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Abstract

The introduction of VAE provides an efficient
framework for the learning of generative mod-
els, including generative topic models. How-
ever, when the topic model is a Latent Dirich-
let Allocation (LDA) model, a central tech-
nique of VAE, the reparameterization trick,
fails to be applicable. This is because no repa-
rameterization form of Dirichlet distributions
is known to date that allows the use of the repa-
rameterization trick. In this work, we propose
a new method, which we call Rounded Repa-
rameterization Trick (RRT), to reparameterize
Dirichlet distributions for the learning of VAE-
LDA models. This method, when applied to a
VAE-LDA model, is shown experimentally to
outperform the existing neural topic models on
several benchmark datasets and on a synthetic
dataset.

1 Introduction

Probabilistic generative models are widely used in
topic modelling and have achieved great success in
many applications (Deerwester et al., 1990)(Hof-
mann, 1999)(Blei et al., 2003)(Blei and Lafferty,
2006). A landmark of topic models is Latent Dirich-
let Allocation (LDA) (Blei et al., 2003), where a
document is treated as a bag of words and each
word is modelled via a generative process. More
specifically, in this generative process, a topic dis-
tribution is first drawn from a Dirichlet prior, then
a topic is sampled from the topic distribution and a
word is drawn subsequently from the word distri-
bution corresponding to the drawn topic. Since its
introduction, LDA has shown great power in a large
varieties of natural language applications (Wei and
Croft, 2006)(AlSumait et al., 2008)(Mehrotra et al.,
2013). However, the classical methods of learning
LDA, such as variational techniques and collapsed
Gibbs sampling, entails high computation complex-
ity in posterior inference(Blei et al., 2003)(Grif-

fiths and Steyvers, 2004), which limits the ability
of LDA on modelling large corpus.

Variational AutoEncoder (VAE) or AutoEn-
coding Variational Bayes (AEVB) (Kingma and
Welling, 2013) provides another choice of learning
a generative model. Under the VAE framework,
a generative model is specified by first drawing a
latent vector z from a prior distribution and then
transforming this vector through a neural network,
called decoder, which subsequently generates the
observation x. Using a variational inference ap-
proach, VAE couples the decoder network with
another network, called encoder, responsible for
computing the posterior distribution of the latent
variable z for each observation x. A key technique
of VAE is its “reparameterization trick”, in which
sampling from the posterior is performed by sam-
pling a noise variable ε from some distribution p(ε)
and then transforming ε to z using a differentiable
function. This technique allows the model to be
trained efficiently using back propagation.

The VAE framework significantly alleviates the
computational burden of learning a generative
model. Therefore, researchers interested in topic
modelling are naturally motivated to consider VAE
as an alternative approach to learn LDA, exploit-
ing the power and efficiency of deep learning neu-
ral networks. This is also the interest of this pa-
per. However, the key limitation in the applica-
tion of VAE to Dirichlet-based topic models is
that the original reparameterization trick in VAE
is not applicable to Dirichlet distributions. In this
sense, VAE cannot be directly used for learning
any Dirichlet-based topic models. To cope with
this, the NVDM model (Miao et al., 2016) dis-
cards the Dirichlet assumption and build neural
topic models based on Gaussian prior. Although
such a Gaussian-based topic model achieves a
reasonably good performance on perplexity, the
topic words they extracted appear to lack human-
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interpretability. Additionally the use of Gaussian
prior significantly deviates from the desired Dirich-
let distribution and arguably has significant room
for improvement.

The adoption of the Dirichlet prior plays a cen-
tral role in topic modelling, since it nicely captures
the intuition that a topic is sampled from a sparse
topic distribution. Due to the importance of the
Dirichlet assumption in topic modelling, ProdLDA
(Srivastava and Sutton, 2017) attempts to apply
VAE to LDA by constructing a Laplace approxi-
mation to the Dirichlet prior in the softmax basis.
However, the Laplace approximation is only used
to estimate the prior parameters and ProdLDA has
essentially a Gaussian VAE architecture where the
KL divergence is on Gaussian distributions. The
work of (Joo et al., 2019) argues that the Laplace ap-
proximation in ProdLDA fails to capture the multi-
modality nature of Dirichlet distributions. They
then propose DirVAE, in which an approximation
of the inverse Gamma CDF (Knowles, 2015) is
used to reparameterize Gamma distributions. The
Dirichlet samples are then constructed by normal-
izing Gamma random variables. However, the ap-
proximation of inverse Gamma CDF is accurate
only when the shape parameter of the Gamma dis-
tribution is much less than 1 (Knowles, 2015). This
in turn limits the application scope of DirVAE.

In this work, we develop a technique, which we
call the Rounded Reparameterization Trick (RRT),
to reparameterize Dirichlet distributions. The use
of RRT enables VAE as an efficient method for
learning LDA, based on which we propose a new
neural topic model, referred to as “RRT-VAE”.1

Experiments on several datasets show that RRT-
VAE outperforms NVDM, ProdLDA, and DirVAE.
The experimental results strongly demonstrate the
applicability of RRT in topic modelling that utilizes
VAE.

2 Preliminary

2.1 LDA

In this paper, we refer to LDA broadly as a gener-
ative model characterized by first drawing a dis-
tribution θ over k topics from a Dirichlet prior
Dir (θ|α̂) and then through a function fdec, or a
decoder, transforming θ to a distribution P over a

1Code will be available at https://github.com/
rzTian/RRT-VAE/tree/main

vocabulary of n words. That is,

θ ∼ Dir (θ|α̂) (1)

P := fdec(θ;β) (2)

where β is the parameter of the decoder and will
be treated as a k × n matrix throughout this paper,
although other options are also possible. Under
this model, the words in a document is regarded as
being drawn i.i.d from this distribution P .

In the classical LDA model (Blei et al., 2003),
each row of β represents a word distribution, and
the decoder can be written as

fdec(θ;β) = θTβ (3)

In the deep learning paradigm, the decoder may be
constructed differently, for example,

fdec(θ) = θTSoftmax (β) (4)

and fdec(θ) = Softmax
(
θTβ

)
(5)

where in both cases, the rows of β are uncon-
strained. Note that (4), presented in (Srivastava
and Sutton, 2017) is merely a different parameteri-
zation of (3) and will be referred to as the “standard
decoder” in this paper. The structure in (5), referred
to as “product of experts” in (Srivastava and Sutton,
2017), will be called “prod decoder” for simplicity.

2.2 VAE-LDA

The difficulty in learning an LDA model lies in the
exact inference of θ. In the classical LDA, exact
inference is replaced by approximation methods
using a symbolist variational method (Blei et al.,
2003) or MCMC (Griffiths and Steyvers, 2004). In
the deep learning era, the development of Varia-
tional AutoEncoder (Kingma and Welling, 2013),
a connectionist counterpart of the symbolist varia-
tional methods, provides an alternative approach to
handle this difficulty.

When applying VAE to an LDA model, the
model is augmented with an encoder network fenc.
Specifically, the encoder takes as the input the bag-
of-words (i.e., word histogram) representation x of
a document and outputs a k-dimensional parameter
α, and then the Dirichlet distribution with parame-
ter α is taken as the posterior distribution q(·|α) of
θ:

α := fenc(x; Π) (6)

q(·|α) := Dir(·|α) (7)

https://github.com/rzTian/RRT-VAE/tree/main
https://github.com/rzTian/RRT-VAE/tree/main
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where Π denotes the parameters of the encoder.
Under the VAE framework, the parameters of

the encoder and the decoder are jointly optimized
by minimizing the negative Evidence Lower Bound
(ELBO):

L(Π, β;x) = KL (q(θ|α)||p(θ|α̂))−Eq(θ|α) [J(θ, x)]
(8)

where p(θ|α̂) := Dir(θ|α̂), the Dirichlet prior; and

J(θ, x) := xT log fdec (θ) (9)

We refer to the model specified by the loss function
(8) as VAE-LDA.

Note that the KL term in (8) has a closed-form
expression

KL(q(θ|α)||p(θ|α̂)) = log Γ
(∑

αi

)
−
∑

log Γ(αi)− log Γ
(∑

α̂i

)
+
∑

log Γ(α̂i)

+
∑

(αi − α̂i)
(
ψ(αi)− ψ

(∑
αi

))
The gradient of this term can be obtained directly.
The optimization of the second term in (8) is how-
ever challenging, since it has no closed-form ex-
pression. Additionally, when using a stochastic ap-
proximation, one must deal with back-propagating
gradient signals through a sampling process.

One way to deal with this is to use a score func-
tion estimator (Williams, 1992)(Glynn, 1990). But
such an approach is known to give rise to high
variances in the gradient estimation, due to which
a reliable estimate would require drawing a large
number of θ from the posterior q(·|α) and make
learning inefficient. In the framework of VAE, a
“reparameterization trick” is introduced as an ele-
gant solution to such a problem, where the posterior
is reparameterized as drawing a noise from another
distribution and re-expressing the posterior as a dif-
ferentiable function of the noise. However when
the posterior distribution is a Dirichlet distribution
(or a related distribution such as Beta and Gamma
distributions), no such noise distribution and con-
tinuous functions are known to exist. Thus the
standard reparameterization trick does not apply to
learning VAE-LDA.

3 Rounded Reparameterization Trick

To tackle the limitation of the standard reparameter-
ization trick, we propose a new reparameterization
method, referred to as rounded reparameterization
trick or RRT.

Given a real number ∆, we define a “∆-
rounding” function b·c∆ as follows: For any real
number a,

bac∆ =
⌊ a

∆

⌋
·∆ (10)

where the operation b·c is the integer floor
(or “rounding down”) operation. For example,
b 3.14159265c∆=0.001 = 3.141. When the ∆-
rounding operation applies to a vector, it acts on
the vector component-wise.

In RRT, we draw an auxiliary variable θ̂ from a
“rounded” posterior distribution q

(
θ̂|bαc∆

)
,

θ̂ ∼ q
(
θ̂|bαc∆

)
(11)

and compute

θ̃ = g(θ̂;α) := θ̂ + λ (α− bαc∆) (12)

Then θ̃ is used to approximate θ ∼ q(θ|α). In (12),
the parameter λ is a hyper parameter which will
serve to adjust the strength of the gradient. Note
that when choosing a very small rounding precision
∆, we expect that the distribution q̃(·|α) of θ̃ and
the distribution q(·|α) are nearly identical. As a
consequence, Eq(θ|α)[J(θ, x)] and its replacement
Eq̃(θ|α)[J(θ, x)] are also very close to each other.
Thus such a replacement keeps the loss function
very close to the original loss in (8).

For shorter notations, we denote

A(α) := Eq(θ|α)[J(θ, x)] (13)

Ã(α) := Eq̃(θ|α)[J(θ, x)] (14)

and

L̃(Π, β;x) := KL (q(θ|α)||p(θ|α̂))−Ã(α) (15)

Constructing gradient estimator using RRT
The gradient ∇αÃ(α) can be expressed as a sum
of two terms:

∇αÃ(α) =∇αEq(θ̂|bαc∆)

[
J
(
g(θ̂, α), x

)]
=∇α

∫
q
(
θ̂|bαc∆

)
J
(
g(θ̂;α), x

)
dθ̂

=

∫
∇αq

(
θ̂|bαc∆

)
J
(
g(θ̂;α), x

)
dθ̂

+

∫
q
(
θ̂|bαc∆

)
∇αJ

(
g(θ̂;α), x

)
dθ̂

The first term in sum is usually estimated through
the score function estimator. But this is unneces-
sary in this case. To see this, note that∇αbαc∆ =
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0 almost everywhere. This implies that the first
term is in fact 0 at every α for which the gradient
exists. The next lemma then immediately follows.

Lemma 1 For any α at which the gradient
∇αÃ(α) exists,

∇αÃ(α) = λEq(θ̂|bαc∆)

[
∇θJ(θ, x)|θ=g(θ̂;α)

]
The fact that the score function estimator is not
needed for estimating the gradient∇αÃ(α) allows
RRT to enjoy a low variance and hence requires
very few samples in Monte-Carlo estimation.

Using Lemma 1, one can directly express the
stochastic (Monte Carlo) estimate of the gradient
∇αÃ(α) as

∇αÃ(α) ≈ λ

N

N∑
i=1

∇θJ(θ, x)|θ=g(θ̂i;α) (16)

where θ̂ ∼ q
(
θ̂|bαc∆

)
. The fact that g is differen-

tiable almost everywhere with respect to α allows
the gradient signal to back propagate and can be im-
plemented using automatic differentiation libraries.

Due to the low variance in this estimator, it is suf-
ficient to sample only a single θ̂ from q

(
θ̂|bαc∆

)
,

namely, take N = 1 in (16).
At this end, we conclude that the loss function
L̃ obtained by replacing θ with θ̃ is very close to
the original loss function L, and a low-variance
gradient estimator can be easily constructed from
L̃. This completes the description of RRT.

On the discontinuities induced by RRT
Notably the ∆-rounding function in RRT induces
discontinuities in the resulting loss function L̃. This
is because Ã(α) is discontinuous in α and count-
ably many discontinuity points exist. One may
be concerned with whether an update of α may
“hop over” a discontinuity point of Ã(α) and cause
training unstable or diverge.

To that end, we have the following result.

Lemma 2 Suppose that J is ζ-lipschitz in θ and
A(α) is γ-lipschitz in α. Then for any integer m,∣∣∣Ã(m∆)− Ã(m∆− ε)

∣∣∣ < (γ + ζλ)∆

when ε→ ∆.

We note that when ε → ∆, the quantity∣∣∣Ã(m∆)− Ã(m∆− ε)
∣∣∣ measures the magnitude

of a sudden rise or drop when an update hops over

the discontinuity point α = m∆. When this magni-
tude is small, the discontinuity causes little impact
on the stability of training. The upper bound of this
quantity given by this lemma suggests that as long
as J(θ) and the objective function A(α) are rea-
sonably smooth, one may control this magnitude to
be small by choosing a relatively small ∆. On the
other hand, in case one indeed chooses a relatively
large ∆, the bound of this magnitude may become
quite large. However in this case, the update will
have much smaller chance of hopping over a dis-
continuity point, and one still expects no serious
problem caused by these discontinuities.

We now present the proof.
Proof: Clearly, Ã(m∆) = A(m∆). And

Ã(m∆− ε)
=Eq(θ|(m−1)∆)J(θ + λ(∆− ε))
≈Eq(θ|(m−1)∆)

{
J(θ) + λ(∆− ε)J ′(θ)

}
=A((m− 1)∆) + λ(∆− ε) · Eq(θ|(m−1)∆)J

′(θ)

Since J is ζ-lipschitz,

A((m− 1)∆)− ζλ(∆− ε)

< Ã(m∆− ε) < A((m− 1)∆) + ζλ(∆− ε)

It follows

A(m∆)−A((m− 1)∆) + ζλ(∆− ε)

> Ã(m∆)− Ã(m∆− ε)
> A(m∆)−A((m− 1)∆)− ζλ(∆− ε)

Since A(·) is γ-lipschitz, then

γ∆ + ζλ(∆− ε)

> Ã(m∆)− Ã(m∆− ε) > −γ∆− ζλ(∆− ε)

It follows∣∣∣Ã(m∆)− Ã(m∆− ε)
∣∣∣ < (γ + ζλ)∆

This proves the lemma. 2

It is clear that when ∆ is small, the disconti-
nuity is not obvious and has small impact on the
optimization of the model.

4 Related Work

Beyond topic modelling, another theme of research
related to this work is the estimation of gradient
in neural networks containing stochastic nodes or
samplers. In this setting, one desires that the gradi-
ent signal is capable of back-propagating through
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the samplers. A classical method for this pur-
pose is to construct a score function estimator, also
known as the “log derivative trick” or REINFORCE
(Williams, 1992)(Glynn, 1990). However, despite
giving an unbiased estimate, the Monte-Carlo im-
plementation of such an estimator typically suffers
from a high variance, and thus relies on some addi-
tional variance-reduction techniques (Greensmith
et al., 2004). Reparameterization trick(Kingma
and Welling, 2013), as mentioned above, may also
be used to back-propagate gradients through sam-
ples and enjoys a low-variance advantage. Unfor-
tunately this technique is not applicable to many
distributions such as Gamma, Beta and Dirichlet
distributions. Various efforts have been spent on
extending the applicability of reparameterization
trick to a broader range. These works include, for
example, G-REP (Ruiz et al., 2016), RSVI (Naes-
seth et al., 2016) and Implicit Reparameterization
Gradients (Figurnov et al., 2018), etc. These meth-
ods usually involve complicated gradient deriva-
tions and are often difficult to implement in neural
networks.

5 Experiments and Results

To quantitatively evaluate RRT-VAE, we conduct
experiments on synthetic datasets and five real-
world datasets. Our model is compared with several
existing topic models: Online LDA (Hoffman et al.,
2010), NVDM (Miao et al., 2016), ProdLDA (Sri-
vastava and Sutton, 2017) and DirVAE (Joo et al.,
2019).

In the experiments, we adopt three MLPs with
ReLU activations as the encoder of RRT-VAE,
where each hidden layer is set to 500 dimensions.
We apply an exponential function on the outputs of
the encoder, so that the outputs are positive values.
The topic distribution vectors are sampled through
RRT and then normalized before being passed to
the decoder. For Online LDA, we use the stan-
dard implementation from scikit-learn (Pedregosa
et al., 2011). The encoder structures of NVDM,
ProdLDA and DirVAE are built according to (Miao
et al., 2016), (Srivastava and Sutton, 2017) and
(Joo et al., 2019), where in our experiments the
dimension of each hidden layer is set to 500.

On the real-world datasets, we adopt the prod de-
coder, since the standard decoder appears to extract
many repetitive topic words (see Appendix B.1).2

2As reported in (Srivastava and Sutton, 2017), ProdLDA
also appears to extract many repetitive words when using the

On the synthetic datasets, we adopt the standard
decoder, which is examined to be superior to the
prod decoder on this learning task (see Appendix
A.1).

5.1 Datasets

Synthetic datasets. We construct three synthetic
datasets based on the LDA generative process: a
30× 500 topic-word probability matrix βg is gen-
erated as the ground truth; each dataset is then
generated based on βg using different Dirichlet pri-
ors αg ·1 ∈ R30, where 1 denotes the all-one vector.
We set αg to [0.01, 0.05, 0.1] for the three datasets
and the vocabulary size to 500. Each dataset has
20000 training examples.
Real-world datasets. We use five real-world
datasets in our experiments: 20NG, RCV1-v2, 3

AGNews4, DBPeida (Lehmann et al., 2015), and
Yelp review polarity (Zhang et al., 2015).

The 20NG and RCV1-v2 datasets are the same
as (Miao et al., 2016). The other three datasets
are preprocessed through tokenizing, stemming,
lemmatizing and the removal of stop words. We
keep the most frequent 2000 words in DBPedia
and Yelp. For AGNews, we keep the words which
are contained in no more than half the documents
and are contained in at least 15 documents. The
statistics of the cleaned datasets are summarized in
Table 1.

20NG AGNews RCV1-v2 DBpedia Yelp

#Train 11258 120000 794414 560000 560000
#Test 7487 7600 10000 70000 38000
#Vocab 1995 10630 10000 20000 20000

Table 1: Summary of different datasets

5.2 Evaluation Methods

On the real-world datasets, we use perplexity and
normalized pointwise mutual information (NPMI)
(Lau et al., 2014) as the evaluation metrics. On
synthetic datasets, we propose topic words recov-
ery accuracy (or “recovery accuracy” in short) to
evaluate the model performance.

Specifically, we extract the top-10 highest-
probability word indexes from each row of βg. The

standard decoder.
3For 20NG and RCV1-v2, we use the datasets provided by

https://github.com/ysmiao/nvdm
4http://groups.di.unipi.it/ gulli/AG corpus of news articles.

html
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extracted word indexes constitute a 30× 10 topic-
word matrix Tg. Our goal is to use the topic models
to recover this matrix. Denote by TL, a matrix
extracted from the learned β matrix of a model.
Note that the rows of TL are arbitrarily ordered. To
count how many words in the ith row t

(i)
g of Tg is

recovered in a topic in TL, we compare t(i)g with
each row in TL. We count the number of common
words in the compared two rows and keep the max-
imum count as the number of recovered words in
t
(i)
g . The recovery accuracy is then defined as the

total number of recovered words in all rows of TL
divided by the total number of words.

We note that after a row of Tg is compared
with TL as the target of coverage, the found best-
matching row in TL is not removed. This approach
is better than the alternative approach of greedily
removing the best-matching row, since the latter
would give an accuracy result that depends on the
row ordering in Tg. Additionally we note that the
data generation process assures that the rows of
Tg each contain 10 distinct words. For this reason,
keeping the found best-matching row in TL in each
step entails no problem.

5.3 Influence of Parameter Settings

In this section, we run RRT-VAE on 20NG and the
synthetic datasets to explore its performance under
different parameter settings.

5.3.1 Results on 20NG
Prior settings. Prior settings are claimed to have a
significant influence on model performance (Wal-
lach et al., 2009). In this experiment, we run RRT-
VAE on the 20NG dataset using four symmetric
Dirichlet prior settings [0.02,0.2,1.0,2.0]. The num-
ber of topics is set to 50 and λ is set to 0.01 in all
experiments. We use ∆ = 10−10 as the rounding
precision such that accurate Dirichlet samples can
be drawn.

Figure 1: Training performance of RRT-VAE with dif-
ferent prior (left) and λ settings (right).

As shown in Figure 1 (left), when using a larger
prior parameter (1 or larger), the training loss drops

Prior Settings 0.02 0.2 1.0 2.0

Perplexity 1415 1130 951 875
NPMI 0.275 0.254 0.243 0.259
Sparsity 0.5353 0.1954 0.0868 0.0655

Table 2: Evaluation results on RRT-VAE with differ-
ent prior settings. Perplexity: lower is better; NPMI:
higher is better; Sparsity: higher means sparser.

λ Settings 0.1 0.01 0.005 0.001

Perplexity 1004 951 978 1127
NPMI 0.221 0.243 0.271 0.160

Table 3: Evaluation results of RRT-VAE with different
λ settings.

more rapidly and converges to a lower value. Ta-
ble 2 reports the corresponding testing results. We
found that when using a smaller prior setting, RRT-
VAE tends to achieve a better topic coherence
(NPMI) while sacrificing some performance on
perplexity. One possible explanation of these phe-
nomena is that a smaller prior setting (lower than 1)
encourages the encoder network to sample a sparser
topic distribution θ. The sparsity of θ in turn makes
it easier for the model to assign a very small prob-
ability on some existing words in a document and
thus increases the training loss and perplexity.

To verify this conjecture, we construct a simple
method to measure sparsity: after the training, we
randomly feed 1000 training samples into the en-
coder network and obtain 1000 topic distribution
vectors {θi}1000

i=1 . For each θi, we calculate the dif-
ference between its largest and smallest probability
value and then average these differences over the
1000 samples. Clearly, a larger difference value
indicates a sparser θ, e.g. the maximum difference
1 is achieved by a one-hot vector. From the spar-
sity measurements in Table 2, we see that a smaller
prior setting causes the encoder to generate sparser
topic distribution vectors, which in turn hinders the
convergence of the training loss to a lower value
and hence causes a higher perplexity. On the other
hand, sparser topic distributions tend to improve
NPMI, although this improvement is slight.
λ settings. The “gradient control” parameter λ
in RRT adjusts the strength of the gradient signal
back-propagated to the encoder while also influ-
encing the variance of the Monte Carlo gradient
estimator. Figure 1 (right) and Table 3 report the
influence of different λ settings on the model per-
formance, where the number of topics is set to 50
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and the prior is set to 1. As shown, when λ is set
too small (e.g. λ = 0.001), the training loss fails
to converge to a lower value, resulting in a higher
perplexity and worse NPMI. The best performance
is achieved when λ is set between around 0.01 and
0.005. Different λ settings can bring similar train-
ing performances but different testing results. For
example, when λ is set to 0.1 and 0.01, the corre-
sponding training performances are very similar
(see Figure 1 (right), blue and grey dash line), how-
ever, λ = 0.01 achieves a better perplexity and
NPMI result.

(a) (b)

(c) (d)

Figure 2: (a) Training performance of RRT-VAE with
different ∆ settings; (b)-(d) perplexity, NPMI and spar-
sity of RRT-VAE with different ∆ and prior α̂ settings.
In these experiments, λ is set to 0.01, the number of
topics is set to 50.

Influence of the rounding precision ∆. A main
concern of RRT is that the induced discontinuities
may cause training to be unstable. As proved in
Section 3, this discontinuity actually causes little
impact on the stability of training. We substanti-
ate this conclusion in Figure 2 (a) by plotting the
training loss curves of RRT-VAE under different ∆
settings. As shown, all the training losses converge
stably when using different ∆. This demonstrates
that the precision of the rounding operation has lit-
tle impact on the training stability. The influences
of ∆ on perplexity and NPMI are also modest. As
shown in Figure 2 (b) and (c), the resulting perplex-
ities and NPMIs are in general insensitive to the ∆
settings.

From Figure 2 (b) and (d), it can also be ob-
served that the perplexity of RRT-VAE has correla-
tion with the sparsity. When ∆ changes from 1 to
10−10, the sparsity value of α̂ = 0.02 (green line

in Figure 2 (d)) jumps from 0.059 to around 0.55.
5 The corresponding perplexity value (green line
in Figure 2 (b)) also increases from 1078 to around
1400. In contrast, the sparsity levels of α̂ = 1.0 and
α̂ = 2.0 remain unchanged. Their corresponding
perplexities also stay at the same levels.

5.3.2 Results on Synthetic datasets
Our experiments on the synthetic datasets again
demonstrate that the rounding precision has little
impact on the training stability. Figure 3 (left) ex-
hibits how different ∆ settings influence the train-
ing performance of RRT-VAE when αg = 0.01
(the results of αg = 0.05 and 0.1 are shown in
Appendix A.2). As shown, all the training losses
decrease stably, although a higher ∆ setting hin-
ders the loss converging to a lower value. Figure
3 (right) reports how different ∆ settings influence
the recovery accuracy of RRT-VAE on three syn-
thetic datasets. It can be seen that a smaller ∆
achieves a better performance. Specifically, when
∆ = 1, the training loss remains at a high value and
the corresponding recovery accuracy is lower than
60%, indicating that RRT-VAE fails to fit the true
data distribution. In contrast, when ∆ = 10−10,
RRT-VAE fits the data well: the training loss drops
rapidly and converges to a much lower value; the
resulting recovery accuracy reaches up to 90%.

Figure 3: Training performances (left) and recovery
accuracy (right) of RRT-VAE on a synthetic dataset
(αg = 0.01) with different ∆ settings.

Recall that on 20NG, both the training and test-
ing performances are insensitive to the rounding
precision. In contrast, on synthetic datasets, the
rounding precision has a significant influence. This
phenomenon is reasonable, since the synthetic data
strictly satisfies the LDA generative process. A

5Since the sparsity we define is computed from the ran-
domly sampled θ, it is inherently stochastic due to randomness
in θ. Thus a small fluctuation of the computed sparsity value
needs not to indicate a true difference of sparsity levels. For
example, on the green line of Figure 2 (d), the sparsity values
of ∆ = 0.01 and ∆ = 10−10 are different, but the difference
is not large enough to suggest that the two models have dif-
ferent sparsity levels; such a difference is primarily due to
stochastic irregularity in our sparsity computation.
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higher ∆ setting causes the rounded distribution
deviate the Dirichlet posterior, thereby interfering
with the fitting of the data. On the other hand, the
underlying distribution of the real-world data does
not strictly conform to the LDA assumption. This
deviation, therefore, has little impact on fitting the
data.

5.4 Comparison with Other Models

In this section, we compare RRT-VAE with other
existing topic models on both real-world datasets
and synthetic datasets.

Real-world datasets
On real-world datasets, we do not compare Online
LDA, since the training of Online LDA on large
datasets is extremely time consuming and Online
LDA fails to obtain any good results after being
trained for a long time (results of Online LDA on
20NG are shown in Appendix B.2). For ProdLDA,
DirVAE and RRT-VAE, we tune the prior parameter
from [0.02,0.2,1.0]. The best λ settings of RRT-
VAE for each dataset are shown in Table 4. All the
compared models adopt the same prod decoder of
(5) on the real-world datasets.

20NG AGNews RCV1-v2 DBPedia Yelp

50 topics 0.01 0.008 0.002 0.005 0.005
200 topics 0.005 0.005 0.002 0.003 0.003

Table 4: Optimal λ settings of RRT-VAE for different
datasets.

NVDM ProdLDA DirVAE RRT-VAE

20NG 773/0.152 987/0.262 970/0.277 978/0.271
AGNews 1067/0.086 1457/0.196 1573/0.287 1318/0.287
RCV1-v2 511/0.121 623/0.164 746/0.137 623/0.262
DBPedia 617/0.093 1065/0.101 1018/0.102 851/0.227
Yelp 1003/0.120 1244/0.064 1353/0.068 1251/0.266

Table 5: Perplexity/NPMI of the compared topic mod-
els on five datasets. The number of topic is set to 50.

NVDM ProdLDA DirVAE RRT-VAE

20NG 1167/0.140 1050/0.172 973/0.215 997/0.214
AGNews 1160/0.056 2434/0.024 1523/0.156 1914/0.226
RCV1-v2 482/0.107 604/0.085 706/0.045 669/0.254
DBPedia 597/0.055 997/0.113 1028/0.041 884/0.161
Yelp 996/0.069 1272/0.072 1259/0.044 1325/0.174

Table 6: Perplexity/NPMI of the compared topic mod-
els on five datasets. The number of topic is set to 200.

margherita grimaldi pizzeria pepperoni sbarro brooklyn bianco mozza spinato concours
udon ichiza monta tokyo chaya agedashi saigon chinatown gyoza yaki
croissant decaf oatmeal scone coffe granola almond pastri latt muffin
hue bo pho vietnames viet banh lemongrass vietnam mi basil
sportsbook mandalay ronin kiki miyagi puck bachi shogun fatburg oxtail
heighten punctuat suppl amidst juxtapos conscious onward revel evok gleam
ewwww saliva kneel cock toothless broom discust demerit surveil sill
wan non asian pan asian pak taipei totti hotpot hai
sift empty hand marshall stuffer overstock spree reorgan sweatshirt store
preach outbreak heartfelt pois raymond uplift caregiv worship charismat deathli
buger haystack stripburg in and out quadrupl deli fukuburg fries
food poison ambienc atmospher awsom bedienungen cafeteria defiantli chipotl slowest
oldtown boozer after work carly grapevin fiver meet up hang
tombston pokey pizza but peroni numero pizzaria pizza n nth
insipid banal nil nla disposit st laurent hyper extraordinair procur
store sale housewar homegood inventori brows shelv thrift shopper stock
sashimi eel tempura nigiri yellowtail ponzu sushi edamam tuna wasabi
dr doctor exam physician nurs physician obgyn urgent clinic medic
airport plane flight baggag mccarran tsa passeng megabu shuttl airlin
workout instructor zumba yoga class bike gym crossfit fairway paintbal

Table 7: Topic words extracted from the Yelp dataset.
From top to bottom, each cell is extracted by NVDM,
ProdLDA, DirVAE and RRT-VAE. More examples are
exhibited in Appendix B.3.

The experimental results are shown in Table 5
and 6. It can be seen that on the small and medium
size datasets (20NG and AGNews), the perfor-
mance of DirVAE levels with RRT-VAE, while on
the large datasets (RCV1-v2, DBpedia and Yelp),
the NPMI of RRT-VAE is significantly better than
all the other compared models. Although the per-
plexity of NVDM is better than RRT-VAE, this gap
is small. On the other hand, on NPMI, RRT-VAE
outperforms NVDM by a very large margin. In
fact, it has been demonstrated that perplexity is
not necessarily a good metric for evaluating the
quality of learned topics (Newman et al., 2010).
Its correlation to the quality of the learned topics
is questionable 6 (Chang et al., 2009). With these
considerations, we argue that RRT-VAE is overall
superior to other compared models.

Table 7 exhibits the extracted topic words of
different models, where each line of the words cor-
responds to a certain topic. We see that the words
extracted by RRT-VAE (the bottom cell of Table
7) are much more interpretable, from which it can

6In general, perplexity measures the goodness-of-fit of data
to a learned model under the maximum likelihood principle.
This makes it a valid metric for evaluation when the learning
objective (as in the considered models) aims at maximizing the
data likelihood. On the other hand, we note that traditionally
in all VAE-LDA models (e.g., those compared in this paper)
and also in this paper, perplexity is in fact approximately
computed using the evidence lower bound (ELBO) of the data
likelihood, since exact computation of the data likelihood is
usually intractable. But the perplexity computed this way
aggregates the overall effects of both the learned decoder (i.e.,
the β matrix) and the learned encoder. Therefore it does not
provide a direct evaluation of the learned word distributions
in the β matrix. This problem is overcomed by the additional
NPMI measure, which is computed directly from the β matrix
and serves as a more indicative quality measurement of the
learned topics.
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be easily inferred that the corresponding topics are
“trade”, “Japanese food”, “medical” and “fitness”.
But it is not the case for the other models.

Synthetic datasets

We compare RRT-VAE with Online LDA,
ProdLDA and DirVAE on three synthetic datasets
which are generated by different Dirichlet param-
eters. The compared three neural topic models
adopt the same standard decoder of (4). Since
NVDM is a pure Gaussian VAE model without any
approximation of Dirichlet distributions, it is not
compared in this experiment. Table 8 reports the
recovery accuracy of the compared models. The
experimental results strongly demonstrate the abil-
ity of RRT-VAE as an inference method to learn
LDA. Specifically, RRT-VAE levels with Online
LDA on recovery accuracy, while it enjoys a much
higher computational efficiency. Among three neu-
ral topic models, RRT-VAE clearly outperforms
the others. Appendix A.3 shows an example of the
ground truth matrix Tg and the matrix recovered by
RRT-VAE.

Online LDA ProdLDA DirVAE RRT-VAE

αg=0.01 87.33% 84.0% 91.33% 96.67%
αg=0.05 91.33% 83.0% 84.67% 93.0%
αg=0.1 90.0% 55.67% 83.67% 91.0%

Table 8: Recovery accuracy of four topic models on
synthetic datasets generated by three different αg set-
tings. For RRT-VAE, λ is set to 1; ∆ is set to 10−10.

6 Concluding Remarks

In this paper, rounded reparameterization trick, or
RRT, is shown as an effective and efficient repa-
rameterization method for Dirichlet distributions
in the context of learning VAE based LDA models.
In fact, the applicability of RRT can be generalized
beyond Dirichlet distributions. This is because any
distribution can be reparameterized to an “RRT
form” as long as a sampling algorithm exists for
that distribution. Thus it will be interesting to inves-
tigate the performance of RRT in other applications
of VAE beyond topic modelling. Successes in these
investigations will certainly extend the applicabil-
ity of VAE to much broader application domains
and model families.
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A Additional Results on Synthetic
Datasets

A.1 Topic recovery accuracy using prod
decoder

ProdLDA DirVAE RRT-VAE

αg=0.01 50.33% 59.33% 61.33%
αg=0.05 48.33% 64.67% 59.67%
αg=0.1 43.0% 64.66% 62.33%

Table 9: Topic words recovery accuracy of three neural
topic models on synthetic datasets generated with three
different αg settings. The models adopt the same prod
decoder structure. For RRT-VAE, λ is set to 1; ∆ is set
to 10−10.

Table 9 reports the topic recovery accuracy of
three neural topic models using the prod decoder.
Compared to Table 8, it can be seen that the stan-
dard decoder significantly outperforms the prod
decoder on the synthetic datasets.

A.2 Training performance
Figure 4 plots the training loss curves of RRT-VAE
with different ∆ settings on two synthetic datasets
(α = 0.05 and α = 0.1). The curves perform
similarly to Figure 3 (left).

Figure 4: Training performances of RRT-VAE with dif-
ferent ∆ settings. Left: αg = 0.05; right: αg = 0.1.

A.3 Recovered topic words
Table 10 exhibits an example of the ground truth
topic word matrix Tg used in our experiments and
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the corresponding recovered matrix TL learned by
RRT-VAE. Note that the rows of TL are arbitrar-
ily ordered. The matching relation between TL
and Tg can be found using the evaluation method
introduced in Section 5.2.

20 225 427 252 256 177 135 257 78 193
115 269 399 132 360 164 0 42 247 446
425 257 115 433 472 497 103 434 223 216
10 1 15 91 397 367 459 412 93 101
498 53 60 209 120 213 51 351 80 92
146 399 232 268 234 77 401 353 42 200
81 454 444 321 44 441 410 233 425 406
435 320 288 25 53 411 436 46 187 437
459 207 69 462 76 247 162 221 389 288
282 26 336 154 86 94 471 85 1 224
204 446 484 92 163 403 467 250 392 175
334 492 24 388 446 68 391 180 283 390
494 195 46 474 27 64 150 388 152 314
315 73 217 160 366 363 113 53 433 158
295 3 23 145 334 139 198 395 105 180
96 223 29 354 359 51 270 297 490 405
288 289 485 240 410 421 457 7 139 249
444 7 356 369 454 84 91 83 176 485
233 23 133 70 303 269 401 423 329 120
298 493 347 481 50 127 351 70 353 201
380 369 223 82 491 301 23 439 324 60
466 486 210 122 400 234 59 497 371 255
390 17 421 295 476 453 253 67 109 147
96 175 282 81 181 214 350 76 217 37
5 177 272 94 383 54 307 463 265 68
190 411 334 319 122 318 278 105 240 434
387 244 471 13 374 30 207 97 133 438
121 144 319 472 392 55 234 346 61 499
347 266 375 422 21 239 157 90 247 129
475 0 288 196 120 382 485 52 103 457

233 133 23 70 303 401 423 269 329 120
96 223 29 354 359 51 270 297 490 405
315 73 217 160 366 363 113 433 158 412
204 446 92 484 163 467 403 250 392 175
494 195 474 27 46 64 150 388 152 314
435 320 288 25 411 53 436 46 187 437
295 3 23 145 334 139 198 395 105 180
347 266 375 422 21 239 157 90 247 244
0 475 288 196 120 382 485 52 103 457
121 144 319 392 472 55 234 346 61 499
81 454 444 321 44 441 410 233 425 406
190 411 334 319 122 278 318 434 309 105
298 493 347 481 50 351 127 70 201 353
288 289 485 240 410 421 457 7 139 249
96 175 282 81 181 214 76 350 495 37
380 369 82 223 491 301 23 439 324 60
20 225 427 252 177 256 135 257 78 193
387 244 471 13 30 374 207 97 133 438
459 207 69 462 76 247 162 221 389 288
115 269 399 132 360 164 0 42 247 213
282 26 336 154 86 94 471 85 1 284
5 177 272 94 383 54 307 463 265 49
10 1 15 91 397 367 459 412 93 271
466 210 486 122 400 234 59 497 255 371
146 399 232 268 234 401 77 353 42 493
498 60 53 209 120 51 351 213 80 92
444 7 356 369 84 454 91 83 176 485
425 257 115 433 472 497 103 434 223 216
390 17 421 476 453 295 253 67 109 147
334 492 24 388 446 391 68 180 283 338

Table 10: Left: the ground truth topic word matrix Tg;
Right: a matrix TL learned by RRT-VAE. Note that the
rows of TL are arbitrarily ordered. For example, the
first and second rows of Tg individually correspond to
the 11th and 14th rows of TL (as shown in bold).

B Additional Results on Real-world
Datasets

B.1 Repetitive words

write article one get know like think say go use
write article get one know like use think say go
get go like write make people article insurance tax one
write article one get use like think know go say
know thanks please anyone write get email article post like

Table 11: The standard decoder appears to extract many
repetitive words on 20NG.

As shown in Table 11, when using the standard
decoder on the 20NG dataset, RRT-VAE appears
to extract many repetitive topic words.

B.2 Performance of Online LDA on 20NG

Perplexity NPMI

50 topics 1183 0.181
200 topics 2728 0.162

Table 12: The experimental results of Online LDA on
the 20NG dataset.

B.3 Topic words extracted by RRT-VAE
Table 13 exhibits the topic words extracted by RRT-
VAE from four real-world datasets (20NG, AG-
News, RCV1-v2 and DBpedia), where each line of
the words corresponds to a certain topic.

health medical patient disease medicine estimate hospital care service coverage
violent gun crime handgun usa criminal uk homicide defend firearm
constitution senate amendment representative states president extend congress militia bear
homosexual male sexual man statistics percent rsa number gay behavior
fuel moon cool lunar air launch heat stage orbit cold
guilti conspiraci ghraib martha milosev enron prison yugoslav torture sentence
ansari spaceshipon genesi space hubbl parachut spacecraft nasa station astronaut
docomo nokia vodafon phone motorola blackberri ip mobil treo mmo
kill explod injur dead quak typhoon peopl jakarta bomb landslide
mice skeleton supercompute gene genetic stem clone ancestor scientist speci
thriv lifestyl shop museum flock fame cultur tast dream ancient
desktop access network internet digit modem intranet download voice compute
durum flood moisture disaster wheat grain hrw canol sorghum crop
detain troop gunfire violent policeman military siege dozen terror embass
attorney counsel felon lawsuit jury testif improp hear conspir guilt
paperback reprint book republish young adult isbn author locu scholast
desktop server intel web bas software device microsoft applic uav
clarinet bassist guitarist drummer banjo violin guitar drum saxophon keyboardist
airway airport iata airlin icao brokerag telecommun exchang asset financi

Table 13: Topic words extracted by RRT-VAE from
four different datasets. From top to bottom, each cell is
extracted from 20NG, AGNews, RCV1-v2 and DBpe-
dia.


