
Proceedings of the 24th Conference on Computational Natural Language Learning, pages 313–324
Online, November 19-20, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

313

Representation Learning for Type-Driven Composition
Gijs Wijnholds

Utrecht Institute of Linguistics OTS
Utrecht University

g.j.wijnholds@uu.nl

Mehrnoosh Sadrzadeh
Department of Computer Science

University College London
m.sadrzadeh@ucl.ac.uk

Stephen Clark
School of Electronic Engineering and Computer Science

Queen Mary University of London
stephen.clark609@gmail.com

Abstract
This paper is about learning word representa-
tions using grammatical type information. We
use the syntactic types of Combinatory Catego-
rial Grammar to develop multilinear represen-
tations, i.e. maps with n arguments, for words
with different functional types. The multilin-
ear maps of words compose with each other
to form sentence representations. We extend
the skipgram algorithm from vectors to multi-
linear maps to learn these representations and
instantiate it on unary and binary maps for tran-
sitive verbs. These are evaluated on verb and
sentence similarity and disambiguation tasks
and a subset of the SICK relatedness dataset.
Our model performs better than previous type-
driven models and is competitive with state of
the art representation learning methods such as
BERT and neural sentence encoders.

1 Introduction

We develop a novel technique for learning word
representations by using syntactic type information
of the words to learn representations for them and
the constituency-based structure of the sentence to
compose the representations. The word representa-
tions are multilinear maps, i.e. maps with variable
number of arguments, where the number of argu-
ments and the type of each map come from the
syntactic type of each word. The word representa-
tion are composed via the application and further
composition of the results of these maps, based on
constituency structure.

For instance, a noun such as children or ball
is represented by a vector, i.e.

−−−−−→
children or

−−→
ball,

which can be thought of as 0-linear maps as they
have no input or output. An adjective such as young
is represented by a unilinear map young, i.e. a lin-
ear map of one argument, which at input takes an
argument of type noun, e.g. children and at output
returns an argument of type noun, i.e. young chil-
dren. A transitive verb such as play, is represented

by a bilinear map play, i.e. a linear map with two
arguments, which at input takes two arguments of
type noun, e.g. children and ball, and at output
returns an argument of type sentence, i.e. young
children play ball. An adjective-noun phrase repre-
sentation is obtained by applying the representation
of the adjective to the representation of its noun, i.e.
by applying the unilinear map of the adjective to
the vector of the noun. A sentence representation
is obtained by the composition of two applications,
i.e. by first applying the representation of the verb,
e.g. play to the representation of the object, e.g.−−→
ball, resulting in a unilinear map for the representa-
tion of the verb phrase play ball, and subsequently
applying this verb phrase to the representation of
the subject, e.g.

−−−−−→
children.

The representations are learnt by generalising the
skipgram model with negative sampling of Mikolov
et al. (2013) from vectors to higher order tensors,
which are the intended multilinear maps. The types
and composition operations come from the syntac-
tic types and combinators of Combinatory Cate-
gorial Grammar (CCG) (Steedman, 2000). CCG
is a phrase structure grammar formalism based on
the combinatory logic of Curry and Feys (Curry
and Feys, 1958). It assigns types defined in the
notation of the combinatory logic to words of lan-
guage and uses the operations of the combinatory
logic to compose these types to obtain types for
the phrases and sentences containing them. For
instance, a word can have a CCG functional type
of n arguments; this word will be represented in
our setting by an n-ary map that uses the represen-
tations of its arguments, in a skipgram-style model,
to predict the representations of the contexts of
their composed phrases. As an example, consider
a transitive verb; it has a CCG functional type of
two arguments. Its representation is thus a binary
map that predicts the contexts of its subject-verb-
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object phrases. Since the specific subject-verb-
object phrases obtained may be sparse, we approx-
imate the higher order maps with a set of lower
order ones. As a result, a word with a CCG type of
n arguments, gets represented by n maps of n− 1
arguments; these transform the representations of
a certain number of the arguments to predict the
contexts of the remaining arguments. A transitive
verb is now represented by two unary maps of one
argument each; one of them transforms the object
representation to predict its subject contexts, and
the other transforms its subject representations to
predict its object contexts. These lower order ap-
proximations are combined with each other to pro-
duce one single representation for the word with
functional type.

Our generalised skipgram algorithm is modular,
i.e. the skipgram model of Mikolov et al. (2013)
and its extension to adjective matrices (Maillard
and Clark, 2015) are special cases of it. We instan-
tiate our model on binary and unary maps for tran-
sitive verbs. After learning these representations,
we evaluate them on verb similarity, compositional
sentence similarity and disambiguation tasks, and
a subset of the SICK relatedness dataset (Marelli
et al., 2014).

In the verb and sentence similarity and verb dis-
ambiguation datasets, our model outperforms all
previous type-driven models, and in most cases
it also outperforms InferSent and Universal Sen-
tence encoders, as well as pre-trained ELMo and
BERT embeddings. However, it does not outper-
form BERT embeddings fine-tuned on NLI data.
In the subset of SICK, our model only outperforms
all previous type-driven models. Despite that, our
model is motivated by linguistic theory, is simple
and quick to train, and has the potential for improve-
ment (which we expand on in the conclusion).

Code and data to train representations and repro-
duce our work is available online.1

Background There is a plethora of methods for
word embeddings, with few of them distinguishing
the grammatical types of the words. For adjec-
tives, we have the regression model of Baroni and
Zamparelli (2010) that approximates the holistic
adjective-noun vectors to learn adjective matrices;
we also have the skipgram model of Maillard and
Clark (2015) that learns a transformation between
fixed vectors for nouns and adjective-noun combi-

1github.com/gijswijnholds/
tensorskipgram-torch

nations. The model of Grefenstette and Sadrzadeh
(2011) takes the sum of the outer products of the
vectors of subjects and objects, and the Kronecker
product of the verb vector with itself, to learn verb
matrices. Later work uses multi-step regression to
learn a verb cube, i.e. a multidimensional array
of depth 1, by iteratively approximating a holistic
subject-verb and verb-object vector (Grefenstette
et al., 2013). The model of Paperno et al. (2014)
overcomes the sparsity issues of this technique and
approximates the cubes by two matrices. The plau-
sibility model of Polajnar et al. (2014), learns a
verb matrix/cube by optimising a model that dis-
tinguishes between observed subject-verb-object
triples and randomly generated ones. Our work is
different from these, since we use a skipgram-style
model rather than combining the subject and object
vectors or the verb vectors, as done by Grefenstette
and Sadrzadeh (2011), or performing regression,
as done by Paperno et al. (2014) and Polajnar et al.
(2014).

Sentence embeddings are either learnt by mix-
ing word embeddings e.g. the additive models
of (Mitchell and Lapata, 2010; Mikolov et al.,
2013), or as a whole, e.g. the supervised InferSent
(Conneau et al., 2017) and Universal Sentence
Encoder (Cer et al., 2018), and the unsupervised
ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019) models. None, however, explicitly
take into account grammatical information. Tree-
RNNs (Socher et al., 2013), Tree-LSTMs (Tai et al.,
2015), and Lifted Matrix Space model (Chung
et al., 2018), do use the constituency tree of a sen-
tence as a guide, but to learn a semantic function
composition rather than different types of represen-
tations for words. Our work is different from these,
since we start our learning procedure by taking the
grammatical types of words into account and then
compose these initially learnt representations with
each other based on the structure of phrases they
are part of, rather then by adding or learning dif-
ferent composition operators, or learning the entire
phrase/sentence at once.

On the other hand, formal distributional mod-
els, e.g. the categorial framework of Coecke et al.
(2010, 2013), the linear regression approach of Ba-
roni et al. (2014), and the Combinatory Categorial
Grammar (CCG) tensor contraction model of Mail-
lard et al. (2014), directly take the grammatical
types of words into account, but fail to scale up to
sentences of any length and complexity, and do not

https://github.com/gijswijnholds/tensorskipgram-torch
https://github.com/gijswijnholds/tensorskipgram-torch
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perform as well as their neural embedding counter-
parts. To remedy these issues, our model makes
use of a simple neural network to learn the type-
driven word representations in such a way that their
composition leads to improved results.

2 Multilinear Skipgram Embeddings

The skipgram model with negative sampling gen-
erates word embeddings by optimising a logistic
regression objective in which target vectors have
high inner product with context vectors for positive
contexts, and low inner product with negative ones.
Given a target word n and a set of positive contexts
C, a set of negative contexts C is sampled from a
unigram distribution raised to some power (here:
3/4, after Levy et al. (2015)).

Initially, both target vectors n and context vec-
tors c are randomly intialised, and during training
the model updates both target and context vectors
to maximise the following objective function:∑

c∈C
log σ(n · c) +

∑
c∈C

log σ(−n · c) (1)

We generalise the skipgram model following
the typing of Combinatorial Categorial Grammar
(CCG, Steedman (2000)). CCG has a transpar-
ent interface between syntax and semantics and
robust wide-coverage parsers (Clark and Curran,
2007; Hockenmaier and Steedman, 2007). Syntac-
tic types of CCG are either atomic, e.g. nouns/noun
phrases: NP and sentences: S , or functional.
Functional types are either of the form Y /X or
Y \X ; they take an argument of type X and re-
turn an argument of type Y , where for \ the argu-
ment occurs to the left and for / it occurs to the
right. Examples of functional types are adjectives:
NP/NP , intransitive verbs: S\NP and transitive
verbs: (S\NP)/NP .

Types are composed with each other through
the combinatorial rules of CCG, which include
forward and backward application and composi-
tion, type-raising, and backward-cross and forward-
cross composition. An example of forward appli-
cation is when an adjective composes with a noun,
producing a noun. An example of backward appli-
cation is when a verb phrase composes with a noun
phrase producing a sentence.

NP/NP NP

NP
>

NP S\NP
S

<

Forward and backward composition are used in
composing auxiliary phrases; cross composition

and the type-raising combinators are used in cases
of coordination and gapping.

Following the tensor semantics of CCG, devel-
oped in Maillard et al. (2014), in our model, we
represent a word W with a functional type of n
arguments by a n-ary map W from the argument
spaces to the result space:

W(n) : V1 × ...× Vn → Vn+1

where Vi’s are (finite dimensional) vector spaces
over the field of reals and the subscript n denotes
the arity of the map W. Equivalently, W(n) is
an (n + 1)th-order tensor Wi1...in+1 in the space
V1 ⊗ ...⊗ Vn ⊗ Vn+1. Given a functional word W
of n arguments and representations d1, ...,dn of
its arguments, we denote by W(n)d1...dn the appli-
cation of the representation of W to its arguments’
representations. The model that learns the maps
has the following objective function:∑

c∈C
log σ(W(n)d1...dn · c)

+
∑
c∈C

log σ(−W(n)d1...dn · c)

WhenW is a noun, W(0) is a 0-ary map, equivalent
to Wi1 : a 1st-order tensor, i.e., a vector. In this
case, the objective function reduces to the original
skipgram model of Equation 1. ForW an adjective,
W(1) is a unary map, equivalent to Wi1i2 : a 2-nd
order tensor, i.e., a matrix. The objective function
that learns it was developed in Maillard and Clark
(2015), and is as follows:∑
c∈C

log σ(W(1)d1 · c) +
∑
c∈C

log σ(−W(1)d1 · c)

Since adjective-noun combinations are themselves
nouns, taking the original skipgram linear context
window will produce sensible adjective represen-
tations. This is however not the case for all words
with functional types: for verbs, for example, sub-
jects and objects may not be directly adjacent to the
verb in a sentence and so one needs to commit to
a full sentential context, leading to uninformative
training data. Aside to that, training of a cube leads
to over parameterisation. To overcome these issues
simultaneously, we define lower order approxima-
tions of higher order tensors, where one argument
of the functional type is left out of the composition
and used as context.

More formally, a word W with a functional type
of n arguments, is approximated by n maps of
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n− 1 arguments. Equivalently, in tensor form, we
are approximating a full n+1th-order tensor, by de-
composing it into n separate partial tensors of one
lower order each. We denote the map equivalent

of these partial tensors by W̃
i

(n−1). The objective
function of the model thus become as follows:∑
di∈Di

log σ(W̃
i

(n−1)d1...di−1di+1...dn · di) +∑
di∈Di

log σ(−W̃
i

(n−1)d1...di−1di+1...dn · di)

Here, di is a word with representation di: an ob-
served argument of W , and Di is the set of all
such arguments. Whereas, di is a word with rep-
resentation di, which can in principle serve as an
argument of W , but it is randomly sampled, so it
is an unobserved argument of W . Similarly, Di is
the set of all such arguments.

We can decrease the order of the tensors even
more by parameterising over subsets of contexts.
For a word W of n arguments, when including
1 to i ≤ n of its n arguments in the context,
we obtain an (n − i)th-order tensor, with the

equivalent map W̃
1...i|i+1...n

(n−i+1) . The application of
this map to the remaining i + 1 to n arguments

is W̃
1...i|i+1...n

(n−i+1) di+1...dn. So we predict as con-
text the 1...ith arguments by composing with the
vectors for the i + 1...nth arguments. We write

W̃
1...i

(n−i+1) when i = n, i.e. we use all arguments
as context.

2.1 Instantiation to Verb Skipgram

We instantiate our model on transitive verbs. A
transitive verb V has CCG type (S\NP)/NP . Our
full model learns a binary map V(2) : V1×V2 → V3,
equivalent to a 3rd-order tensor, i.e. a cube, Vi1i2i3
to represent V . We denote d1, i.e. the object of the
verb, by o, its vector by o, and d2, i.e. its subject,
by s, its vector by s. The objective function of our
full model for V is thus∑
c∈C

log σ(V(2)os·c)+
∑
c∈C

log σ(−V(2)os·c) (2)

We approximate V(2) by training two unary maps,

an object one Ṽ1|2
(1), which we denote by Ṽo|s(1), and

a subject one Ṽ2|1
(1), which we denote by Ṽs|o(1). The

map Ṽo|s(1) predicts the object of the verb, given a

Representation Order Context

Vsent|o,s(2) binary sentence

Ṽo|s(1)/Ṽ
s|o
(1) unary obj/sbj

Ṽo(0)/Ṽ
s
(0)/Ṽ

o,s
(0) 0-ary obj/sbj/both

Vsent|s(1) ,Vsent|o(1) unary sentence

vskip 0-ary linear window

Table 1: Verb representations, ranging from 0-ary (vec-
tors) to binary maps (cubes).

fixed subject; it is learnt as follows:∑
o∈O

log σ(Ṽo|s(1)s · o) +
∑
o∈O

log σ(−Ṽo|s(1)s · o) (3)

The map Ṽs|o(1) predicts the subject of the verb, given
a fixed object, and is learnt as follows:∑
s∈S

log σ(Ṽs|o(1)o · s) +
∑
s∈S

log σ(−Ṽs|o(1)o · s) (4)

Here, S and O are the sets of observed subjects
and objects of V , and S and O are the sets of V ’s
unobserved subjects and objects.

We push the approximation one level further to
also produce three 0-ary maps, i.e. vectors, for
the verb. We denote these by Ṽo(0), Ṽ

s
(0), Ṽ

o,s
(0);

they respectively represent a verb vector by only
considering its objects, subjects, or both as context.
These vectors are similar to the dependency based
embeddings of Levy and Goldberg (2014).

We summarise all trained models by the arity of
their maps and the choice of their contexts in Table
1. As baselines, we additionally train unary maps
Vsent|s(1) and Vsent|o(1) , which predict a full sentence
context given the subject or object of the verb, and
vskip for the original skipgram vector of the verb.

2.2 Fusion

We consider two ways of combining our unary map
skipgram verb representations into a single repre-
sentation: the middle and late fusion methods of
Bruni et al. (2014). Middle fusion takes a weighted
average of the two verb representations, using the
result to compute similarity scores. Late fusion
uses each representation to compute separate simi-
larity scores and then averages the results. Given a
weighted averageMα(A,B) = αA+(1−α)B for
α ∈ [0..1], and V,W two verbs, with approximated
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Metric Formula

vecsim cos(a,b) =
a · b
|a||b|

matsimS med
s∈S

cos(Ṽ(1)s, W̃(1)s)

matsimO med
o∈O

cos(Ṽ(1)o, W̃(1)o)

cubesim med
〈s,o〉∈A

cos(V(2)os,W(2)os)

Table 2: Similarity metrics on vectors, matrices and
cubes, based on clustering centroids.

subject and object matrices Ṽ, Ṽ
′

and W̃, W̃
′

the
middle and late fusion operations are:

mid sim(Mα(Ṽ, Ṽ′),Mα(W̃, W̃′)) (5)

late Mα(sim(Ṽ, W̃), sim(Ṽ′, W̃′)) (6)

The same fusion methods are used in the compo-
sitional tasks, where either verb matrices are av-
eraged before composition, or cosine scores are
averaged after.

2.3 Clustering
In their adjective skipgram model, Maillard and
Clark (2015) argued that cosine similarity, while
suitable for vectors, does not capture any infor-
mation about the function of matrices as unary
maps and that instead one should measure how
similarly the maps transform their arguments. The
same holds for generalisations of unary maps to n-
ary ones, equivalently, for matrices to higher order
tensors. Following Maillard and Clark, we apply
clustering to achieve this. The degree of similar-
ity between two words W and W ′, each with a
functional type of n arguments, is obtained by tak-
ing the median of the degrees of similarities of the
applications of their maps W(n) and W′(n) on the
clusters of their arguments. Since going through
all the instantiations of the arguments is expensive,
we cluster the most frequent argument vectors and
work with the similarity between the two transfor-
mations applied to the centroids of each cluster.
The resulting similarity function is defined as fol-
lows, for D the set of tuples of cluster centroids:

tensorsim :

med
〈d1,...,dn〉∈D

cos(W(n)d1...dn,W′(n)d1...dn)

Model type Formula

Middle T (s,Mα(Ṽ(1), Ṽ′(1)),o)
Late Mα(T (s, Ṽ(1),o), T (s, Ṽ′(1),o))
Two Mα(Ts(s, Ṽ(1),o), To(s, Ṽ′(1),o))
Cube V(2)os

Table 3: Building Representations for Transitive Sen-
tences. T represents a n-ary map composition model
for transitive sentences, Ts is subject-directed composi-
tion, To is object-directed composition. When α = 0
or α = 1, the models reduce to the case of using one of
the two verb matrix embeddings.

For the case of transitive verbs, we are dealing
with binary map transformations and the above
definition simplifies to considering the most fre-
quent subjects and objects of the verb, clustering
them separately, then applying the map to the cen-
troid vectors and taking the median. The details of
the different map transformation similarities that
we obtain for transitive verbs using our model are
given in Table 2.

3 Implementation and Evaluation

3.1 Implementation

We implemented all models in Python, using the
tensorflow package (Abadi et al., 2016)2. Vec-
tors were 100-dimensional; unary and binary maps,
i.e. matrices and cubes, were shaped accordingly.
The functional type-driven information was ex-
tracted from a dependency parsed corpus3 contain-
ing ca.130M sentences and ca. 3.2B words, on
which the initial regular noun vectors were also
trained.

In the case of matrices and cubes with full sen-
tential contexts, a pair of networks was trained
separately for each verb, sharing the context matrix
from the noun skipgram model. For the matrices
with subject (resp. object) contexts, we trained a
pair of networks (a subject network and an object
network), each with a single embedding layer en-
coding all the verbs. In these networks, the context
matrix consists of all possible object (resp. subject)
context vectors. Here we considered both a fixed
context matrix (from the noun skipgram model)
and a trainable context matrix and found that the

2Our code was later changed to Pytorch.
3UKWaCkypedia, wacky.sslmit.unibo.it

http://wacky.sslmit.unibo.it
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trainable context matrix gave the best results4, so
we work with the latter. Negative samples were
drawn from the distribution over objects/subjects
of all verbs in the case of the partial tensor mod-
els. We considered k = 10 negative samples per
subject/object.

3.2 Evaluation and Datasets
We evaluate our verb representations on four types
of tasks: verb similarity, verb disambiguation,
sentence similarity, including SVO sentences and
SVO sentences with elliptical phrases, and a subset
of the SICK sentence relatedness task.

3.3 Verb Similarity
We considered five verb similarity datasets of
varying size: pairs of words from the MEN (Bruni
et al., 2012) and SimLex-999 (Hill et al., 2015)
datasets that were labelled as verbs, obtaining 22
and 222 verb similarity pairs, respectively. Next
to these partial datasets, we considered VerbSim
(Yang and Powers, 2006), a dataset of 130 verb
pairs, and the more recent SimVerb-3500 dataset
(Gerz et al., 2016), containing 3500 verb pairs.

3.4 Verb Disambiguation and Sentence
Similarity

We considered seven tasks. (1,2) The two datasets
introduced by Mitchell and Lapata (2008, 2010),
dubbed ML08 and ML10. These datasets contain
pairs of intransitive sentences; the 2008 dataset
aims to disambiguate the verb of each sentence, the
2010 dataset is for computing sentence similarity.
(3,4) The transitive verb disambiguation datasets
of Grefenstette and Sadrzadeh (2011) (GS11)
and Kartsaklis and Sadrzadeh (2013) (KS13a),
and (5) the transitive sentence similarity dataset
of Kartsaklis et al. (2013) (KS13b). (6,7) We
additionally test on two recent datasets (Wijnholds
and Sadrzadeh, 2019) (ELLDIS and ELLSIM),
which extend the KS13a and KS13b datasets to
sentences with verb phrase ellipsis in them.

The datasets ML08 and ML10, respectively, con-
tain pairs of subject-verb, and verb-object phrases.
Next to the additive baseline, we apply the unary
map representations of verbs to the subject (or

4We argue that this is because contexts in the noun skip-
gram model are more general as they serve as contexts to many
different target words.

Model Formula

CA Mα

(
sT Ṽ(1) � o, Ṽ′(1)o� s

)
CAS Mα

(
sT Ṽ(1) + o, Ṽ′(1)o+ s

)
CATA Mα

(
sT Ṽ(1), Ṽ′(1)o

)
Table 4: Two-map models. We compose partial
sentence embeddings using the subject- and object-
directed verb matrix, and merge the two embeddings
into one. Mα is the mixing operator defined before.

object) to get sentence representations: Ṽ(1)s for
subject-verb phrases, Ṽ(1)o for verb-object phrases.
For the separate subject-verb and verb-object maps,
we apply middle and late fusion. To model a transi-
tive sentence of the form subj verb obj, we compare
verb-only and additive baselines with n-ary map
models as described in Table 3. In the Two model
in this table, we first apply Ṽo(1) to the subject vec-

tor, then mix it with the application of Ṽs(1) to the
object vector. We then mix in the object/subject
vectors and obtain three different models: CA for
Copy Argument, CAS for Copy Argument Sum
and CATA for Categorical Argument; see Table 4.

The ELLDIS and ELLSIM datasets of Wijnholds
and Sadrzadeh (2019) contain sentences of the form
subj verb obj and subj∗ does too. We first resolve
the ellipsis by replacing the marker does too with
its antecedent verb object, then apply a transitive
model to the resulting subj verb obj and subj∗ verb
object conjunct and finally combine the representa-
tions by addition; formally

E(s, Ṽ(1),o, s
∗) = T (s, Ṽ(1),o) + T (s∗, Ṽ(1),o)

where s∗ is the representation of subj∗.

3.5 SICK-R

The SICK relatedness task of Marelli et al.
(2014) contains sentence pairs that are scored
between 1 and 5 on semantic relatedness to
evaluate compositional distributional models for
relatedness. To evaluate our verb representations,
we extract the verbs with their arguments (subjects
and/or objects) from dependency parsed sentences,
use one of the previously described composition
models to generate a single verb representation
for the verb-argument tuple, and compose this
with the vectors for the remaining words in the
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MENv SLv VS SVd SVt

vskip 0.28 0.05 0.34 0.22 0.18
VKron 0.38 0.1 0.37 0.22 0.18
VRel 0.33 0.05 0.34 0.22 0.18
Ṽo/s/s,o(0) 0.25 0.27 0.56 0.25 0.20

Vsent|s/o(1) 0.50 0.16 0.09 -0.02 0.02

Ṽo|s/s|o(1) 0.59 0.34 0.55 0.29 0.24
Vsent|s,o(2) 0.04 0.02 -0.08 -0.01 -0.03

SoTA n/a 0.39 0.65 0.40 0.30

Table 5: Spearman ρ correlation on verb similarity
datasets. The subscript v indicates that we are look-
ing at the partial verb-only dataset. For SimVerb we
distinguish between the development and test set. State
of the art scores are taken from (Chersoni et al. (2016),
VS) and (Gerz et al. (2016), SLv , SVd, SVt). For MEN,
we did not find any results on the verb subset.

sentence. We used the Spacy5 parser combined
with a postprocessing script to correct cases
of coordination of verbs and arguments, as
we expected this to be vital information in the
dataset. To keep this process manageable, we
used the SemEval subset of the SICK dataset.
We evaluate our best performing verb unary map
representations (Ṽo|s/s|o(1) ), as well as the two
analytical verb representations VKron and VRel.

3.6 Comparison with Other Methods
At the verb level, we compare our skipgram verb
representations (Table 1) with two verb repre-
sentation methods from the type-driven literature
(Grefenstette and Sadrzadeh, 2011). The first rep-
resentation, referred to by Kronecker, lifts a verb
vector to a matrix representation using outer prod-
uct. The second representation is the Relational
model, where a verb matrix is taken to be the sum
of the outer products of its subject and object vec-
tors; formally:

VKron = va ⊗ va VRel =
∑
i

si ⊗ oi

At the sentence level, we compare our model
with that of Mitchell and Lapata (2010), which
given a sentence adds the vectors of the words
therein, and also with supervised sentence en-
coders, InferSent (Conneau et al., 2017), as well

5https://spacy.io/

ML08 ML10 GS11 KS13a KS13b

vskip 0.07 0.40 0.23 0.18 0.45
VKron 0.25 0.40 0.27 0.26 0.45
VRel 0.11 0.43 0.31 0.18 0.47
Ṽo/s/s,o(0) 0.06 0.53 0.33 0.10 0.64

Vsent|s/o(1) 0.16 -0.00 0.37 0.06 -0.06

Ṽo|s/s|o(1) 0.12 0.64 0.40 0.22 0.69
Vsent|s,o(2) 0.18 0.00 -0.03 0.00 -0.03

SoTA 0.19 0.45 0.46 0.22 0.73
Human 0.66 0.71 0.74 0.58 0.75

Table 6: Spearman ρ correlation of verbs of SVO sen-
tence level tasks. Each score is a maximum score
out of possible clusters and fusion weights. State of
the art scores are taken from (Mitchell and Lapata
(2008),ML08), (Milajevs et al. (2014),GS11,KS13b)
and (Kartsaklis and Sadrzadeh (2013),ML10,KS13a).

as, Universal Sentence Encoder (Cer et al., 2018).
For these latter, we take off-the-shelf encoders to
map the sentence pairs in our evaluation datasets
to a pair of embeddings, and compute the cosine
similarity between these. We moreover compare
to state-of-the-art contextualised encoders ELMo
(Peters et al., 2018) and BERT (Devlin et al., 2019).
For ELMo, we use a pre-trained model and apply
mean pooling6. For BERT, we take the implementa-
tion of Reimers and Gurevych (2019)7, as it imple-
ments both the original pre-trained BERT models
and fine-tuned sentence embedding models. To
this, we apply max, mean, and CLS token pooling,
and report the best scores out of all models and
pooling types, for the pre-trained models and the
fine-tuned models.

4 Results

4.1 Verb Level Tasks

The correlation results on verb similarity tasks are
displayed in Table 5. Here, for the case of verb vec-
tors, the general skipgram model is outperformed
by the vectors trained using our partial model on the
verb arguments as context, and in fact these show
the highest performance on the VerbSim dataset.
That the unary and binary maps representations
with the full sentence as context perform rather

6https://tfhub.dev/google/elmo/2
7https://github.com/UKPLab/

sentence-transformers

https://spacy.io/
https://tfhub.dev/google/elmo/2
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
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ML08 ML10 GS11 KS13a KS13b

C(+) 0.17 0.54 0.19 0.18 0.67
C(VKron) 0.08 0.40 0.20 0.28 0.53
C(VRel) 0.19 0.51 0.32 0.19 0.51
C(Vsent|s/o(1) ) -0.04 0.00 0.25 0.20 0.54

C(Ṽo|s/s|o(1) ) 0.19 0.55 0.54 0.37 0.75
C(Vsent|s,o(2) ) — — -0.02 -0.04 0.06

Human 0.66 0.71 0.74 0.58 0.75

Table 7: Spearman ρ scores on compositional tasks.
C(+) denotes the additive model, whereas the other
rows represent the best score for compositional models
with different verb representations.

poorly, and in many cases worse than the vector rep-
resentations, illustrates that the choice of context is
too general for these higher-order representations.
On four out of the five tasks, our approximated
models that train unary maps with a restricted no-
tion of context, outperform all other models: the
most significant of these increases are for the 3000
entry test subset of the SimVerb dataset: here we
observe an increase from 0.18 to 0.24.

Table 6 shows the correlation scores on the verbs
of the SVO sentence level tasks. In this experi-
ment, we perform the sentence disambiguation and
similarity tasks by only using the verbs of the sen-
tences. We observe the same pattern in the results:
training verb vectors on dependency label contexts
slightly improves the performance. This is against
the erratic performance of the binary map repre-
sentations (on all but the ML2008 dataset). Again,
our approximated unary map representations with
a restricted context significantly outperforms the
other methods.

In the majority of the verb similarity datasets
we do not improve the state of the art, but in the
majority of the verb parts of the SVO sentence
datasets, we do.

4.2 Sentence Level Tasks

4.2.1 Verb Disambiguation and SVO
Sentence Similarity Datasets

The most interesting results, however, come from
the SVO sentence tasks. These compute a repre-
sentation for each sentence of the dataset by com-
posing the representations of the words of that sen-
tence, rather than by only working with individual
word representations, as was done in the previous

ML08 ML10 GS11 KS13a KS13b

Ṽo|s/s|o(1) 0.19 0.55 0.54 0.37 0.75
IS 0.18 0.63 0.30 0.17 0.78
USE 0.04 0.33 0.09 0.21 0.54
ELMo 0.17 0.54 0.11 0.24 0.73
BERTp 0.19 0.34 0.24 0.32 0.61
BERTf 0.32 0.74 0.61 0.32 0.82

Human 0.66 0.71 0.74 0.58 0.75

Table 8: Spearman ρ scores on compositional tasks,
for our proposed unary map verb representation versus
state of the art sentence embedding methods.

two tasks. Table 7 contrasts the additive models
(top row), type-driven methods that use the Kro-
necker (second row) and Relational (third row) verb
representations, against the type-driven model that
uses skipgram representations (resp. full context
binary maps, full context unary maps, restricted
context unary maps).

While the skipgram binary map verb representa-
tions with full sentences as context perform slightly
better in a sentence context, they generally under-
perform the additive baseline and the non-skipgram
tensors. We argue that this is mainly due to the
choice of context: the full sentence doesn’t tell us
enough about the subjects and objects of the verb,
whereas the Relational model directly encodes this
information. Similarly to the verb similarity results,
the binary map representations show a very poor
performance, which we argue is due to data spar-
sity. Even though the binary map implicitly model
properties of arguments of the verbs, their represen-
tation is too sparse to effectively model anything.
Our proposed unary map model remedies both the
sparsity problem and the choice of context, and
outperforms all the other representations, save on
the ML2008 dataset. This model also improves the
state of the art in all the datasets.

4.2.2 Elliptical Phrase and SICK Datasets

The results in Tables 9 show that our proposed
verb unary map representations achieve competi-
tive results compared to the additive baseline, and
pre-trained BERT embeddings, on the ELLDIS and
ELLSIM tasks and on (a subset of) the SICK relat-
edness task. What is more, they clearly outperform
the analytic tensors and in ellipsis datasets; they
also improve the state of the art of ELLDIS, which
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Add Kron Rel Ṽo|s/s|o
(1) IS USE BERTp BERTf

0.31 0.30 0.37 0.56 0.34 0.27 0.36 0.65
0.67 0.52 0.65 0.76 0.80 0.68 0.67 0.79
0.71 0.58 0.44 0.70 0.74 0.76 0.70 0.76

Table 9: Spearman ρ scores on the ELLDIS (top), ELL-
SIM (middle), and SICK relatedness (bottom) tasks.

was 0.53, and provide equal results to the state of
the art of ELLSIM, which was 0.76 , both reported
in Wijnholds and Sadrzadeh (2019). However, they
are surpassed by fine-tuned BERT sentence em-
beddings and sentence encoders, that achieve the
highest. For SICK, to verify that the high perfor-
mance of our verb maps is not caused simply by
adding in the vectors for the remaining word of a
sentence, we did an ablation in which the rest of
the sentence was not considered. Using addition of
vectors, this gave a ρ of 0.61, and for the compo-
sitional verb matrices this gave 0.62 (cf. 0.71 and
0.70 in Table 9).

4.3 Comparison with Sentence Embeddings

We compare our model with the InferSent
encoder and the Universal Sentence Encoder,
and with ELMo and BERT encodings in Table 8.
Although our embeddings outperform Universal
Sentence Encoder on all tasks, on the ML2010
and KS2014 dataset InferSent performs higher,
possibly due to its high embedding dimensionality
(4096). For the BERT embeddings we observe
an interesting pattern: our proposed method
outperforms any pre-trained BERT model, but
after fine-tuning on NLI datasets, the BERT
models score the highest on all datasets but
KS2013. Although fully analysing the syntactic
awareness of BERT is beyond the scope of this
paper, it seems that both explicitly modelling
syntax in the embeddings as our method does, and
fine-tuning BERT embeddings are viable strategies.

5 Conclusion

We generalised the skipgram model (Mikolov et al.,
2013) to learn multilinear map representations for
words with functional types using the setting of
Combinatory Categorial Grammar. Our model re-
duces to the original skipgram for atomic types
such as nouns, and to the adjective skipgram model
of Maillard and Clark (2015), for functional types

of one argument. To overcome potential sparsity
issues we approximated higher arity maps with a
set of lower arity ones and showed that such ap-
proximations provide better results.

The model was implemented on transitive verbs,
learning binary and a set of approximated unary
representations. These were evaluated on verb sim-
ilarity and disambiguation and sentence similarity
tasks. The unary map approximations significantly
outperformed previous type-driven verb represen-
tations. They also outperformed sentence encoders
and pre-trained BERT embeddings. When moving
to datasets of longer sentences, e.g. sentences with
elliptical phrases and the SICK relatedness, some
sentence encoders and fine-tuned BERT represen-
tations were superior.

Our multilinear skipgram model paves the way
for a new generation of type-driven representa-
tions, in line with recent research highlighting ben-
efits of syntactic biases injected into representation
learning (Kuncoro et al., 2020). Furthermore, our
model is fast to train, guided by a linguistic cal-
culus (CCG), and produces syntax-aware sentence
embeddings. Performance could potentially be im-
proved by adding non-linearities to the model, as
in Socher et al. (2013) and by modelling complex
syntactic phenomena such as auxiliaries and nega-
tion.
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