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Abstract

We present the Language Interpretability Tool
(LIT), an open-source platform for visualiza-
tion and understanding of NLP models. We
focus on core questions about model behav-
ior: Why did my model make this predic-
tion? When does it perform poorly? What
happens under a controlled change in the in-
put? LIT integrates local explanations, ag-
gregate analysis, and counterfactual genera-
tion into a streamlined, browser-based inter-
face to enable rapid exploration and error anal-
ysis. We include case studies for a diverse set
of workflows, including exploring counterfac-
tuals for sentiment analysis, measuring gen-
der bias in coreference systems, and explor-
ing local behavior in text generation. LIT sup-
ports a wide range of models—including clas-
sification, seq2seq, and structured prediction—
and is highly extensible through a declara-
tive, framework-agnostic API. LIT is under ac-
tive development, with code and full documen-
tation available at https://github.com/

pair-code/lit.1

1 Introduction

Advances in modeling have brought unprecedented
performance on many NLP tasks (e.g. Wang et al.,
2019), but many questions remain about the be-
havior of these models under domain shift (Blitzer
and Pereira, 2007) and adversarial settings (Jia and
Liang, 2017), and for their tendencies to behave
according to social biases (Bolukbasi et al., 2016;
Caliskan et al., 2017) or shallow heuristics (e.g.
McCoy et al., 2019; Poliak et al., 2018). For any
new model, one might want to know: What kind
of examples does my model perform poorly on?
Why did my model make this prediction? And
critically, does my model behave consistently if

∗ Equal contribution.
1A video walkthrough is available at https://youtu.

be/j0OfBWFUqIE.

I change things like textual style, verb tense, or
pronoun gender? Despite the recent explosion of
work on model understanding and evaluation (e.g.
Belinkov et al., 2020; Linzen et al., 2019; Ribeiro
et al., 2020), there is no “silver bullet” for analy-
sis. Practitioners must often experiment with many
techniques, looking at local explanations, aggregate
metrics, and counterfactual variations of the input
to build a full understanding of model behavior.

Existing tools can assist with this process, but
many come with limitations: offline tools such as
TFMA (Mewald, 2019) can provide only aggre-
gate metrics, interactive frontends (e.g. Wallace
et al., 2019) may focus on single-datapoint expla-
nation, and more integrated tools (e.g. Wexler et al.,
2020; Mothilal et al., 2020; Strobelt et al., 2018)
often work with only a narrow range of models.
Switching between tools or adapting a new method
from research code can take days of work, distract-
ing from the real task of error analysis. An ideal
workflow would be seamless and interactive: users
should see the data, what the model does with it,
and why, so they can quickly test hypotheses and
build understanding.

With this in mind, we introduce the Language
Interpretability Tool (LIT), a toolkit and browser-
based user interface (UI) for NLP model un-
derstanding. LIT supports local explanations—
including salience maps, attention, and rich vi-
sualizations of model predictions—as well as ag-
gregate analysis—including metrics, embedding
spaces, and flexible slicing—and allows users to
seamlessly hop between them to test local hypothe-
ses and validate them over a dataset. LIT provides
first-class support for counterfactual generation:
new datapoints can be added on the fly, and their
effect on the model visualized immediately. Side-
by-side comparison allows for two models, or two
datapoints, to be visualized simultaneously.

We recognize that research workflows are con-

https://github.com/pair-code/lit
https://github.com/pair-code/lit
https://youtu.be/j0OfBWFUqIE
https://youtu.be/j0OfBWFUqIE
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Figure 1: The LIT UI, showing a fine-tuned BERT (Devlin et al., 2019) model on the Stanford Sentiment Treebank
(Socher et al., 2013) development set. The top half shows a selection toolbar, and, left-to-right: the embedding
projector, the data table, and the datapoint editor. Tabs present different modules in the bottom half; the view above
shows classifier predictions, an attention visualization, and a confusion matrix.

stantly evolving, and designed LIT along the fol-
lowing principles:

• Flexible: Support a wide range of NLP tasks,
including classification, seq2seq, language mod-
eling, and structured prediction.

• Extensible: Designed for experimentation, and
can be reconfigured and extended for novel work-
flows.

• Modular: Components are self-contained,
portable, and simple to implement.

• Framework agnostic: Works with any model
that can run from Python —including Tensor-
Flow (Abadi et al., 2015), PyTorch (Paszke et al.,
2019), or remote models on a server.

• Easy to use: Low barrier to entry, with only a
small amount of code needed to add models and
data (Section 4.3), and an easy path to access
sophisticated functionality.

2 User Interface and Functionality

LIT has a browser-based UI comprised of modules
(Figure 1) which contain controls and visualiza-
tions for specific tasks (Table 1). At the most basic
level, LIT works as a simple demo server: one can
enter text, press a button, and see the model’s pre-
dictions. But by loading an evaluation set, allowing

dynamic datapoint generation, and an array of in-
teractive visualizations, metrics, and modules that
respond to user input, LIT supports a much richer
set of user journeys:

J1 - Explore the dataset. Users can interactively
explore datasets using different criteria across mod-
ules like the data table and the embeddings module
(similar to Smilkov et al. (2016)), in which a PCA
or UMAP (McInnes et al., 2018) projection can be
rotated, zoomed, and panned to explore clusters
and global structures (Figure 1-top left).

J2 - Find interesting datapoints. Users can
identify interesting datapoints for analysis, cycle
through them, and save selections for future use.
For example, users can select off-diagonal groups
from a confusion matrix, examine outlying clusters
in embedding space, or select a range based on
scalar values (Figure 4 (a)).

J3 - Explain local behavior. Users can deep-
dive into model behavior on selected individual
datapoints using a variety of modules depending
on the model task and type. For instance, users
can compare explanations from salience maps, in-
cluding local gradients (Li et al., 2016) and LIME
(Ribeiro et al., 2016), or look for patterns in atten-
tion heads (Figure 1-bottom).
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Module Description

Attention Displays an attention visualization for each layer and head.

Confusion Matrix A customizable confusion matrix for single model or multi-model comparison.

Counterfactual Generator Creates counterfactuals for selected datapoint(s) using a variety of techniques.

Data Table A tabular view of the data, with sorting, searching, and filtering support.

Datapoint Editor Editable details of a selected datapoint.

Embeddings Visualizes dataset by layer-wise embeddings, projected down to 3 dimensions.

Metrics Table Displays metrics such as accuracy or BLEU score, on the whole dataset and slices.

Predictions Displays model predictions, including classification, text generation, language model
probabilities, and a graph visualization for structured prediction tasks.

Salience Maps Shows heatmaps for token-based feature attribution for a selected datapoint using tech-
niques like local gradients and LIME.

Scalar Plot Displays a jitter plot organizing datapoints by model output scores, metrics or other
scalar values.

Table 1: Built-in modules in the Language Interpretability Tool.

J4 - Generate new datapoints. Users can create
new datapoints based on datapoints of interest ei-
ther manually through edits, or with a range of auto-
matic counterfactual generators, such as backtrans-
lation (Bannard and Callison-Burch, 2005), nearest-
neighbor retrieval (Andoni and Indyk, 2006), word
substitutions (“great → terrible”), or adversarial
attacks like HotFlip (Ebrahimi et al., 2018) (Fig-
ure A.1). Datapoint provenance is tracked to facili-
tate easy comparison.

J5 - Compare side-by-side. Users can interac-
tively compare two or more models on the same
data, or a single model on two datapoints simul-
taneously. Visualizations automatically “replicate”
for a side-by-side view.

J6 - Compute metrics. LIT calculates and dis-
plays metrics for the whole dataset, the current
selection, as well as on manual or automatically-
generated slices (Figure 3 (c)) to easily find patterns
in model performance.

LIT’s interface allows these user journeys to
be explored interactively. Selecting a dataset and
model(s) will automatically show compatible mod-
ules in a multi-pane layout (Figure 1). A tabbed
bottom panel groups modules by workflow and
functionality, while the top panel shows persistent
modules for dataset exploration.

These modules respond dynamically to user in-
teractions. If a selection is made in the embedding
projector, for example, the metrics table will re-
spond automatically and compute scores on the se-
lected datapoints. Global controls make it easy to

page through examples, enter a comparison mode,
or save the selection as a named “slice”. In this way,
the user can quickly explore multiple workflows
using different combinations of modules.

A brief video demonstration of the LIT UI is
available at https://youtu.be/j0OfBWFUqIE.

3 Case Studies

Sentiment analysis. How well does a sentiment
classifier handle negation? We load the develop-
ment set of the Stanford Sentiment Treebank (SST;
Socher et al., 2013), and use the search function
in LIT’s data table (J1, J2) to find the 56 data-
points containing the word “not”. Looking at the
Metrics Table (J6), we find that surprisingly, our
BERT model (Devlin et al., 2019) gets 100% of
these correct! But we might want to know if this
is truly robust. With LIT, we can select individ-
ual datapoints and look for explanations (J3). For
example, take the negative review, “It’s not the ulti-
mate depression-era gangster movie.”. As shown
in Figure 2, salience maps suggest that “not” and
“ultimate” are important to the prediction.

We can verify this by creating modified inputs,
using LIT’s datapoint editor (J4). Removing “not”
gets a strongly positive prediction from “It’s the
ultimate depression-era gangster movie.”, while
replacing “ultimate” to get “It’s not the worst
depression-era gangster movie.” elicits a mildly
positive score from our model.

Gender bias in coreference. Does a system en-
code gendered associations, which might lead to
incorrect predictions? We load a coreference model

https://youtu.be/j0OfBWFUqIE
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Figure 2: Salience maps on “It’s not the ultimate
depression-era gangster movie.”, suggesting that “not”
and “ultimate” are important to the model’s prediction.

Figure 3: Exploring a coreference model on the Wino-
gender dataset.

trained on OntoNotes (Hovy et al., 2006), and load
the Winogender (Rudinger et al., 2018) dataset into
LIT for evaluation. Each Winogender example has
a pronoun and two candidate referents, one a occu-
pation term like (“technician”) and one an “other
participant” (like “customer”). Our model predicts
coreference probabilities for each candidate. We
can explore the model’s sensitivity to pronouns by
comparing two examples side-by-side (see Figure 3
(a).) We can see how commonly the model makes
similar errors by paging through the dataset (J1), or
by selecting specific slices of interest. For example,
we can use the scalar plot module (J2) (Figure 3
(b)) to select datapoints where the occupation term
is associated with a high proportion of male or
female workers, according to the U.S. Bureau of

Figure 4: Investigating a local generation error, from
selection of an interesting example to finding relevant
training datapoints that led to an error.

Labor Statistics (BLS; Caliskan et al., 2017).
In the Metrics Table (J6), we can slice this se-

lection by pronoun type and by the true referent.
On the set of male-dominated occupations (< 25%
female by BLS), we see the model performs well
when the ground-truth agrees with the stereotype -
e.g. when the answer is the occupation term, male
pronouns are correctly resolved 83% of the time,
compared to female pronouns only 37.5% of the
time (Figure 3 (c)).

Debugging text generation. Does the training
data explain a particular error in text generation?
We analyze a T5 (Raffel et al., 2019) model on
the CNN-DM summarization task (Hermann et al.,
2015), and loosely follow the steps of Strobelt et al.
(2018). LIT’s scalar plot module (J2) allows us to
look at per-example ROUGE scores, and quickly
select an example with middling performance (Fig-
ure 4 (a)). We find the generated text (Figure 4
(b)) contains an erroneous constituent: “alastair
cook was replaced as captain by former captain
...”. We can dig deeper, using LIT’s language mod-
eling module (Figure 4 (c)) to see that the token
“by” is predicted with high probability (28.7%).

To find out how T5 arrived at this prediction, we
utilize the “similarity searcher” component through
the counterfactual generator tab (Figure 4 (d)).
This performs a fast approximate nearest-neighbor
lookup (Andoni and Indyk, 2006) from a pre-built
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index over the training corpus, using embeddings
from the T5 decoder. With one click, we can re-
trieve 25 nearest neighbors and add them to the LIT
UI for inspection (as in Figure A.1). We see that
the words “captain” and “former” appear 34 and 16
times in these examples–along with 3 occurrences
of “replaced by” (Figure 4 (e))–suggesting a strong
prior toward our erroneous phrase.

4 System design and components

The LIT UI is written in TypeScript, and commu-
nicates with a Python backend that hosts models,
datasets, counterfactual generators, and other inter-
pretation components. LIT is agnostic to model-
ing frameworks; data is exchanged using NumPy
arrays and JSON, and components are integrated
through a declarative “spec” system (Section 4.4)
that minimizes cross-dependencies and encourages
modularity. A more detailed design schematic is
given in the Appendix, Figure A.2.

4.1 Frontend
The browser-based UI is a single-page web app,
built with lit-element2 and MobX3. A shared frame-
work of “service” objects tracks interaction state,
such as the active model, dataset, and selection, and
coordinates a set of otherwise-independent mod-
ules which provide controls and visualizations.

4.2 Backend
The Python backend serves models, data, and in-
terpretation components. The server is stateless,
but includes a caching layer for model predictions,
which frees components from needing to store inter-
mediate results and allows interactive use of large
models like BERT (Devlin et al., 2019) and GPT-2
(Radford et al., 2019). Component types include:

• Models which implement a predict() func-
tion, input spec(), and output spec().

• Datasets which load data from any source and
expose an .examples field and a spec().

• Interpreters are called on a model and a set of
datapoints, and return output—such as a salience
map—that may also depend on the model’s pre-
dictions.

• Generators are interpreters that return new input
datapoints from source datapoints.

2https://lit-element.polymer-project.
org/. Naming is coincidental; the Language Interpretability
Tool is not related to the lit-html or lit-element projects.

3https://mobx.js.org/

• Metrics are interpreters which return aggregate
scores for a list of inputs.

These components are designed to be self-
contained and interact through minimalist APIs,
with most exposing only one or two methods plus
spec information. They communicate through stan-
dard Python and NumPy types, making LIT com-
patible with most common modeling frameworks,
including TensorFlow (Abadi et al., 2015) and Py-
Torch (Paszke et al., 2019). Components are also
portable, and can easily be used in a notebook or
standalone script. For example:

dataset = SSTData(...)
model = SentimentModel(...)
lime = lime_explainer.LIME()
lime.run([dataset.examples[0]],

model, dataset)

will run the LIME (Ribeiro et al., 2016) component
and return a list of tokens and their importance to
the model prediction.

4.3 Running with your own model
LIT is built as a Python library, and its typical use is
to create a short demo.py script that loads models
and data and passes them to the lit.Server
class:

models = {'foo': FooModel(...),
'bar': BarModel(...)}

datasets = {'baz': BazDataset(...)}
server = lit.Server(models, datasets)
server.serve()

A full example script is included in the Appendix
(Figure A.3). The same server can host several
models and datasets for side-by-side comparison,
and can also interact with remotely-hosted models.

4.4 Extensibility: the spec() system
NLP models come in many shapes, with inputs
that may involve multiple text segments, additional
categorical features, scalars, and more, and output
modalities that include classification, regression,
text generation, and span labeling. Models may
have multiple heads of different types, and may
also return additional values like gradients, embed-
dings, or attention maps. Rather than enumerate all
variations, LIT describes each model and dataset
with an extensible system of semantic types.

For example, a dataset class for textual entail-
ment (Dagan et al., 2006; Bowman et al., 2015)
might have spec(), describing available fields:

https://lit-element.polymer-project.org/
https://lit-element.polymer-project.org/
https://mobx.js.org/
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• premise: TextSegment()
• hypothesis: TextSegment()
• label: MulticlassLabel(vocab=...)

A model for the same task would have an
input spec() to describe required inputs:

• premise: TextSegment()
• hypothesis: TextSegment()

As well as an output spec() to describe its
predictions:

• probas: MulticlassPreds(
vocab=..., parent="label")

Other LIT components can read this spec, and
infer how to operate on the data. For example, the
MulticlassMetrics component searches for
MulticlassPreds fields (which contain prob-
abilities), uses the vocab annotation to decode to
string labels, and evaluates these against the input
field described by parent. Frontend modules can
detect these fields, and automatically display: for
example, the embedding projector will appear if
Embeddings are available.

New types can be easily defined: a
SpanLabels class might represent the out-
put of a named entity recognition model, and
custom components can be added to interpret it.

5 Related Work

A number of tools exist for interactive analysis of
trained ML models. Many are general-purpose,
such as the What-If Tool (Wexler et al., 2020), Cap-
tum (Kokhlikyan et al., 2019), Manifold (Zhang
et al., 2018), or InterpretML (Nori et al., 2019),
while others focus on specific applications like fair-
ness, including FairVis (Cabrera et al., 2019) and
FairSight (Ahn and Lin, 2019). And some pro-
vide rich support for counterfactual analysis, either
within-dataset (What-If Tool) or dynamically gen-
erated as in DiCE (Mothilal et al., 2020).

For NLP, a number of tools exist for specific
model classes, such as RNNs (Strobelt et al., 2017),
Transformers (Hoover et al., 2020; Vig and Be-
linkov, 2019), or text generation (Strobelt et al.,
2018). More generally, AllenNLP Interpret (Wal-
lace et al., 2019) introduces a modular framework
for interpretability components, focused on single-
datapoint explanations and integrated tightly with
the AllenNLP (Gardner et al., 2017) framework.

While many components exist in other tools,
LIT aims to integrate local explanations, aggre-
gate analysis, and counterfactual generation into a
single tool. In this, it is most similar to Errudite
(Wu et al., 2019), which provides an integrated UI
for NLP error analysis, including a custom DSL
for text transformations and the ability to evaluate
over a corpus. However, LIT is explicitly designed
for flexibility: we support a broad range of work-
flows and provide a modular design for extension
with new tasks, visualizations, and generation tech-
niques.

Limitations LIT is an evaluation tool, and as
such is not directly useful for training-time mon-
itoring. As LIT is built to be interactive, it does
not scale to large datasets as well as offline tools
such as TFMA (Mewald, 2019). (Currently, the
LIT UI can handle about 10,000 examples at once.)
Because LIT is framework-agnostic, it does not
have the deep model integration of tools such as
AllenNLP Interpret (Wallace et al., 2019) or Cap-
tum (Kokhlikyan et al., 2019). This makes many
things simpler and more portable, but also requires
more code for techniques like integrated gradients
(Sundararajan et al., 2017) that need to directly
manipulate parts of the model.

6 Conclusion and Roadmap

LIT provides an integrated UI and a suite of com-
ponents for visualizing and exploring the behav-
ior of NLP models. It enables interactive analysis
both at the single-datapoint level and over a whole
dataset, with first-class support for counterfactual
generation and evaluation. LIT supports a diverse
range of workflows, from explaining individual pre-
dictions to disaggregated analysis to probing for
bias through counterfactuals. LIT also supports a
range of model types and techniques out of the box,
and is designed for extensibility through simple,
framework-agnostic APIs.

LIT is under active development by a small team.
Planned upcoming additions include new counter-
factual generation plug-ins, additional metrics and
visualizations for sequence and structured output
types, and a greater ability to customize the UI for
different applications.

LIT is open-source under an Apache 2.0 license,
and we welcome contributions from the community
at https://github.com/pair-code/lit.

https://github.com/pair-code/lit
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A Appendices

Figure A.1: The counterfactual generator module, showing a set of generated datapoints in the staging area. The
labels can be maually edited before adding these to the dataset. In this example, the counterfactuals were created
using the word replacer, replacing the word “great” with “terrible” in each passage.

Figure A.2: Overview of LIT system architecture. The backend manages models, datasets, metrics, generators,
and interpretation components, as well as a caching layer to speed up interactive use. The frontend is a TypeScript
single-page app consisting of independent modules (webcomponents built with lit-element) which interact with
shared “services” that manage interaction state. The backend can be extended by passing components to the
lit.Server class in the demo script (Section 4.3 and Figure A.3), while the frontend can be extended by
importing new components in a single file, layout.ts, which both lists available modules and specifies their
position in the UI (Figure 1).
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NLI_LABELS = ['entailment', 'neutral', 'contradiction']

class MultiNLIData(lit.Dataset):
"""Loader for MultiNLI dataset."""

def __init__(self, path):
# Read the eval set from a .tsv file
df = pandas.read_csv(path, sep='\t')
# Store as a list of dicts, conforming to self.spec()
self._examples = [{

'premise': row['sentence1'],
'hypothesis': row['sentence2'],
'label': row['gold_label'],
'genre': row['genre'],

} for _, row in df.iterrows()]

def spec(self):
return {

'premise': lit_types.TextSegment(),
'hypothesis': lit_types.TextSegment(),
'label': lit_types.Label(vocab=NLI_LABELS),
# We can include additional fields, which don't have to be used by the model.
'genre': lit_types.Label(),

}

class MyNLIModel(lit.Model):
"""Wrapper for a Natural Language Inference model."""

def __init__(self, model_path, **kw):
# Load the model into memory so we're ready for interactive use.
self._model = _load_my_model(model_path, **kw)

##
# LIT API implementations
def predict(self, inputs: List[Input]) -> Iterable[Preds]:

"""Predict on a single minibatch of examples."""
examples = [self._model.convert_dict_input(d) for d in inputs] # any custom preprocessing
return self._model.predict_examples(examples) # returns a dict for each input

def input_spec(self):
"""Describe the inputs to the model."""
return {

'premise': lit_types.TextSegment(),
'hypothesis': lit_types.TextSegment(),

}

def output_spec(self):
"""Describe the model outputs."""
return {

# The 'parent' keyword tells LIT where to look for gold labels when computing metrics.
'probas': lit_types.MulticlassPreds(vocab=NLI_LABELS, parent='label'),
# This model returns two different embeddings, but you can easily add more.
'output_embs': lit_types.Embeddings(),
'mean_word_embs': lit_types.Embeddings(),
# In LIT, we treat tokens as another model output. There can be more than one,
# and the 'align' field describes which input segment they correspond to.
'premise_tokens': lit_types.Tokens(align='premise'),
'hypothesis_tokens': lit_types.Tokens(align='hypothesis'),
# Gradients are also returned by the model; 'align' here references a Tokens field.
'premise_grad': lit_types.TokenGradients(align='premise_tokens'),
'hypothesis_grad': lit_types.TokenGradients(align='hypothesis_tokens'),
# Similarly, attention references a token field, but here we want the model's full "internal"
# tokenization, which might be something like: [START] foo bar baz [SEP] spam eggs [END]
'tokens': lit_types.Tokens(),
'attention_layer0': lit_types.AttentionHeads(align=['tokens', 'tokens']),
'attention_layer1': lit_types.AttentionHeads(align=['tokens', 'tokens']),
'attention_layer2': lit_types.AttentionHeads(align=['tokens', 'tokens']),
# ...and so on. Since the spec is just a dictionary of dataclasses, you can populate it
# in a loop if you have many similar fields.

}

def main(_):
datasets = {

'mnli_matched': MultiNLIData('/path/to/dev_matched.tsv'),
'mnli_mismatched': MultiNLIData('/path/to/dev_mismatched.tsv'),

}

models = {
'model_foo': MyNLIModel('/path/to/model/foo/files'),
'model_bar': MyNLIModel('/path/to/model/bar/files'),

}

lit_demo = lit.Server(models, datasets, port=4321)
lit_demo.serve()

if __name__ == '__main__':
main()

Figure A.3: Example demo script to run LIT with two NLI models and the MultiNLI (Williams et al., 2018)
development sets. The actual model can be implemented in TensorFlow, PyTorch, C++, a REST API, or anything
that can be wrapped in a Python class: to work with LIT, users needs only to define the spec fields and implement
a predict() function which returns a dict of NumPy arrays for each input datapoint. The dataset loader is even
simpler; a complete implementation is given above to read from a TSV file, but libraries like TensorFlow Datasets
can also be used.
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Figure A.4: Full UI screenshot, showing a BERT (Devlin et al., 2019) model on a sample from the “matched”
split of the MultiNLI (Williams et al., 2018) development set. The embedding projector (top left) shows three
clusters, corresponding to the output layer of the model, and colored by the true label. On the bottom, the metrics
table shows accuracy scores faceted by genre, and a confusion matrix shows the model predictions against the gold
labels.

(a)

(b)

Figure A.5: Confusion matrix (a) and side-by-side comparison of predictions and salience maps (b) on two sen-
timent classifiers. In model comparison mode, the confusion matrix can compare two models, and clicking an
off-diagonal cell with select examples where the two models make different predictions. In (b) we see one such
example, where the model in the second row (“sst 1”) predicts incorrectly, even though gradient-based salience
show both models focusing on the same tokens.


