemEval-
2016 task 4: Sentiment analysis in twitter. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 1–18,
San Diego, California. Association for Computa-
tional Linguistics.

Timothy Niven and Hung-Yu Kao. 2019. Probing neu-
ral network comprehension of natural language ar-
guments. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 4658–4664, Florence, Italy. Association
for Computational Linguistics.

Elisavet Palogiannidi, Athanasia Kolovou, Fenia
Christopoulou, Filippos Kokkinos, Elias Iosif, Niko-
laos Malandrakis, Haris Papageorgiou, Shrikanth
Narayanan, and Alexandros Potamianos. 2016.
Tweester at SemEval-2016 task 4: Sentiment anal-
ysis in twitter using semantic-affective model adap-
tation. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 155–163, San Diego, California. Association
for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/D19-1445
https://www.aclweb.org/anthology/D19-1445
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
https://openreview.net/forum?id=SJem8lSFwB
https://openreview.net/forum?id=SJem8lSFwB
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/S16-1001
https://doi.org/10.18653/v1/S16-1001
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.18653/v1/S16-1023
https://doi.org/10.18653/v1/S16-1023
https://doi.org/10.18653/v1/S16-1023
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703

2237

Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), pages 7–14, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Sai Prasanna, Anna Rogers, and Anna Rumshisky.
2020. When BERT plays the lottery, all tickets are
winning.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Evani Radiya-Dixit and Xin Wang. 2020. How fine
can fine-tuning be? learning efficient language mod-
els. volume 108 of Proceedings of Machine Learn-
ing Research, pages 2435–2443, Online. PMLR.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. 2016. Xnor-net: Imagenet
classification using binary convolutional neural net-
works. In European conference on computer vision,
pages 525–542. Springer.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and
Preslav Nakov. 2020. Poor man’s bert: Smaller
and faster transformer models. arXiv preprint
arXiv:2004.03844.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren
Etzioni. 2019. Green ai.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Asa Cooper Stickland and Iain Murray. 2019. BERT
and PALs: Projected attention layers for efficient
adaptation in multi-task learning. In Proceedings
of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine
Learning Research, pages 5986–5995, Long Beach,
California, USA. PMLR.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3645–3650, Florence, Italy.
Association for Computational Linguistics.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In China National Conference on Chinese Computa-
tional Linguistics, pages 194–206. Springer.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Ellen Voorhees and Dawn Tice. 2000. The trec-8 ques-
tion answering track evaluation. Proceedings of the
8th Text Retrieval Conference.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In Advances in Neural Infor-
mation Processing Systems, pages 3261–3275.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
http://arxiv.org/abs/2005.00561
http://arxiv.org/abs/2005.00561
http://proceedings.mlr.press/v108/radiya-dixit20a.html
http://proceedings.mlr.press/v108/radiya-dixit20a.html
http://proceedings.mlr.press/v108/radiya-dixit20a.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
http://arxiv.org/abs/1907.10597
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
http://proceedings.mlr.press/v97/stickland19a.html
http://proceedings.mlr.press/v97/stickland19a.html
http://proceedings.mlr.press/v97/stickland19a.html
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1452
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.1162/tacl_a_00290

2238

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and
Yejin Choi. 2018. SWAG: A large-scale adversar-
ial dataset for grounded commonsense inference. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 93–
104, Brussels, Belgium. Association for Computa-
tional Linguistics.

Chiyuan Zhang, Samy Bengio, and Yoram Singer.
2019. Are all layers created equal? arXiv preprint
arXiv:1902.01996.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages
649–657. Curran Associates, Inc.

Mengjie Zhao, Philipp Dufter, Yadollah
Yaghoobzadeh, and Hinrich Schütze. 2020. Quanti-
fying the contextualization of word representations
with semantic class probing. In Findings of
EMNLP.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosin-
ski. 2019. Deconstructing lottery tickets: Zeros,
signs, and the supermask. In Advances in Neural
Information Processing Systems, pages 3592–3602.

http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/D18-1009
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://arxiv.org/abs/2004.12198
http://arxiv.org/abs/2004.12198
http://arxiv.org/abs/2004.12198

2239

A Reproducibility Checklist

A.1 Computing infrastructure
All experiments are conducted on following GPU
models: Tesla V100, GeForce GTX 1080 Ti, and
GeForce GTX 1080. We use per-GPU batch size
32. Thus, experiments comparing masking and
finetuning on QNLI and AG take 4 GPUs and all
the other tasks use a single GPU.

A.2 Number of parameters
In §5.3 we thoroughly compare the number of pa-
rameters and memory consumption of finetuning
and masking. Numerical values are in Table 8.

A.3 Validation performance
The dev set performance of Table 2 is covered in
Table 1. We report Matthew’s correlation coeffi-
cient (MCC) for CoLA, micro-F1 for NER, and
accuracy for the other tasks. We use the evalu-
ation functions in scikit-learn (Pedregosa
et al., 2011) and seqeval (https://github.
com/chakki-works/seqeval).

A.4 Hyperparameter search
The only hyperparameter we searched is learning
rate, for both masking and finetuning, according to
the setup discussion in §4. The optimal values are
in Table 4.

A.5 Datasets
For GLUE tasks, we use the official datasets
from the benchmark https://gluebenchmark.

com/. For TREC and AG, we download the
datasets developed by Zhang et al. (2015), which
are available at here. Note that this link is pro-
vided by Zhang et al. (2015) and also used by
Sun et al. (2019). For SEM, we obtain the
dataset from the official SemEval website: http://
alt.qcri.org/semeval2016/task4/. For NER,
we use the official dataset: https://www.clips.

uantwerpen.be/conll2003/ner/. We obtain
our POS dataset from the linguistic data con-
sortium (LDC). We use the official dataset of
SWAG (Zellers et al., 2018): https://github.

com/rowanz/swagaf/tree/master/data.
For POS, sections 0-18 of WSJ are train, sections

19-21 are dev, and sections 22-24 are test (Collins,
2002). We use the official train/dev/test splits of all
the other datasets.

To preprocess the datasets, we use the tokenizers
provided by the Transformers package (Wolf

et al., 2019) to convert the raw dataset to the
formats required by BERT/RoBERTa/DistilBERT.
Since wordpiece tokenization is used, there is no
out-of-vocabulary words.

Since we use a maximum sequence length of
128, our preprocessing steps exclude some word-
tag annotations in POS and NER. For POS, after
wordpiece tokenization, we see 1 sentence in dev
and 2 sentences in test have more than 126 (the
[CLS] and [SEP] need to be considered) word-
pieces. As a result, we exclude 5 annotated words
in dev and 87 annotated words in test. Similarly,
for NER (which is also formulated as a tagging task
following Devlin et al. (2019)), we see 3 sentences
in dev and 1 sentence in test have more than 126
wordpieces. As a result, we exclude 27 annotated
words in dev and 8 annotated words in test.

The number of examples in dev and test per task
is shown in following Table 5.

B More on Mode Connectivity

Following the mode connectivity framework pro-
posed in Garipov et al. (2018), we parameter-
ize the path joining two minima using a Bézier
curve. Let w0 and wn+1 be the parameters of
the models trained from finetuning and masking.
Then, an n-bend Bézier curve connecting w0 and
wn+1, with n trainable intermediate models θ =
{w1, . . . ,wn}, can be represented by φθ(t), such
that φθ(0) = w0 and φθ(1) = wn+1, and

φθ(t) =

n+1∑
i=0

(
n+ 1

i

)
(1− t)n+1−itiwi .

We train a 3-bend Bézier curve by minimizing
the loss Et∼U [0,1]L (φθ(t)), where U [0, 1] is the
uniform distribution in the interval [0, 1]. Monte
Carlo method is used to estimate the gradient of
this expectation-based function and gradient-based
optimization is used for the minimization. The re-
sults are illustrated in Figure 7. Masking implicitly
performs gradient descent, analogy to the weights
update achieved by finetuning; the observations
complement our arguments in the main text.

C More Empirical Results

Ensemble results of RoBERTa and DistilBERT.
Following Table 6 shows the single and ensemble
results of RoBERTa and DistilBERT on the test set
of SEM, TREC, AG, POS, and NER.

https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://gluebenchmark.com/
https://gluebenchmark.com/
https://drive.google.com/drive/u/0/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M
http://alt.qcri.org/semeval2016/task4/
http://alt.qcri.org/semeval2016/task4/
https://www.clips.uantwerpen.be/conll2003/ner/
https://www.clips.uantwerpen.be/conll2003/ner/
https://github.com/rowanz/swagaf/tree/master/data
https://github.com/rowanz/swagaf/tree/master/data

2240

MRPC SST2 CoLA RTE QNLI POS NER SWAG SEM TREC AG

BERT
Finetuning 5e-5 1e-5 3e-5 5e-5 3e-5 3e-5 3e-5 7e-5 1e-5 3e-5 3e-5
Masking 1e-3 5e-4 9e-4 1e-3 7e-4 5e-4 7e-4 1e-4 7e-5 1e-4 5e-4

RoBERTa
Finetuning 3e-5 1e-5 1e-5 7e-6 1e-5 9e-6 3e-5 1e-5 7e-6 9e-6 3e-5
Masking 3e-4 9e-5 3e-4 3e-4 1e-4 3e-4 3e-4 1e-4 3e-4 5e-4 5e-4

DistilBERT
Finetuning 3e-5 7e-5 3e-5 3e-5 3e-5 3e-5 1e-5 7e-6 1e-5 3e-5 3e-5
Masking 9e-4 7e-4 9e-4 9e-4 1e-3 7e-4 7e-4 3e-4 3e-4 9e-4 1e-3

Table 4: The optimal learning rate on different tasks for BERT/RoBERTa/DistilBERT. We perform finetun-
ing/masking on all tasks for 10 epochs with early stopping of 2 epochs.

0.0 0.2 0.4 0.6 0.8 1.0

0.84

0.85

0.86

0.87

Ac
cu

ra
cy

Bezier curves Linear segment

(a) BERT

0.0 0.2 0.4 0.6 0.8 1.0
0.88

0.89

0.90

0.91

Ac
cu

ra
cy

Bezier curves Linear segment

(b) RoBERTa

Figure 7: The accuracy on MRPC dev set, as a function of the point on the curves φθ(γ), connecting the two
minima found by finetuning (left, γ=0) and masking (right, γ=1).

Dev Test

MRPC 408 n/a
SST2 872 n/a
CoLA 1,042 n/a
RTE 277 n/a

QNLI 5,732 n/a
SEM 1,325 10,551
TREC 548 500

AG 24,000 7,600
POS 135,105 133,082
NER 51,341 46,425

SWAG 20,006 n/a

Table 5: Number of examples in dev and test per task.
For POS and NER, we report the number of words.

D Numerical Values of Plots

D.1 Layer-wise behaviors

Table 7 details the numerical values of Figure 2.

SEM TREC AG POS NER

RoBERTa
Masking

Single 11.12 3.15 5.06 2.11 11.03
Ensem. 10.54 2.40 4.55 2.11 10.57

Finetun.
Single 10.74 3.00 5.10 2.00 10.43
Ensem. 10.74 2.60 4.50 1.96 9.54

DistilBERT
Masking

Single 11.89 3.70 5.71 2.39 10.40
Ensem. 11.60 3.00 5.29 2.54 9.86

Finetun.
Single 11.94 3.30 5.42 2.39 10.18
Ensem. 11.48 3.00 4.84 2.29 9.74

Table 6: Error rate (%) on test set of tasks by RoBERTa
and DistilBERT. Single: the averaged performance of
four models with different random seeds. Ensem.: en-
semble of the four models.

D.2 Memory consumption
Table 8 details the numerical values of Figure 3.

2241

MRPC RTE CoLA

Finetuning (BERT + classifier) 0.861± 0.008 0.692± 0.027 0.596± 0.015

Masking (BERT 00-11 + classifier, initial sparsity 5%) 0.862± 0.015 0.673± 0.036 0.592± 0.004
Masking (BERT 00-11 + classifier, initial sparsity 15%) 0.825± 0.039 0.626± 0.040 0.522± 0.027

Masking (BERT 02-11 + classifier, initial sparsity 5%) 0.868± 0.011 0.695± 0.030 0.595± 0.010
Masking (BERT 02-11 + classifier, initial sparsity 15%) 0.844± 0.024 0.662± 0.021 0.556± 0.012

Masking (BERT 04-11 + classifier, initial sparsity 5%) 0.861± 0.004 0.705± 0.037 0.583± 0.005
Masking (BERT 04-11 + classifier, initial sparsity 15%) 0.861± 0.009 0.669± 0.014 0.553± 0.014

Masking (BERT 06-11 + classifier, initial sparsity 5%) 0.862± 0.004 0.696± 0.027 0.551± 0.006
Masking (BERT 06-11 + classifier, initial sparsity 15%) 0.868± 0.008 0.691± 0.033 0.534± 0.016

Masking (BERT 08-11 + classifier, initial sparsity 5%) 0.848± 0.016 0.675± 0.034 0.538± 0.014
Masking (BERT 08-11 + classifier, initial sparsity 15%) 0.851± 0.009 0.688± 0.022 0.545± 0.005

Masking (BERT 00-09 + classifier, initial sparsity 5%) 0.859± 0.012 0.683± 0.031 0.589± 0.011
Masking (BERT 00-09 + classifier, initial sparsity 15%) 0.820± 0.052 0.604± 0.021 0.514± 0.016

Masking (BERT 00-07 + classifier, initial sparsity 5%) 0.829± 0.032 0.649± 0.053 0.574± 0.012
Masking (BERT 00-07 + classifier, initial sparsity 15%) 0.807± 0.042 0.600± 0.027 0.509± 0.004

Masking (BERT 00-05 + classifier, initial sparsity 5%) 0.814± 0.033 0.632± 0.058 0.565± 0.027
Masking (BERT 00-05 + classifier, initial sparsity 15%) 0.781± 0.032 0.567± 0.030 0.510± 0.025

Masking (BERT 00-03 + classifier, initial sparsity 5%) 0.791± 0.026 0.606± 0.027 0.535± 0.034
Masking (BERT 00-03 + classifier, initial sparsity 15%) 0.776± 0.035 0.600± 0.019 0.527± 0.014

Table 7: Numerical value of the layer-wise behavior experiment. We train for 10 epochs with mini-batch size 32.
The learning rate is finetuned using the mean results on four different random seeds.

Number of Parameters Memory Usage (Kilobytes)

Finetuning Masking Finetuning Masking

Pretrained 109,482,240 437,928.96

MRPC + 1,536 + 1,536 + 71,368,704 + 1,536 + 6.144 + 6.144 + 8,921.088 + 0.192

SST2 + 1,536 + 109,482,240 + 71,368,704 + 1,536 + 6.144 + 437,928.96 + 8,921.088 + 0.192

CoLA + 1,536 + 109,482,240 + 71,368,704 + 1,536 + 6.144 + 437,928.96 + 8,921.088 + 0.192

RTE + 1,536 + 109,482,240 + 71,368,704 + 1,536 + 6.144 + 437,928.96 + 8,921.088 + 0.192

QNLI + 1,536 + 109,482,240 + 71,368,704 + 1,536 + 6.144 + 437,928.96 + 8,921.088 + 0.192

SEM + 1,536 + 109,482,240 + 71,368,704 + 1,536 + 6.144 + 437,928.96 + 8,921.088 + 0.192

TREC + 4,608 + 109,482,240 + 4,608 + 71,368,704 + 4,608 + 18.432 + 437,928.96 + 18.432 + 8,921.088 + 0.576

AG + 3,072 + 109,482,240 + 3,072 + 71,368,704 + 3,072 + 12.288 + 437,928.96 + 12.288 + 8,921.088 + 0.384

POS + 37,632 + 109,482,240 + 37,632 + 71,368,704 + 37,632 + 150.528 + 437,928.96 + 150.528 + 8,921.088 + 4.704

NER + 6,912 + 109,482,240 + 6,912 + 71,368,704 + 6,912 + 27.648 + 437,928.96 + 27.648 + 8,921.088 + 0.864

SWAG + 768 + 109,482,240 + 768 + 71,368,704 + 768 + 3.072 + 437,928.96 + 3.072 + 8,921.088 + 0.096

Table 8: Model size comparison when applying masking and finetuning. Numbers are based on BERT-base-
uncased. Note that our masking scheme enables sharing parameters across tasks: tasks with the same number of
output dimension can use the same classifier layer.

