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Abstract

The aim of all Question Answering (QA) sys-
tems is to generalize to unseen questions. Cur-
rent supervised methods are reliant on expen-
sive data annotation. Moreover, such annota-
tions can introduce unintended annotator bias,
making systems focus more on the bias than
the actual task. This work proposes Knowl-
edge Triplet Learning (KTL), a self-supervised
task over knowledge graphs. We propose
heuristics to create synthetic graphs for com-
monsense and scientific knowledge. We pro-
pose using KTL to perform zero-shot ques-
tion answering, and our experiments show con-
siderable improvements over large pre-trained
transformer language models.

1 Introduction

The ability to understand natural language and an-
swer questions is one of the core focuses in the
field of natural language processing. To measure
and study the different aspects of question answer-
ing, several datasets are developed, such as SQuaD
(Rajpurkar et al., 2018), HotpotQA (Yang et al.,
2018), and Natural Questions (Kwiatkowski et al.,
2019) which require systems to perform extractive
question answering. On the other hand, datasets
such as SocialIQA (Sap et al., 2019b), Common-
senseQA (Talmor et al., 2018), Swag (Zellers et al.,
2018) and Winogrande (Sakaguchi et al., 2019) re-
quire systems to choose the correct answer from
a given set. These multiple-choice question an-
swering datasets are very challenging, but recent
large pre-trained language models such as BERT
(Devlin et al., 2018), XLNET (Yang et al., 2019b)
and RoBERTa (Liu et al., 2019b) have shown very
strong performance on them. Moreover, as shown
in Winogrande (Sakaguchi et al., 2019), acquir-
ing unbiased labels requires a “carefully designed
crowdsourcing procedure”, which adds to the cost
of data annotation. This is also quantified in other

Figure 1: Knowledge Triplet Learning Framework,
where given a triple (h, r, t) we learn to generate one
of the inputs given the other two.

natural language tasks such as Natural Language
Inference (Gururangan et al., 2018) and Argument
Reasoning Comprehension (Niven and Kao, 2019),
where such annotation artifacts lead to “Clever
Hans Effect” in the models (Kaushik and Lipton,
2018; Poliak et al., 2018). One way to resolve this
is to design and create datasets in a clever way, such
as in Winogrande (Sakaguchi et al., 2019), another
way is to ignore the data annotations and to build
systems to perform unsupervised question answer-
ing (Teney and Hengel, 2016; Lewis et al., 2019).
In this paper, we focus on building unsupervised
zero-shot multiple-choice QA systems.

Recent work (Fabbri et al., 2020; Lewis et al.,
2019) try to generate a synthetic dataset using a text
corpus such as Wikipedia, to solve extractive QA.
Other works (Bosselut and Choi, 2019; Shwartz
et al., 2020) use large pre-trained generative lan-
guage models such as GPT-2 (Radford et al., 2019)
to generate knowledge, questions, and answers and
compare against the given answer choices.

In this work, we utilize the information present
in Knowledge Graphs such as ATOMIC (Sap et al.,
2019a). We define a new task of Knowledge Triplet
Learning (KTL) over these knowledge graphs. For
tasks which do not have appropriate knowledge
graphs, we propose heuristics to create synthetic
knowledge graphs. Knowledge Triplet Learning
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is like Knowledge Representation Learning and
Knowledge Graph Completion but not limited to
it. Knowledge Representation Learning (Lin et al.,
2018) learns the low-dimensional projected and
distributed representations of entities and relations
defined in a knowledge graph. Knowledge Graph
Completion (Ji et al., 2020) aims to identify new
relations and entities to expand an incomplete input
knowledge graph.

In KTL, as shown in Figure 1, we define a triplet
(h, r, t), and given any two as input, we learn to
generate the third. This tri-directional reasoning
forces the system to learn all the possible relations
between the three inputs. We map the question an-
swering task to KTL, by mapping the context, ques-
tion and answer to (h, r, t) respectively. We define
two different ways to perform self-supervised KTL.
This task can be designed as a representation gen-
eration task or a masked language modeling task.
We compare both the strategies in this work. We
show how to use models trained on this task to
perform zero-shot question answering without any
additional supervision. We also show how models
pre-trained on this task perform considerably well
compared to strong pre-trained language models
on few-shot learning. We evaluate our approach on
the three commonsense and three science multiple-
choice QA datasets.

The contributions of this paper are summarized
as follows:

• We define the Knowledge Triplet Learning
over Knowledge Graph and show how to use
it for zero-shot question answering.
• We compare two strategies for the above task.
• We propose heuristics to create synthetic

knowledge graphs.
• We perform extensive experiments of our

framework on three commonsense and three
science question-answering datasets.
• We achieve state-of-the-art results for zero-

shot and propose a strong baseline for the few-
shot question answering task.

2 Knowledge Triplet Learning

We define the task of Knowledge Triplet Learning
(KTL) in this section. We define G = (V,E) as a
Knowledge Graph, where V is the set of vertices,
E is the set of edges. V consists of entities which
can be phrases or named-entities depending on the
given input Knowledge Graph. Let S be a set of
fact triples, S ⊆ V×E×V with the format (h, r, t),

where h and t belong to set of vertices V and r
belongs to set of edges. The h and t indicates
the head and tail entities, whereas r indicates the
relation between them.

For example, from the ATOMIC knowledge
graph, (PersonX puts PersonX’s trust in PersonY,
How is PersonX seen as?, faithful) is one such
triple. Here the head is PersonX puts PersonX’s
trust in PersonY, relation is How is PersonX seen
as? and the tail is faithful. Do note V does not
contain homogenous entities, i.e, both faithful and
PersonX puts PersonX’s trust in PersonY are in V .

We define the task of KTL as follows: Given
input a triple (h, r, t), we learn the following three
functions.

ft(h, r)⇒ t, fh(r, t)⇒ h, fr(h, t)⇒ r (1)

That is, each function learns to generate one compo-
nent of the triple given the other two. The intuition
behind learning these three functions is as follows.
Let us take the above example: (PersonX puts Per-
sonX’s trust in PersonY, How is PersonX seen as?,
faithful). The first function ft(h, r) learns to gener-
ate the answer t given the context and the question.
The second function fh(r, t) learns to generate one
context where the question and the answer may
be valid. The final function fr(h, t) is a Jeopardy-
style generating the question which connects the
context and the answer.

In Multiple-choice QA, given the context, two
choices may be true for two different questions.
Similarly, given the question, two answer choices
may be true for two different contexts. For ex-
ample, given the context: PersonX puts PersonX’s
trust in PersonY, the answers PersonX is considered
trustworthy by others and PersonX is polite are true
for two different questions How does this affect
others? and How is PersonX seen as?. Learning
these three functions enables us to score these rela-
tions between the context, question, and answers.

2.1 Using KTL to perform QA
After learning this function in a self-supervised
way, we can use them to perform question answer-
ing. Given a triple (h, r, t), we define the following
scoring function:

Dt = D(t, ft(h, r)), Dh = D(h, fh(r, t)),

Dr = D(r, fr(h, t))

score(h, r, t) = Dt ∗Dh ∗Dr

(2)

where h is the context, r is the question and t is
one of the answer options. D is a distance function
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which measures the distance between the generated
output and the ground-truth. The distance func-
tion varies depending on the instantiation of the
framework, which we will study in the following
sections. The final answer is selected as:

ans = argmin
t

(score(h, r, t)) (3)

As the scores are the distance from the ground-truth
we select the choice that has the minimum score.

We define the different ways we can implement
this framework in the following sections.

2.2 Knowledge Representation Learning

In this implementation, we use Knowledge repre-
sentation learning to learn equation (1). In con-
trast to triplet classification and graph completion,
where systems try to learn a score function fr(h, t),
i.e, is the fact triple (h, r, t) true or false; in this
method we learn to generate the inputs vector repre-
sentations, i.e, fr(h, t)⇒ r. We can view equation
1 as generator functions, which given the two input
vector encodings learns to generate a vector repre-
sentation of the third. The vector encodings can
be pre-computed sentence vector representations
or contextual vector representations. As our triples
(h, r, t) can have a many to many relations between
each pair, we first project the two inputs from input
vector encoding space to a different space similar
to the work of TransD (Ji et al., 2015). We use a
Transformer encoder Enc to encode our triples to
the vector encoding space. We learn two projection
functions, Mi1 and Mi2 to project the two inputs,
and a third projection function Mo to project the
entity to be generated. We combine the two pro-
jected inputs using a function C. These functions
can be implemented using feedforward networks.

Ie1 = Enc(I1), Ie2 = Enc(I2), Oe = Enc(O)

Ie1 = Mi1(Ie1), Ie2 = Mi2(Ie2), Op = Mo(Oe)

Ô = C(Ie1, Ie2)

loss = LossF (Ô, Op)

where Ii is the input, Ô is the generated output
vector and Op is the projected vector. M and C
functions are learned using fully connected net-
works. In our implementation, we use RoBERTa as
the Enc transformer, with the output representation
of the [cls] token as the phrase representation.

We train this model using two types of loss
functions, L2Loss where we try to minimize the
L2 norm between the generated and the projected

ground-truth, and Noise Contrastive Estimation
(Gutmann and Hyvärinen, 2010) where along with
the ground-truth we have k noise-samples. These
noise samples are selected from other (h, r, t)
triples such that the target output is not another true
fact triple, i.e, (h, r, tnoise) is false. The NCELoss
is defined as:

NCELoss(Ô, Op, [N0...Nk]) =

− log
exp sim(Ô, Op)

exp sim(Ô, Op) +
∑

k∈N exp (sim(Ô,Nk)

where Nk are the projected noise samples, sim is
the similarity function which can be the L2 norm or
Cosine similarity, Ô is the generated output vector
and Op is the projected vector.

The D distance function (2) for such a model is
defined by the distance function used in the loss
function. For L2Loss, it is the L2 norm, and in the
case of NCELoss, we use 1− sim function.

2.3 Span Masked Language Modeling
In Span Masked Language Modeling (SMLM),
we model the equation 1 as a masked language
modeling task. We tokenize and concatenate the
triple (h, r, t) with a separator token between them,
i.e, [cls][h][sep][r][sep][t][sep]. For the function
fr(h, t) ⇒ r, we mask all the tokens present in
r, i.e, [cls][h][sep][mask][sep][t][sep]. We feed
these tokens to a Transformer encoder Enc and use
a feed forward network to unmask the sequence of
tokens. Similarly, we mask h to learn fh and t to
learn ft

We train the same Transformer encoder to per-
form all the three functions. We use the cross-
entropy loss to train the model:

CELoss(h, r,mask(t), t) =

− 1

n

n∑
i=1

log2PMLM (ti|h, r, t1..ti..tn)

where PMLM is the masked language modeling
probability of the token ti, given the unmasked
tokens h and r and other masked tokens in t. Do
note we do not do progressive unmasking, i.e, all
the masked tokens are jointly predicted.

The D distance function (2) for this model is
same as the loss function defined above.

3 Synthetic Graph Construction

This section describes our method to create a syn-
thetic knowledge graph from a text corpus con-
taining sentences. Not all types of knowledge are
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present in a structured knowledge graph, such as
ATOMIC, which might help answer questions. For
example, the questions in QASC dataset (Khot
et al., 2019) require knowledge about scientific con-
cepts, such as, “Clouds regulate the global engine
of atmosphere and ocean.”. The QASC dataset
contains a textual knowledge corpus containing
science facts. Similarly, the Open Mind Common-
sense (OMCS) knowledge corpus contains knowl-
edge about different commonsense facts, such as,
“You are likely to find a jellyfish in a book”. An-
other kind of knowledge about social interactions
and story progression is present in several story
understanding datasets, such as RoCStories and the
Story Cloze Test (Mostafazadeh et al., 2016). To
perform question answering using this knowledge
and KTL, we create the following two graphs: the
Common Concept Graph and the Directed Story
Graph.

Common Concept Graph To create the Com-
mon Concept Graph, we extract noun-chunks and
verb-chunks from each of the sentences using the
Spacy Part-of-Speech tagger (Honnibal and Mon-
tani, 2017). We assign all the extracted chunks as
the graph’s vertices and the sentences as the graph’s
edges. To generate training samples for KTL, we
assign triples (h,R, t) as (e1, e2, vi) where vi is
the common concept present in both the sentences
e1 and e2. For example, in the sentence Clouds reg-
ulate the global engine of atmosphere and ocean.,
the extracted concepts are clouds, global engine,
atmosphere, ocean and regulate. The triplet as-
signment will be, [Warm moist air from the Pacific
Ocean brings fog and low stratus clouds to the mar-
itime zone., Clouds regulate the global engine of
atmosphere and ocean., clouds]. We create two
such synthetic graphs using the QASC science cor-
pus and the OMCS concept corpus. Our hypothesis
is this graph, and the KTL framework will allow
the model to understand the concepts common in
two facts, which allows question answering.

Directed Story Graph This graph is created us-
ing short stories from the RoCStories and Story
Cloze Test datasets. This graph is different from
the above graph as this graph has a directional prop-
erty, and each story graph is disconnected. To
create this graph, we take each short story with
k sentences, [s1, s2, s3.., sk] and create a directed
graph such that all sentences are vertices and each
sentence is connected with a directed edge only to

sentences that occur after it. For example, s1 is
connected to s2 with a directed edge but not vice
versa. We generate triples (h,R, t) by sampling
vertices (si, sj , sk) such that there is a directed
path between the sentences si and sk through sj .
This format captures a smaller story where the head
is an event that occurs before the relation and the
tail. This graph is designed for story understanding
and abductive reasoning using the KTL framework.

Random Sampling There are around 17M sen-
tences in the QASC text corpus; similarly, there are
640K sentences in the OMCS text corpus. Our syn-
thetic triple generation leads to a significantly large
set of triples in order of 1012 and more. To restrict
the train dataset size for our KTL framework, we
randomly sample triples and limit the train dataset
size to be at max 1M samples; we refer to this as
Random Sampling.

Curriculum Filtering Here, we extract the noun
and verb chunks from the context, question, and
answer options present in the question answering
datasets. We filter triples from the generated dataset
and keep only those triples where at least one of the
entities is present in the extracted noun and verb
chunks set. This filtering is analogous to a real-
life human examination setting where a teacher
provides the set of concepts upon which questions
would be asked, and the students can learn the con-
cepts. We perform the sampling and filtering only
on the huge Common Concept Graphs generated
from QASC and OMCS corpus.

4 Datasets

We evaluate our framework on the following six
datasets: SocialIQA (Sap et al., 2019b), aNLI (Bha-
gavatula et al., 2019), CommonsenseQA (Talmor
et al., 2018), QASC (Khot et al., 2019), Open-
BookQA (Mihaylov et al., 2018) and ARC (Clark
et al., 2018). SocialIQA, aNLI, and Common-
senseQA require commonsense reasoning and ex-
ternal knowledge to answer the questions. Simi-
larly, QASC, OpenBookQA, and ARC require sci-
entific knowledge. Table 1 shows the dataset statis-
tics and the corresponding knowledge graph used
to train our KTL model. Table 2 shows the statis-
tics for the triples extracted from the graphs. From
the two tables we can observe our KTL triples have
different number of words when compared to the
target question answering tasks. Especially where
the context is significantly larger and human anno-



155

ARC-Easy ARC-Chall QASC OpenBookQA CommonsenseQA aNLI SocialIQA

Train Size 2251 1119 8134 4957 9741 169654 33410
Val Size 570 299 926 500 1221 1532 1954
Test Size 2377 1172 920 500 1140 - -
C Length - - - - - 9 15
Q Length 19.4 22.3 13 12 14 9 6
A length 3.7 4.9 1.5 3 1.5 9 3
# of Option 4 4 8 4 5 2 3
KTL Graph QASC-CCG QASC-CCG QASC-CCG QASC-CCG OMCS-CCG DSG ATOMIC

Table 1: Dataset Statistics for the seven QA tasks. Context is not present in five of the tasks. The KTL Graph refers
to the graph over which we learn. CCG is the Common Concept Graph. DSG is the Directed Story Graph. C, Q, A
is the average number of words in the context, question, and answer. aNLI and SocialIQA Test set size is hidden.

ATOMIC QASC-CCG OMCS-CCG DSG

Train Size 893393 1662308 914442 1019030
Val Size 10000 10000 10000 10000
H Length 11.2 10.5 9.6 10.3
R Length 6.5 10.3 9.4 10.2
T Length 2 1.5 2 10.4

Table 2: Dataset Statistics for the generated Triples.
For QASC and OMCS, it is after Curriculum Filtering.
H, R, T length refers to the average number of words.
For CCG, we show for the [ei, ej , v] configuration.

tated as in SocialIQA, increasing the challenge for
unsupervised learning.

4.1 Question to Hypothesis Conversion and
Context Creation

We can observe the triples in our synthetic graphs,
QASC-CCG and OMCS-CCG contain factual state-
ments, and our target question answering datasets
have questions that contain wh words or fill-in-the-
blanks. We translate each question to a hypothesis
using the question and each answer option. To cre-
ate hypothesis statements for questions containing
wh words, we use a rule-based model (Demszky
et al., 2018). For fill-in-the-blank and cloze style
questions, we replace the blank or concat the ques-
tion and the answer option.

For questions that do not have a context, such
as in QASC or CommonsenseQA, we retrieve the
top five sentences using the question and answer
options as query and perform retrieval from respec-
tive source knowledge sentence corpus. For each
retrieved-context, we evaluate the answer option
score using equation 2 and take the mean score.

5 Experiments

5.1 Baselines

We compare our models to the following baselines.

1. GPT-2 Large with language modeling cross-
entropy loss as the scoring function. We con-
catenate the context and question and find the
cross-entropy loss for each answer choices
and choose the answer with minimum loss.

2. Pre-trained RoBerta-large used as is, with-
out any fine-tuning or further pre-training,
with scoring the same as our defined SMLM
model. We refer to it as Rob-MLM.

3. RoBerta-large model further fine-tuned us-
ing the original Masked Language Modeling
task over our concatenated fact triples (h, r, t),
with scoring same as SMLM. We refer to it as
Rob-FMLM.

4. IR Solver described in ARC (Clark et al.,
2016), which sends the context, question, and
answer option as a query to Elasticsearch. The
top retrieved sentence, which has a non-stop-
word overlap with both the question and the
answer, is used as a representative, and its cor-
responding IR ranking score is used as con-
fidence for the answer. The option with the
highest score is chosen as the answer.

5.2 KTL Training

We train the Knowledge Representation Learning
(KRL) model using both L2Loss and NCELoss.
For NCELoss, we also train it with both L2 norm
and Cosine similarity. Both the KRL model (365M)
and the SMLM model (358M) uses RoBERTa-large
(355M) as the encoder. We train the model for three
epochs with the following hyper-parameters: batch
sizes [512,1024] for SMLM and [32,64] for KRL;
learning rate in range: [1e-5,5e-5]; warm-up steps
in range [0,0.1]; in 4 Nvidia V100s 16GB. We
use the transformers package (Wolf et al., 2019).
All triplets from the training graphs are positive
samples. We learn using these triplets. For NCE,
we choose k equal to ten, i.e., ten negative samples.
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Models ARC-E ↑ ARC-C ↑ OBQA ↑ QASC ↑ ComQA ↑ aNLI ↑ SocIQA ↑

Random 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 12.5 12.5 20.0 20.0 50.0 51.0 33.3 33.3
GPT-2 L 30.5 29.1 29.4 23.5 25.1 25.0 32.0 26.6 27.8 12.3 13.2 36.4 37.2 50.8 51.3 41.2 40.8
RoB-MLM 29.8 29.6 29.0 24.8 25.0 25.0 24.8 24.4 25.0 12.8 17.6 23.6 24.8 51.6 52.2 35.6 34.5
RoB-FMLM 31.0 31.2 30.6 24.6 22.1 23.8 23.4 24.2 23.8 14.2 19.7 23.2 26.1 51.2 51.4 36.9 36.1
IR 29.4 30.4 30.2 18.4 20.3 21.2 31.4 29.4 28.8 18.6 19.4 24.6 24.4 53.4 54.8 35.8 36.0

KRL-L2 28.8 29.6 29.8 26.7 26.8 25.6 29.6 28.8 29.2 20.4 20.8 31.4 30.6 57.6 57.4 43.2 43.8
KRL-NCE-L2 32.4 31.8 30.6 27.2 27.5 26.8 33.2 31.6 32.8 22.6 23.1 33.4 33.8 59.3 60.5 46.4 46.2
KRL-NCE-Cos 32.8 32.0 31.8 27.4 27.9 27.8 35.6 34.8 34.4 23.2 24.4 36.8 37.1 60.4 60.2 46.6 46.4
SMLM 33.2 33.4 33.0 27.8 28.4 28.4 34.4 34.6 33.8 26.6 27.2 38.2 38.8 64.7 65.3 48.7 48.5

Self-Talk N/A N/A N/A N/A 32.4 N/A 46.2
BIDAF Sup. 50.1 49.8 20.6 21.2 49.2 48.8 31.8 32.0 67.8 51.2
RoBerta Sup. 85.0 67.2 72.0 61.8 72.1 83.2 76.9

Table 3: Results for the Unsupervised QA task. Mean accuracy on Train, Dev and Test is reported. For Self-Talk
and BIDAF Sup. we report the Dev and Test splits, for Roberta Sup. we report Test split. Test is reported if labels
are present. Best scores, Second Best.

We perform three hyper-parameter trials using ten
percent of the training data for each model, and
train models with three different seeds. We report
the mean accuracy of the three random seed runs
for each of our experiments and report the standard
deviation if space permits. Code is available here.

6 Results and Discussion

6.1 Unsupervised Question Answering

Table 3 compares our different KTL methods with
our four baselines for the six question-answering
datasets on the zero-shot question answering task.
We use Hypothesis Conversion, Curriculum Filter-
ing, and Context Creation for ARC, QASC, OBQA,
and CommonsenseQA for both the baselines and
our models. We compare the models on the Train,
Dev and Test split if labels are available, to capture
the statistical significance better.

We can observe that our KTL trained models
perform statistically significantly better than the
baselines. When comparing the different KRL
models, the NCELoss with Cosine similarity per-
forms the best. This observation might be due to
the additional supervision provided by the negative
samples as the L2Loss model only tries to mini-
mize the distance between the generated and the
target projections. When comparing different KTL
instantiations, we can see that the SMLM model
performs the best overall. SMLM and KRL dif-
fer in their core approaches. We hypothesize that
multi-layered attention in a transformer encoder
enables the SMLM model to distinguish between
a true and false statement. In KRL, we are learn-
ing from both positive and negative samples, but
the model still under-performs. On analysis, we

Model QASC ↑ OBQA ↑ aNLI ↑ ComQA ↑ SocIQA ↑

RoBerta 44.5 ± 1.2 47.8 ± 1.4 68.8 ± 1.3 46.4 ± 1.5 44.4 ± 1.2
RoB-MLM 43.6 ± 0.6 49.4 ± 0.8 67.1 ± 0.8 43.2 ± 0.8 46.8 ± 0.6
KRL-NCE-Cos 48.2 ± 0.9 51.2 ± 0.6 73.4 ± 0.9 49.5 ± 1.1 58.6 ± 0.8
SMLM 49.8 ± 0.6 55.8 ± 0.6 76.8 ± 0.6 51.2 ±0.7 69.1 ± 0.4
RoBerta-Sup 59.40 71.0 84.3 71.4 76.6

Table 4: Accuracy comparison of the KTL pre-trained
RoBerta encoder when used for Few-shot learning
Question Answering task on the Validation split.

observe the random negative samples may make
the training task biased for KRL. Our future work
would be to utilize alternative negative sampling
techniques, such as selecting samples closer in con-
textual vector space.

The improvements in ARC-Challenge task are
considerably less. It is observed that the fact corpus
for QASC, although it contains a vast number of
science facts, does not contain sufficient knowledge
to answer ARC questions. There is a substantial im-
provement in SocialIQA, aNLI, QASC, and Com-
monsenseQA as the respective KTL knowledge
corpus contains sufficient knowledge to answer the
questions. It is interesting to note that for QASC,
we can reduce the problem from an eight-way to a
four-way classification, as our top-4 accuracy on
QASC is above 92%. Our unsupervised model out-
performs previous approaches, such as Self-Talk
(Shwartz et al., 2020). It approaches prior super-
vised approaches like BIDAF (Seo et al., 2017),
and even surpasses it on two tasks.

6.2 Few-Shot Question Answering

Table 4 compares our KTL pre-trained transformer
encoder in the few-shot question answering task.
We fine-tune the encoder with a simple feedforward

https://www.github.com/pratyay-banerjee
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Figure 2: Effect of Increasing KTL training samples on the target zero-shot question answering Train split accuracy.

Model QASC ↑ OBQA ↑ ComQA ↑ aNLI ↑ SocIQA ↑

SMLM - A 23.4 ± 0.6 28.6 ± 0.7 33.6 ± 0.5 64.8 ± 0.9 46.2 ± 0.7
SMLM - Q 26.7 ± 0.8 33.8 ± 0.7 34.4 ± 0.8 65.1 ± 0.7 37.8 ± 0.5
SMLM - C 22.8 ± 1.1 29.8 ± 1.3 31.9 ± 0.9 64.9 ± 0.8 47.1 ± 0.8
SMLM - A*Q*C 27.2 ± 0.6 34.6 ± 0.8 38.8 ± 0.6 65.3 ± 0.7 48.5 ± 0.6

Table 5: Accuracy comparison of using only Answer
(A), Question (Q) and Context (C) distance scores.

network for a n-way classification task, the stan-
dard question-answering approach using RoBerta
with n being the number of answer options during
training with only 8% of the training data. We train
on three randomly sampled splits of training data
and report the mean. We can observe our KTL pre-
trained encoders perform significantly better than
the baselines and approach the fully supervised
model, with only 7.5% percent behind the fully
supervised model on SocialIQA. We also observe
that our pre-trained models have a lower deviation.

6.3 Ablation studies and Analysis

Effect of Context, Question, Answer Distance
In Table 5, we compare the effect of the three dif-
ferent distance scores. It is interesting to observe,
in OpenBookQA, QASC, and CommonsenseQA,
the three datasets which do not provide a context,
the model is more perplexed to predict the ques-
tion when given a wrong answer option, leading to
higher accuracy for only Question distance score.
On the other hand, in aNLI all three distance scores
have nearly equal performance. In SocialIQA,
the question has the least accuracy, whereas the
model is more perplexed when predicting the con-
text given a wrong answer option. This observation
confirms our hypothesis that given a task predicting
context and question can contain more information
than discriminating between options alone.

Effect of Hypothesis Conversion, Curriculum
Filtering and Context Retrieval In Table 6, we
observe the effect of hypothesis conversion, cur-
riculum filtering, and our context creation. Convert-
ing the question to a hypothesis provides a slight

Model QASC ↑ OBQA ↑ ComQA ↑

SMLM - Hypo + CF 27.2 ± 0.6 34.6 ± 0.8 38.8 ± 0.6
SMLM - Quesn + CF 26.5 ± 1.2 32.2 ± 1.1 35.4 ± 1.3
SMLM - Hypo + Rand Sample 22.6 ± 1.4 28.4 ± 1.5 32.2 ± 1.4
SMLM - Gold F+ Hypo + CF 72.4 ± 0.8 75.2 ± 0.7 -

Table 6: Effect of Question to Hypothesis Conversion
(Hypo), Curriculum Filtering (CF) and providing the
Gold Fact context on the Validation split.

improvement, but a significant improvement is ob-
served when we filter our KTL training samples
and keep only those concepts that are present in the
target question answering task, compared to when
the KTL model is trained with a random sample of
1M. Curriculum filtering is impactful because there
are many concepts present in our source knowl-
edge corpus, and the randomly sampled training
corpus only contains 50% of the target question
answering task concepts on an average. Another
critical thing to note in Table 6 is our KTL models
can strongly perform like supervised models, when
the gold knowledge context is provided, which are
available in QASC and OpenBookQA. This obser-
vation indicates a better retrieval system for context
creation can further improve our models.

Effect of Sythetic Triple corpus size Figure 2
compares our two modeling approaches when we
train them with varying numbers of KTL training
samples. NCE refers to our KRL model trained
with NCELoss and Cosine similarity. We can ob-
serve that our KRL model learns faster due to addi-
tional supervision, but the SMLM model performs
the best when trained with more samples. The per-
formance tapers after 105 samples, indicating the
models are overfitting to the synthetic data.

Error Analysis We sampled 50 error cases from
each of our question-answering tasks. Our KTL
framework allows learning from knowledge graphs,
that includes synthetic knowledge graphs. Both
our instantiation, SMLM, and KRL function as a
knowledge base score generator, were given the
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inputs, and a target, the generator yields a score,
how improbable is the target to be present in the
knowledge base. Most of our errors are when all
context, question, and answer-option have a large
distance score, and the model accuracy degenerates
to that of a random model. This more considerable
distance indicates the model is highly perplexed to
see the input text. For aNLI and SocialIQA, we
possess relevant context, and our performance is
significantly better in these datasets, but for other
tasks, we have another source of error, i.e., context
creation. In several cases, the context is irrelevant
and acts as a noise. Other errors include when
the questions require complex reasoning such as
understanding negation, conjunctions, and disjunc-
tions; temporal reasoning such as “6 am” being
before “10 am”, and multi-hop reasoning. These
complex reasoning tasks are required to answer a
significant number of questions in the science and
commonsense QA tasks. We also tried to utilize a
text generation model, such as GPT-2, to generate
and compare with ground truth text using our KTL
framework, but preliminary results show the model
is overfitting to the synthetic dataset and leads to
significantly low performance.

Other Instantiations Our KTL framework can
be implemented using other methods, such as using
a Generator/Discriminator pre-training proposed
in Electra (Clark et al., 2019), and sequence-to-
sequence methods. The distance functions for
sequence-to-sequence models can be similar to our
SMLM model, the cross-entropy loss for the ex-
pected generated sequence. Discriminator based
methods can adapt to the negative class probabil-
ities as the distance function. Studying different
instantiations and their implications are some of
the fascinating future works.

7 Related Work

7.1 Unsupervised QA

Recent work on unsupervised question answering
approach the problem in two ways, a domain adap-
tion or transfer learning problem (Chung et al.,
2018), or a data augmentation problem (Yang et al.,
2017; Dhingra et al., 2018; Wang et al., 2018; Al-
berti et al., 2019). The work of (Lewis et al., 2019;
Fabbri et al., 2020; Puri et al., 2020) use style trans-
fer or template-based question, context and answer
triple generation, and learn using these to perform
unsupervised extractive question answering. There

is another approach to learning generative models,
generating the answer given a question or clarifying
explanations and questions, such as GPT-2 (Rad-
ford et al., 2019) to perform unsupervised question
answering (Shwartz et al., 2020; Bosselut and Choi,
2019; Bosselut et al., 2019). In the visual domain,
zero-shot visual question answering is studied in
(Teney and Hengel, 2016), and a self-supervised
learning method for logical compositions of visual
questions is proposed in (Gokhale et al., 2020).

In contrast, our work focuses on learning from
knowledge graphs and generate vector representa-
tions or sequences of tokens not restricted to the
answer but including the context and the question
using the masked language modeling objective.

7.2 Use of External Knowledge for QA

There are several approaches to add external knowl-
edge into models to improve question answering.
Broadly they can be classified into two, learning
from unstructured knowledge and structured knowl-
edge. In learning from unstructured knowledge,
recent large pre-trained language models (Peters
et al., 2018; Radford et al., 2019; Devlin et al.,
2018; Liu et al., 2019b; Clark et al., 2020; Lan
et al., 2019; Joshi et al., 2020; Bosselut et al., 2019)
learn general-purpose text encoders from a huge
text corpus. On the other hand, learning from struc-
tured knowledge includes learning from structured
knowledge bases (Yang and Mitchell, 2017; Bauer
et al., 2018; Mihaylov and Frank, 2018; Wang and
Jiang, 2019; Sun et al., 2019) by learning knowl-
edge enriched word embeddings. Using structured
knowledge to refine pre-trained contextualized rep-
resentations learned from unstructured knowledge
is another approach (Peters et al., 2019; Yang et al.,
2019a; Zhang et al., 2019; Liu et al., 2019a).

Another approach of using external knowledge
includes retrieval of knowledge sentences from a
text corpora (Das et al., 2019; Chen et al., 2017;
Lee et al., 2019; Banerjee et al., 2019; Banerjee and
Baral, 2020; Mitra et al., 2019; Banerjee, 2019),
or knowledge triples from knowledge bases (Min
et al., 2019; Wang et al., 2020) that are useful to an-
swer a specific question. Another recent approach
uses language model as knowledge bases (Petroni
et al., 2019), where they query a language model to
un-mask a token given an entity and a relation in a
predefined template. We use knowledge graphs to
learn a self-supervised generative task to perform
zero-shot multiple-choice QA in our work.
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7.3 Knowledge Representation Learning
Over the years there are several methods discovered
to perform the task of knowledge representation
learning. Few of them are: TransE (Bordes et al.,
2013) that views relations as a translation vector
between head and tail entities, TransH (Wang et al.,
2014) that overcomes TransE’s inability to model
complex relations, and TransD (Ji et al., 2015) that
aims to reduce the parameters by proposing two
different mapping matrices for head and tail. KRL
has been used in various ways to generate natu-
ral answers (Yin et al., 2016; He et al., 2017) and
generate factoid questions (Serban et al., 2016).
The task of Knowledge Graph Completion (Yao
et al., 2019) is to either predict unseen relations r
between two existing entities: (h, ?, t) or predict
the tail entity t given the head entity and the query
relation: (h, r, ?). Whereas we are learning to pre-
dict including the head, (?, r, t). In KTL, head
and tail are not similar text phrases (context and
answer) unlike Graph completion. We further mod-
ify TransD and adapt it to our KTL framework to
perform zero-shot QA.

8 Conclusion

This work proposes a new framework of Knowl-
edge Triplet Learning over knowledge graph en-
tities and relations. We show learning all three
possible functions, fr, fh, and ft help the model
perform zero-shot multiple-choice question answer-
ing, where we do not use question-answering anno-
tations. We learn from both human-annotated and
synthetic knowledge graphs and evaluate our frame-
work on the six question-answering datasets. Our
framework achieves state-of-the-art in the zero-shot
question answering task achieving performance
like prior supervised work and sets a strong base-
line in the few-shot question answering task.
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