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Abstract

Entity-attribute relations are a fundamental
component for building large-scale knowledge
bases, which are widely employed in modern
search engines. However, most such knowl-
edge bases are manually curated, covering
only a small fraction of all attributes, even
for common entities. To improve the pre-
cision of model-based entity-attribute extrac-
tion, we propose attribute-aware embeddings,
which embeds entities and attributes in the
same space by the similarity of their attributes.
Our model, EANET, learns these embeddings
by representing entities as a weighted sum
of their attributes and concatenates these em-
beddings to mention level features. EANET
achieves up to 91% classification accuracy,
outperforming strong baselines and achieves
83% precision on manually labeled high con-
fidence extractions, outperforming Biperpedia
(Gupta et al., 2014), a previous state-of-the-art
for large scale entity-attribute extraction.

1 Introduction

Modern search engines often attempt to provide
structured search results that reveal more facets of
the search query than explicitly requested. These
results rely on knowledge bases that contain tuples
of the form (entity, attribute, value). However, the
number of known entities and attributes in these
knowledge bases is limited and there is a long tail
of both entities and attributes that is too large to be
manually curated. The goal of automatic entity-
attribute extraction is to replace manual knowl-
edge acquisition which is expensive and biased
towards popular entities (Bollacker et al., 2008;
Dong et al., 2014). Previous studies have proposed
model-based approaches that use various NLP fea-
tures, distant supervision and traditional machine
learning methods for entity-attribute extraction but
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Figure 1: The top figure shows an example of known
attributes (solid lines) and candidate attributes (dotted
lines). Below are support sentences for the candidate
entity-attribute pairs. The attributes of related entities
can be used to improve entity representation and entity-
attribute classification accuracy.

their precision has not been high enough to replace
manually curated knowledge bases (Auer et al.,
2007; Carlson et al., 2010; Gupta et al., 2014).

The key insight of this paper is that entities that
share many attributes are often similar. This is
an extension of the distributional hypothesis, (Har-
ris, 1954; Weeds and Weir, 2003), which states
that words with similar semantic meanings tend
to appear in similar contexts, and builds on work
that use referential attributes to estimate seman-
tic relatedness (Gupta et al., 2015; Freitas et al.,
2013). For the attribute-aware embeddings, we ar-
gue that a good representation for an entity can be
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inferred from its most common attributes, which
we may have access to from an external source of
knowledge. In Figure 1, we want to classify two
candidate relations given the other known relations.
If the model has previously seen a link between
Teams and League but not Movies and League, we
can correctly predict that Ronaldo should have the
League attribute and Speilberg should not, despite
the surface form in the sentences being similar. We
generalize this intuition by learning embeddings for
each entity based on the most common attributes
for that entity.

We propose EANET, a neural model that com-
bines a path-embedding model from dependency
parse trees, with attribute-aware embeddings
which we describe in this paper. The proposed
model captures both the dependency path for a
given sentence between potential entity and at-
tribute candidates, as well as a distributional repre-
sentation for both entities and attributes based on
an attribute distributional assumption. Our model
learns general representations for specific entities
with few mentions by learning embeddings based
on attributes for those entities observed in the dis-
tant supervision.

2 Methods

2.1 Task Definition

The objective of this work is to determine, for a
given term-pair (e, a), if a is an attribute of the
entity e. In order to classify entity-attribute term
pairs, we have access to a multiset of sentences
S(e,a) where the terms co-occur. These sentences
only capture local information about how the entity
and attribute terms relate at the sentence level. Our
model also has access to global information from
the set of known entity-attribute pairs from the
training data. For each term-pair, (e, a), we are
given a set of known true entity-attribute pairs Ke

andKa, whereKe is a set where the entity is always
e and Ka is a set where the attribute is always a.
We learn a binary classifier on the input of entity-
attribute pairs, their support sentences, and their
known neighbors.

2.2 Path Embedding Model

Our baseline model is inspired by a hypernym clas-
sification model proposed by Shwartz et al. (2016),
also using a pair of terms with a set of support
sentences where the terms co-occur.

Sentences are represented with their shortest de-
pendency path between two candidates, as pro-
posed in (Fundel et al., 2006). The bottom of
Figure 1 shows an example of the shortest path
between an entity and attribute for one sentence.
We converts each sentence from a string to a list
of terms, where the first and last term is either
the entity or the attribute. Each term in the de-
pendency path is represented by the lemma of the
term, the part-of-speech tag, the dependency la-
bel, the direction of the dependency path to the
parent (left, right or root). Each of these features
is embedded and concatenated to produce a se-
quence of vectors that represents the dependency
path. The concatenation is the edge representation
−→v edge = [−→v lemma,

−→v pos,−→v dep,
−→v dir]

The sequence of terms in each path is input into
an LSTM to produce a single vector representation
for the sentence, −→v s . This is repeated for each
sentence producing one vector per sentence. The
sentences are aggregated with a weighted mean of
the sentence representations to form a representa-
tion of the multiset of sentences, −→v sents(e,a).

2.3 Distributional Representation

As proposed by Shwartz et al. (2016), adding the
word embedding or distributive representation for
the candidate strings can improve the performance
of the model. The embeddings of the two candidate
terms in the entity-attribute pair are concatenated
to each side of the aggregated sentences vector
described in the previous section. The embeddings
for e and a are simply −→v e and −→v a. Thus the full
representation of a entity-attribute pair is: −→v (e,a) =
[−→v e,−→v sents(e,a),

−→v a]

2.4 Attribute-Aware Embeddings

We propose to use an attribute-aware representation
in the classification model to leverage “similarity”
between terms. In the entity-attribute relation set-
ting, a strong signal of what entities are similar
is how their attributes overlap. Therefore, we cre-
ate an attribute-aware embedding for each entity
and attribute that captures term similarity by shared
attributes, rather than relying on word embeddings,
which are learned from terms being in similar con-
texts. This helps to generalize to new unseen data
for which we may know some related entities and
attributes. Figure 2 illustrates the model and shows
how the representations are combined in the classi-
fier.
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Figure 2: Model for binary classification of a pair of en-
tity attribute candidates. For each entity and attribute,
related attributes are aggregated into attribute-aware
embeddings that are concatenated to the sentence and
distributional representations.

2.5 Learning Attribute-Aware Embeddings

Entities are modeled as a weighted sum of their at-
tributes. Similarly, attributes can be represented by
the entities that they describe, which would create
a symmetry in the model. However, empirically
we found that attributes provide more signal so we
use attributes to represent other attributes. Given
an attribute, we can find all entities in the training
data that have that attribute. We then find all the
attributes for each entity. We take the ranked set
of attributes by count (of entities) to associate with
the attribute.

We initialize attribute embeddings with Glove
(Pennington et al., 2014) word embeddings. For
an entity, we take all the known attributes from Ke.
The representation of each entity is the weighted
sum of the known attributes, with learned attention
weights. The weights are shared between entities
and attributes.

We concatenate these vectors to the full represen-
tation for the entity-attribute term-pair: −→v (e,a) =
[−→v E,−→v e,−→v sents(e,a),

−→v a,−→v A]

In Figure 2 the 5 concatenated vectors are shown
vertically in the middle and are input into a feed
forward neural network, followed by a sigmoid
layer and a logistic loss.

3 Dataset Creation

3.1 Dataset

We sample sentences from a subset of online news
articles and label them with our distant supervi-
sion knowledge base (Mintz et al., 2009) using a
query streams as the source of supervision, as in
(Paşca et al., 2007). We sample 12.6 million entity-
attribute pairs from a knowledge base, finding 6
million unique entities and 788 thousand unique
attributes. Each sentence that contains an entity-
attribute pair from our knowledge base is used as
the support set for that pair. All pairs with less
than 30 support sentences are discarded leaving 351
thousand distantly labeled positive examples and
14 million negatively labeled examples. Negative
examples are sentences that contain a known entity
and a known attribute but the entity is not annotated
with this attribute in our knowledge base. We split
the positive examples into roughly 75% train, 20%
test and 5% validation. Negative examples are ran-
domly sampled so we sample equivalent amounts
for test and validation but use about 14 million neg-
ative examples during training, weighing the two
classes accordingly.

3.2 Annotations and Labels

True entity-attribute relations are sampled from
our knowledge base. Negative examples of entity-
attribute pairs are combinations of entities and at-
tributes that appear together in sentence but are not
in our knowledge base. We augment the negative
examples with randomly sampled noun phrases (in-
cluding modifiers) from sentences in our corpus.
We also flip the order of true entity-attribute pairs
and use them as negative examples because the re-
lation is not symmetric. Support sentences for each
pair are found by exact match of both terms.

Known attributes (Ke) for each entity and known
entities (Ka) for each attribute are the top 20 most
common attributes for that entity or attribute in the
training data by the count of support sentences. If
there are no known attributes for an entity, as is the
case for our test data in the entity-split setting, we
use the top 20 known attributes by co-occurrence
with the entity in the support sentences.

4 Experiments

We evaluate our model on two basic metrics. (1)
The ability of the model to fit the data and gen-
eralize to a held-out test set which is measured
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Entity Split Random Split
Path 0.784 0.821
Dist. 0.772 0.882

Attr-Aware 0.825 0.905
EANET 0.824 0.913

Table 1: Accuracy of two baselines and two models
with attribute-aware embeddings (in bold) for entity
split and random split test datasets.

by accuracy on the test set. (2) The ability of the
model to extract high quality entity-attribute pairs
which we evaluate with manual evaluation on a
small set of extracted pairs.

4.1 Entity Attribute Classification

We compare two variations of our model to two
strong baseline models that are also based on word
and path embedding neural network models.

The baselines are the Path and Dist. (ie. dis-
tributional) models described in Section 2.2 and
Section 2.3 respectively. The Attr-Aware model
(ie. attribute-aware), uses both the path embed-
dings and our attribute-aware embeddings but does
not include the word embeddings of the terms.

We evaluate two regimes; entity split and ran-
dom split. Entity split separates test and train by
entity so there is no overlap in entities. The ran-
dom split naively splits the set of all entity-attribute
pairs. In the random split, every entity-attribute
pair is unique so for every candidate pair in the test
set, the model has never seen any sentences where
the entity and attribute appeared together during
training. For example, from Fig 1, the training
data may contain (Ronaldo, Teams) and (Spiel-
berg, Movies) and the test data will have (Ronaldo,
League) and (Spielberg, League). In this setting,
we have some learned representation of the entity
and the attribute separately but have not observed
them together in the training data. The sentences
used for the mention level representations are also
split between training and test sets.

Table 1 shows the results for the two settings
and the accuracy for each of the two baselines and
the two proposed models described above. Models
that use our proposed attribute-aware embeddings
outperform the baselines in every setting. EANET
achieves the highest accuracy on the random test
split at 91.3%.

(Common) Precision F1
Biperpedia 0.547 0.707

EANET 0.837 0.911

Table 2: Precision and F1 for EANET and Biperpedia
on 1000 extracted entity-attribute pairs each that were
manually labeled.

4.2 Entity Attribute Extraction

We present results for two evaluations with human
labels; (1) we compare extracted entity-attribute
pairs to those extracted by the previous state-of-
the-art Biperpedia (Gupta et al., 2014) and (2) we
report precision over a small set of longtail entity-
attribute pairs that did not appear in our distant
supervision.

Biperpedia: First we sample 20 entities from
the most common entities in the test data. We
sample the entities such that each entity belongs to
a different knowledge graph class to fairly compare
against Biperpedia which extracts attributes at the
class level rather than the entity level. For each
entity, we randomly sample 50 attributes extracted
by EANET. We use the same entities for Biperpedia
and sample 50 attributes each from those extracted
by Biperpedia. 1000 high-confidence examples are
extracted using each model and they are manually
labeled.

Since Biperpedia extracts attributes at the class
level (eg. Country instead of USA), the attributes
are sampled from the class of the entity. The com-
parison is not fair because many errors come from
the mapping from entity to class (eg. Countries
have Prime Ministers but the US does not). Never-
theless, this is a good evaluation for how relevant
attributes from Biperpedia are for a given queried
entity.

From a total of 1000 manually labeled entity-
attribute pairs from each model, EANET achieves
83.7% precision while Biperpedia achieves only
54.7% precision. Table 2 shows precision and F1
scores for EANET and Biperpedia for the 1000
entity-attribute pairs extracted for each model con-
ditioned on the same 20 entities. The improvement
in EANET comes from both more fine-grained typ-
ing, using entity level attributes rather than class
level, and from higher precision classifications.
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(Longtail) Precision F1
EANET 0.623 0.768

Table 3: Precision and F1 for EANET on 1000 ex-
tracted longtail entity-attribute pairs that were manu-
ally labeled. Neither the entities nor the attributes in
these pairs appeared at all in our distant supervision.

Longtail: A goal of EANET is extracting
longtail entity-attribute pairs that would likely be
missed by human created knowledge bases. We
manually labeled the top 1000 entity-attribute pairs
by frequency where neither entity nor attribute ap-
pear in the distant supervision. EANET achieves
62.3% precision on 1000 manually labeled entity-
attribute pairs. We expected the precision to be
worse because the “known” attributes used for the
attribute-aware embeddings are much noisier when
neither the entity nor the attribute has been seen in
any positive training data.

4.3 Error Analysis
For more insight into the performance of our model,
we analyze the type of errors that our model makes
and discuss possible trade-offs and possible future
improvements.

Error Types. From manually annotating a small
set of examples, we find that there are 6 general
types of errors:

• x of y—a common pattern for entity-attribute
pairs such as “the height of a person” but also
often occurs with non-entity attribute pairs
such as “a lot of people”,

• IsA relationships,

• extracting the value rather than the attributes—
extracting the name of a drug rather than the
term “medication”,

• incorrect entity extraction—extracting “med-
ication” as an attribute for “heart” instead of
“heart disease”,

• general attribute—some terms such as “num-
ber” and “direction” are often attributed to
rarer entities because they seem generic and
similar to other common attributes and

• other miscellaneous errors.

In the comparison to Biperpedia we analyze the
type of errors our model makes with common ex-
tractions. In this setting, most entities are frequent

High Confidence
Label Entity Attribute
True Britain invasions
True homeless medical care
False prostate cancer Metformin
False petroleum migration

Longtail
Label Entity Attribute
True medical students rotations
True endophthalmitis injections
False SXSW festival
False third party operating systems

Table 4: A few positive and negative examples from
common and longtail extractions.

in the dataset. The most common errors are x of y,
value extraction and incorrect entities. In all cases,
it seems that generally high co-occurrence between
terms is often a contributor to false positives and
these are the most common cases of non-entity-
attribute co-occurrence in the training data.

In the longtail evaluation, both the entities and
attributes are relatively rare and do not occur in any
of our training data. In this case, we see many IsA
relationships and general attributes. The former
could likely be remedied by using supervision of
IsA relationships to generate negative training data.
The latter is an overgeneralization by the model.

Some examples of correct and incorrect extrac-
tions are shown in Table 4.

5 Conclusion

We present EANET, a neural model for entity-
attribute relation extraction from text. We describe
a mechanism for learning attribute-aware embed-
dings for entities and attributes in our training data
that capture similarities between entities by embed-
ding the similarities between their known attributes.
We show that our model outperforms the previous
approaches for entity-attribute relation extraction
and that it can be used to learn representations for
longtail entities.
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Katrin Fundel, Robert Küffner, and Ralf Zimmer. 2006.
Relex—relation extraction using dependency parse
trees. Bioinformatics, 23(3):365–371.

Abhijeet Gupta, Gemma Boleda, Marco Baroni, and
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