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Abstract

Humans learn language by listening, speak-
ing, writing, reading, and also, via interaction
with the multimodal real world. Existing lan-
guage pre-training frameworks show the ef-
fectiveness of text-only self-supervision while
we explore the idea of a visually-supervised
language model in this paper. We find that
the main reason hindering this exploration is
the large divergence in magnitude and distribu-
tions between the visually-grounded language
datasets and pure-language corpora. There-
fore, we develop a technique named “vok-
enization” that extrapolates multimodal align-
ments to language-only data by contextually
mapping language tokens to their related im-
ages (which we call “vokens”). The “vo-
kenizer” is trained on relatively small im-
age captioning datasets and we then apply
it to generate vokens for large language cor-
pora. Trained with these contextually gener-
ated vokens, our visually-supervised language
models show consistent improvements over
self-supervised alternatives on multiple pure-
language tasks such as GLUE, SQuAD, and
SWAG.1

1 Introduction

Most humans learn language understanding from
multiple modalities rather than only from the text
and audio, especially using the visual modality.
As claimed in Bloom (2002), visual pointing is
an essential step for most children to learn mean-
ings of words. However, existing language pre-
training frameworks are driven by contextual learn-
ing which only takes the language context as self-
supervision. For example, word2vec (Mikolov
et al., 2013) takes surrounding bag-of-words;
ELMo (Peters et al., 2018) and GPT (Radford et al.,

1Code and pre-trained models publicly available at:
https://github.com/airsplay/vokenization.
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Figure 1: We visually supervise the language model
with token-related images. We call these images vo-
kens (visualized tokens) and develop a vokenization
process to contextually generate them.

2018) take succeeding contexts; and BERT (De-
vlin et al., 2019) takes randomly masked tokens.
Although these self-supervised frameworks have
achieved strong progress towards understanding
human language, they did not borrow grounding
information from the external visual world (see re-
lated motivations in recent work by Bender and
Koller (2020) and Bisk et al. (2020)).

In this paper, we introduce the visually-
supervised language model that simulates human
language learning with visual pointing (Bloom,
2002). As shown in Fig. 1, this model takes lan-
guage tokens as input and uses token-related im-
ages as visual supervision. We name these images
as vokens (i.e., visualized tokens), since they act
as visualizations of the corresponding tokens. As-
suming that a large aligned token-voken dataset
exists, the model could learn from these vokens via
voken-prediction tasks.

Unfortunately, such an aligned token-voken
dataset is currently unavailable and hence there are
two main challenges in creating it from visually-
grounded language datasets. First, there is a large
discrepancy between visually-grounded language
(which provides innate visual grounding supervi-

https://github.com/airsplay/vokenization
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Figure 2: Illustration of the BERT transformer model trained with a visually-supervised language model with two
objectives: masked language model (on the left) and voken classification (on the right). The first objective (used in
original BERT pre-training) predicts the masked tokens as self-supervision while the second objective predicts the
corresponding vokens (contextually generated by our vokenization process) as external visual supervision. Since
the inputs are the same, we optimize the two objectives simultaneously and share the model weights.

sion) and other types of natural language. For ex-
ample, about 120M tokens are available in visually-
grounded language datasets (Tan and Bansal, 2019;
Chen et al., 2019), which is far less compared to the
3,300M tokens in BERT training data and 220B to-
kens in T5 (Raffel et al., 2019). Grounded language
also prefers short and instructive descriptions, and
thus has different distributions of sentence lengths
and active words to other language types. Second,
most of the words in natural language are not visu-
ally grounded, hence this challenges the premise
in creating visual supervision. With an approxi-
mate estimation, the ratio of grounded tokens is
only about 28% in English Wikipedia. This low
grounding ratio leads to low coverage of visual
supervision in previous approaches (Frome et al.,
2013; Kiela et al., 2018).

To resolve the above two challenges, we pro-
pose our vokenization method (as shown in Fig. 1)
that contextually maps the tokens to the visualized
tokens (i.e., vokens) by retrieval. Instead of di-
rectly supervising the language model with visually
grounded language datasets (e.g., MS COCO (Lin
et al., 2014)), we use these relative small datasets
to train the vokenization processor (i.e., the vok-
enizer). We then generate vokens for large lan-
guage corpora (e.g., English Wikipedia), and our
visually-supervised language model will take the
input supervision from these large datasets, thus
bridging the gap between different data sources,
which solves the first challenge. The second chal-
lenge of low grounding ratio seems to be an inher-
ent characteristic of language; however, we observe
that some non-visually-grounded tokens can be ef-
fectively mapped to related images when consider-
ing its context, e.g., the abstract word “angry” in

the sentence “an angry cat lies on my leg”. This ob-
servation is realized by our contextual token-image
matching model (defined in Sec. 3.2) inside our
vokenization processor, where we map tokens to
images by viewing the sentence as the context.

Using our proposed vokenizer with a contex-
tualized token-image matching model, we gen-
erate vokens for English Wikipedia. Supervised
by these generated vokens, we show consistent
improvements upon a BERT model on several
diverse NLP tasks such as GLUE (Wang et al.,
2019), SQuAD (Rajpurkar et al., 2016), and
SWAG (Zellers et al., 2018). We also show the
transferability of our vokens to other frameworks
(i.e., RoBERTa).

2 Visually-Supervised Language Models

Contextual language representation learning is
driven by self-supervision without considering ex-
plicit connections (grounding) to the external world.
In this section, we illustrate the idea of a visually-
supervised language model and discuss the chal-
lenges of creating its visual supervision.

2.1 Vokens: Visualized Tokens

To provide visual supervision to the language
model, we assume a text corpus where each to-
ken is aligned with a related image (although these
voken annotations currently do not exist, we will
try to generate vokens next in Sec. 3 by the vok-
enization process). Hence, these images could be
considered as visualizations of tokens and we name
them as ‘vokens’. Based on these vokens, we pro-
pose a new pre-training task for language: voken
classification.
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Dataset # of Tokens # of Sents Vocab. Size Tokens #/ Sent. 1-Gram JSD 2-Gram JSD Grounding Ratio

MS COCO 7.0M 0.6M 9K 11.8 0.15 0.27 54.8%
VG 29.2M 5.3M 13K 5.5 0.16 0.28 57.6%
CC 29.9M 2.8M 17K 10.7 0.09 0.20 41.7%

Wiki103 111M 4.2M 29K 26.5 0.01 0.05 26.6%
Eng Wiki 2889M 120M 29K 24.1 0.00 0.00 27.7%
CNN/DM 294M 10.9M 28K 26.9 0.04 0.10 28.3%

Table 1: Statistics of image-captioning dataset and other natural language corpora. VG, CC, Eng Wiki, and
CNN/DM denote Visual Genome, Conceptual Captions, English Wikipedia, and CNN/Daily Mail, respectively.
JSD represents Jensen–Shannon divergence to the English Wikipedia corpus. A large discrepancy exists between
the visually grounded captioning and general language corpora.

2.2 The Voken-Classification Task

Most language backbone models (e.g., ELMo (Pe-
ters et al., 2018), GPT (Radford et al., 2018),
BERT (Devlin et al., 2019)) output a localized
feature representation {hi} for each token in a
sentence s = {wi}. Thus it allows adding a
token-level classification task without modifying
the model architecture. Suppose the vokens come
from a finite set X, we convert the hidden output hi
to a probability distribution pi with a linear layer
and a softmax layer, then the voken classification
loss is the negative log probability of all corre-
sponding vokens:

h1,h2, . . . ,hl = lm(w1, w2, . . . , wl)

pi(v | s) = softmaxv{W hi + b}

LVOKEN-CLS(s) = −
l∑

i=1

log pi (v(wi; s) | s)

This task could be easily integrated into current
language pre-training frameworks, and we next
show an example.

Example: Visually-Supervised BERT Fig. 2
shows an example realization of the voken-
classification task that provides visual supervision
to BERT (Devlin et al., 2019). The original BERT
pre-training mainly relies on the task of masked lan-
guage model2 (illustrated on the left side of Fig. 2):
tokens are randomly masked and the model needs
to predict these missing tokens from language con-
text. For simplicity, we use s and ŝ to denote the set
of tokens and masked tokens, separately. The un-
masked tokens are the set difference s \ ŝ. Suppose
qi is the conditional probability distribution of the
i-th token, the Masked Language Model (MLM)
loss is the negative log-likelihood of the masked

2The next-sentence prediction task is removed in
RoBERTa (Liu et al., 2019) and XLM (Lample and Conneau,
2019) and the fine-tuning results are not largely affected.

tokens:

LMLM(s, ŝ) = −
∑
wi∈ŝ

log qi (wi | s \ ŝ)

Without changing the model and model’s inputs,
we calculate the voken-classification loss for all
tokens (illustrated on the right side of Fig. 2):

LVOKEN-CLS(s, ŝ) = −
∑
wi∈s

log pi (v(wi; s) | s \ ŝ)

The visually-supervised masked language model
takes the sum of these two losses with a ratio λ.

LVLM(s, ŝ) = LVOKEN-CLS(s, ŝ) + λLMLM(s, ŝ)
(1)

2.3 Two Challenges in Creating Vokens
Previous sections illustrate the potential external
supervision by assuming the existence of vokens.
However, we are currently lacking the dense an-
notations from tokens to images. The most simi-
lar concept to vokens is phrase localization (e.g.,
in Flickr30K entities (Young et al., 2014; Plum-
mer et al., 2017)). Because the process of col-
lecting phrase localization is costly, the coverage
and the amount of annotations cannot meet our re-
quirements.3 Apart from phrase localization, the
most promising data source is image captioning
datasets with sentence-to-image mappings (or dis-
covered from multimodal documents, as in Hessel
et al. (2019)). Image captions belong to a specific
type of language called grounded language (Roy
and Pentland, 2002; Hermann et al., 2017), which
has an explicit grounding to external existence or
physical actions. However, grounded language has
a large discrepancy to other types of natural lan-
guage (e.g., News, Wiki, and Textbooks). To il-
lustrate this, we list key statistics of three image-
captioning dataset (i.e., MS COCO (Lin et al.,

3Recently, a concurrent work Pont-Tuset et al. (2019) re-
leases localized narratives. The tokens are aligned with image
pixels instead of images.
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2014), Visual Genome (Krishna et al., 2017), and
Conceptual Captions (Sharma et al., 2018)) and
three language corpora of other language types (i.e.,
Wiki103 (Merity et al., 2017), English Wiki, and
CNN/Daily Mail (See et al., 2017)) in Table 1. This
discrepancy between grounded language and other
types of natural language leads to two challenges:
A. Different Distributions between Grounded
Language and Other Natural Language Cor-
pora. Sentences belonging to grounded language
are usually short and informative, e.g., the aver-
age sentence length in MS COCO is 11.8, which
is much shorter than the average sentence length
of 24.1 in English Wiki. The vocabulary4 of
MS COCO only covers around one-third of token
types (Smith, 2019) in English Wiki. There is also
a large divergence of the 1-Gram and 2-Gram distri-
butions (measured by Jensen–Shannon divergence)
between grounded language dataset and the En-
glish Wikipedia. Lastly, the amount of tokens in
grounded language corpora are also orders of mag-
nitude smaller than commonly-used Wikipedia.
B. Low Grounding Ratio in Natural Language.
The grounding ratio is defined as the percentage
of visually grounded tokens in the dataset. Visu-
ally grounded tokens (e.g., concrete nouns) are the
token types that are naturally related to specific
visual contents (e.g., ‘cat’, ‘cake’, ‘clock’). Since a
precise list of such token types is hard to define, we
thus estimate the grounding ratio based on existing
grounded language corpora. Specifically, we con-
sider a token type with more than 100 occurrences
in MS COCO (after removing all stop words) as
visually-grounded. A sample of these token types
could be found in the Appendix. As shown in the
last column of Table 1, the grounding ratio of En-
glish Wiki is 27.7%, which is almost half of that in
Visual Genome.

To address these two challenges, we propose a
vokenizer with contextual token-image matching
models next in Sec. 3.

3 Vokenization

In the previous section, we discuss the potential
of using vokens (i.e., visualized tokens) as visual
supervision to the language model, and also demon-
strate the large gap between currently available re-
sources (i.e., annotated dataset) and the desired
requirements. Hence, in this section, we develop

4The vocabulary is calculated following Karpathy and Fei-
Fei (2015) where the words with > 5 occurrence is counted.

a framework that can generate vokens. As shown
in Fig. 2, the general idea is that we learn a “vok-
enizer” from image-captioning dataset and use it
to annotate large language corpora (i.e., English
Wiki), thus bridging the gap between grounded lan-
guage and other types of natural language. We start
by illustrating the vokenization process and then
describe how we implement it.

3.1 The Vokenization Process
As shown in Fig. 1 and Fig. 2, vokenization is
the process to assign each token wi in a sen-
tence s = (w1, w2, . . . , wl) with a relevant image
v(wi; s). We call this image v(wi; s) as a ‘vo-
ken’ (visualized token). Instead of creating this
image with generative models, we retrieve an im-
age from a set of images X = {x1, x2, . . . , xn} re-
garding a token-image-relevance scoring function
rθ(wi, x; s). This scoring function rθ(wi, x; s), pa-
rameterized by θ, measures the relevance between
the token wi in the sentence s and the image x.
We here assume that the optimal parameter of this
function is θ∗ and will discuss the details of formu-
lations later. The voken v(wi; s) related to a token
wi in the sentence s is realized as the image x ∈ X
that maximizes their relevance score rθ∗ :

v(wi; s) = argmaxx∈V rθ∗(wi, x; s)

Since the image set X indeed builds a finite vo-
cabulary for vokens, we could utilize the voken-
classification task (formulated in Sec. 2.2) to vi-
sually supervise the language model training. We
next talk about the detailed implementation of this
vokenization process.

3.2 Contextual Token-Image Matching
Model

Lying in the core of the vokenization process is
a contextual token-image matching model. The
model takes a sentence s and an image x as input,
and the sentence s is composed of a sequence of
tokens {w1, w2, . . . , wl}. The output rθ(wi, x; s)
is the relevance score between the tokenwi ∈ s and
the image x while considering the whole sentence
s as a context.

Modeling To model the relevance score function
rθ(wi, x; s), we factorize it as an inner product of
the language feature representation fθ(wi; s) and
the visual feature representation gθ(x):

rθ(wi, x; s) = fθ(wi; s)
ᵀgθ(x)
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These two feature representations are generated
by language and visual encoders respectively.
The language encoder first uses a pre-trained
BERTBASE (Devlin et al., 2019) model to contex-
tually embed the discrete tokens {wi} into hidden-
output vectors {hi}:

h1,h2, . . . ,hl = bert(w1, w2, . . . , wl)

Then we apply a multi-layer perceptron (MLP)
w mlpθ to down project the hidden output hi. In
order to simplify the retrieval process in Sec. 3.1,
the final language features are normalized to norm-
1 vectors by dividing their Euclidean norms:

fθ(wi; s) =
w mlpθ(hi)

‖w mlpθ(hi)‖

On the other side, the visual encoder first ex-
tracts the visual embedding e from a pre-trained
ResNeXt (Xie et al., 2017). Similar to the lan-
guage encoder, an MLP layer x mlpθ and an L2-
normalization layer are applied subsequently:

e = ResNeXt(x)

gθ(x) =
x mlpθ(e)

‖x mlpθ(e)‖

Training Since the dense annotations from to-
kens to images are lacking and hard to generate
(illustrated in Sec. 2.3), we thus alternatively train
the token-image matching model from weak su-
pervision in image-captioning datasets (e.g., MS
COCO (Lin et al., 2014)). These datasets are com-
prised of sentence-image pairs {(sk, xk)} where
the sentence sk describes the visual content in im-
age xk. To build alignments between tokens and
images, we pair all tokens in a sentence sk with
the image xk. The model is then optimized by
maximizing the relevance score of these aligned
token-image pairs over unaligned pairs.

Without loss of generality, assuming (s, x) is
an image-captioning data point, we randomly sam-
ple another image x′ with the condition x′ 6= x.
We then use hinge loss to optimize the weight θ
so that the score of the positive token-image pair
rθ(wi, x; s) aims to be larger than the negative pair
rθ(wi, x

′; s) by at least a margin M .

Lθ(s, x, x′) =
l∑

i=1

max{0,M − rθ(wi, x; s)

+ rθ(wi, x
′; s)}
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Figure 3: Implementation of our vokenization process.
For the tokens in language corpora, we contextually re-
trieved images (with nearest neighbor search) from the
image set as vokens. These generated vokens are then
used as the visual supervision to the language model.

Intuitively, minimizing this hinge loss max{0,
M − pos + neg} will try to increase the score
of the positive pair and decrease the score of the
negative pair when the score difference is smaller
than the margin M . Otherwise (if the difference is
≥ margin M ), the two scores remain unchanged.

Inference Given that the relevance score is fac-
torized as the inner product of feature represen-
tations fθ(wi; s) and gθ(v), the retrieval problem
in Sec. 3.1 could be formulated as Maximum In-
ner Product Search (Mussmann and Ermon, 2016)).
Moreover, since the vectors are norm-1, the vector
with the maximum inner product is identical to the
closest vector in the Euclidean space (i.e., Nearest
Neighbor (Knuth, 1973)). We illustrate the detailed
implementation in Fig. 3.

3.3 Revokenization
A constraint of the vokenization process in Sec. 3.1
is that the vokens depend on the actual tokenizer of
the language encoder in Sec. 3.2. Since different
frameworks utilize a various range of tokenizers,
this constraint limits the transferability of vokens
between different frameworks. Instead of binding
our vokenizer to a specific pre-training framework
(e.g., BERT), we want to enable its extensibility
to other frameworks (e.g., RoBERTa). Thus, we
introduce a “revokenization” technique to address
this limitation.

Given two different tokenizers T1 and T2, they
tokenize a sentence s into two different sequences
of tokens: T1(s) = (w1, w2, . . . , wl) and T2(s) =
(u1, u2, . . . , um). Without loss of generality, as-
suming the vokenizer is built based on the first tok-
enizer T1, the standard vokenization process will
generate a sequence of vokens {v(wi; s)}li=1 which
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are one-to-one aligned with the tokens {wi}li=1.
Our goal is to transfer these w-related vokens to
the u-related vokens generated by T2. We adapt
the idea of “nearest neighbor algorithm” (Altman,
1992) here. For a given token uj , among all w’s,
we select the one that overlaps the most with uj and
record it as wind(j). The voken for uj is defined as
the voken for its “nearest neighbor” wind(j):

v(uj ; s) := v(wind(j); s)

ind(j) = argmaxli=1 overlap(wi, uj)

The overlapping of two tokens are further quanti-
fied by the intersection-over-union (i.e., Jaccard in-
dex, defined as IoU(A,B)= |A∩B||A∪B| ) of their ranges
in the raw sentence s.

4 Experimental Setups and Results

4.1 Pre-training Data and Fine-tuning Tasks

We train our model on English Wikipedia 5 and
its featured subset Wiki103 (Merity et al., 2017).
We use our vokenizer to generate vokens for
these two datasets as well. The pre-trained mod-
els are then fine-tuned on GLUE (Wang et al.,
2019), SQuAD (Rajpurkar et al., 2016, 2018), and
SWAG (Zellers et al., 2018) to assess the pre-
training performance. Since some smaller tasks in
GLUE are reported as unstable (Dodge et al., 2020),
recent papers (e.g., Li et al. (2020b)) only report on
selected tasks. We follow this trend and evaluate on
the four largest datasets (i.e., SST-2 (Socher et al.,
2013), QNLI (Rajpurkar et al., 2016), QQP (Iyer
et al., 2017), MNLI (Williams et al., 2018)).6.

4.2 Implementation Details

We train our contextual token-image matching
model (in Sec. 3.2) on MS COCO image cap-
tioning dataset for 20 epochs. The concatena-
tion of the last 4 layers of BERT outputs and
ResNeXt-101-32x8d features are used as lan-
guage hidden states and visual embedding, re-
spectively. Both multi-layer perceptrons w mlpθ
and x mlpθ have two fully-connected layers with
256-dimensional intermediate outputs (followed
by ReLU activation) and 64-dimensional final out-
puts. The two backbone models BERT (Devlin

5BERT (Devlin et al., 2019) also uses Toronto Books Cor-
pus (Zhu et al., 2015). However, the dataset is not publicly
released. We thus exclude it in our study to ensure repro-
ducibility.

6The size of the used four dataset range from 60K to 400
while the omitted dataset range from 0.6K to 8.5K.

et al., 2019) and ResNeXt (Xie et al., 2017) are
not fine-tuned. We set the hinge loss margin M to
0.5. During the vokenization process of English
Wikipedia and Wiki103, we use the faiss (Johnson
et al., 2019) library to speed up the nearest neighbor
search. The vokens are retrieved from the Visual
Genome images that are not used in MS COCO.
We fix a voken size of 50000.

When pre-training the model on pure language
corpus, we unify the training protocols to avoid
possible side effects. We follow previous works to
conduct two simplifications: 1. Removing the next-
sentence-prediction task (Liu et al., 2019) 2. Using
fixed sequence length (Conneau et al., 2020) of 128.
We take the 12-layer BERTBASE model of 768 hid-
den dimensions and train it on English Wikipedia
for 200K steps from scratch. We also take a re-
duced 6-layer model and train it on Wiki103 for 40
epochs (160K steps) because this reduced model
could not fit the full English Wikipedia dataset.

Since we only use the vokens in the supervi-
sion, the voken-classification task does not bring
additional parameters to the language model but
needs more computations. We thus adjust the train-
ing steps for pure masked-language-model (MLM)
training accordingly for a fair comparison. The
loss ratio λ=1.0 in Eqn. 1 is not tuned because
of limited budget. All pre-training processes take
batch sizes of 256 and learning rates of 2e-4. For
fine-tuning tasks, we report the results on the val-
idation sets. We train 3 epochs with a learning
rate of 1e-4 and a batch-size of 32 for all tasks in
GLUE. The hyper-parameters for SQuAD, SWAG
are borrowed from BERT.

4.3 Results

As reported in Table 2, we fine-tune the pre-trained
models on different natural-language tasks. The
models are either pre-trained with masked language
model (e.g., “BERT6L/512H”) or pre-trained with
masked language model with an additional voken-
classification task (e.g., “BERT6L/512H+Voken-
cls”) following Eqn. 1. The default metric is accu-
racy. Following Wang et al. (2019), we report the
average of F1 and accuracy for QQP. For SQuAD,
we report the exact matching and F1 score respec-
tively. We also compute macro-averages for evalu-
ated tasks (denoted as “Avg.” in the last column) as
a general indicator. Although the different architec-
tures of models (i.e., 6L/512H and 12L/768H) af-
fect the fine-tuning results, the voken-classification
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Method SST-2 QNLI QQP MNLI SQuAD v1.1 SQuAD v2.0 SWAG Avg.

BERT6L/512H 88.0 85.2 87.1 77.9 71.3/80.2 57.2/60.8 56.2 75.6
BERT6L/512H + Voken-cls 89.7 85.0 87.3 78.6 71.5/80.2 61.3/64.6 58.2 76.8
BERT12L/768H 89.3 87.9 83.2 79.4 77.0/85.3 67.7/71.1 65.7 79.4
BERT12L/768H + Voken-cls 92.2 88.6 88.6 82.6 78.8/86.7 68.1/71.2 70.6 82.1

RoBERTa 6L/512H 87.8 82.4 85.2 73.1 50.9/61.9 49.6/52.7 55.1 70.2
RoBERTa 6L/512H + Voken-cls 87.8 85.1 85.3 76.5 55.0/66.4 50.9/54.1 60.0 72.6
RoBERTa 12L/768H 89.2 87.5 86.2 79.0 70.2/79.9 59.2/63.1 65.2 77.6
RoBERTa 12L/768H + Voken-cls 90.5 89.2 87.8 81.0 73.0/82.5 65.9/69.3 70.4 80.6

Table 2: Fine-tuning results of different pre-trained models w/ or w/o the voken classification task (denoted as
“Voken-cls”). SQuAD results are “exact match”/“F1”. The results which significantly outperform the second-best
ones are marked in bold. The averages of metrics (denoted as “Avg.”) show improvement from voken supervisions.

Model Init. with BERT? Diff. to BERT Weight SST-2 QNLI QQP MNLI

ViLBERT (Lu et al., 2019) Yes 0.0e-3 90.3 89.6 88.4 82.4
VL-BERT (Su et al., 2020) Yes 6.4e-3 90.1 89.5 88.6 82.9
VisualBERT (Li et al., 2019) Yes 6.5e-3 90.3 88.9 88.4 82.4
Oscar (Li et al., 2020a) Yes 41.6e-3 87.3 50.5 86.6 77.3
LXMERT (Tan and Bansal, 2019) No 42.0e-3 82.4 50.5 79.8 31.8

BERTBASE (Devlin et al., 2019) - 0.0e-3 90.3 89.6 88.4 82.4
BERTBASE + Weight Noise - 6.5e-3 89.9 89.9 88.4 82.3

Table 3: Results of vision-and-language pre-trained models on GLUE tasks. We also provide BERT models w/
and w/o weight noise as baselines.

Pre-trained on SST-2 QNLI QQP MNLI

MS COCO 83.7 60.6 82.1 69.3
Wiki103* 85.8 77.9 84.8 73.9
No Pre-train 77.1 50.5 31.6 31.8

Table 4: Results of BERT models pre-trained on cap-
tions in MS COCO and a reduced version of Wiki103
dataset (denoted as Wiki103*). Models without pre-
training are taken as a baseline.

task consistently improves the downstream tasks’
performance and achieves large average gains. We
also show the transferability of our vokenizer to
the RoBERTa model and observe the same phe-
nomenon as that in BERT.

5 Analysis

5.1 Limit of Visually-Grounded Language
In Sec. 2.3, we illustrated the differences between
(visually-)grounded-language datasets and other
natural-language corpora by demonstrating their
contrasting statistics. In this section, we study the
models trained with grounded language and show
their ineffectiveness on pure-language tasks. We
first investigate vision-and-language pre-training
frameworks, which succeed on multimodal tasks.
As shown in Table 3, when fine-tuning them on

pure-language tasks, the results are generally lower
than the pre-trained BERT model.7 Although these
frameworks are different in multiple ways, the only
remarkable factor to the fine-tuning results is the
BERT-weight initialization. Moreover, we also
show that these models are similar to a BERT
model with a random weight noise of the same
magnitude. We thus claim that vision-and-language
pre-training on visually-grounded language dataset
currently might not help the pure-language tasks.
Note that the BERT results in Table 2 are not fairly
comparable to the results in Table 3 because the
original BERT model (Devlin et al., 2019) also
uses Toronto Books Corpus (Zhu et al., 2015). Un-
fortunately, this dataset is not publicly available
and hence we exclude it. According to Raffel et al.
(2019), the exclusion of Toronto Books Corpus
downgrades the results and we observe the same
tendency here (comparing BERT12L/768H in Table 2
and BERTBASE in Table 3).

Besides these existing models, we next investi-
gate the BERT models trained with masked lan-
guage model on grounded language data (i.e., MS
COCO). A control experiment is built by shrink-

7ViLBERT (Lu et al., 2019) freezes the BERT weight in its
training thus their results are the same to BERT; Uniter (Chen
et al., 2019) shrinks its vocab thus is not shown.
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Method Retrieval Supervision SST-2 QNLI QQP MNLI

SentLabel Sent-level Sent-level 88.3 86.1 86.9 78.0
Propagated Sent-level Token-level 88.9 87.9 88.1 80.2
Term Frequency Token-level Token-level 89.0 86.9 85.5 79.8

Vokens Contextual Token-level Token-level 92.2 88.6 88.6 82.6

Table 5: Comparisons of sentence-level (denoted as “Sent-level”) and token-level approaches. Token-level ap-
proaches outperform the sentence-level approaches from both retrieval-method and supervision perspective.

ing the Wiki103 to the same token amount as MS
COCO. We also provide the BERT model trained
from scratch as a baseline. As shown in Table 4,
the model trained with MS COCO is significantly
worse than the model trained with Wiki103 on all
downstream tasks. The reason might be the large
discrepancy between visually-grounded language
and other types of language as shown in Sec. 2.3.

5.2 Token-Level vs. Sentence-Level
Approaches

In Sec. 1, we stated the drawbacks of the purely
sentence-level and token-level approaches, then in-
troduce the contextual token-level approach (i.e.,
the contextual token-image matching model in
Sec. 3.2) which combines these two approaches.
In this section, we demonstrate a careful compari-
son between our vokenization process and the other
two approaches from two perspectives: the retrieval
methods and the supervision types. Experiments
are conducted with the same hyper-parameters and
dataset as “BERT12L/768H+Voken-cls” in Table 2.

Sentence-Level Retrieval To conduct sentence-
level retrieval, we first adapt the contextual token-
image matching model in Sec. 3.2 to a sentence-
image matching model (details in Appendix). We
then retrieve a related image for each sentence. As
shown in Table 5, these retrieved images are used
as two kinds of supervisions by putting classifiers
at different places: in the row “SentLabel”, we
provide sentence-level supervision by using the
classifier to predict the label for the whole sen-
tence (similar to the BERT’s “next-sentence pre-
diction” (NSP) task); and in the row “Propagated”,
we provide token-level supervision by propagating
sentence-level labels to all tokens in the sentences,
and apply the classifier at each token (similar to
our voken-classification task). The results of both
kinds of supervisions are lower than our proposed
vokens (in the row “Vokens”). One possible reason
for these lower results is that finding an image that
conveys the meaning of the whole sentence is hard.

We also find that dense token-level supervision also
outperforms the sentence-level supervision.

Token-level Retrieval Our proposed vokeniza-
tion process is viewed as contextual token-level re-
trieval, which grounds tokens with whole sentences
as context. We here consider a purely token-level
retrieval method regarding term frequencies. The
term frequency tf (tok , xi) (Manning et al., 2008)
is calculated based on the occurrence #(tok , xi)
of the token tok in the image xi’s captions.

tf (tok , xi) =
#(tok , xi)∑

tok ′ #(tok ′, xi)

We then convert this term frequency to the condi-
tional distribution via Boltzmann distribution:

p(xi | tok) =
exp (tf (tok , xi)/γ)∑
x′ exp (tf (tok , x

′)/γ)

where γ is temperature. We stochastically map the
tokens to images with this conditional distribution
p(xi | tok). The results trained with these special
vokens are shown in Table 5 as “Term Frequency”.
Overall, token-level supervision is still better than
the sentence-level supervision (as in the row “Sent-
Label”). However, among the models trained with
token-level supervision, this token-level retrieval
method neglects the contextual information thus
is worse compared with sentence-level (in the row
“Propagated”) and contextual token-level retrieval
methods (in the row “Voken”) .

5.3 Visualization of Vokens
In Fig. 4, we visualize our generated vokens. The
first example takes the leading sentence in our pa-
per (without commas), which is also used in the
imaginary example in Fig. 1. We also vokenize
another sentence from William Yeats’s poet “Down
by the Salley Gardens” in Fig. 4. Although the
vokenizer is trained on image-captioning datasets
without localizing token-to-image annotations, the
vokenizer shows a strong selectivity: different im-
ages are selected w.r.t the tokens. The contextual
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down by the salle

##y gardens my love

and I did meet

humans learn language by

listening speaking writing reading

Example 2: Down by the salley gardens 
my love and I did meet

Example 1: Humans learn language by 
listening, speaking, writing, reading

Figure 4: Visualization of model-generated vokens. Ex-
ample 1 takes the leading sentence of this paper while
Examples 2 takes Yeats’s poet.

token-level retrieval could also disambiguate cer-
tain tokens (e.g., “down” in Example 2) with the
help of its context. When the unique related im-
age is hard to define, our vokenizer aims to ground
the non-concrete tokens (e.g., “by”/“and”/“the”) to
relevant images: the voken for the token “by” in
Example 2 (of Fig. 4) is better aligned with the
[centering token, context] pair than the voken for
the same token “by” in Example 1. This related
visual information helps understand the language
and leads to the improvement in Table 2. On the
other hand, some tokens are not faithfully grounded
(e.g., “writing” in Example 1) and we also observe
a shift in alignment (e.g., the relevant image for the
phrase “my love” in Example 2 is aligned to “my”
instead of “love”). These misalignments are possi-
bly caused by the limitations of sentence-image
weak supervision in our training data since the
strong token-image annotations are not available.

6 Related Work

Language (Model) Pre-training Language
pre-training has moved from token-level pre-
training (Mikolov et al., 2013; Pennington et al.,
2014) to sentence-level pre-training (Le and
Mikolov, 2014; Kiros et al., 2015; Conneau
et al., 2017; Dai and Le, 2015). Recently, a

set of works (Peters et al., 2018; Radford et al.,
2018; Devlin et al., 2019; Yang et al., 2019;
Liu et al., 2019; Clark et al., 2019; Lan et al.,
2019) bring back token-level supervision with
contextual language encoders (e.g., based on
an LSTM (Hochreiter and Schmidhuber, 1997)
and Transformers (Vaswani et al., 2017)). This
tendency inspires the design of our vokenizer
in merging previous sentence-level (Frome
et al., 2013) and token-level (Kiela et al., 2018)
approaches into a contextual token-level approach.

Vision-and-Language Pre-training Since lan-
guage models are trained with self-supervision
without knowing the connection to the visual world,
vision-and-language pre-training (Li et al., 2019;
Lu et al., 2019; Tan and Bansal, 2019; Chen et al.,
2019; Su et al., 2020; Zhou et al., 2020) aims to
build joint cross-modal representations and focuses
on vision-and-language tasks. Due to particularity
of grounded language, these models are not able to
improve pure language tasks as shown in Sec. 5.1.

Visually-Aided Language Learning Previous
works use visual information to improve spe-
cific language tasks such as coreference resolu-
tion (Kong et al., 2014), machine translation (Elliott
et al., 2016; Ive et al., 2019; Wu et al., 2019; Zhang
et al., 2020), semantic parsing (Christie et al., 2016;
Shi et al., 2019; Kojima et al., 2020), and bilingual
lexicon learning (Kiela et al., 2015; Vulić et al.,
2016). Our work has a focus on building a visually-
supervised language pre-training frameworks to
improve general language understanding. Similar
to our work, Frome et al. (2013); Lazaridou et al.
(2015); Collell et al. (2017); Kiela et al. (2018);
Bordes et al. (2019) aim to improve language rep-
resentation with visual information; however, most
of these works focus on grounded language and
hence might suffer from the large discrepancy that
we discuss in Sec. 2.3.

7 Conclusion

In this paper, we explored the possibility of utiliz-
ing visual supervision to language encoders. In
order to overcome the challenges in grounded lan-
guage, we develop the vokenizer with contextual
token-image matching models and use it to vok-
enize the language corpus. Supervised by these
generated vokens, we observe a significant im-
provement over the purely self-supervised language
model on multiple language tasks.
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A Appendices

A.1 Full Implementation Details
We train our contextual token-image matching
model (in Sec. 3.1) on MS COCO image cap-
tioning dataset8 for 20 epochs. The concatena-
tion of the last 4 layers of BERT outputs (fol-
lowing Devlin et al. (2019)) and mean pooling of

8http://cocodataset.org/

ResNeXt-101-32x8d feature maps are used as fea-
tures for tokens and the images. For both multi-
layer perceptrons w mlpθ and x mlpθ, we use
two fully-connected layers with ReLU activation,
where the output dimensions of the two layers are
256 and 64, accordingly. We only train the mod-
ules marked with θ, i.e., the two backbone models
BERT (Devlin et al., 2019) and ResNeXt (Xie et al.,
2017) are not fine-tuned. Since we normalize the
features g(wi; s) and f(v) to be norm-1 vectors, the
relevance score thus takes the range from [−1, 1]
(from the Cauchy Inequality). The margin M in
hinge loss is set to 0.5.

During the vokenization process, we use the
faiss (Johnson et al., 2019) library to speed up the
nearest neighbor search. The vokenization runs at
a speed of 100K tokens / second with 4 Titan V100
GPU. Thus the vokenization of the full Wikipedia
is finished in 8 hours. When transferring vokens to
other pre-training frameworks, revokenization does
not need the GPU computation and runs as fast as
the tokenization. The vokens are retrieved from the
Visual Genome images which are not used in MS
COCO (our training dataset). We take a voken size
of 50000.

When pre-training the model on pure language
corpus, we unify the training process to avoid pos-
sible side effects from different training protocols.
We follow previous work to conduct two simplifi-
cations: 1. Removing the next-sentence-prediction
task (Liu et al., 2019) 2. Using fixed sequence
length (Conneau et al., 2020) of 128. We take
the 12-layer BERTBASE model of 768 hidden di-
mensions and train it on English Wikipedia9 for
200K steps from scratch. We also take a reduced
6-layer model and train it on Wiki10310 for 40
epochs (160K steps) from scratch because this re-
duced model does not fit well on the full Wikipedia
dataset. The voken classification task will not
bring additional parameters to the language en-
coder (with 110M parameters) but need more com-
putations, we thus adjust the training steps for pure
masked-language-model (MLM) training for a fair
comparison. It results in around 10% more training
steps in pure MLM training. All models take batch
sizes of 256 and a learning rate of 2e-4.

For fine-tuning tasks, instead of high-cost hyper-

9Downloaded with https://github.com/
attardi/wikiextractor

10https://www.salesforce.com/products/einstein/ai-
research/the-wikitext-dependency-language-modeling-
dataset/

http://cocodataset.org/
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
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parameter sweeping in BERT (Devlin et al., 2019),
we train 3 epochs with a learning rate of 1e-4 and a
batch-size of 32 for all tasks in GLUE. The hyper-
parameters for SQuAD and SWAG are borrowed
from the BERT paper (Devlin et al., 2019). On
SQuAD v1.1, we fine-tune for 3 epochs with a
learning rate of 5e-5 and a batch size of 32. On
SQuAD v2.0, we fine-tune for 2 epochs with a
learning rate of 5e-5 and a batch size of 48. On
SWAG, we fine-tune for 3 epochs with a learning
rate of 2e-5 and a batch size of 16.

The whole framework is built on Py-
Torch (Paszke et al., 2019). The implementations
of BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) are borrowed from PyTorch Trans-
formers (Wolf et al., 2019)11. All evaluation code
is from the PyTorch Transformers as well.

A.2 Visually Grounded Token Types
In Sec.2.3, we estimate the visually grounded token
types with the help of MS COCO (Lin et al., 2014)
dataset. We here randomly sample a list of the 2406
grounded tokens used in the estimation:

photograph, tv, skyscraper, ##bery, wooded, lit-
tle, stands, away, storage, mound, pouring, rail,
##fl, eye, ##ke, flown, skiing, plate, movie, dead,
tossing, couple, racing, dust, licking, palm, stroll,
granite, bananas, ledge, chained, monument, indi-
viduals, part, exhibit, softball, second, bow, ones,
shop, beverages, sandy, sink, angle, ##ia, gives, mu-
sic, leading, carrying, cookies, reading, faced, ##k,
kid, ##ged, playing, winds, saddle, stunts, squat,
cabinets, rusty, matching, biker, let, standing, pan,
smiles, train, sky, passing, woman, military, feeder,
lot, hydra, party, ##l, furnished, rides, strip, ##field,
tin, crouched, courtyard, nicely, screens, us, lie,
waving, process, equipment, structure, fore, barrier,
##li, beside, toast, catching, tracks

A.3 Maximum Inner Product Search of
Norm-1 Vectors

In Sec. 3.1, we normalize the vector to norm-
1 vectors thus the Maximum Inner Product
Search (Mussmann and Ermon, 2016) is equiva-
lent to Nearest Neighbor (Knuth, 1973). Here, we
give a simple proof. Suppose x and y are two
vectors of the same dimension, we have

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2xᵀy (2)

= 2− 2xᵀy (3)
11https://github.com/huggingface/

transformers

Voken Type SST-2 QNLI QQP MNLI

Alternative Choices
Random 89.1 87.6 86.6 80.0
Shuffle 89.2 87.3 86.1 80.2
Tokens 89.7 88.8 87.2 80.8

Reference Models
Voken Only 89.8 87.8 86.2 81.7
No Voken 89.3 87.9 83.2 79.4
Voken 92.2 88.6 88.6 82.6

Table 6: Results of different strategies that replace the
standard vokenization process.

Without loss of generality, we assume that there is
a unique vector ŷ ∈ Y with the maximum inner
product and thus

ŷ = argmin
x
‖x− y‖ = argmax

x
xᵀy (4)

A.4 Details of Sentence-level Retrieval in
Analysis

In Sec. 3.1, we consider a contextual token-image
matching model with relevance score rθ(w, x; s).
To do sentence-level retrieval, we modify it into
a sentence-image matching score r′θ(x, s), and
trained it with:

L̃θ(s, x, x′) = max{0,M − r′θ(x, s)
+ r′θ(x

′, s)}

The score is also factorized as the dot product of
the visual representation and the language repre-
sentation. However, the language representation
here is the sentence embedding (the output for the
first token CLS).

We retrieve the image from the same image set
V as vokenization and with the similar Maximum
Inner Product Search method:

v(s) = argmaxx∈V r′θ∗(x, s)

These retrieved images as used as the label for the
whole sentence.

A.5 Details of Token-level Retrieval in
Analysis

In the purely token-level retrieval, we consider the
image-captioning sentences as documents and uses
traditional IR methods to index them. In order to
increase the size of ‘documents’, we aggregate the
data from VQA (Antol et al., 2015) and Visual

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Genome (Krishna et al., 2017), besides the existing
MS COCO (Lin et al., 2014) dataset. We also
find that the temperature γ=0.01 gives a reasonable
retrieval distribution and use it in our experiment.

A.6 Voken Ablation Studies
In Table 6, we show several approaches that pro-
vide alternative voken-like labels to our model.

Random We replace the vokens with random int
from {1 . . . ‖V‖}, where V is the “vocabulary” of
all vokens.

Shuffle In order to prove that the order of vokens
would affect the results, we shuffle the vokens in
each batch and use it as supervision.

Tokens We here directly use the original tokens
in replace of the vokens to see whether any dense
supervision could improve the model.

As shown in Table 6, all these results are lower
than the reference vokenization strategy.

A.7 Correlations between Improvements and
Grounding Ratio

In order to understand where the improvements in
the performance are coming from, we also study
the correlation between the improvement in results
and the visual grounding ratio (approximately mea-
sured in the same way as Sec. 2.3). We found
that the datasets with higher grounding ratio (e.g.,
MNLI (Williams et al., 2018)) get significant im-
provements while the datasets (e.g., QNLI (Ra-
jpurkar et al., 2016)) with relatively lower ground-
ing ratio do not benefit much from the visual su-
pervision. The dataset MNLI is built from mul-
tiple genre (the original SNLI dataset is in fact
built from the Flickr images thus has a strong vi-
sual connection) and QNLI is purely based on En-
glish Wikipedia (The same as SQuAD (Rajpurkar
et al., 2016)). These correlations may indicate that
the visual supervision helps build a better under-
standing of visually grounded tokens. Although we
used contextual information to map non-grounded
words to related images through vokenization, the
effectiveness of this mapping relies on the original
grounding ratio of the data.


