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Abstract

Transformers are being used extensively
across several sequence modeling tasks. Sig-
nificant research effort has been devoted to
experimentally probe the inner workings of
Transformers. However, our conceptual and
theoretical understanding of their power and
inherent limitations is still nascent. In partic-
ular, the roles of various components in Trans-
formers such as positional encodings, atten-
tion heads, residual connections, and feedfor-
ward networks, are not clear. In this paper,
we take a step towards answering these ques-
tions. We analyze the computational power
as captured by Turing-completeness. We first
provide an alternate and simpler proof to show
that vanilla Transformers are Turing-complete
and then we prove that Transformers with only
positional masking and without any positional
encoding are also Turing-complete. We further
analyze the necessity of each component for
the Turing-completeness of the network; inter-
estingly, we find that a particular type of resid-
ual connection is necessary. We demonstrate
the practical implications of our results via
experiments on machine translation and syn-
thetic tasks.

1 Introduction

Transformer (Vaswani et al., 2017) is a recent self-
attention based sequence-to-sequence architecture
which has led to state of the art results across vari-
ous NLP tasks including machine translation (Ott
et al., 2018), language modeling (Radford et al.,
2018) and question answering (Devlin et al., 2019).
Although a number of variants of Transformers
have been proposed, the original architecture still
underlies these variants.

While the training and generalization of machine
learning models such as Transformers are the cen-
tral goals in their analysis, an essential prerequisite
to this end is characterization of the computational
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Figure 1: (a) Self-Attention Network with positional
encoding, (b) Self-Attention Network with positional
masking without any positional encoding

power of the model: training a model for a certain
task cannot succeed if the model is computation-
ally incapable of carrying out the task. While the
computational capabilities of recurrent networks
(RNNs) have been studied for decades (Kolen and
Kremer, 2001; Siegelmann, 2012), for Transform-
ers we are still in the early stages.

The celebrated work of Siegelmann and Sontag
(1992) showed, assuming arbitrary precision, that
RNNs are Turing-complete, meaning that they are
capable of carrying out any algorithmic task for-
malized by Turing machines. Recently, Pérez et al.
(2019) have shown that vanilla Transformers with
hard-attention can also simulate Turing machines
given arbitrary precision. However, in contrast to
RNNs, Transformers consist of several components
and it is unclear which components are necessary
for its Turing-completeness and thereby crucial to
its computational expressiveness.

The role of various components of the Trans-
former in its efficacy is an important question for
further improvements. Since the Transformer does
not process the input sequentially, it requires some
form of positional information. Various positional
encoding schemes have been proposed to capture
order information (Shaw et al., 2018; Dai et al.,
2019; Huang et al., 2018). At the same time, on
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machine translation, Yang et al. (2019) showed that
the performance of Transformers with only posi-
tional masking (Shen et al., 2018) is comparable to
that with positional encodings. In case of positional
masking (Fig. 1), as opposed to explicit encodings,
the model is only allowed to attend over preceding
inputs and no additional positional encoding vec-
tor is combined with the input vector. Tsai et al.
(2019) raised the question of whether explicit en-
coding is necessary if positional masking is used.
Additionally, since Pérez et al. (2019)’s Turing-
completeness proof relied heavily on residual con-
nections, they asked whether these connections are
essential for Turing-completeness. In this paper,
we take a step towards answering such questions.
Below, we list the main contributions of the paper,

• We provide an alternate and arguably simpler
proof to show that Transformers are Turing-
complete by directly relating them to RNNs.

• More importantly, we prove that Transform-
ers with positional masking and without posi-
tional encoding are also Turing-complete.

• We analyze the necessity of various compo-
nents such as self-attention blocks, residual
connections and feedforward networks for
Turing-completeness. Figure 2 provides an
overview.

• We explore implications of our results on ma-
chine translation and synthetic tasks.1

2 Related Work

Computational Power of neural networks has
been studied since the foundational paper Mc-
Culloch and Pitts (1943); in particular, among
sequence-to-sequence models, this aspect of RNNs
has long been studied (Kolen and Kremer, 2001).
The seminal work by Siegelmann and Sontag
(1992) showed that RNNs can simulate a Turing
machine by using unbounded precision. Chen et al.
(2018) showed that RNNs with ReLU activations
are also Turing-complete. Many recent works have
explored the computational power of RNNs in prac-
tical settings. Several works (Merrill et al., 2020),
(Weiss et al., 2018) recently studied the ability of
RNNs to recognize counter-like languages. The ca-
pability of RNNs to recognize strings of balanced

1We have made our source code available at
https://github.com/satwik77/Transformer-Computation-
Analysis.

parantheses has also been studied (Sennhauser and
Berwick, 2018; Skachkova et al., 2018). However,
such analysis on Transformers has been scarce.
Theoretical work on Transformers was initiated
by Pérez et al. (2019) who formalized the notion of
Transformers and showed that it can simulate a Tur-
ing machine given arbitrary precision. Concurrent
to our work, there have been several efforts to un-
derstand self-attention based models (Levine et al.,
2020; Kim et al., 2020). Hron et al. (2020) show
that Transformers behave as Gaussian processes
when the number of heads tend to infinity. Hahn
(2020) showed some limitations of Transformer
encoders in modeling regular and context-free lan-
guages. It has been recently shown that Transform-
ers are universal approximators of sequence-to-
sequence functions given arbitrary precision (Yun
et al., 2020). However, these are not applicable2

to the complete Transformer architecture. With a
goal similar to ours, Tsai et al. (2019) attempted
to study the attention mechanism via a kernel for-
mulation. However, a systematic study of various
components of Transformers has not been done.

3 Definitions and Preliminaries

All the numbers used in our computations will be
from the set of rational numbers denoted Q. For
a sequence X = (x1, . . . ,xn), we set Xj :=
(x1, . . . ,xj) for 1 ≤ j ≤ n. We will work
with an alphabet Σ of size m, with special sym-
bols # and $ signifying the beginning and end of
the input sequence, respectively. The symbols are
mapped to vectors via a given ‘base’ embedding
fb : Σ → Qdb , where db is the dimension of the
embedding. E.g., this embedding could be the one
used for processing the symbols by the RNN.

We set fb(#) = 0db and fb($) = 0db . Posi-
tional encoding is a function pos : N→ Qdb . To-
gether, these provide embedding for a symbol s at
position i given by f(fb(s),pos(i)), often taken
to be simply fb(s) + pos(i). Vector JsK ∈ Qm

denotes one-hot encoding of a symbol s ∈ Σ.

3.1 RNNs
We follow Siegelmann and Sontag (1992) in
our definition of RNNs. To feed the sequences

2Hahn (2020) and Yun et al. (2020) study encoder-only seq-
to-seq models with fixed length outputs in which the computa-
tion halts as soon as the last symbol of the input is processed.
Our work is about the full Transformer (encoder and decoder)
which is a seq-to-seq model with variable length sequence
output in which the decoder starts operating sequentially after
the encoder.

https://github.com/satwik77/Transformer-Computation-Analysis
https://github.com/satwik77/Transformer-Computation-Analysis


457

s1s2 . . . sn ∈ Σ∗ to the RNN, these are con-
verted to the vectors x1,x2, . . . ,xn where xi =
fb(si). The RNN is given by the recurrence ht =
g(Whht−1 +Wxxt + b), where t ≥ 1, function
g(·) is a multilayer feedforward network (FFN)
with activation σ, bias vector b ∈ Qdh , matrices
Wh ∈ Qdh×dh and Wx ∈ Qdh×db , and ht ∈ Qdh

is the hidden state with given initial hidden state
h0; dh is the hidden state dimension.

After the last symbol sn has been fed, we con-
tinue to feed the RNN with the terminal symbol
fb($) until it halts. This allows the RNN to carry
out computation after having read the input.

A class of seq-to-seq neural networks is Turing-
complete if the class of languages recognized by
the networks is exactly the class of languages rec-
ognized by Turing machines.

Theorem 3.1. (Siegelmann and Sontag, 1992) Any
seq-to-seq function Σ∗ → Σ∗ computable by a
Turing machine can also be computed by an RNN.

For details please see section B.1 in appendix.

3.2 Transformer Architecture

Vanilla Transformer. We describe the original
Transformer architecture with positional encoding
(Vaswani et al., 2017) as formalized by Pérez et al.
(2019), with some modifications. All vectors in
this subsection are from Qd.

The transformer, denoted Trans, is a seq-to-seq
architecture. Its input consists of (i) a sequence
X = (x1, . . . ,xn) of vectors, (ii) a seed vector
y0. The output is a sequence Y = (y1, . . . ,yr)
of vectors. The sequence X is obtained from
the sequence (s1, . . . , sn) ∈ Σn of symbols by
using the embedding mentioned earlier: xi =
f(fb(si),pos(i)).

The transformer consists of composition of trans-
former encoder and transformer decoder. For the
feedforward networks in the transformer layers we
use the activation as in Siegelmann and Sontag
(1992), namely the saturated linear activation func-
tion σ(x) which takes value 0 for x < 0, value x
for 0 < x < 1 and value 1 for x > 1. This activa-
tion can be easily replaced by the standard ReLU
activation via σ(x) = ReLU(x)− ReLU(x− 1).
Self-attention. The self-attention mechanism
takes as input (i) a query vector q, (ii) a sequence
of key vectors K = (k1, . . . ,kn), and (iii) a se-
quence of value vectors V = (v1, . . . ,vn). The
q-attention overK and V , denoted Att(q,K,V ),
is a vector a = α1v1+α2v2+· · ·+αnvn, where (i)

(α1, . . . , αn) = ρ(fatt(q,k1), . . . , fatt(q,kn)).
(ii) The normalization function ρ : Qn → Qn

≥0 is
hardmax: for x = (x1, . . . , xn) ∈ Qn, if the maxi-
mum value occurs r times among x1, . . . , xn, then
hardmax(x)i := 1/r if xi is a maximum value
and hardmax(x)i := 0 otherwise. In practice, the
softmax is often used but its output values are in
general not rational.
(iii) For vanilla transformers, the scoring function
fatt used is a combination of multiplicative atten-
tion (Vaswani et al., 2017) and a non-linear func-
tion: fatt(q,ki) = −

∣∣〈q,ki〉∣∣. This was also used
by Pérez et al. (2019).
Transformer encoder. A single-layer encoder
is a function Enc(X;θ), with input X =
(x1, . . . ,xn) a sequence of vectors in Qd, and
parameters θ. The output is another sequence
Z = (z1, . . . ,zn) of vectors in Qd. The parame-
ters θ specify functionsQ(·),K(·), V (·), andO(·),
all of type Qd → Qd. The functions Q(·),K(·),
and V (·) are linear transformations and O(·) an
FFN. For 1 ≤ i ≤ n, the output of the self-attention
block is produced by

ai = Att(Q(xi),K(X), V (X)) + xi (1)

This operation is also referred to as the encoder-
encoder attention block. The outputZ is computed
by zi = O(ai) + ai for 1 ≤ i ≤ n. The ad-
dition operations +xi and +ai are the residual
connections. The complete L-layer transformer en-
coder TEnc(L)(X;θ) = (Ke,V e) has the same
input X = (x1, . . . ,xn) as the single-layer en-
coder. In contrast, its output Ke = (ke1, . . . ,k

e
n)

and V e = (ve1, . . .v
e
n) contains two sequences.

TEnc(L) is obtained by composition of L single-
layer encoders: let X(0) := X , and for 0 ≤ ` ≤
L − 1, let X(`+1) = Enc(X(`);θ`) and finally,
Ke = K(L)(X(L)), V e = V (L)(X(L)).
Transformer decoder. The input to a single-
layer decoder is (i) (Ke,V e) output by the en-
coder, and (ii) sequence Y = (y1, . . . ,yk) of vec-
tors for k ≥ 1. The output is another sequence
Z = (z1, . . . ,zk).

Similar to the single-layer encoder, a single-
layer decoder is parameterized by functions
Q(·),K(·), V (·) and O(·) and is defined by

pt = Att(Q(yt),K(Yt), V (Yt)) + yt, (2)

at = Att(pt,K
e,V e) + pt, (3)

zt = O(at) + at,

where 1 ≤ t ≤ k. The operation in (2) will be
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referred to as the decoder-decoder attention block
and the operation in (3) as the decoder-encoder
attention block. In (2), positional masking is ap-
plied to prevent the network from attending over
symbols which are ahead of them.

An L-layer Transformer decoder
TDecL((Ke,V e),Y ;θ) = z is obtained by
repeated application of L single-layer decoders
each with its own parameters, and a transformation
function F : Qd → Qd applied to the last vector in
the sequence of vectors output by the final decoder.
Formally, for 0 ≤ ` ≤ L−1 andY 0 := Y we have
Y `+1 = Dec((Ke,V e),Y `;θ`), z = F (yLk ).
Note that while the output of a single-layer decoder
is a sequence of vectors, the output of an L-layer
Transformer decoder is a single vector.
The complete Transformer. The output
Trans(X,y0) = Y is computed by the recur-
rence ỹt+1 = TDec(TEnc(X), (y0,y1, . . . ,yt)),
for 0 ≤ t ≤ r − 1. We get yt+1 by adding posi-
tional encoding: yt+1 = ỹt+1 + pos(t+ 1).
Directional Transformer. We denote the Trans-
former with only positional masking and no posi-
tional encodings as Directional Transformer and
use them interchangeably. In this case, we use stan-
dard multiplicative attention as the scoring function
in our construction, i.e, fatt(q,ki) = 〈q,ki〉. The
general architecture is the same as for the vanilla
case; the differences due to positional masking are
the following.

There are no positional encodings. So the
input vectors xi only involve fb(si). Simi-
larly, yt = ỹt. In (1), Att(·) is replaced
by Att(Q(xi),K(Xi), V (Xi)) where Xi :=
(x1, . . . ,xi) for 1 ≤ i ≤ n. Similarly, in (3),
Att(·) is replaced by Att(pt,K

e
t ,V

e
t ).

Remark 1. Our definitions deviate slightly
from practice, hard-attention being the main one
since hardmax keeps the values rational whereas
softmax takes the values to irrational space. Previ-
ous studies have shown that soft-attention behaves
like hard-attention in practice and Hahn (2020) dis-
cusses its practical relevance.
Remark 2. Transformer Networks with positional
encodings are not necessarily equivalent in terms
of their computational expressiveness (Yun et al.,
2020) to those with only positional masking when
considering the encoder only model (as used in
BERT and GPT-2). Our results in Section 4.1 show
their equivalence in terms of expressiveness for the
complete seq-to-seq architecture.

4 Primary Results

4.1 Turing-Completeness Results

In light of Theorem 3.1, to prove that Transformers
are Turing-complete, it suffices to show that they
can simulate RNNs. We say that a Transformer
simulates an RNN (as defined in Sec. 3.1) if on
every input s ∈ Σ∗, at each step t, the vector yt
contains the hidden state ht as a subvector, i.e.
yt = [ht, ·], and halts at the same step as the RNN.

Theorem 4.1. The class of Transformers with po-
sitional encodings is Turing-complete.

Proof Sketch. The input s0, . . . , sn ∈ Σ∗ is pro-
vided to the transformer as the sequence of vectors
x0, . . . ,xn, where xi = [0dh , fb(si),0dh , i, 1],
which has as sub-vector the given base embedding
fb(si) and the positional encoding i, along with
extra coordinates set to constant values and will be
used later.

The basic observation behind our construction of
the simulating Transformer is that the transformer
decoder can naturally implement the recurrence
operations of the type used by RNNs. To this end,
the FFN Odec(·) of the decoder, which plays the
same role as the FFN component of the RNN, needs
sequential access to the input in the same way as
RNN. But the Transformer receives the whole input
at the same time. We utilize positional encoding
along with the attention mechanism to isolate xt
at time t and feed it to Odec(·), thereby simulating
the RNN.

As stated earlier, we append the input s1, . . . , sn
of the RNN with $’s until it halts. Since the Trans-
former takes its input all at once, appending by $’s
is not possible (in particular, we do not know how
long the computation would take). Instead, we ap-
pend the input with a single $. After encountering
a $ once, the Transformer will feed (encoding of)
$ to Odec(·) in subsequent steps until termination.
Here we confine our discussion to the case t ≤ n;
the t > n case is slightly different but simpler.

The construction is straightforward: it has only
one head, one encoder layer and one decoder layer;
moreover, the attention mechanisms in the encoder
and the decoder-decoder attention block of the de-
coder are trivial as described below.

The encoder attention layer does trivial com-
putation in that it merely computes the iden-
tity function: zi = xi, which can be easily
achieved, e.g. by using the residual connec-
tion and setting the value vectors to 0. The fi-
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Figure 2: Transformer network with various com-
ponents highlighted. The components marked red
are essential for the Turing-completeness whereas for
the pairs of blocks and residual connections marked
green, either one of the component is enough. The
dashed residual connection is not necessary for Turing-
completeness of the network.

nal K(1)(·) and V (1)(·) functions bring (Ke,V e)
into useful forms by appropriate linear transfor-
mations: ki = [0db ,0db ,0db ,−1, i] and vi =
[0db , fb(si),0db , 0, 0]. Thus, the key vectors only
encode the positional information and the value
vectors only encode the input symbols.

The output sequence of the decoder is y1,y2, . . ..
Our construction will ensure, by induction on t,
that yt contains the hidden states ht of the RNN
as a sub-vector along with positional information:
yt = [ht,0db ,0db , t+1, 1]. This is easy to arrange
for t = 0, and assuming it for t we prove it for t+1.
As for the encoder, the decoder-decoder attention
block acts as the identity: pt = yt. Now, using the
last but one coordinate in yt representing the time
t + 1, the attention mechanism Att(pt,K

e,V e)
can retrieve the embedding of the t-th input sym-
bol xt. This is possible because in the key vector
ki mentioned above, almost all coordinates other
than the one representing the position i are set to
0, allowing the mechanism to only focus on the
positional information and not be distracted by the
other contents of pt = yt: the scoring function has
value fatt(pt,ki) = −|〈pt,ki〉| = −|i− (t+ 1)|.
For a given t, it is maximized at i = t + 1 for

t < n and at i = n for t ≥ n. This use of scoring
function is similar to Pérez et al. (2019).

At this point, Odec(·) has at its disposal the hid-
den state ht (coming from yt via pt and the resid-
ual connection) and the input symbol xt (coming
via the attention mechanism and the residual con-
nection). Hence O(·) can act just like the FFN
(Lemma C.4) underlying the RNN to compute ht+1

and thus yt+1, proving the induction hypothesis.
The complete construction can be found in Sec. C.2
in the appendix.

Theorem 4.2. The class of Transformers with posi-
tional masking and no explicit positional encodings
is Turing-complete.

Proof Sketch. As before, by Theorem 3.1 it suf-
fices to show that Transformers can simulate RNNs.
The input s0, . . . , sn is provided to the transformer
as the sequence of vectors x0, . . . ,xn, where
xi = [0dh ,0dh , fb(si), JsiK, 0,0m,0m,0m]. The
general goal for the directional case is similar to
the vanilla case, namely we would like the FFN
Odec(·) of the decoder to directly simulate the com-
putation in the underlying RNN. In the vanilla case,
positional encoding and the attention mechanism
helped us feed input xt at the t-th iteration of the
decoder to Odec(·). However, we no longer have
explicit positional information in the input xt such
as a coordinate with value t. The key insight is that
we do not need the positional information explic-
itly to recover xt at step t: in our construction, the
attention mechanism with masking will recover xt
in an indirect manner even though it’s not able to
“zero in” on the t-th position.

Let us first explain this without details of the con-
struction. We maintain in vector ωt ∈ Qm, with a
coordinate each for symbols in Σ, the fraction of
times the symbol has occurred up to step t. Now, at
a step t ≤ n, for the difference ωt − ωt−1 (which
is part of the query vector), it can be shown easily
that only the coordinate corresponding to st is pos-
itive. Thus after applying the linearized sigmoid
σ(ωt − ωt−1), we can isolate the coordinate corre-
sponding to st. Now using this query vector, the
(hard) attention mechanism will be able to retrieve
the value vectors for all indices j such that sj = st
and output their average. Crucially, the value vec-
tor for an index j is essentially xj which depends
only on sj . Thus, all these vectors are equal to xt,
and so is their average. This recovers xt, which
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can now be fed to Odec(·), simulating the RNN.
We now outline the construction and relate it

to the above discussion. As before, for simplic-
ity we restrict to the case t ≤ n. We use only
one head, one layer encoder and two layer decoder.
The encoder, as in the vanilla case, does very lit-
tle other than pass information along. The vec-
tors in (Ke,V e) are obtained by the trivial atten-
tion mechanism followed by simple linear transfor-
mations: kei = [0dh ,0dh ,0db , JsiK, 0,0m,0m,0m]
and vei = [0dh ,0dh , fb(si),0m, 0,0m, JsiK,0m].

Our construction ensures that at step t we have
yt = [ht−1,0dh ,0db ,0m,

1
2t ,0m,0m,ωt−1]. As

before, the proof is by induction on t.
In the first layer of decoder, the decoder-

decoder attention block is trivial: p
(1)
t =

yt. In the decoder-encoder attention block,
we give equal attention to all the t + 1 val-
ues, which along with Oenc(·), leads to z(1)

t =
[ht−1, 0dh , 0db , δt,

1
2t+1 ,0m,0m, ωt], where

essentially δt = σ(ωt − ωt−1), except with a
change for the last coordinate due to special status
of the last symbol $ in the processing of RNN.

In the second layer, the decoder-decoder atten-
tion block is again trivial with p(2)

t = z
(1)
t . We

remark that in this construction, the scoring func-
tion is the standard multiplicative attention 3. Now
〈p(2)
t ,kej〉 = 〈δt, JsjK〉 = δt,j , which is positive if

and only if sj = st, as mentioned earlier. Thus
attention weights in Att(p

(2)
t ,Ke

t ,V
e
t ) satisfy

hardmax(〈p(2)
t ,ke1〉, . . . , 〈p

(2)
t ,ket 〉) = 1

λt
(I(s0 =

st), I(s1 = st), . . . , I(st = st)), where λt is a nor-
malization constant and I(·) is the indicator. See
Lemma D.3 for more details.

At this point, Odec(·) has at its disposal the hid-
den state ht (coming from z

(1)
t via p(2)

t and the
residual connection) and the input symbol xt (com-
ing via the attention mechanism and the residual
connection). Hence Odec(·) can act just like the
FFN underlying the RNN to compute ht+1 and
thus yt+1, proving the induction hypothesis.

The complete construction can be found in
Sec. D in the Appendix.

In practice, Yang et al. (2019) found that for
NMT, Transformers with only positional masking
achieve comparable performance compared to the
ones with positional encodings. Similar evidence

3Note that it is closer to practice than the scoring function
−|〈q,k〉| used in Pérez et al. (2019) and Theorem 4.1

was found by Tsai et al. (2019). Our proof for di-
rectional transformers entails that there is no loss of
order information if positional information is only
provided in the form of masking. However, we do
not recommend using masking as a replacement
for explicit encodings. The computational equiva-
lence of encoding and masking given by our results
implies that any differences in their performance
must come from differences in learning dynamics.

4.2 Analysis of Components
The results for various components follow from
our construction in Theorem 4.1. Note that in both
the encoder and decoder attention blocks, we need
to compute the identity function. We can nullify
the role of the attention heads by setting the value
vectors to zero and making use of only the resid-
ual connections to implement the identity function.
Thus, even if we remove those attention heads, the
model is still Turing-complete. On the other hand,
we can remove the residual connections around
the attention blocks and make use of the attention
heads to implement the identity function by us-
ing positional encodings. Hence, either the atten-
tion head or the residual connection is sufficient to
achieve Turing-completeness. A similar argument
can be made for the FFN in the encoder layer: ei-
ther the residual connection or the FFN is sufficient
for Turing-completeness. For the decoder-encoder
attention head, since it is the only way for the de-
coder to obtain information about the input, it is
necessary for the completeness. The FFN is the
only component that can perform computations
based on the input and the computations performed
earlier via recurrence and hence, the model is not
Turing-complete without it. Figure 2 summarizes
the role of different components with respect to the
computational expressiveness of the network.

Proposition 4.3. The class of Transformers with-
out residual connection around the decoder-
encoder attention block is not Turing-complete.

Proof Sketch. We confine our discussion to single-
layer decoder; the case of multilayer decoder is
similar. Without the residual connection, the
decoder-encoder attention block produces at =
Att(pt,K

e,V e) =
∑n

i=1 αiv
e
i for some αi’s

such that
∑n

i αi = 1. Note that, without residual
connection at can take on at most 2n − 1 values.
This is because by the definition of hard attention
the vector (α1, . . . , αn) is characterized by the set
of zero coordinates and there are at most 2n − 1
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such sets (all coordinates cannot be zero). This
restriction on the number of values on at holds re-
gardless of the value of pt. If the task requires the
network to produce values of at that come from
a set with size at least 2n, then the network will
not be able to perform the task. Here’s an exam-
ple task: given a number ∆ ∈ (0, 1), the network
must produce numbers 0,∆, 2∆, . . . , k∆, where k
is the maximum integer such that k∆ ≤ 1. If the
network receives a single input ∆, then it is easy to
see that the vector at will be a constant (ve1) at any
step and hence the output of the network will also
be constant at all steps. Thus, the model cannot
perform such a task. If the input is combined with
n− 1 auxiliary symbols (such as # and $), then in
the network, each at takes on at most 2n−1 values.
Hence, the model will be incapable of performing
the task if ∆ < 1/2n. Such a limitation does not
exist with a residual connection since the vector
at =

∑n
i=1 αiv

e
i +pt can take arbitrary number of

values depending on its prior computations in pt.
For further details, see Sec. C.1 in the Appendix.

Discussion. It is perhaps surprising that residual
connection, originally proposed to assist in the
learning ability of very deep networks, plays a vi-
tal role in the computational expressiveness of the
network. Without it, the model is limited in its capa-
bility to make decisions based on predictions in the
previous steps. We explore practical implications
of this result in section 5.

5 Experiments

In this section, we explore the practical implica-
tions of our results. Our experiments are geared
towards answering the following questions:
Q1. Are there any practical implications of the lim-
itation of Transformers without decoder-encoder
residual connections? What tasks can they do or
not do compared to vanilla Transformers?
Q2. Is there any additional benefit of using posi-
tional masking as opposed to absolute positional
encoding (Vaswani et al., 2017)?

Although we showed that Transformers without
decoder-encoder residual connection are not Turing
complete, it does not imply that they are incapable
of performing all the tasks. Our results suggest that
they are limited in their capability to make infer-
ences based on their previous computations, which
is required for tasks such as counting and language
modeling. However, it can be shown that the model

is capable of performing tasks which rely only on
information provided at a given step such as copy-
ing and mapping. For such tasks, given positional
information at a particular step, the model can look
up the corresponding input and map it via the FFN.
We evaluate these hypotheses via our experiments.

Model Copy Task Counting

Vanilla Transformers 100.0 100.0
- Dec-Enc Residual 99.7 0.0
- Dec-Dec Residual 99.7 99.8

Table 1: BLEU scores (↑) for copy and counting task.
Please see Section 5 for details

For our experiments on synthetic data, we con-
sider two tasks, namely the copy task and the count-
ing task. For the copy task, the goal of a model is
to reproduce the input sequence. We sample sen-
tences of lengths between 5-12 words from Penn
Treebank and create a train-test split of 40k-1k
with all sentences belonging to the same range of
length. In the counting task, we create a very sim-
ple dataset where the model is given one number
between 0 and 100 as input and its goal is to predict
the next five numbers. Since only a single input
is provided to the encoder, it is necessary for the
decoder to be able to make inferences based on its
previous predictions to perform this task. The ben-
efit of conducting these experiments on synthetic
data is that they isolate the phenomena we wish to
evaluate. For both these tasks, we compare vanilla
Transformer with the one without decoder-encoder
residual connection. As a baseline we also con-
sider the model without decoder-decoder residual
connection, since according to our results, that con-
nection does not influence the computational power
of the model. We implement a single layer encoder-
decoder network with only a single attention head
in each block.

We then assess the influence of the limitation
on Machine Translation which requires a model
to do a combination of both mapping and infer-
ring from computations in previous timesteps. We
evaluate the models on IWSLT’14 German-English
dataset and IWSLT’15 English-Vietnamese dataset.
We again compare vanilla Transformer with the
ones without decoder-encoder and decoder-decoder
residual connection. While tuning the models, we
vary the number of layers from 1 to 4, the learn-
ing rate, warmup steps and the number of heads.
Specifications of the models, experimental setup,
datasets and sample outputs can be found in Sec. E
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Model De-En En-Vi

Vanilla Transformers 32.9 28.8
- Dec-Enc Residual 24.1 21.8
- Dec-Dec Residual 30.6 27.2

Table 2: BLEU scores (↑) for translation task. Please
see Section 5 for details.

in the Appendix.
Results on the effect of residual connections on

synthetic tasks can be found in Table 1. As per
our hypothesis, all the variants are able to perfectly
perform the copy task. For the counting task, the
one without decoder-encoder residual connection is
incapable of performing it. However, the other two
including the one without decoder-decoder resid-
ual connection are able to accomplish the task by
learning to make decisions based on their prior pre-
dictions. Table 3 provides some illustrative sample
outputs of the models. For the MT task, results can
be found in Table 2. While the drop from removing
decoder-encoder residual connection is significant,
it is still able to perform reasonably well since the
task can be largely fulfilled by mapping different
words from one sentence to another.

For positional masking, our proof technique sug-
gests that due to lack of positional encodings, the
model must come up with its own mechanism to
make order related decisions. Our hypothesis is
that, if it is able to develop such a mechanism,
it should be able to generalize to higher lengths
and not overfit on the data it is provided. To eval-
uate this claim, we simply extend the copy task
upto higher lengths. The training set remains the
same as before, containing sentences of length 5-12
words. We create 5 different validation sets each
containing 1k sentences each. The first set con-
tains sentences within the same length as seen in
training (5-12 words), the second set contains sen-
tences of length 13-15 words while the third, fourth
and fifth sets contain sentences of lengths 15-20,
21-25 and 26-30 words respectively. We consider
two models, one which is provided absolute po-
sitional encodings and one where only positional
masking is applied. Figure 3 shows the perfor-
mance of these models across various lengths. The
model with positional masking clearly generalizes
up to higher lengths although its performance too
degrades at extreme lengths. We found that the
model with absolute positional encodings during
training overfits on the fact that the 13th token is
always the terminal symbol. Hence, when evalu-

Figure 3: Performance of the two models on the copy
task across varying lengths of test inputs. DiSAN refers
to Transformer with only positional masking. SAN
refers to vanilla Transformers.

ated on higher lengths it never produces a sentence
of length greater than 12. Other encoding schemes
such as relative positional encodings (Shaw et al.,
2018; Dai et al., 2019) can generalize better, since
they are inherently designed to address this particu-
lar issue. However, our goal is not to propose mask-
ing as a replacement of positional encodings, rather
it is to determine whether the mechanism that the
model develops during training is helpful in gen-
eralizing to higher lengths. Note that, positional
masking was not devised by keeping generalization
or any other benefit in mind. Our claim is only
that, the use of masking does not limit the model’s
expressiveness and it may benefit in other ways,
but during practice one should explore each of the
mechanisms and even a combination of both. Yang
et al. (2019) showed that a combination of both
masking and encodings is better able to learn order
information as compared to explicit encodings.

SOURCE – 42
REFERENCE – 43 44 45 46 47

VANILLA TRANSFORMER – 43 44 45 46 47
- DEC-ENC RESIDUAL – 27 27 27 27 27
- DEC-DEC RESIDUAL – 43 44 45 46 47

Table 3: Sample outputs by the models on the counting
task. Without the residual connection around Decoder-
Encoder block, the model is incapable of predicting
more than one distinct output.

6 Discussion and Final Remarks

We showed that the class of languages recognized
by Transformers and RNNs are exactly the same.
This implies that the difference in performance of
both the networks across different tasks can be at-
tributed only to their learning abilities. In contrast
to RNNs, Transformers are composed of multiple
components which are not essential for their com-
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putational expressiveness. However, in practice
they may play a crucial role. Recently, Voita et al.
(2019) showed that the decoder-decoder attention
heads in the lower layers of the decoder do play a
significant role in the NMT task and suggest that
they may be helping in language modeling. This in-
dicates that components which are not essential for
the computational power may play a vital role in
improving the learning and generalization ability.

Take-Home Messages. We showed that the or-
der information can be provided either in the form
of explicit encodings or masking without affect-
ing computational power of Transformers. The
decoder-encoder attention block plays a necessary
role in conditioning the computation on the input
sequence while the residual connection around it is
necessary to keep track of previous computations.
The feedforward network in the decoder is the only
component capable of performing computations
based on the input and prior computations. Our
experimental results show that removing compo-
nents essential for computational power inhibit the
model’s ability to perform certain tasks. At the
same time, the components which do not play a
role in the computational power may be vital to the
learning ability of the network.

Although our proofs rely on arbitrary preci-
sion, which is common practice while studying the
computational power of neural networks in theory
(Siegelmann and Sontag, 1992; Pérez et al., 2019;
Hahn, 2020; Yun et al., 2020), implementations in
practice work over fixed precision settings. How-
ever, our construction provides a starting point to
analyze Transformers under finite precision. Since
RNNs can recognize all regular languages in finite
precision (Korsky and Berwick, 2019), it follows
from our construction that Transformer can also
recognize a large class of regular languages in fi-
nite precision. At the same time, it does not imply
that it can recognize all regular languages given
the limitation due to the precision required to en-
code positional information. We leave the study of
Transformers in finite precision for future work.
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A Roadmap

We begin with various definitions and results. We
define simulation of Turing machines by RNNs
and state the Turing-completeness result for RNNs.
We define vanilla and directional Transformers and
what it means for Transformers to simulate RNNs.
Many of the definitions from the main paper are
reproduced here, but in more detail. In Sec. C.1
we discuss the effect of removing a residual con-
nection on computational power of Transformers.
Sec. C.2 contains the proof of Turing completeness
of vanilla Transformers and Sec. D the correspond-
ing proof for directional Transformers. Finally,
Sec. 5 has further details of experiments.

B Definitions

Denote the set {1, 2, . . . , n} by [n]. Functions de-
fined for scalars are extended to vectors in the nat-
ural way: for a function F defined on a set A,
for a sequence (a1, . . . , an) of elements in A, we
set F (a1, . . . , an) := (F (a1), . . . , F (an)). Indi-
cator I(P ) is 1, if predicate P is true and is 0
otherwise. For a sequence X = (xn′ , . . . ,xn)
for some n′ ≥ 0, we set Xj := (xn′ , . . . ,xj) for
j ∈ {n′, i+1, . . . , n}. We will work with an alpha-
bet Σ = {β1, . . . , βm}, with β1 = # and βm = $.
The special symbols # and $ correspond to the
beginning and end of the input sequence, resp. For
a vector v, by 0v we mean the all-0 vector of the
same dimension as v. Let t̄ := min{t, n}

B.1 RNNs and Turing-completeness

Here we summarize, somewhat informally, the
Turing-completeness result for RNNs due to
(Siegelmann and Sontag, 1992). We recall basic
notions from computability theory. In the main
paper, for simplicity we stated the results for to-
tal recursive functions φ : {0, 1}∗ → {0, 1}∗, i.e.
a function that is defined on every s ∈ {0, 1}∗
and whose values can be computed by a Turing
machine. While total recursive functions form a
satisfactory formalization of seq-to-seq tasks, here
we state the more general result for partial recur-
sive functions. Let φ : {0, 1}∗ → {0, 1}∗ be partial
recursive. A partial recursive function is one that
need not be defined for every s ∈ {0, 1}∗, and
there exists a Turing MachineM with the follow-
ing property. The input s is initially written on the
tape of the Turing MachineM and the output φ(s)
is the content of the tape upon acceptance which

is indicated by halting in a designated accept state.
On s for which φ is undefined,M does not halt.

We now specify how Turing machineM is simu-
lated by RNN R(M). In the RNNs in (Siegelmann
and Sontag, 1992) the hidden state ht has the form

ht = [qt,Ψ1,Ψ2],

where qt = [q1, . . . , qs] denotes the state of M
one-hot form. Numbers Ψ1,Ψ2 ∈ Q, called stacks,
store the contents of the tape in a certain Cantor
set like encoding (which is similar to, but slightly
more involved, than binary representation) at each
step. The simulating RNN R(M), gets as input
encodings of s1s2...sn in the first n steps, and from
then on receives the vector 0 as input in each step.
If φ is defined on s, thenM halts and accepts with
the output φ(s) the content of the tape. In this
case, R(M) enters a special accept state, and Ψ1

encodes φ(s) and Ψ2 = 0. IfM does not halt then
R(M) also does not enter the accept state.

Siegelmann and Sontag (1992) further show that
from R(M) one can further explicitly produce the
φ(s) as its output. In the present paper, we will
not deal with explicit production of the output but
rather work with the definition of simulation in the
previous paragraph. This is for simplicity of expo-
sition, and the main ideas are already contained in
our results. If the Turing machine computes φ(s)
in time T (s), the simulation takes O(|s|) time to
encode the input sequence s and 4T (s) to compute
φ(s).

Theorem B.1 ((Siegelmann and Sontag, 1992)).
Given any partial recursive function φ : {0, 1}∗ →
{0, 1}∗ computed by Turing machine Mφ, there
exists a simulating RNN R(Mφ).

In view of the above theorem, for establishing
Turing-completeness of Transformers, it suffices to
show that RNNs can be simulated by Transform-
ers. Thus, in the sequel we will only talk about
simulating RNNs.

B.2 Vanilla Transformer Architecture

Here we describe the original transformer archi-
tecture due to (Vaswani et al., 2017) as formalized
by (Pérez et al., 2019). While our notation and
definitions largely follow (Pérez et al., 2019), they
are not identical. The transformer here makes use
of positional encoding; later we will discuss the
transformer variant using directional attention but
without using positional encoding.
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The transformer, denoted Trans, is a sequence-
to-sequence architecture. Its input consists of
(i) a sequence X = (x1, . . . ,xn) of vectors in
Qd, (ii) a seed vector y0 ∈ Qd. The output is
a sequence Y = (y1, . . . ,yr) of vectors in Qd.
The sequence X is obtained from the sequence
(s0, . . . , sn) ∈ Σn+1 of symbols by using the em-
bedding mentioned earlier: xi = f(fb(si),pos(i))
for 0 ≤ i ≤ n. The transformer consists of com-
position of transformer encoder and a transformer
decoder. The transformer encoder is obtained by
composing one or more single-layer encoders and
similarly the transformer decoder is obtained by
composing one or more single-layer decoders. For
the feed-forward networks in the transformer layers
we use the activation as in (Siegelmann and Son-
tag, 1992), namely the saturated linear activation
function:

σ(x) =


0 if x < 0,
x if 0 ≤ x ≤ 1,
1 if x > 1.

(4)

As mentioned in the main paper, we can eas-
ily work with the standard ReLU activation via
σ(x) = ReLU(x)−ReLU(x−1). In the following,
after defining these components, we will put them
together to specify the full transformer architecture.
But we begin with self-attention mechanism which
is the central feature of the transformer.

Self-attention. The self-attention mechanism
takes as input (i) a query vector q, (ii) a sequence
of key vectors K = (k1, . . . ,kn), and (iii) a se-
quence of value vectors V = (v1, . . . ,vn). All
vectors are in Qd.

The q-attention over keysK and values V , de-
noted by Att(q,K,V ), is a vector a given by

(α1, . . . , αn) = ρ(fatt(q,k1), . . . , fatt(q,kn)),

a = α1v1 + α2v2 + · · ·+ αnvn.

The above definition uses two functions ρ and
fatt which we now describe. For the normal-
ization function ρ : Qn → Qn

≥0 we will use
hardmax: for x = (x1, . . . , xn) ∈ Qn, if the maxi-
mum value occurs r times among x1, . . . , xn, then
hardmax(x)i := 1/r if xi is a maximum value
and hardmax(x)i := 0 otherwise. In practice, the
softmax is often used but its output values are in
general not rational. The names soft-attention and

hard-attention are used for the attention mecha-
nism depending on which normalization function
is used.

For the Turing-completeness proof of vanilla
transformers, the scoring function fatt used
is a combination of multiplicative attention
(Vaswani et al., 2017) and a non-linear function:
fatt(q,ki) = −

∣∣〈q,ki〉∣∣. For directional trans-
formers, the standard multiplicative attention is
used, that is, fatt(q,ki) = 〈q,ki〉.

Transformer encoder. A single-layer encoder
is a function Enc(X;θ), where θ is the parame-
ter vector and the input X = (x1, . . . ,xn) is a
sequence of vector in Qd. The output is another
sequence Z = (z1, . . . ,zn) of vectors in Qd. The
parameters θ specify functions Q(·),K(·), V (·),
and O(·), all of type Qd → Qd. The functions
Q(·),K(·), and V (·) are usually linear transforma-
tions and this will be the case in our constructions:

Q(xi) = xTi WQ,

K(xi) = xTi WK ,

V (xi) = xTi WV ,

where WQ,WK ,WV ∈ Qd×d. The function O(·)
is a feed-forward network. The single-layer en-
coder is then defined by

ai = Att(Q(xi),K(X), V (X)) + xi, (5)

zi = O(ai) + ai.

The addition operations +xi and +ai are the resid-
ual connections. The operation in (5) is called the
encoder-encoder attention block.

The complete L-layer transformer encoder
TEnc(L)(X;θ) has the same input X =
(x1, . . . ,xn) as the single-layer encoder. By
contrast, its output consists of two sequences
(Ke,V e), each a sequence of n vectors in Qd.
The encoder TEnc(L)(·) is obtained by repeated
application of single-layer encoders, each with its
own parameters; and at the end, two trasformation
functions KL(·) and V L(·) are applied to the se-
quence of output vectors at the last layer. Functions
K(L)(·) and V (L)(·) are linear transformations in
our constructions. Formally, for 1 ≤ ` ≤ L − 1
andX1 := X , we have

X`+1 = Enc(X`;θ`),

Ke = K(L)(XL),

V e = V (L)(XL).
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The output of the L-layer Transformer encoder
(Ke,V e) = TEnc(L)(X) is fed to the Trans-
former decoder which we describe next.

Transformer decoder. The input to a single-
layer decoder is (i) (Ke,V e), the sequences of
key and value vectors output by the encoder, and
(ii) a sequence Y = (y1, . . . ,yk) of vectors in Qd.
The output is another sequence Z = (z1, . . . ,zk)
of vectors in Qd.

Similar to the single-layer encoder, a single-
layer decoder is parameterized by functions
Q(·),K(·), V (·) and O(·) and is defined by

pt = Att(Q(yt),K(Yt), V (Yt)) + yt, (6)

at = Att(pt,K
e,V e) + pt, (7)

zt = O(at) + at.

The operation in (6) will be referred to as the
decoder-decoder attention block and the opera-
tion in (7) as the decoder-encoder attention block.
In the decoder-decoder attention block, positional
masking is applied to prevent the network from
attending over symbols which are ahead of them.

An L-layer Transformer decoder is obtained by
repeated application of L single-layer decoders
each with its own parameters and a transformation
function F : Qd → Qd applied to the last vector in
the sequence of vectors output by the final decoder.
Formally, for 1 ≤ ` ≤ L−1 and Y 1 = Y we have

Y `+1 = Dec((Ke,V e),Y `;θ`),

z = F (yLt ).

We use z = TDecL((Ke,V e),Y ;θ) to denote
an L-layer Transformer decoder. Note that while
the output of a single-layer decoder is a sequence
of vectors, the output of an L-layer Transformer
decoder is a single vector.

The complete Transformer. A Transformer net-
work receives an input sequenceX , a seed vector
y0, and r ∈ N. For t ≥ 0 its output is a sequence
Y = (y1, . . . ,yr) defined by

ỹt+1 = TDec
(
TEnc(X), (y0,y1, . . . ,yt)

)
.

We get yt+1 by adding positional encoding:
yt+1 = ỹt+1 + pos(t + 1). We denote the com-
plete Transformer by Trans(X,y0) = Y . The
Transformer “halts” when yT ∈ H , where H is a
prespecified halting set.

Simulation of RNNs by Transformers. We say
that a Transformer simulates an RNN (as defined in
Sec. B.1) if on input s ∈ Σ∗, at each step t, the vec-
tor yt contains the hidden state ht as a subvector:
yt = [ht, ·], and halts at the same step as RNN.

C Results on Vanilla Transformers

C.1 Residual Connections

Proposition C.1. The Transformer without resid-
ual connection around the Decoder-Encoder Atten-
tion block in the Decoder is not Turing Complete

Proof. Recall that the vectors at is produced from
the Encoder-Decoder Attention block in the follow-
ing way,

at = Att(pt,K
e,V e) + pt

The result follows from the observation
that without the residual connections, at =
Att(pt,K

e,V e), which leads to at =
∑n

i=1 αiv
e
i

for some αis such that
∑n

i αi = 1. Since vei is pro-
duced from the encoder, the vector at will have no
information about its previous hidden state values.
Since the previous hidden state information was
computed and stored in pt, without the residual
connection, the information in at depends solely
on the output of the encoder.

One could argue that since the attention weights
αis depend on the query vector pt, it could still use
it gain the necessary information from the vectors
vei s. However, note that by definition of hard atten-
tion, the attention weights αi in at =

∑n
i=1 αiv

e
i

can either be zero or some nonzero value depending
on the attention logits. Since the attention weights
αi are such that

∑n
i αi = 1 and all the nonzero

weights are equal to each other. Thus given the con-
straints there are 2n−1 ways to attend over n inputs
excluding the case where no input is attended over.
Hence, the network without decoder-encoder resid-
ual connection with n inputs can have at most 2n−1
distinct at values. This implies that the model will
be unable to perform a task that takes n inputs and
has to produce more than 2n − 1 outputs. Note
that, such a limitation will not exist with a residual
connection since the vector at = Σn

i=1αiv
e
i + pt

can take arbitrary number of values depending on
its prior computations in pt.

As an example to illustrate the limitation, con-
sider the following simple problem, given a value
∆, where 0 ≤ ∆ ≤ 1, the network must produce
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the values 0,∆, 2∆, . . . , k∆, where k is the max-
imum integer such that k∆ ≤ 1. If the network
receives a single input ∆, the encoder will produce
only one particular output vector and regardless of
what the value of the query vector pt is, the vector
at will be constant at every timestep. Since at is
fed to feedforward network which maps it to zt,
the output of the decoder will remain the same at
every timestep and it cannot produce distinct val-
ues. If the input is combined with n− 1 auxiliary
symbols (such as # and $), then the network can
only produce 2n−1 outputs. Hence, the model will
be incapable of performing the task if ∆ < 1/2n .

Thus the model cannot perform the task defined
above which RNNs and Vanilla Transformers can
easily do with a simple counting mechanism via
their recurrent connection.

For the case of multilayer decoder, consider
any L layer decoder model. If the residual con-
nection is removed, the output of decoder-encoder
attention block at each layer is a(`)

t =
∑n

i=1 α
(`)
i v

e
i

for 1 ≤ ` ≤ L. Observe, that since output of the
decoder-encoder attention block in the last (L-th)
layer of the decoder is a(L)

t =
∑n

i=1 α
(L)
i vei . Since

the output of the L layer decoder will be a feedfor-
ward network over a(L)

t , the computation reduces
to the single layer decoder case. Hence, similar to
the single layer case, if the task requires the net-
work to produce values of at that come from a set
with size at least 2n, then the network will not be
able to perform the task.

This implies that the model without decoder-
encoder residual connection is limited in its capa-
bility to perform tasks which requires it to make
inferences based on previously generated outputs.

C.2 Simulation of RNNs by Transformers
with positional encoding

Theorem C.2. RNNs can be simulated by vanilla
Transformers and hence the class of vanilla Trans-
formers is Turing-complete.

Proof. The construction of the simulating trans-
former is simple: it uses a single head and both
the encoder and decoder have one layer. Moreover,
the encoder does very little and most of the action
happens in the decoder. The main task for the sim-
ulation is to design the input embedding (building
on the given base embedding fb), the feedforward
network O(·) and the matrices corresponding to
functions Q(·),K(·), V (·).

Input embedding. The input embedding is ob-
tained by summing the symbol and positional en-
codings which we next describe. These encodings
have dimension d = 2dh + db + 2, where dh is the
dimension of the hidden state of the RNN and db
is the dimension of the given encoding fb of the
input symbols. We will use the symbol encoding
f symb : Σ→ Qd which is essentially the same as
fb except that the dimension is now larger:

f symb(s) = [0dh , fe(s); 0dh , 0, 0].

The positional encoding pos : N→ Qd is simply

pos(i) = [0dh ,0db ,0dh , i, 1].

Together, these define the combined embedding f
for a given input sequence s0s1 · · · sn ∈ Σ∗ by

f(si) = f symb(si)+pos(i) = [0dh , fb(si),0dh , i, 1].

The vectors v ∈ Qd used in the computation of our
transformer are of the form

v = [h1, s; h2, x1, x2],

where h1,h2 ∈ Qdh , s ∈ Qde , and x1, x2 ∈ Q.
The coordinates corresponding to the hi’s are re-
served for computation related to hidden states of
the RNN, the coordinates corresponding to s are
reserved for base embeddings, and those for x1

and x2 are reserved for scalar values related to
positional operations. The first two blocks, corre-
sponding to h1 and s are reserved for computation
of the RNN.

During the computation of the Transformer, the
underlying RNN will get the input st̄ at step t for
t = 0, 1, . . ., where recall that t̄ = min{t, n}. This
sequence leads to the RNN getting the embedding
of the input sequence s0, . . . , sn in the first n+ 1
steps followed by the embedding of the symbol $
for the subsequent steps, which is in accordance
with the requirements of (Siegelmann and Sontag,
1992). Similar to (Pérez et al., 2019) we use the fol-
lowing scoring function in the attention mechanism
in our construction,

fatt(qi,kj) = −|〈qi,kj〉| (8)

Construction of TEnc. As previously men-
tioned, our transformer encoder has only one layer,
and the computation in the encoder is very simple:
the attention mechanism is not utilized, only the
residual connections are. This is done by setting
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the matrix for V (·) to the all-zeros matrix, and the
feedforward networks to always output 0. The ap-
plication of appropriately chosen linear transforma-
tions for the final K(·) and V (·) give the following
lemma about the output of the encoder.

Lemma C.3. There exists a single layer encoder
denoted by TEnc that takes as input the sequence
(x1, . . . ,xn, $) and generates the tuple (Ke,V e)
whereKe = (k1, . . . ,kn) andV e = (v1, . . . ,vn)
such that,

ki = [0h,0s; 0h,−1, i],

vi = [0h, si; 0h, 0, 0].

Construction of TDec. As in the construction
of TEnc, our TDec has only one layer. Also
like TEnc, the decoder-decoder attention block
just computes the identity: we set V (1)(·) = 0
identically, and use the residual connection so that
pt = yt.

For t ≥ 0, at the t-th step we denote the input
to the decoder as yt = ỹt + pos(t). Let h0 =
0h and ỹ0 = 0. We will show by induction that at
the t-th timestep we have

yt = [ht,0s; 0h, t+ 1, 1]. (9)

By construction, this is true for t = 0:

y0 = [0h,0s; 0h, 1, 1].

Assuming that it holds for t, we show it for t+ 1.
By Lemma C.5

Att(pt,K
e,V e) = [0h,vt+1; 0h, 0, 0]. (10)

Lemma C.5 basically shows how we retrieve the
input st+1 at the relevant step for further computa-
tion in the decoder. It follows that

at = Att(pt,K
e,V e) + pt

= [ht, st+1,0h, t+ 1, 1].

In the final block of the decoder, the computation
for RNN takes place:

Lemma C.4. There exists a function O(·) defined
by feed-forward network such that,

O(at) = [(ht+1 − ht),−st+1,0h,−(t+ 1),−1],

whereWh,Wx and b denote the parameters of the
RNN under consideration.

This leads to

zt = O(at) + at = [ht+1,0s; 0h, 0, 0].

We choose the function F for our decoder
to be the identity function, therefore ỹt+1 =
[ht+1,0s; 0h, 0, 0], which means yt+1 = ỹt+1 +
pos(i+ 1) = [ht+1,0s; 0h, t+ 2, 1], proving our
induction hypothesis.

C.3 Technical Lemmas

Proof of Lemma C.3. We construct a single-layer en-
coder achieving the desiredKe and V e. We make
use of the residual connections and via trivial self-
attention we get that zi = xi. More specifically
for i ∈ [n] we have

V (1)(xi) = 0,

ai = 0 + xi,

O(ai) = 0,

zi = 0 + ai = xi.

V (1)(xi) = 0 can be achieved by setting the
weight matrix as the all-0 matrix. Recall that xi is
defined as

xi = [ 0h, si,
0h, i, 1 ].

We then apply linear transformations in
K(zi) = ziWk and V (zi) = ziWv, where

W T
k =


0 0 · · · 0 0
...

. . .
...

...
0 0 · · · 0 0

0 0 · · · 0 1
0 0 · · · −1 0

 ,

and Wk ∈ Qd×d, and similarly one can obtain vi
by setting the submatrix of Wv ∈ Qd×d formed
by the first d− 2 rows and columns to the identity
matrix, and the rest of the entries to zeros.

Lemma C.5. Let qt ∈ Qd be a query vector such
that q = [·, . . . , ·, t + 1, 1] where t ∈ N and ‘·’
denotes an arbitrary value. Then we have

Att(qt,K
e,V e) = [0h, st+1,0h, 0, 0]. (11)
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Proof. Recall that pt = yt = [ht, 0, . . . , 0, t +
1, 1] and ki = [0, 0, . . . , 0,−1, i] and hence

〈pt,ki〉 = i− (t+ 1),

fatt(pt,ki) = −|i− (t+ 1)|.

Thus, for i ∈ [n], the scoring functionfatt(pt,ki)
has the maximum value 0 at index i = t + 1 if
t < n; for t ≥ n, the maximum value t+ 1− n is
achieved for i = n. Therefore

Att(pt,K
e,V e) = st+1.

Proof of Lemma C.4. Recall that

at = [ ht, st+1,
0h, t+ 1, 1 ]

Network O(at) is of the form

O(at) = W2σ(W1at + b1),

where Wi ∈ Qd×d and b ∈ Qd and

W1 =

dh de dh 2

dh
de
dh
2


Wh Wx 0 0

0 I 0 0

I 0 0 0

0 0 0 I


and b1 = [bh,0s,0h, 0, 0]. Hence

σ(W1at + b1) = [σ(Whht + Wxst+1 + b),

st+1,ht, t+ 1, 1]

Next we define W2 by

W2 =

dh de dh 2

dh
de
dh
2


I 0 −I 0

0 −I 0 0

0 0 0 0

0 0 0 −I

 .
This leads to

O(at) = W2σ(W1at + b1)

= [σ(Whht + Wxst+1 + b)− ht,−st+1,

0h,−(t+ 1),−1],

which is what we wanted to prove.

D Completeness of Directional
Transformers

There are a few changes in the architecture of the
Transformer to obtain directional Transformer. The
first change is that there are no positional encodings
and thus the input vector xi only consists of si.
Similarly, there are no positional encodings in the
decoder inputs and hence yt = ỹt. The vector ỹ is
the output representation produced at the previous
step and the first input vector to the decoder ỹ0 = 0.
Instead of using positional encodings, we apply
positional masking to the inputs and outputs of the
encoder.

Thus the encoder-encoder attention in (5) is re-
defined as

a
(`+1)
i = Att(Q(z

(`)
i ),K(Z

(`)
i ), V (Z

(`)
i ))+z

(`)
i ,

where Z(0) = X . Similarly the decoder-encoder
attention in (7) is redefined by

a
(`)
t = Att(p

(`)
t ,Ke

t ,V
e
t ) + p

(`)
t ,

where ` in a(`)
t denotes the layer ` and we use

v(`,b) to denote any intermediate vector being used
in `-th layer and b-th block in cases where the same
symbol is used in multiple blocks in the same layer.

Theorem D.1. RNNs can be simulated by vanilla
Transformers and hence the class of vanilla Trans-
formers is Turing-complete.

Proof. The Transformer network in this case will
be more complex than the construction for the
vanilla case. The encoder remains very similar,
but the decoder is different and has two layers.

Embedding. We will construct our Transformer
to simulate an RNN of the form given in the defini-
tion with the recurrence

ht = g(Whht−1 +Wxxt + b).

The vectors used in the Transformer layers are of
dimension d = 2dh + de + 4|Σ|+ 1. Where dh is
the dimension of the hidden state of the RNN and
de is the dimension of the input embedding.

All vector v ∈ Qd used during the computation
of the network are of the form

v = [h1,h2, s1, Js1K, x1, Js2KJs3K, Js4K]

where hi ∈ Qdh , s ∈ Qde and xi ∈ Q. These
blocks reserved for different types of objects. The



471

vectors his are reserved for computation related to
hidden states of RNNs, sis are reserved for input
embeddings and xis are reserved for scalar values
related to positional operations.

Given an input sequence s0s1s2 · · · sn ∈ Σ∗

where s0 = # and sn = $, we use an embedding
function f : Σ→ Qd defined as

f(si) = xi = [ 0h,0h, si,
JsiK, 0,0ω,0ω,0ω ]

Unlike (Pérez et al., 2019), we use the dot prod-
uct as our scoring function as used in Vaswani et al.
(2017) in the attention mechanism in our construc-
tion,

fatt(qi,kj) = 〈qi,kj〉.

For the computation of the Transformer, we also
use a vector sequence in Q|Σ| defined by

ωt =
1

t+ 1

t∑
j=0

JstK,

where 0 ≤ t ≤ n. The vector ωt =
(ωt,1, . . . ,ωt,|Σ|) contains the proportion of each
input symbol till step t for 0 ≤ t ≤ n. Set
ω−1 = 0. From the defintion of ωt, it follows
that at any step 1 ≤ k ≤ |Σ| we have

ωt,k =
φt,k
t+ 1

, (12)

where φt,k denotes the number of times the k-th
symbol βk in Σ has appeared till the t-th step.
Note that ωt,0 = 1

t+1 since the first coordinate
corresponds to the proportion of the start symbol
# which appears only once at t = 0. Similarly,
ωt,|Σ| = 0 for 0 ≤ t < n and ωt,|Σ| = 1/(t + 1)
for t ≥ n, since the end symbol $ doesn’t appear
till the end of the input and it appears only once at
t = n.

We define two more sequences of vectors in Q|Σ|
for 0 ≤ t ≤ n:

∆t = σ(ωt − ωt−1),

δt = (∆t,1, . . . ,∆t,|Σ|−1, 1/2
t+1).

Here ∆t denotes the difference in the proportion of
symbols between the t-th and (t− 1)-th steps, with
the applicatin of sigmoid activation. In vector δt,
the last coordinate of ∆t has been replaced with
1/2t+1. The last coordinate in ωt indicates the pro-
portion of the terminal symbol $ and hence the last
value in ∆t denotes the change in proportion of $.

We set the last coordinate in δt to an exponentially
decreasing sequence so that after n steps we always
have a nonzero score for the terminal symbol and it
is taken as input in the underlying RNN. Different
and perhaps simpler choices for the last coordinate
of δt may be possible. Note that 0 ≤∆t,k ≤ 1 and
0 ≤ δt,k ≤ 1 for 0 ≤ t ≤ n and 1 ≤ k ≤ |Σ|.

Construction of TEnc. The input to the network
DTransM is the sequence (s0, s1, . . . , sn−1, sn)
where s0 = # and sn = $. Our en-
coder is a simple single layer network such that
TEnc(x0,x1, . . . ,xn) = (Ke,V e) whereKe =
(ke0, . . . ,k

e
n) and V e = (ve0, . . . ,v

e
n) such that,

kei = [ 0h,0h,0s,
JsiK, 0,0ω,0ω,0ω ],

(13)

vei = [ 0h,0h, si,
0ω, 0,0ω, JsiK,0ω ].

Similar to our construction of the encoder for
vanilla transformer (Lemma C.3), the above Ke

and V e can be obtained by making the output of
Att(·) = 0 by choosing the V (·) to always evalu-
ate to 0 and similarly for O(·), and using residual
connections. Then one can produce Ke and V e

via simple linear transformations using K(·) and
V (·).

Construction of TDec. At the t-th step we de-
note the input to the decoder as yt = ỹt, where
0 ≤ t ≤ r, where r is the step where the decoder
halts. Let h−1 = 0h and h0 = 0h. We will prove
by induction on t that for 0 ≤ t ≤ r we have

yt = [ ht−1,0h,0s,
0ω,

1
2t ,0ω,0ω,ωt−1 ].

(14)

This is true for t = 0 by the choice of seed vector:

y0 = [ 0h,0h,0s,
0ω, 1,0ω,0ω,0ω ].

Assuming the truth of (14) for t, we show it for
t+ 1.

Layer 1. Similar to the construction in
Lemma C.3, in the decoder-decoder attention
block we set V (1)(·) = 0d and use the residual
connections to set p(1)

t = yt. At the t-th step in the

decoder-encoder attention block of layer 1 we have

Att(p
(1)
t ,Ke

t̄ ,V
e
t̄ ) =

t̄∑
j=0

α̂
(1,2)
t,j vej ,
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where

(α̂
(2,2)
t,1 , . . . , α̂

(2,2)
t,t̄

)

= hardmax
(
〈p(1)
t ,ke1〉, . . . , 〈p

(1)
t ,ket̄ 〉

)
= hardmax(0, . . . , 0)

=

(
1

t̄+ 1
, . . . ,

1

t̄+ 1

)
.

Therefore∑t̄
j=0 α̂

(1,2)
t,j vej = [ 0h,0h, s0:t,

0ω, 0,0ω,ωt̄,0ω ]

where

s0:t =
1

t̄+ 1

t̄∑
j=0

sj .

Thus,

a
(1)
t = Att(p

(1)
t ,Ke

t̄ ,V
e
t̄ ) + p

(1)
t

= [ht−1,0h, s0:t,0ω,
1

2t
,0ω,ωt̄,ωt−1].

In Lemma D.2 we construct feed-forward network
O(1)(·) such that

O(1)(a
(1)
t ) = [0h,0h,−s0:t, δt̄,−

1

2t
+

1

2t+1
,

0ω,−ωt̄,−ωt−1 + ωt̄].

Hence

z
(1)
t = O(1)(a

(1)
t ) + a

(1)
t (15)

= [ht−1,0h,0s, δt̄,
1

2t+1
,0ω,0ω,ωt̄].

Layer 2. In the first block of layer 2, we set the
value transformation function to identically zero
similar to Lemma C.3, i.e. V (2)(·) = 0 which leads
to the output of Att(·) to be 0 and then using the
residual connection we get p(2)

t = z
(1)
t . It follows

by Lemma D.3 that

Att(p
(2)
t ,Ke

t̄ ,V
e
t̄ )

= [0h,0h, st̄,0ω, 0,0ω, JstK,0ω].

Thus,

a
(2)
t = Att(p

(2)
t ,Ke

t̄ ,V
e
t̄ ) + p

(2)
t

= [ht−1,0h, st̄, δt̄,
1

2t+1
,0ω, JstK,ωt̄].

In the final block of the decoder in the second
layer, the computation for RNN takes place. In

Lemma D.4 below we construct the feed-forward
network O(2)(·) such that

O(2)(a
(2)
t ) = [σ(Whht−1 +Wxst̄ + b)− ht−1

0h,−st̄,−δt, 0,0ω,−JstK,0ω]

and hence

z
(2)
t =O(2)(a

(2)
t ) + a

(2)
t

=[σ(Whht−1 + Wxst̄ + b),0h,0s,

0ω,
1

2t+1
,0ω,0ω,ωt̄],

which gives

yt+1 = [ ht,0h,0s,
0ω,

1
2t+1 ,0ω,0ω,ωt̄ ],

proving the induction hypothesis (14) for t+1, and
completing the simulation of RNN.

D.1 Technical Lemmas

Lemma D.2. There exists a function O(1)(.) de-
fined by feed-forward network such that,

O(1)(a
(1)
t ) = [0h,0h,−s0:t, δt,

− 1

2t
+

1

2t+1
,0ω, −ωt,−ωt−1 + ωt]

Proof. We define the feed-forward network O(1)(.)
such that

O(1)(a
(1)
t ) = [0h,0h,−s0:t, δt − ωt,

− 1

2t
+

1

2t+1
, 0ω, 0ω, −ωt−1 + ωt]

where

δt = (∆t,1, . . . ,∆t,n−1, 1/2
t+1), 0 ≤ δt ≤ 1

Recall that,

a
(1)
t = [ ht−1,0h, s0:t,

ωt,
1
2t ,0ω,0ω,ωt−1 ]

We define the feed-forward network O(at) as
follows,

O(1)(at) = W2σ(W1a
(1)
t + b1)



473

whereWi ∈ Qd×d and b1 ∈ Qd. DefineW1 as

2dh de dω 1 dω dω dω
2dh
de

dω − 1
1
1
dω
dω
dω



0 0 0 0 0 0 0

0 I 0 0 0 0 0

0 0 0 0 0 I −I

0 0 0 1
2 0 0 0

0 0 0 1
2 0 0 0

0 0 I 0 0 0 0

0 0 0 0 0 I 0

0 0 0 0 0 0 I


and b1 = 0, then

σ(W1a
(1)
t + b1) = [0h,0h, s0:t,∆t,

1

2t+1
,

ωt, ωt−1, ωt−1]

We defineW2 as

2dh de dω−1 2 dω dω dω
2dh
de

dω − 1
1
1
dω
dω
dω



0 0 0 0 0 0 0

0 −I 0 0 0 0 0

0 0 I 0 0 0 0

0 0 0 1, 0 0 0 0

0 0 0 −2, 1 0 0 0

0 0 I 0 0 0 0

0 0 0 0 0 −I 0

0 0 0 0 0 I −I


This leads to

O(1)(a
(1)
t ) = [0h,0h, s0:t, δt,

− 1

2t
+

1

2t+1
, 0ω, −ωt, −ωt−1 + ωt]

which is what we wanted to prove.

Lemma D.3. Let p(2)
t ∈ Qd be a query vector such

that

p
(2)
t = [ ·, ·, ·,

δt, ·, ·, ·, · ]

where t ≥ 0 and ‘·’ denotes an arbitrary value.
Then we have

Att(p
(2)
t ,Ke

t̄ ,V
e
t̄ ) = [ 0h,0h, st̄,

0ω, 0,0ω, JstK,0ω ].
(16)

Proof. Let

(α̂
(2,2)
t,1 , . . . , α̂

(2,2)
t,t̄

)

= hardmax
(
〈p(2)
t ,ke1〉, . . . , 〈p

(2)
t ,ket̄ 〉

)

be the vector of normalized attention scores in the
decoder-encoder attention block of layer 2 at time
t. Then

Att(p
(2)
t ,Ke

t̄ ,V
e
t̄ ) =

t̄∑
j=0

α̂
(2,2)
t,j vej .

We claim that

Claim 1. For t ≥ 0 we have

(α̂
(2,2)
t,1 , . . . , α̂

(2,2)
t,t̄

)

=
1

λt̄

(
I(s0 = st), I(s1 = st), . . . , I(st̄ = st)

)
,

where λt is a normalization factor given by λt =∑n−1
j=0 I(sj = st).

We now prove the lemma assuming the claim
above. Denote the L.H.S. in (16) by γt. Note that
if sj = st, then vej = γt. Now we have

t̄∑
j=0

α̂
(2,2)
t,j vej =

1

λt

t̄∑
j=0

I(sj = st)v
e
j

=
1

λt

 t̄∑
j=0

I(sj = st)

γt
= γt,

completing the proof of the lemma modulo the
proof of the claim, which we prove next.

Proof. (of Claim 1) For 0 < t ≤ n, the vector
ωt − ωt−1 has the form((

1

t+ 1
− 1

t

)
, . . . ,

(
φt,k
t+ 1

−
φt−1,k

t

)
, . . . , 0

)
.

If st = βk, then

(ωt − ωt−1)k (17)

=

(
φt,k
t+ 1

−
φt−1,k

t

)
(18)

=

(
φt−1,k + 1

t+ 1
−
φt−1,k

t

)
(19)

=
t− φt−1,k

t(t+ 1)
(20)

≥ 1

t(t+ 1)
. (21)

The last inequality used our assumption that s0 =
# and that # does not occur at any later time and
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therefore φt−1,j < t. On the other hand, if st 6= βk,
then

(ωt − ωt−1)k =

(
φt,k
t+ 1

−
φt−1,k

t

)
=

(
φt−1,k

t+ 1
−
φt−1,k

t

)
= − φt−1,j

t(t+ 1)
(22)

≤ 0.

This leads to,

(ωt − ωt−1)k > 0 if st = βk,
(ωt − ωt−1)k ≤ 0 otherwise.

In words, the change in the proportion of a symbol
is positive from step t − 1 to t if and only if it is
the input symbol at the t-th step. For 0 ≤ t ≤ n
and 1 ≤ k ≤ |Σ|, this leads to

∆t,k = σ(ωt − ωt−1)k > 0 if st = βk,
∆t,k = σ(ωt − ωt−1)k = 0 otherwise,

For t > n,
∆t = 0.

Recall that p(2)
t = z

(1)
t which comes from (15),

and kej is defined in (13). We reproduce these for
convenience:

p
(2)
t = [ ht−1, 0h, 0s,

δt̄,
1

2t+1 ,0ω,0ω, ωt̄ ],

kej = [ 0h,0h,0s,

JsjK, 0,0ω,0ω,0ω ].

It now follows that for 0 < t < n, if 0 ≤ j ≤ t is
such that sj 6= st, then

〈p(2)
t ,kej〉 = 〈δt, JsjK〉 = δt,i = 0.

And for 0 < t < n, if 0 ≤ j ≤ t is such that
sj = st = βi, then

〈p(2)
t ,kej〉 = 〈δt, JsjK〉 = δt,i (23)

=
t− φt−1,j

t(t+ 1)
≥ 1

t(t+ 1)
. (24)

Thus, for 0 ≤ t < n, in the vector(
〈p(2)
t ,ke0〉, . . . , 〈p

(2)
t ,ket 〉

)
, the largest coordi-

nates are the ones indexed by j with sj = st

and they all equal t−φt−1,i

t(t+1) . All other coordi-
nates are 0. For t ≥ n, only the last coordinate
〈p(2)
t ,ken〉 = 〈δt, J$K〉 = 1

2t+1 is non-zero. Now
the claim follows immediately by the definition of
hardmax.

Lemma D.4. There exists a function O(2)(.) de-
fined by feed-forward network such that, for t ≥ 0,

O(2)(a
(2)
t ) = [σ(Whht−1 +Wxst̄ + b)− ht−1,

0h,−st̄,−δt, 0,0ω,−JstK,0ω]

whereWh,Wx and b denote the parameters of the
RNN under consideration.

Proof. Proof is very similar to proof of lemma C.4.

E Details of Experiments

In this section, we describe the specifics of our
experimental setup. This includes details about the
dataset, models, setup and some sample outputs.

E.1 Impact of Residual Connections

The models under consideration are the vanilla
Transformer, the one without decoder-encoder
residual connection and the one without decoder-
decoder residual connection. For the synthetic
tasks, we implement a single layer encoder-decoder
network with only a single attention head in each
block. Our implementation of the Transformer is
adapted from the implementation of (Rush, 2018).
Table 4 provides some illustrative sample outputs
of the models for the copy task.

SOURCE &
REFERENCE

– there was no problem at all says douglas ford chief
executive officer of the futures exchange

DIRECTIONAL
TRANS-
FORMER

– there was no problem at all says douglas ford chief
executive officer of the futures exchange

VANILLA
TRANS-
FORMER

– there was no problem at all says douglas ford chief
executive officer

Table 4: Sample outputs by the models on the copy task
on length 16. With absolute positional encodings the
model overfits on terminal symbol at position 13 and
generates sequence of length 12.

For the machine translation task, we use Open-
NMT (Klein et al., 2017) for our implementation.
For preprocessing the German-English dataset we
used the script from fairseq. The dataset contains
about 153k training sentences, 7k development sen-
tences and 7k test sentences. The hyperparame-
ters to train the vanilla Transformer were obtained
from fairseq’s guidelines. We tuned the parameters
on the validation set for the two baseline model.
To preprocess the English-Vietnamese dataset, we
follow Luong and Manning (2015). The dataset
contains about 133k training sentences. We use

https://github.com/pytorch/fairseq/blob/e734b0fa58fcf02ded15c236289b3bd61c4cffdf/data/prepare-iwslt14.sh
https://github.com/pytorch/fairseq/tree/master/examples/translation
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the tst2012 dataset containing 1.5k sentences for
validation and tst2013 containing 1.3k sentences
as test set. We use noam optimizer in all our ex-
periments. While tuning the network, we vary the
number of layer from 1 to 4, the learning rate, the
number of heads, the warmup steps, embedding
size and feedforward embedding size.

E.2 Masking and Encodings
Our implementation for directional transformer is
based on (Yang et al., 2019) but we use only unidi-
rectional masking as opposed to bidirectional used
in their setup. While tuning the models, we vary
the layers from 1 to 4, the learning rate, warmup
steps and the number of heads.


