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Abstract
Following the major success of neural lan-
guage models (LMs) such as BERT or GPT-2
on a variety of language understanding tasks,
recent work focused on injecting (structured)
knowledge from external resources into these
models. While on the one hand, joint pre-
training (i.e., training from scratch, adding ob-
jectives based on external knowledge to the pri-
mary LM objective) may be prohibitively com-
putationally expensive, post-hoc fine-tuning
on external knowledge, on the other hand,
may lead to the catastrophic forgetting of dis-
tributional knowledge. In this work, we in-
vestigate models for complementing the dis-
tributional knowledge of BERT with concep-
tual knowledge from ConceptNet and its corre-
sponding Open Mind Common Sense (OMCS)
corpus, respectively, using adapter training.
While overall results on the GLUE benchmark
paint an inconclusive picture, a deeper analy-
sis reveals that our adapter-based models sub-
stantially outperform BERT (up to 15-20 per-
formance points) on inference tasks that re-
quire the type of conceptual knowledge ex-
plicitly present in ConceptNet and OMCS. We
also open source all our experiments and rel-
evant code under: https://github.com/

wluper/retrograph.

1 Introduction

Self-supervised neural models like ELMo (Peters
et al., 2018), BERT (Devlin et al., 2019; Liu et al.,
2019b), GPT (Radford et al., 2018, 2019), or XL-
Net (Yang et al., 2019) have rendered language
modeling a very suitable pretraining task for learn-
ing language representations that are useful for a
wide range of language understanding tasks (Wang
et al., 2018, 2019). Although shown versatile w.r.t.
the types of knowledge (Rogers et al., 2020) they
encode, much like their predecessors – static word
embedding models (Mikolov et al., 2013; Penning-
ton et al., 2014) – neural LMs still only “consume”

the distributional information from large corpora.
Yet, a number of structured knowledge sources ex-
ist – knowledge bases (KBs) (Suchanek et al., 2007;
Auer et al., 2007) and lexico-semantic networks
(Miller, 1995; Liu and Singh, 2004; Navigli and
Ponzetto, 2010) – encoding many types of knowl-
edge that are underrepresented in text corpora.

Starting from this observation, most recent ef-
forts focused on injecting factual (Zhang et al.,
2019; Liu et al., 2019a; Peters et al., 2019) and
linguistic knowledge (Lauscher et al., 2019; Peters
et al., 2019) into pretrained LMs and demonstrated
the usefulness of such knowledge in language un-
derstanding tasks (Wang et al., 2018, 2019). Joint
pretraining models, on the one hand, augment dis-
tributional LM objectives with additional objec-
tives based on external resources (Yu and Dredze,
2014; Nguyen et al., 2016; Lauscher et al., 2019)
and train the extended model from scratch. For
models like BERT, this implies computationally
expensive retraining from scratch of the encoding
transformer network. Post-hoc fine-tuning mod-
els (Zhang et al., 2019; Liu et al., 2019a; Peters
et al., 2019), on the other hand, use the objectives
based on external resources to fine-tune the en-
coder’s parameters, pretrained via distributional
LM objectives. If the amount of fine-tuning data
is substantial, however, this approach may lead to
catastrophic forgetting of distributional knowledge
obtained in pretraining (Goodfellow et al., 2014;
Kirkpatrick et al., 2017).

In this work, similar to the concurrent work of
Wang et al. (2020), we turn to the recently pro-
posed adapter-based fine-tuning paradigm (Re-
buffi et al., 2018; Houlsby et al., 2019), which
remedies the shortcomings of both joint pretrain-
ing and standard post-hoc fine-tuning. Adapter-
based training injects additional parameters into
the encoder and only tunes their values: origi-
nal transformer parameters are kept fixed. Be-
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cause of this, adapter training preserves the dis-
tributional information obtained in LM pretraining,
without the need for any distributional (re-)training.
While (Wang et al., 2020) inject factual knowledge
from Wikidata (Vrandečić and Krötzsch, 2014) into
BERT, in this work, we investigate two resources
that are commonly assumed to contain general-
purpose and common sense knowledge:1 Concept-
Net (Liu and Singh, 2004; Speer et al., 2017) and
the Open Mind Common Sense (OMCS) corpus
(Singh et al., 2002), from which the ConceptNet
graph was (semi-)automatically extracted. For our
first model, dubbed CN-ADAPT, we first create a
synthetic corpus by randomly traversing the Con-
ceptNet graph and then learn adapter parameters
with masked language modelling (MLM) training
(Devlin et al., 2019) on that synthetic corpus. For
our second model, named OM-ADAPT, we learn
the adapter parameters via MLM training directly
on the OMCS corpus.

We evaluate both models on the GLUE bench-
mark, where we observe limited improvements
over BERT on a subset of GLUE tasks. How-
ever, a more detailed inspection reveals large im-
provements over the base BERT model (up to 20
Matthews correlation points) on language inference
(NLI) subsets labeled as requiring World Knowl-
edge or knowledge about Named Entities. Inves-
tigating further, we relate this result to the fact
that ConceptNet and OMCS contain much more
of what in downstream is considered to be fac-
tual world knowledge than what is judged as com-
mon sense knowledge. Our findings pinpoint the
need for more detailed analyses of compatibility
between (1) the types of knowledge contained by
external resources; and (2) the types of knowledge
that benefit concrete downstream tasks; within the
emerging body of work on injecting knowledge
into pretrained transformers.

2 Knowledge Injection Models

In this work, we are primarily set to investigate if
injecting specific types of knowledge (given in the
external resource) benefits downstream inference
that clearly requires those exact types of knowl-
edge. Because of this, we use the arguably most
straightforward mechanisms for injecting the Con-
ceptNet and OMCS information into BERT, and
leave the exploration of potentially more effective
knowledge injection objectives for future work. We

1Our results in §3.2 scrutinize this assumption.

inject the external information into adapter param-
eters of the adapter-augmented BERT (Houlsby
et al., 2019) via BERT’s natural objective – masked
language modelling (MLM). OMCS, already a cor-
pus in natural language, is directly subjectable to
MLM training – we filtered out non-English sen-
tences. To subject ConceptNet to MLM training,
we need to transform it into a synthetic corpus.

Unwrapping ConceptNet. Following estab-
lished previous work (Perozzi et al., 2014; Ristoski
and Paulheim, 2016), we induce a synthetic corpus
from ConceptNet by randomly traversing its graph.
We convert relation strings into NL phrases (e.g.,
synonyms to is a synonym of ) and duplicate the
object node of a triple, using it as the subject for
the next sentence. For example, from the path
“alcoholism causes−−−−→ stigma hasContext−−−−−−→ christianity

partOf−−−→ religion” we create the text “alcoholism
causes stigma. stigma is used in the context of
christianity. christianity is part of religion.”. We
set the walk lengths to 30 relations and sample
the starting and neighboring nodes from uniform
distributions. In total, we performed 2,268,485
walks, resulting with the corpus of 34,560,307
synthetic sentences.

Adapter-Based Training. We follow Houlsby
et al. (2019) and adopt the adapter-based archi-
tecture for which they report solid performance
across the board. We inject bottleneck adapters into
BERT’s transformer layers. In each transformer
layer, we insert two bottleneck adapters: one af-
ter the multi-head attention sub-layer and another
after the feed-forward sub-layer. Let X ∈ RT×H

be the sequence of contextualized vectors (of size
H) for the input of T tokens in some transformer
layer, input to a bottleneck adapter. The bottleneck
adapter, consisting of two feed-forward layers and
a residual connection, yields the following output:

Adapter(X) = X+ f (XWd + bd)Wu + bu

where Wd (with bias bd) and Wu (with bias
bu) are adapter’s parameters, that is, the weights
of the linear down-projection and up-projection
sub-layers and f is the non-linear activation func-
tion. Matrix Wd ∈ RH×m compresses vectors
in X to the adapter size m < H , and the ma-
trix Wu ∈ Rm×H projects the activated down-
projections back to transformer’s hidden size H .
The ratio H/m determines how many times fewer
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parameters we optimize with adapter-based train-
ing compared to standard fine-tuning of all trans-
former’s parameters.

3 Evaluation

We first briefly describe the downstream tasks and
training details, and then proceed with the discus-
sion of results obtained with our adapter models.

3.1 Experimental Setup.

Downstream Tasks. We evaluate BERT and our
two adapter-based models, CN-ADAPT and OM-
ADAPT, with injected knowledge from ConceptNet
and OMCS, respectively, on the tasks from the
GLUE benchmark (Wang et al., 2018):

CoLA (Warstadt et al., 2018): Binary sentence
classification, predicting grammatical acceptability
of sentences from linguistic publications;

SST-2 (Socher et al., 2013): Binary sentence clas-
sification, predicting binary sentiment (positive or
negative) for movie review sentences;

MRPC (Dolan and Brockett, 2005): Binary
sentence-pair classification, recognizing sentences
which are are mutual paraphrases;

STS-B (Cer et al., 2017): Sentence-pair regression
task, predicting the degree of semantic similarity
for a given pair of sentences;

QQP (Chen et al., 2018): Binary classification task,
recognizing question paraphrases;

MNLI (Williams et al., 2018): Ternary natural lan-
guage inference (NLI) classification of sentence
pairs. Two test sets are given: a matched version
(MNLI-m) in which the test domains match the
domains from training data, and a mismatched ver-
sion (MNLI-mm) with different test domains;

QNLI: A binary classification version of the Stan-
ford Q&A dataset (Rajpurkar et al., 2016);

RTE (Bentivogli et al., 2009): Another NLI dataset,
ternary entailment classification for sentence pairs;

Diag (Wang et al., 2018): A manually curated NLI
dataset, with examples labeled with specific types
of knowledge needed for entailment decisions.

Training Details. We inject our adapters into a
BERT Base model (12 transformer layers with 12
attention heads each; H = 768) pretrained on low-
ercased corpora. Following (Houlsby et al., 2019),
we set the size of all adapters to m = 64 and
use GELU (Hendrycks and Gimpel, 2016) as the

adapter activation f . We train the adapter param-
eters with the Adam algorithm (Kingma and Ba,
2015) (initial learning rate set to 1e−4, with 10000
warm-up steps and the weight decay factor of 0.01).
In downstream fine-tuning, we train in batches of
size 16 and limit the input sequences to T = 128
wordpiece tokens. For each task, we find the op-
timal hyperparameter configuration from the fol-
lowing grid: learning rate l ∈ {2 · 10−5, 3 · 10−5},
epochs in n ∈ {3, 4}.

3.2 Results and Analysis

GLUE Results. Table 1 reveals the performance
of CN-ADAPT and OM-ADAPT in comparison
with BERT Base on GLUE evaluation tasks. We
show the results for two snapshots of OM-ADAPT,
after 25K and 100K update steps, and for two snap-
shots of CN-ADAPT, after 50K and 100K steps
of adapter training. Overall, none of our adapter-
based models with injected external knowledge
from ConceptNet or OMCS yields significant im-
provements over BERT Base on GLUE. However,
we observe substantial improvements (of around 3
points) on RTE and on the Diagnostics NLI dataset
(Diag), which encompasses inference instances that
require a specific type of knowledge.

Since our adapter models draw specifically on
the conceptual knowledge encoded in ConceptNet
and OMCS, we expect the positive impact of in-
jected external knowledge – assuming effective
injection – to be most observable on test instances
that target the same types of conceptual knowledge.
To investigate this further, we measure the model
performance across different categories of the Di-
agnostic NLI dataset. This allows us to tease apart
inference instances which truly test the efficacy of
our knowledge injection methods. We show the
results obtained on different categories of the Diag-
nostic NLI dataset in Table 2. The improvements
of our adapter-based models over BERT Base on
these phenomenon-specific subsections of the Di-
agnostics NLI dataset are generally much more
pronounced: e.g., OM-ADAPT (25K) yields a 7%
improvement on inference that requires factual or
common sense knowledge (KNO), whereas CN-
ADAPT (100K) yields a 6% boost for inference that
depends on lexico-semantic knowledge (LS). These
results suggest that (1) ConceptNet and OMCS do
contain the specific types of knowledge required for
these inference categories and that (2) we managed
to inject that knowledge into BERT by training
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Model CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm QNLI RTE Diag Avg
MCC Acc F1 Spear F1 Acc Acc Acc Acc MCC –

BERT Base 52.1 93.5 88.9 85.8 71.2 84.6 83.4 90.5 66.4 34.2 75.1

OM-ADAPT (25K) 49.5 93.5 88.8 85.1 71.4 84.4 83.5 90.9 67.5 35.7 75.0
OM-ADAPT (100K) 53.5 93.4 87.9 85.9 71.1 84.2 83.7 90.6 68.2 34.8 75.3

CN-ADAPT (50K) 49.8 93.9 88.9 85.8 71.6 84.2 83.3 90.6 69.7 37.0 75.5
CN-ADAPT (100K) 48.8 92.8 87.1 85.7 71.5 83.9 83.2 90.8 64.1 37.8 74.6

Table 1: Results on test portions of GLUE benchmark tasks. Numbers in brackets next to adapter-based models
(25K, 50K, 100K) indicate the number of update steps of adapter training on the synthetic ConceptNet corpus (for
CN-ADAPT) or on the original OMCS corpus (for OM-ADAPT). Bold: the best score in each column.

Model LS KNO LOG PAS All

BERT Base 38.5 20.2 26.7 39.6 34.2

OM-ADAPT (25K) 39.1 27.1 26.1 39.5 35.7
OM-ADAPT (100K) 37.5 21.2 27.4 41.0 34.8

CN-ADAPT (50K) 40.2 24.3 30.1 42.7 37.0
CN-ADAPT (100K) 44.2 25.2 30.4 41.9 37.8

Table 2: Breakdown of Diagnostics NLI performance
(Matthews correlation), according to information type
needed for inference (coarse-grained categories): Lexi-
cal Semantics (LS), Knowledge (KNO), Logic (LOG),
and Predicate Argument Structure (PAS).

Model CS World NE

BERT Base 29.0 10.3 15.1

OM-ADAPT (25K) 28.5 25.3 31.4
OM-ADAPT (100K) 24.5 17.3 22.3

CN-ADAPT (50K) 25.6 21.1 26.0
CN-ADAPT (100K) 24.4 25.6 36.5

Table 3: Results (Matthews correlation) on Common
Sense (CS), World Knowledge (World), and Named En-
tities (NE) categories of the Diagnostic NLI dataset.

adapters on these resources.

Fine-Grained Knowledge Type Analysis. In
our final analysis, we “zoom in” our models’ per-
formances on three fine-grained categories of the
Diagnostics NLI dataset – inference instances that
require Common Sense Knowledge (CS), World
Knowledge (World), and knowledge about Named
Entities (NE), respectively. The results for these
fine-grained categories are given in Table 3. These
results show an interesting pattern: our adapter-
based knowledge-injection models massively out-
perform BERT Base (up to 15 and 21 MCC points,
respectively) for NLI instances labeled as requir-
ing World Knowledge or knowledge about Named
Entities. In contrast, we see drops in performance
on instances labeled as requiring common sense

knowledge. This initially came as a surprise, given
the common belief that OMCS and ConcepNet con-
tain the so-called common sense knowledge. Man-
ual scrutiny of the diagnostic test instances from
both CS and World categories uncovers a notice-
able mismatch between the kind of information that
is considered common sense in KBs like Concept-
Net and what is considered common sense knowl-
edge in the downstream. In fact, the majority of
information present in ConceptNet and OMCS falls
under the World Knowledge definition of the Diag-
nostic NLI dataset, including factual geographic in-
formation (stockholm [partOf] sweden),
domain knowledge (roadster [isA] car)
and specialized terminology (indigenous
[synonymOf] aboriginal).

In contrast, many of the CS inference instances
require complex, high-level reasoning, understand-
ing metaphorical and idiomatic meaning, and mak-
ing far-reaching connections. We display NLI Dig-
nostics examples from the World Knowledge and
Common Sense categories in Table 4. In such
cases, explicit conceptual links often do not suffice
for a correct inference and much of the required
knowledge is not explicitly encoded in the exter-
nal resources. Consider, e.g., the following CS
NLI instance: [premise: My jokes fully reveal
my character ; hypothesis: If everyone be-
lieved my jokes, they’d know exactly who I was
; entailment]. While ConceptNet and OMCS
may associate character with personality or person-
ality with identity, the knowledge that the phrase
who I was may refer to identity is beyond the ex-
plicit knowledge present in these resources. This
sheds light on the results in Table 3: when the
knowledge required to tackle the inference prob-
lem at hand is available in the external resource,
our adapter-based knowledge-injected models sig-
nificantly outperform the baseline transformer; oth-
erwise, the benefits of knowledge injection are neg-
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Knowledge Premise Hypothesis ConceptNet?

World The sides came to an agree-
ment after their meeting in
Stockholm.

The sides came to an agree-
ment after their meeting in
Sweden.

stockholm [partOf]

sweden

Musk decided to offer up his
personal Tesla roadster.

Musk decided to offer up his
personal car.

roadster [isA] car

The Sydney area has been
inhabited by indigenous
Australians for at least
30,000 years.

The Sydney area has been
inhabited by Aboriginal
people for at least 30,000
years.

indigenous [synonymOf]

aboriginal

Common Sense My jokes fully reveal my
character.

If everyone believed my
jokes, they’d know exactly
who I was.

The systems thus produced
are incremental: dialogues
are processed word-by-
word, shown previously
to be essential in support-
ing natural, spontaneous
dialogue.

The systems thus produced
support the capability to in-
terrupt an interlocutor mid-
sentence.

He deceitfully proclaimed:
“This is all I ever really
wanted.”

He was satisfied.

Table 4: Premise-hypothesis examples from the diagnostic NLI dataset tagged for commonsense and world knowl-
edge, and relevant ConceptNet relations, where available.

ligible or non-existent. The promising results on
world knowledge and named entities portions of
the Diagnostics dataset suggest that our methods
does successfully inject external information into
the pretrained transformer and that the presence of
the required knowledge for the task in the external
resources is an obvious prerequisite.

4 Conclusion

We presented two simple strategies for injecting
external knowledge from ConceptNet and OMCS
corpus, respectively, into BERT via bottleneck
adapters. Additional adapter parameters store the
external knowledge and allow for the preservation
of the rich distributional knowledge acquired in
BERT’s pretraining in the original transformer pa-
rameters. We demonstrated the effectiveness of
these models in language understanding settings
that require precisely the type of knowledge that
one finds in ConceptNet and OMCS, in which our
adapter-based models outperform BERT by up to
20 performance points. Our findings stress the
importance of having detailed analyses that com-

pare (a) the types of knowledge found in external
resources being injected against (b) the types of
knowledge that a concrete downstream reasoning
tasks requires. We hope this work motivates fur-
ther research effort in the direction of fine-grained
knowledge typing, both of explicit knowledge in ex-
ternal resources and the implicit knowledge stored
in pretrained transformers.
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by the Eliteprogramm of the Baden-Württemberg
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