
Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 107–118
November 16-20, 2020. c©2020 Association for Computational Linguistics

107

The Language Interpretability Tool:
Extensible, Interactive Visualizations and Analysis for NLP Models

Ian Tenney,∗James Wexler,∗Jasmijn Bastings, Tolga Bolukbasi,
Andy Coenen, Sebastian Gehrmann, Ellen Jiang, Mahima Pushkarna,

Carey Radebaugh, Emily Reif, Ann Yuan
Google Research

{iftenney,jwexler}@google.com

Abstract

We present the Language Interpretability Tool
(LIT), an open-source platform for visualiza-
tion and understanding of NLP models. We
focus on core questions about model behav-
ior: Why did my model make this predic-
tion? When does it perform poorly? What
happens under a controlled change in the in-
put? LIT integrates local explanations, ag-
gregate analysis, and counterfactual genera-
tion into a streamlined, browser-based inter-
face to enable rapid exploration and error anal-
ysis. We include case studies for a diverse set
of workflows, including exploring counterfac-
tuals for sentiment analysis, measuring gen-
der bias in coreference systems, and explor-
ing local behavior in text generation. LIT sup-
ports a wide range of models—including clas-
sification, seq2seq, and structured prediction—
and is highly extensible through a declara-
tive, framework-agnostic API. LIT is under ac-
tive development, with code and full documen-
tation available at https://github.com/

pair-code/lit.1

1 Introduction

Advances in modeling have brought unprecedented
performance on many NLP tasks (e.g. Wang et al.,
2019), but many questions remain about the be-
havior of these models under domain shift (Blitzer
and Pereira, 2007) and adversarial settings (Jia and
Liang, 2017), and for their tendencies to behave
according to social biases (Bolukbasi et al., 2016;
Caliskan et al., 2017) or shallow heuristics (e.g.
McCoy et al., 2019; Poliak et al., 2018). For any
new model, one might want to know: What kind
of examples does my model perform poorly on?
Why did my model make this prediction? And
critically, does my model behave consistently if

∗ Equal contribution.
1A video walkthrough is available at https://youtu.

be/j0OfBWFUqIE.

I change things like textual style, verb tense, or
pronoun gender? Despite the recent explosion of
work on model understanding and evaluation (e.g.
Belinkov et al., 2020; Linzen et al., 2019; Ribeiro
et al., 2020), there is no “silver bullet” for analy-
sis. Practitioners must often experiment with many
techniques, looking at local explanations, aggregate
metrics, and counterfactual variations of the input
to build a full understanding of model behavior.

Existing tools can assist with this process, but
many come with limitations: offline tools such as
TFMA (Mewald, 2019) can provide only aggre-
gate metrics, interactive frontends (e.g. Wallace
et al., 2019) may focus on single-datapoint expla-
nation, and more integrated tools (e.g. Wexler et al.,
2020; Mothilal et al., 2020; Strobelt et al., 2018)
often work with only a narrow range of models.
Switching between tools or adapting a new method
from research code can take days of work, distract-
ing from the real task of error analysis. An ideal
workflow would be seamless and interactive: users
should see the data, what the model does with it,
and why, so they can quickly test hypotheses and
build understanding.

With this in mind, we introduce the Language
Interpretability Tool (LIT), a toolkit and browser-
based user interface (UI) for NLP model un-
derstanding. LIT supports local explanations—
including salience maps, attention, and rich vi-
sualizations of model predictions—as well as ag-
gregate analysis—including metrics, embedding
spaces, and flexible slicing—and allows users to
seamlessly hop between them to test local hypothe-
ses and validate them over a dataset. LIT provides
first-class support for counterfactual generation:
new datapoints can be added on the fly, and their
effect on the model visualized immediately. Side-
by-side comparison allows for two models, or two
datapoints, to be visualized simultaneously.

We recognize that research workflows are con-

https://github.com/pair-code/lit
https://github.com/pair-code/lit
https://youtu.be/j0OfBWFUqIE
https://youtu.be/j0OfBWFUqIE

108

Figure 1: The LIT UI, showing a fine-tuned BERT (Devlin et al., 2019) model on the Stanford Sentiment Treebank
(Socher et al., 2013) development set. The top half shows a selection toolbar, and, left-to-right: the embedding
projector, the data table, and the datapoint editor. Tabs present different modules in the bottom half; the view above
shows classifier predictions, an attention visualization, and a confusion matrix.

stantly evolving, and designed LIT along the fol-
lowing principles:

• Flexible: Support a wide range of NLP tasks,
including classification, seq2seq, language mod-
eling, and structured prediction.

• Extensible: Designed for experimentation, and
can be reconfigured and extended for novel work-
flows.

• Modular: Components are self-contained,
portable, and simple to implement.

• Framework agnostic: Works with any model
that can run from Python —including Tensor-
Flow (Abadi et al., 2015), PyTorch (Paszke et al.,
2019), or remote models on a server.

• Easy to use: Low barrier to entry, with only a
small amount of code needed to add models and
data (Section 4.3), and an easy path to access
sophisticated functionality.

2 User Interface and Functionality

LIT has a browser-based UI comprised of modules
(Figure 1) which contain controls and visualiza-
tions for specific tasks (Table 1). At the most basic
level, LIT works as a simple demo server: one can
enter text, press a button, and see the model’s pre-
dictions. But by loading an evaluation set, allowing

dynamic datapoint generation, and an array of in-
teractive visualizations, metrics, and modules that
respond to user input, LIT supports a much richer
set of user journeys:

J1 - Explore the dataset. Users can interactively
explore datasets using different criteria across mod-
ules like the data table and the embeddings module
(similar to Smilkov et al. (2016)), in which a PCA
or UMAP (McInnes et al., 2018) projection can be
rotated, zoomed, and panned to explore clusters
and global structures (Figure 1-top left).

J2 - Find interesting datapoints. Users can
identify interesting datapoints for analysis, cycle
through them, and save selections for future use.
For example, users can select off-diagonal groups
from a confusion matrix, examine outlying clusters
in embedding space, or select a range based on
scalar values (Figure 4 (a)).

J3 - Explain local behavior. Users can deep-
dive into model behavior on selected individual
datapoints using a variety of modules depending
on the model task and type. For instance, users
can compare explanations from salience maps, in-
cluding local gradients (Li et al., 2016) and LIME
(Ribeiro et al., 2016), or look for patterns in atten-
tion heads (Figure 1-bottom).

109

Module Description

Attention Displays an attention visualization for each layer and head.

Confusion Matrix A customizable confusion matrix for single model or multi-model comparison.

Counterfactual Generator Creates counterfactuals for selected datapoint(s) using a variety of techniques.

Data Table A tabular view of the data, with sorting, searching, and filtering support.

Datapoint Editor Editable details of a selected datapoint.

Embeddings Visualizes dataset by layer-wise embeddings, projected down to 3 dimensions.

Metrics Table Displays metrics such as accuracy or BLEU score, on the whole dataset and slices.

Predictions Displays model predictions, including classification, text generation, language model
probabilities, and a graph visualization for structured prediction tasks.

Salience Maps Shows heatmaps for token-based feature attribution for a selected datapoint using tech-
niques like local gradients and LIME.

Scalar Plot Displays a jitter plot organizing datapoints by model output scores, metrics or other
scalar values.

Table 1: Built-in modules in the Language Interpretability Tool.

J4 - Generate new datapoints. Users can create
new datapoints based on datapoints of interest ei-
ther manually through edits, or with a range of auto-
matic counterfactual generators, such as backtrans-
lation (Bannard and Callison-Burch, 2005), nearest-
neighbor retrieval (Andoni and Indyk, 2006), word
substitutions (“great → terrible”), or adversarial
attacks like HotFlip (Ebrahimi et al., 2018) (Fig-
ure A.1). Datapoint provenance is tracked to facili-
tate easy comparison.

J5 - Compare side-by-side. Users can interac-
tively compare two or more models on the same
data, or a single model on two datapoints simul-
taneously. Visualizations automatically “replicate”
for a side-by-side view.

J6 - Compute metrics. LIT calculates and dis-
plays metrics for the whole dataset, the current
selection, as well as on manual or automatically-
generated slices (Figure 3 (c)) to easily find patterns
in model performance.

LIT’s interface allows these user journeys to
be explored interactively. Selecting a dataset and
model(s) will automatically show compatible mod-
ules in a multi-pane layout (Figure 1). A tabbed
bottom panel groups modules by workflow and
functionality, while the top panel shows persistent
modules for dataset exploration.

These modules respond dynamically to user in-
teractions. If a selection is made in the embedding
projector, for example, the metrics table will re-
spond automatically and compute scores on the se-
lected datapoints. Global controls make it easy to

page through examples, enter a comparison mode,
or save the selection as a named “slice”. In this way,
the user can quickly explore multiple workflows
using different combinations of modules.

A brief video demonstration of the LIT UI is
available at https://youtu.be/j0OfBWFUqIE.

3 Case Studies

Sentiment analysis. How well does a sentiment
classifier handle negation? We load the develop-
ment set of the Stanford Sentiment Treebank (SST;
Socher et al., 2013), and use the search function
in LIT’s data table (J1, J2) to find the 56 data-
points containing the word “not”. Looking at the
Metrics Table (J6), we find that surprisingly, our
BERT model (Devlin et al., 2019) gets 100% of
these correct! But we might want to know if this
is truly robust. With LIT, we can select individ-
ual datapoints and look for explanations (J3). For
example, take the negative review, “It’s not the ulti-
mate depression-era gangster movie.”. As shown
in Figure 2, salience maps suggest that “not” and
“ultimate” are important to the prediction.

We can verify this by creating modified inputs,
using LIT’s datapoint editor (J4). Removing “not”
gets a strongly positive prediction from “It’s the
ultimate depression-era gangster movie.”, while
replacing “ultimate” to get “It’s not the worst
depression-era gangster movie.” elicits a mildly
positive score from our model.

Gender bias in coreference. Does a system en-
code gendered associations, which might lead to
incorrect predictions? We load a coreference model

https://youtu.be/j0OfBWFUqIE

110

Figure 2: Salience maps on “It’s not the ultimate
depression-era gangster movie.”, suggesting that “not”
and “ultimate” are important to the model’s prediction.

Figure 3: Exploring a coreference model on the Wino-
gender dataset.

trained on OntoNotes (Hovy et al., 2006), and load
the Winogender (Rudinger et al., 2018) dataset into
LIT for evaluation. Each Winogender example has
a pronoun and two candidate referents, one a occu-
pation term like (“technician”) and one an “other
participant” (like “customer”). Our model predicts
coreference probabilities for each candidate. We
can explore the model’s sensitivity to pronouns by
comparing two examples side-by-side (see Figure 3
(a).) We can see how commonly the model makes
similar errors by paging through the dataset (J1), or
by selecting specific slices of interest. For example,
we can use the scalar plot module (J2) (Figure 3
(b)) to select datapoints where the occupation term
is associated with a high proportion of male or
female workers, according to the U.S. Bureau of

Figure 4: Investigating a local generation error, from
selection of an interesting example to finding relevant
training datapoints that led to an error.

Labor Statistics (BLS; Caliskan et al., 2017).
In the Metrics Table (J6), we can slice this se-

lection by pronoun type and by the true referent.
On the set of male-dominated occupations (< 25%
female by BLS), we see the model performs well
when the ground-truth agrees with the stereotype -
e.g. when the answer is the occupation term, male
pronouns are correctly resolved 83% of the time,
compared to female pronouns only 37.5% of the
time (Figure 3 (c)).

Debugging text generation. Does the training
data explain a particular error in text generation?
We analyze a T5 (Raffel et al., 2019) model on
the CNN-DM summarization task (Hermann et al.,
2015), and loosely follow the steps of Strobelt et al.
(2018). LIT’s scalar plot module (J2) allows us to
look at per-example ROUGE scores, and quickly
select an example with middling performance (Fig-
ure 4 (a)). We find the generated text (Figure 4
(b)) contains an erroneous constituent: “alastair
cook was replaced as captain by former captain
...”. We can dig deeper, using LIT’s language mod-
eling module (Figure 4 (c)) to see that the token
“by” is predicted with high probability (28.7%).

To find out how T5 arrived at this prediction, we
utilize the “similarity searcher” component through
the counterfactual generator tab (Figure 4 (d)).
This performs a fast approximate nearest-neighbor
lookup (Andoni and Indyk, 2006) from a pre-built

111

index over the training corpus, using embeddings
from the T5 decoder. With one click, we can re-
trieve 25 nearest neighbors and add them to the LIT
UI for inspection (as in Figure A.1). We see that
the words “captain” and “former” appear 34 and 16
times in these examples–along with 3 occurrences
of “replaced by” (Figure 4 (e))–suggesting a strong
prior toward our erroneous phrase.

4 System design and components

The LIT UI is written in TypeScript, and commu-
nicates with a Python backend that hosts models,
datasets, counterfactual generators, and other inter-
pretation components. LIT is agnostic to model-
ing frameworks; data is exchanged using NumPy
arrays and JSON, and components are integrated
through a declarative “spec” system (Section 4.4)
that minimizes cross-dependencies and encourages
modularity. A more detailed design schematic is
given in the Appendix, Figure A.2.

4.1 Frontend
The browser-based UI is a single-page web app,
built with lit-element2 and MobX3. A shared frame-
work of “service” objects tracks interaction state,
such as the active model, dataset, and selection, and
coordinates a set of otherwise-independent mod-
ules which provide controls and visualizations.

4.2 Backend
The Python backend serves models, data, and in-
terpretation components. The server is stateless,
but includes a caching layer for model predictions,
which frees components from needing to store inter-
mediate results and allows interactive use of large
models like BERT (Devlin et al., 2019) and GPT-2
(Radford et al., 2019). Component types include:

• Models which implement a predict() func-
tion, input spec(), and output spec().

• Datasets which load data from any source and
expose an .examples field and a spec().

• Interpreters are called on a model and a set of
datapoints, and return output—such as a salience
map—that may also depend on the model’s pre-
dictions.

• Generators are interpreters that return new input
datapoints from source datapoints.

2https://lit-element.polymer-project.
org/. Naming is coincidental; the Language Interpretability
Tool is not related to the lit-html or lit-element projects.

3https://mobx.js.org/

• Metrics are interpreters which return aggregate
scores for a list of inputs.

These components are designed to be self-
contained and interact through minimalist APIs,
with most exposing only one or two methods plus
spec information. They communicate through stan-
dard Python and NumPy types, making LIT com-
patible with most common modeling frameworks,
including TensorFlow (Abadi et al., 2015) and Py-
Torch (Paszke et al., 2019). Components are also
portable, and can easily be used in a notebook or
standalone script. For example:

dataset = SSTData(...)
model = SentimentModel(...)
lime = lime_explainer.LIME()
lime.run([dataset.examples[0]],

model, dataset)

will run the LIME (Ribeiro et al., 2016) component
and return a list of tokens and their importance to
the model prediction.

4.3 Running with your own model
LIT is built as a Python library, and its typical use is
to create a short demo.py script that loads models
and data and passes them to the lit.Server
class:

models = {'foo': FooModel(...),
'bar': BarModel(...)}

datasets = {'baz': BazDataset(...)}
server = lit.Server(models, datasets)
server.serve()

A full example script is included in the Appendix
(Figure A.3). The same server can host several
models and datasets for side-by-side comparison,
and can also interact with remotely-hosted models.

4.4 Extensibility: the spec() system
NLP models come in many shapes, with inputs
that may involve multiple text segments, additional
categorical features, scalars, and more, and output
modalities that include classification, regression,
text generation, and span labeling. Models may
have multiple heads of different types, and may
also return additional values like gradients, embed-
dings, or attention maps. Rather than enumerate all
variations, LIT describes each model and dataset
with an extensible system of semantic types.

For example, a dataset class for textual entail-
ment (Dagan et al., 2006; Bowman et al., 2015)
might have spec(), describing available fields:

https://lit-element.polymer-project.org/
https://lit-element.polymer-project.org/
https://mobx.js.org/

112

• premise: TextSegment()
• hypothesis: TextSegment()
• label: MulticlassLabel(vocab=...)

A model for the same task would have an
input spec() to describe required inputs:

• premise: TextSegment()
• hypothesis: TextSegment()

As well as an output spec() to describe its
predictions:

• probas: MulticlassPreds(
vocab=..., parent="label")

Other LIT components can read this spec, and
infer how to operate on the data. For example, the
MulticlassMetrics component searches for
MulticlassPreds fields (which contain prob-
abilities), uses the vocab annotation to decode to
string labels, and evaluates these against the input
field described by parent. Frontend modules can
detect these fields, and automatically display: for
example, the embedding projector will appear if
Embeddings are available.

New types can be easily defined: a
SpanLabels class might represent the out-
put of a named entity recognition model, and
custom components can be added to interpret it.

5 Related Work

A number of tools exist for interactive analysis of
trained ML models. Many are general-purpose,
such as the What-If Tool (Wexler et al., 2020), Cap-
tum (Kokhlikyan et al., 2019), Manifold (Zhang
et al., 2018), or InterpretML (Nori et al., 2019),
while others focus on specific applications like fair-
ness, including FairVis (Cabrera et al., 2019) and
FairSight (Ahn and Lin, 2019). And some pro-
vide rich support for counterfactual analysis, either
within-dataset (What-If Tool) or dynamically gen-
erated as in DiCE (Mothilal et al., 2020).

For NLP, a number of tools exist for specific
model classes, such as RNNs (Strobelt et al., 2017),
Transformers (Hoover et al., 2020; Vig and Be-
linkov, 2019), or text generation (Strobelt et al.,
2018). More generally, AllenNLP Interpret (Wal-
lace et al., 2019) introduces a modular framework
for interpretability components, focused on single-
datapoint explanations and integrated tightly with
the AllenNLP (Gardner et al., 2017) framework.

While many components exist in other tools,
LIT aims to integrate local explanations, aggre-
gate analysis, and counterfactual generation into a
single tool. In this, it is most similar to Errudite
(Wu et al., 2019), which provides an integrated UI
for NLP error analysis, including a custom DSL
for text transformations and the ability to evaluate
over a corpus. However, LIT is explicitly designed
for flexibility: we support a broad range of work-
flows and provide a modular design for extension
with new tasks, visualizations, and generation tech-
niques.

Limitations LIT is an evaluation tool, and as
such is not directly useful for training-time mon-
itoring. As LIT is built to be interactive, it does
not scale to large datasets as well as offline tools
such as TFMA (Mewald, 2019). (Currently, the
LIT UI can handle about 10,000 examples at once.)
Because LIT is framework-agnostic, it does not
have the deep model integration of tools such as
AllenNLP Interpret (Wallace et al., 2019) or Cap-
tum (Kokhlikyan et al., 2019). This makes many
things simpler and more portable, but also requires
more code for techniques like integrated gradients
(Sundararajan et al., 2017) that need to directly
manipulate parts of the model.

6 Conclusion and Roadmap

LIT provides an integrated UI and a suite of com-
ponents for visualizing and exploring the behav-
ior of NLP models. It enables interactive analysis
both at the single-datapoint level and over a whole
dataset, with first-class support for counterfactual
generation and evaluation. LIT supports a diverse
range of workflows, from explaining individual pre-
dictions to disaggregated analysis to probing for
bias through counterfactuals. LIT also supports a
range of model types and techniques out of the box,
and is designed for extensibility through simple,
framework-agnostic APIs.

LIT is under active development by a small team.
Planned upcoming additions include new counter-
factual generation plug-ins, additional metrics and
visualizations for sequence and structured output
types, and a greater ability to customize the UI for
different applications.

LIT is open-source under an Apache 2.0 license,
and we welcome contributions from the community
at https://github.com/pair-code/lit.

https://github.com/pair-code/lit

113

Acknowledgments

We thank Slav Petrov, Martin Wattenberg, Fer-
nanda Viegas, Kellie Webster, Emily Pitler, Dipan-
jan Das, Leslie Lai, Kristen Olson, and other mem-
bers of PAIR and the Language team at Google
Research for many productive discussions during
development. We also thank our anonymous re-
viewers for their helpful feedback, and Pere Lluis,
Luke Gessler, and Kevin Robinson for their contri-
butions to the open-source code.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Yongsu Ahn and Yu-Ru Lin. 2019. Fairsight: Visual
analytics for fairness in decision making. IEEE
Transactions on Visualization and Computer Graph-
ics, page 1–1.

Alexandr Andoni and Piotr Indyk. 2006. Near-optimal
hashing algorithms for approximate nearest neigh-
bor in high dimensions. In 2006 47th annual
IEEE symposium on foundations of computer sci-
ence (FOCS’06), pages 459–468. IEEE.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Proceed-
ings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05), pages 597–
604, Ann Arbor, Michigan. Association for Compu-
tational Linguistics.

Yonatan Belinkov, Sebastian Gehrmann, and Ellie
Pavlick. 2020. Interpretability and analysis in neural
NLP. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: Tu-
torial Abstracts, pages 1–5, Online. Association for
Computational Linguistics.

John Blitzer and Fernando Pereira. 2007. Domain
adaptation of natural language processing systems.
University of Pennsylvania, pages 1–106.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016.
Man is to computer programmer as woman is to

homemaker? debiasing word embeddings. In Ad-
vances in Neural Information Processing Systems
29, pages 4349–4357.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Ángel Alexander Cabrera, Will Epperson, Fred
Hohman, Minsuk Kahng, Jamie Morgenstern, and
Duen Horng Chau. 2019. Fairvis: Visual analytics
for discovering intersectional bias in machine learn-
ing. In 2019 IEEE Conference on Visual Analytics
Science and Technology (VAST), pages 46–56. IEEE.

Aylin Caliskan, Joanna J. Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora contain human-like biases.
Science, 356(6334):183–186.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Machine Learning Challenges. Eval-
uating Predictive Uncertainty, Visual Object Classi-
fication, and Recognising Tectual Entailment, pages
177–190, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
31–36, Melbourne, Australia. Association for Com-
putational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. AllenNLP: A deep semantic natural language
processing platform.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Informa-
tion Processing Systems 28, pages 1693–1701.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A visual analysis tool to
explore learned representations in Transformer mod-
els. In Proceedings of the 58th Annual Meeting of

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1109/tvcg.2019.2934262
https://doi.org/10.1109/tvcg.2019.2934262
https://doi.org/10.3115/1219840.1219914
https://doi.org/10.3115/1219840.1219914
https://www.aclweb.org/anthology/2020.acl-tutorials.1
https://www.aclweb.org/anthology/2020.acl-tutorials.1
http://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings.pdf
http://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings.pdf
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.1126/science.aal4230
https://doi.org/10.1126/science.aal4230
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
https://www.aclweb.org/anthology/2020.acl-demos.22
https://www.aclweb.org/anthology/2020.acl-demos.22
https://www.aclweb.org/anthology/2020.acl-demos.22

114

the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 187–196, Online. Asso-
ciation for Computational Linguistics.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, NAACL-Short
’06, pages 57–60, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Narine Kokhlikyan, Vivek Miglani, Miguel Mar-
tin, Edward Wang, Jonathan Reynolds, Alexan-
der Melnikov, Natalia Lunova, and Orion Reblitz-
Richardson. 2019. Pytorch captum. https://
github.com/pytorch/captum.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in NLP. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 681–691, San Diego, California. As-
sociation for Computational Linguistics.

Tal Linzen, Grzegorz Chrupała, Yonatan Belinkov, and
Dieuwke Hupkes, editors. 2019. Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP. Association
for Computational Linguistics, Florence, Italy.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

Leland McInnes, John Healy, and James Melville.
2018. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint
arXiv:1802.03426.

Clemens Mewald. 2019. Introducing tensorflow model
analysis: Scaleable, sliced, and full-pass metrics.
https://blog.tensorflow.org/2018/03/
introducing-tensorflow-model-analysis.
html.

Ramaravind K Mothilal, Amit Sharma, and Chenhao
Tan. 2020. Explaining machine learning classifiers
through diverse counterfactual explanations. In Pro-
ceedings of the 2020 Conference on Fairness, Ac-
countability, and Transparency, pages 607–617.

Harsha Nori, Samuel Jenkins, Paul Koch, and Rich
Caruana. 2019. InterpretML: A unified framework
for machine learning interpretability. arXiv preprint
arXiv:1909.09223.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language in-
ference. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics,
pages 180–191, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language models are unsupervised multi-
task learners. https://blog.openai.com/
better-language-models.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. “why should I trust you?”: Explaining the pre-
dictions of any classifier. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 97–101, San Diego, California. As-
sociation for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 8–14, New Orleans, Louisiana. Association
for Computational Linguistics.

Daniel Smilkov, Nikhil Thorat, Charles Nicholson,
Emily Reif, Fernanda B Viégas, and Martin Watten-
berg. 2016. Embedding projector: Interactive visu-
alization and interpretation of embeddings. In NIPS

http://dl.acm.org/citation.cfm?id=1614049.1614064
http://dl.acm.org/citation.cfm?id=1614049.1614064
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
https://github.com/pytorch/captum
https://github.com/pytorch/captum
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/N16-1082
https://www.aclweb.org/anthology/W19-4800
https://www.aclweb.org/anthology/W19-4800
https://www.aclweb.org/anthology/W19-4800
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://blog.tensorflow.org/2018/03/introducing-tensorflow-model-analysis.html
https://blog.tensorflow.org/2018/03/introducing-tensorflow-model-analysis.html
https://blog.tensorflow.org/2018/03/introducing-tensorflow-model-analysis.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/S18-2023
https://blog.openai.com/better-language-models
https://blog.openai.com/better-language-models
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/N16-3020
https://doi.org/10.18653/v1/N16-3020
https://www.aclweb.org/anthology/2020.acl-main.442
https://www.aclweb.org/anthology/2020.acl-main.442
https://doi.org/10.18653/v1/N18-2002
https://doi.org/10.18653/v1/N18-2002

115

2016 Workshop on Interpretable Machine Learning
in Complex Systems.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Hendrik Strobelt, Sebastian Gehrmann, Michael
Behrisch, Adam Perer, Hanspeter Pfister, and
Alexander M Rush. 2018. Seq2seq-vis: A visual
debugging tool for sequence-to-sequence models.
IEEE transactions on visualization and computer
graphics, 25(1):353–363.

Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfis-
ter, and Alexander M Rush. 2017. LSTMvis: A tool
for visual analysis of hidden state dynamics in recur-
rent neural networks. IEEE transactions on visual-
ization and computer graphics, 24(1):667–676.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70, pages 3319–3328.
PMLR.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76, Florence, Italy. As-
sociation for Computational Linguistics.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Sub-
ramanian, Matt Gardner, and Sameer Singh. 2019.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7–12, Hong Kong, China. Association for Compu-
tational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg,
F. Viégas, and J. Wilson. 2020. The what-if tool: In-
teractive probing of machine learning models. IEEE
Transactions on Visualization and Computer Graph-
ics, 26(1):56–65.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel Weld. 2019. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 747–763, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and
David Ebert. 2018. Manifold: A model-agnostic
framework for interpretation and diagnosis of ma-
chine learning models. IEEE Transactions on Visu-
alization and Computer Graphics, PP:1–1.

https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
http://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/D19-3002
https://doi.org/10.18653/v1/D19-3002
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.1109/TVCG.2018.2864499
https://doi.org/10.1109/TVCG.2018.2864499
https://doi.org/10.1109/TVCG.2018.2864499

116

A Appendices

Figure A.1: The counterfactual generator module, showing a set of generated datapoints in the staging area. The
labels can be maually edited before adding these to the dataset. In this example, the counterfactuals were created
using the word replacer, replacing the word “great” with “terrible” in each passage.

Figure A.2: Overview of LIT system architecture. The backend manages models, datasets, metrics, generators,
and interpretation components, as well as a caching layer to speed up interactive use. The frontend is a TypeScript
single-page app consisting of independent modules (webcomponents built with lit-element) which interact with
shared “services” that manage interaction state. The backend can be extended by passing components to the
lit.Server class in the demo script (Section 4.3 and Figure A.3), while the frontend can be extended by
importing new components in a single file, layout.ts, which both lists available modules and specifies their
position in the UI (Figure 1).

117

NLI_LABELS = ['entailment', 'neutral', 'contradiction']

class MultiNLIData(lit.Dataset):
"""Loader for MultiNLI dataset."""

def __init__(self, path):
Read the eval set from a .tsv file
df = pandas.read_csv(path, sep='\t')
Store as a list of dicts, conforming to self.spec()
self._examples = [{

'premise': row['sentence1'],
'hypothesis': row['sentence2'],
'label': row['gold_label'],
'genre': row['genre'],

} for _, row in df.iterrows()]

def spec(self):
return {

'premise': lit_types.TextSegment(),
'hypothesis': lit_types.TextSegment(),
'label': lit_types.Label(vocab=NLI_LABELS),
We can include additional fields, which don't have to be used by the model.
'genre': lit_types.Label(),

}

class MyNLIModel(lit.Model):
"""Wrapper for a Natural Language Inference model."""

def __init__(self, model_path, **kw):
Load the model into memory so we're ready for interactive use.
self._model = _load_my_model(model_path, **kw)

##
LIT API implementations
def predict(self, inputs: List[Input]) -> Iterable[Preds]:

"""Predict on a single minibatch of examples."""
examples = [self._model.convert_dict_input(d) for d in inputs] # any custom preprocessing
return self._model.predict_examples(examples) # returns a dict for each input

def input_spec(self):
"""Describe the inputs to the model."""
return {

'premise': lit_types.TextSegment(),
'hypothesis': lit_types.TextSegment(),

}

def output_spec(self):
"""Describe the model outputs."""
return {

The 'parent' keyword tells LIT where to look for gold labels when computing metrics.
'probas': lit_types.MulticlassPreds(vocab=NLI_LABELS, parent='label'),
This model returns two different embeddings, but you can easily add more.
'output_embs': lit_types.Embeddings(),
'mean_word_embs': lit_types.Embeddings(),
In LIT, we treat tokens as another model output. There can be more than one,
and the 'align' field describes which input segment they correspond to.
'premise_tokens': lit_types.Tokens(align='premise'),
'hypothesis_tokens': lit_types.Tokens(align='hypothesis'),
Gradients are also returned by the model; 'align' here references a Tokens field.
'premise_grad': lit_types.TokenGradients(align='premise_tokens'),
'hypothesis_grad': lit_types.TokenGradients(align='hypothesis_tokens'),
Similarly, attention references a token field, but here we want the model's full "internal"
tokenization, which might be something like: [START] foo bar baz [SEP] spam eggs [END]
'tokens': lit_types.Tokens(),
'attention_layer0': lit_types.AttentionHeads(align=['tokens', 'tokens']),
'attention_layer1': lit_types.AttentionHeads(align=['tokens', 'tokens']),
'attention_layer2': lit_types.AttentionHeads(align=['tokens', 'tokens']),
...and so on. Since the spec is just a dictionary of dataclasses, you can populate it
in a loop if you have many similar fields.

}

def main(_):
datasets = {

'mnli_matched': MultiNLIData('/path/to/dev_matched.tsv'),
'mnli_mismatched': MultiNLIData('/path/to/dev_mismatched.tsv'),

}

models = {
'model_foo': MyNLIModel('/path/to/model/foo/files'),
'model_bar': MyNLIModel('/path/to/model/bar/files'),

}

lit_demo = lit.Server(models, datasets, port=4321)
lit_demo.serve()

if __name__ == '__main__':
main()

Figure A.3: Example demo script to run LIT with two NLI models and the MultiNLI (Williams et al., 2018)
development sets. The actual model can be implemented in TensorFlow, PyTorch, C++, a REST API, or anything
that can be wrapped in a Python class: to work with LIT, users needs only to define the spec fields and implement
a predict() function which returns a dict of NumPy arrays for each input datapoint. The dataset loader is even
simpler; a complete implementation is given above to read from a TSV file, but libraries like TensorFlow Datasets
can also be used.

118

Figure A.4: Full UI screenshot, showing a BERT (Devlin et al., 2019) model on a sample from the “matched”
split of the MultiNLI (Williams et al., 2018) development set. The embedding projector (top left) shows three
clusters, corresponding to the output layer of the model, and colored by the true label. On the bottom, the metrics
table shows accuracy scores faceted by genre, and a confusion matrix shows the model predictions against the gold
labels.

(a)

(b)

Figure A.5: Confusion matrix (a) and side-by-side comparison of predictions and salience maps (b) on two sen-
timent classifiers. In model comparison mode, the confusion matrix can compare two models, and clicking an
off-diagonal cell with select examples where the two models make different predictions. In (b) we see one such
example, where the model in the second row (“sst 1”) predicts incorrectly, even though gradient-based salience
show both models focusing on the same tokens.

