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Abstract

Named entity typing (NET) is a classification task of assigning an entity mention in the context
with given semantic types. However, with the growing size and granularity of the entity types,
few previous researches concern with newly emerged entity types. In this paper, we propose
MZET, a novel memory augmented FNET (Fine-grained NET) model, to tackle the unseen types
in a zero-shot manner. MZET incorporates character-level, word-level, and contextural-level
information to learn the entity mention representation. Besides, MZET considers the semantic
meaning and the hierarchical structure into the entity type representation. Finally, through the
memory component which models the relationship between the entity mention and the entity
type, MZET transfers the knowledge from seen entity types to the zero-shot ones. Extensive
experiments on three public datasets show the superior performance obtained by MZET, which
surpasses the state-of-the-art FNET neural network models with up to 8% gain in Micro-F1 and
Macro-F1 score.

1 Introduction

Named entity typing (NET) is the task of inferring semantic types for the given named entity mentions
in utterances. For instance, given an entity mention “John” in the utterance “John plays piano on the
stage”. The goal for NET is to infer that “John” is a pianist or a musician, and a person. Standard NET
approaches (Chinchor and Robinson, 1997; Tjong Kim Sang and De Meulder, 2003; Doddington et al.,
2004) only consider a tiny set of coarse-grained types, and discard fine-grained types with a different
level of granularity. In recent years, fine-grained named entity typing (FNET) (Ling and Weld, 2012;
Nakashole et al., 2013; Del Corro et al., 2015; Ren et al., 2016; Abhishek et al., 2017; Zhou et al., 2018)
continues to draw researchers’ attention, because it can provide additional information that benefits a
lot of downstream tasks like relation extraction (Liu et al., 2014), entity linking (Stern et al., 2012), and
question answering (Han et al., 2017).

However, with the ever-growing number of entity types especially for fine-grained ones, it is difficult
and expensive to collect sufficient annotations per category and retrain the whole model. Therefore, a
zero-shot paradigm is welcomed in FNET to handle the increasing number of unseen types. The task we
deal with in this paper is named zero-shot fine-grained named entity typing (ZFNET), which is to detect
the unseen fine-grained entity types that have no labeled data available.

Learning generalizable representations for entity mentions and types is essential for the ZFNET task.
Previous works learn these representations either from hand-crafted features (Ma et al., 2016; Yuan and
Downey, 2018), or pre-trained word embeddings (Ren et al., 2016). These methods are insufficient and
inefficient when challenged by poly-semantic, ambiguity, or even the newly-emerged mentions. The
most recent works (Obeidat et al., 2019; Zhou et al., 2018) learn more informative but resource-costing
representations by assembling the exterior Wikipedia knowledge base.
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With the learned representations for entity mentions and entity types, most of the existing zero-shot
FNET methods (Ma et al., 2016; Obeidat et al., 2019) project them into a shared semantic space. The
shared space is learned through minimizing the distance between entity mentions and its corresponding
seen entity types. In the prediction phase, testing entity mentions are classified to the nearest unseen
entity types based on the assumption that the learned distance measurement also works for unseen types.
These methods’ ability to transfer knowledge from seen types to unseen types is limited since they do
not explicitly build connections between seen types and unseen types.

In this work, we propose the memory augmented zero-shot FNET model (MZET) to tackle the afore-
mentioned problems. MZET is designed to automatically extract the multi-information integrated men-
tion representations and structure-aware semantic type representations with a large-scale pre-trained lan-
guage model (Devlin et al., 2019). To effectively transfer knowledge from seen types to unseen types,
MZET regards seen types as memory components and explicitly models the relationships between seen
types and unseen types. Intuitively, we want to mimic the way how humans learn new concepts. Humans
learn new concepts by comparing the similarities and differences between new concepts and old concepts
stored in our memory.

In summary, the main contributions of MZET are as follows. 1) We propose the memory augmented
zero-shot FNET model (MZET) that can be trained in an end-to-end fashion. MZET extracts multi-
information integrated mention representations and structure-aware semantic type representations with-
out additional augmented data sources. 2) MZET regards seen types as memory components and ex-
plicitly models the relationships between seen types and unseen types to effectively transfer knowledge
to new concepts. 3) MZET outperforms existing zero-shot FNET models significantly on the zero-shot
fine-grained, coarse-grained, and hybrid-grained named entity typing over three benchmark datasets.

2 Problem Definition

We begin by formalizing the problem of zero-shot fine-grained named entity typing (ZFNET). For a
given entity mention x, the task of named entity typing (NET) is to identify the type y for x. Suppose
we have a training type set Yseen = {ys1, ys2, ..., ysDs

} with Ds seen types. There are a large number of
labeled examples available for these seen types, Dtr = {(xi, yi), i = 1, 2, ..., |Dtr|} with yi ∈ Yseen.

The task of ZFNET is to classify a new mention which belongs to one of the unseen fine-grained
entity types Yunseen = {yu1 , yu2 , ..., yuDu

}, where Du is the number of unseen fine-grained entity types
and Yseen ∩ Yunseen = ∅.

3 The proposed Model

The overview of the proposed MZET framework is illustrated in Figure 1. Specifically, MZET consists
of three components: 1) Zero-shot Memory Network that identifies entity types for entity mentions,
introduced in Sec.3.1; 2) Mention Processor which extracts representation for entity mentions, detailed
in Sec.3.2; 3) Label Processor which obtains type representation, depicted in Sec.3.3.

3.1 Zero-Shot Memory Network

In the zero-shot entity typing task, there are no mentions available for these unseen entity types. Without
the labeled data, we are not able to model the direct mapping from the new mentions to the new types.
Here, we propose a novel zero-shot memory network that utilizes seen entity types to bridge the gap
between the new mentions and the zero-shot entity types.

3.1.1 Memory augmented Typing Function
To enable the zero-shot paradigm, previous researches (Ma et al., 2016; Obeidat et al., 2019) introduce a
score function f(·) to rate the match of a given entity mention x and an entity type y, where y is the raw
type picked from Yseen or Yunseen. The definition for f(·) is:

f(x, y) = θ(x,A) · φ(y,B)

= Ax ·By,
(1)
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Figure 1: The framework of MZET for zero-shot fine-grained named entity typing. It consists of three
main components: mention processor, label processor, and zero-shot memory network.

where θ(x,A) : x → Ax and φ(y,B) : y → By serve as the mapping functions that project x and y
into a shared semantic space by neural networks (ours are depicted in Sec. 3.2 and Sec.3.3 respectively).
f(·) is the distance estimation of Ax and By in the shared space.

Considering the lack of interpretability of the representations in the shared semantic space, we propose
the memory network augmented zero-shot FNET to construct another high-level shared space, called
Association Space. Each dimension in the association space links to an entity type. The representation
in this space indicates the association information with each entity type. The score function for memory
augmented zero-shot FNET is changed into f ′:

f ′(x, y) =MEMYseen(θ(x,A), φ(y,B))

=MEMYseen(Ax,By),
(2)

whereMEMYseen(·) means rating score estimated by a memory network for the zero-shot paradigm with
Yseen as the memory component. Meanwhile, the memory component is the aforementioned association
space to guide unseen entity typing by linking them to each seen type stored in the memory components,
like humans recognizing new things by intuitively associating with the knowledge they have memorized.
In fact, MEMYseen(·) loads Ax and By in the shared semantic space into the high-level association
space, and then estimates matching score under the help of their connections to the seen types in the
memory.

3.1.2 Zero-Shot Memory Network Model
All the seen entity representations are utilized as the memories in the zero-shot memory network. We
propose to use the memory network as a special attention mechanism to model the relationships between
the mentions and the seen entity types. Furthermore, we build a zero-shot version memory network that
utilizes the type representation similarities to transfer the knowledge from the seen types to the unseen
types, which exactly implement the detail ofMEMYseen(·). The key points to implementMEMYseen(·)
are interpreted as follows: (1) The Association Space is constructed with all the seen types representations
to bridge the gap between mentions and unseen types. (2) The mention representation is augmented by
the association with seen types. That means to obtain attention between mentions and seen types as
the association. After absorbing the association, the mentions obtain more informative representations
benefiting the knowledge transferring in the Association Space. (3) The augmented mention and type
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representation are projected into the Association Space. Association augmented mention can be directly
project into it. But for the unseen types, associations between them with the seen types are formed by
the type semantic similarity, which exactly presents each unseen type in the Association Space.

We first construct the Association Space with all the seen types representations from the Label Pro-
cessor (in Sec.3.3), F = (f s1 , ..., f

s
Ds

) ∈ RDs×Db , where Ds is the number of seen types and Db is the
dimension of the type representation.

To augment the mention representation by it association with seen types, we construct two de-
pendant memory components G and C. As shown in Figure 1, the input memory representation
G = (g1, ...,gDs) ∈ RDs×Dm is converted from F using an embedding matrix Wf1 ∈ RDb×Dm ,
where Dm is the dimension of the memory components. To catch the association between mentions and
seen labels through memory component, we model the attention pi between the mention input u and
each memory component gi ∈ RDm , i ∈ {1, ..., Ds} with:

pi = softmax(u>gi), (3)
where u = W>m, and W ∈ RDe×Dm . m is the mention representation that is obtained from the
Mention Processor in Sec.3.2, and its dimension size is De. The input memory representation G works
to update the association P for each mention u. We construct the output memory representations C ∈
RDs×Dm from F using another embedding matrix Wf2 ∈ RDb×Dm . The attentions pi are used as
weights to associate the output memory representations and obtain the associated mention embedding:

o =
∑
i

pici. (4)

Finally, (o + u) is the adjusted mention representation augmented by the information associated with
seen types. Then it is projected into the association space by Wp ∈ RDs×Dm .

To load unseen types into the association space for the zero-shot capability of our memory network,
we use the similarities between the type representations to transfer knowledge from seen types to unseen
types. The similarities between type fi and fj are calculated as:

rij =
exp{−d(fi, fj)}∑Ds
j=1 exp{−d(fi, fj)}

, (5)

where d(fi, fj) is the Euclidean distance between fi and fj . fi is from F = (f s1 , ..., f
s
Ds

) ∈ RDs×Db . fj is
from (fu1 , ..., f

u
Du

) ∈ RDu×Db during zero-shot testing, while fj is from F for training the model. Then
we can get the similarity matrix R ∈ RDs×Du for all the unseen types during prediction. We use the
associated mention embedding o, the mention input u, and the similarity matrix R together to classify
the zero-shot entity types in the association space:

y = sigmoid(R>Wp(o+ u)). (6)

In this way, we construct a 2-level shared space for zero-shot FNET by the memory network as shown
in Figure 1. The lower one is the semantic representation space, which is formed by m in Sec.3.2 and
f in Sec.3.3. The higher one is the association space that models the connections between not only
mentions and seen types but also seen types and unseen types. Therefore, we can tell the reasoning
process of the prediction from the association space. For instance, the association space contains seen
type “/SUBSTANCE”, and “/DRUG”. Given the mention “pills”, it matches the unseen type “/SUB-
STANCE/DRUG”, as both “pills” and “/SUBSTANCE/DRUG” associate with the seen type “/SUB-
STANCE”, and “/DRUG”.

We can also extend the memory components to handle multiple hop operations (Sukhbaatar et al.,
2015) by stacking the memories sequentially which leaves for the future work.

3.2 Mention Processor
To better understand the entity mention, we not only consider the words contained in the mention, but also
the context around it. The Mention Processor has two sub-components. A Word Processor is proposed to
get the semantic meaning for each word in the entity mention. Another Context Processor is utilized to
understand the sequential information together with the context. The final mention representation m is a
concatenation of the word-level representation from the Word Processor and the sequential representation
from the Context Processor as shown in Figure 1.
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3.2.1 Word Processor

Following most existing works (Lample et al., 2016; Lin and Lu, 2018; Bari et al., 2019), Word Processor
is proposed to achieve basic understandings over the words in the entity mentions. Given an input entity
mention Xw = (t1, ..., tK) with K tokens, each token tk is represented as [wk; ck]. It is a concatenation
of a pre-trained word embedding wk ∈ RDw (Dw is the dimension of the pre-trained word embedding)
and a character-level embedding ck which provides morphological information and makes a complement
when faced with out-of-vocabulary (OOV) words. The character-level embedding ck ∈ RDhc is obtained
through a bi-directional LSTM (Dhc is the dimension size after concatenating bi-direction hidden states),
named as Character Bi-LSTM.

Additionally, another bi-directional LSTM, named as Word-Character Bi-LSTM, is utilized to gather
the information from all the token embeddings Xw by concatenating the forward and backword hidden
states,

−→
h w
t and

←−
h w
t , respectively:

mw =
−→
h w
t ⊕
←−
h w
t , (7)

where mw ∈ RDh , Dh is the dimension after concatenating Word-Character Bi-LSTM hidden states.
As illustrated in Figure 1, the Word Processor outputs a word-character embedding mw for each entity
mention.

3.2.2 Context Processor

In the Context Processor, we leverage the powerful pre-trained language model, BERT (Devlin et al.,
2019), to incorporate two more context-aware parts into the mention representation: (1)mb, the mention
embedding given the context; (2)mc, the surrounding context embedding.

Considering that a context-aware word embedding can carry syntax feature, we first conduct BERT to
embed the whole sentence and obtain the BERT contextual embedding for each token. For the tokens
contained in the entity mention, named as mention tokens, their BERT embeddings are represented as
Xb = (b1, ...,bK), where bi ∈ RDb , andDb is the BERT embedding dimension. For the tokens in
the surrounding context, named as context tokens, we only consider a fixed window for each mention to
balance the computational cost. The BERT embeddings for left context tokens are el1, ..., e

l
n, and those

in the right are er1, ..., e
r
n, where eji ∈ RDb and j ∈ {l, r}. n is the window size and we set it as 10.

We utilize Bi-LSTMs (with concatenated bi-directional hidden state size Dh) to aggregate the sep-
arated token embeddings to extract the mention embedding mb and the context embedding mc. mb

is obtained from the BERT embeddings of mention tokens Xb with the Bi-LSTM, called as Mention
Bi-LSTM:

mb =
−→
h b
t ⊕
←−
h b
t , (8)

where mb ∈ RDh .
−→
h b
t and

←−
h b
t are the forward and backword hidden states of Mention Bi-LSTM,

respectively. mc is obtained from the context tokens with a bi-directional LSTM with attention mecha-
nism, called as Attention Bi-LSTM. The hidden states in the bi-directional LSTM for the context tokens
are denoted as:

−→
hl1,
←−
hl1, ...,

−→
hln,
←−
hln, and

−→
hr1,
←−
hr1, ...,

−→
hrn,
←−
hrn. The attentions over all the context tokens are

computed using a 2-layer feed forward neural network: eji = tanh(We[
−→
hji ;
←−
hji ]), ã

j
i = exp(Wae

j
i ),

where hji ∈ RDh/2, We ∈ RDh×(Da+Da), Wa ∈ R1×Da , Da is the attention dimension, and j ∈ {l, r}.
Then we normalize the attentions over all the mention tokens to obtain: aji =

ãj
i∑n

i=1 ã
l
i+ãr

i

. The context

embedding mc ∈ RDh is weighted by the attentions:

mc =
n∑
i=1

(ali[
−→
hli;
←−
hli] + ari [

−→
hri ;
←−
hri ]). (9)

3.2.3 Mention Representation

The final entity mention representation with dimension De ∈ R(Dh+Dh+Dh) concatenates the word-
character embedding, the mention embedding, and the context embedding as follow:

m = [mw;mb;mc]. (10)
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3.3 Label Processor
Understanding the label is important in our task, since there is no information other than the la-
bel name for the zero-shot entity types. In the Label Processor, we get the semantic embeddings
BS ∈ R(Ds+Du)×Db for all the label names, including the seen labels Yseen and the unseen labels
Yunseen, using a pre-trained BERT model.

The fine-grained labels and coarse-grained labels in Yseen and Yunseen consist a hierarchical structure
naturally. Each fine-grained type includes a coarse-grained type as the root in the hierarchical structure.
Following (Ma et al., 2016), we utilize a sparse matrix BH ∈ R(Ds+Du)×(Ds+Du) to represent the
hierarchical structure in the labels. Each row BH

i corresponds to a binary hierarchical embedding for
label yi. For each entry in BH

i , we use 1 to denote the label itself and its parent node, 0 for the rest:

BH
ij =

{
1, if i = j or yj ∈ Parent(yi);
0, otherwise.

(11)

In the Label Processor, we integrate the semantic embeddings of the child label and its parent label
into a single embedding vector as the fine-grained label representftion. For a label yi, the final label
representation f ∈ RDb is represented together by the semantic embedding BS and its hierarchical
embedding BH

i as shown in Figure 1:
f = BS>BH

i . (12)
3.4 Loss function
We train our model with a multi-label max-margin ranking objective as follows:

L =
∑
pos∈Y

∑
neg∈Y

max(0, 1− ppos + pneg). (13)

Given example mention x, Y is the set of correct types assigned to x, ppos is the possibility for such a
positive assignment. In contrast, Y is the set of incorrect assigned types. pneg is the possibility to assign
a false label neg ∈ Y to x.

4 Experiments

4.1 Datasets
We evaluate the performance of our model on three public datasets that are widely used in FNET task.
BBN (Weischedel and Brunstein, 2005) consists of 2,311 WSJ articles that are manually annotated
using 93 types in a 2-level hierarchy.
OntoNote (Weischedel et al., 2011) has 13,109 news documents where 77 test documents are manually
annotated using 89 types in a 3-level hierarchy.
Wiki (Ling and Weld, 2012) consists of 1.5M sentences sampled from 780k Wikipedia articles. 434
news sentences are manually annotated for evaluation. 112 entity types are organized into a 2-level
hierarchy.

4.2 Zero-shot Setting
We follow Ma (2016) and Obei (2019) to apply the zero-shot setting that the training set only contains
coarse-grained types (level-1), while all fine-grained types (level-2) only appear in the testing data. For
the OntoNotes dataset that has 3 levels, we combine the level-1 and level-2 as the coarse-grained typing
for training, and level-3 as the fine-grained types for testing.

4.3 Baselines
We compare the proposed method (MZET) and its variants with state-of-the-art FNET neural models.
However few research approaches zero-shot FNET without auxiliary resource or hand-crafted features.
In such a situation, we select the benchmarks and baselines as follows:
DZET Obei et al. (2019) propose a neural structure to extract the mention representations but leverage
Wikipedia to augment the label representations. So we only compare with them on the learned mention
representation capability, and incorporate our label embedding methods to construct this baseline.
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OTyper Yuan et al. (2018) devise a neural model for FNET, but still utilize pre-prepared hand-crafted
mention features which are unavailable online. Furthermore, it is designed for open entity typing, which
means to train and test the model on different datasets. Considered most parts of the model are learnable,
we employ its results from their neural networks for comparison.
ProtoZET Ma et al. (2016) fist adapt zero-shot learning on FNET with hand-crafted features and propose
prototype embedding to form label representation. Unfortunately, to the best of our knowledge, their
system is not available online. We adopt its prototype label embedding technique and incorporate it with
our Mention Processor for empirical comparison like Obei (2019) and Zhou (2018) did before.
MZET + avg emb For better contrast of label embedding techniques, we replace BERT label embedding
in MZET with label average GloVe embedding that is widely adopted for entity typing in previous works
(Shimaoka et al., 2016; Abhishek et al., 2017; Yuan and Downey, 2018).

4.4 Training and Implementation Details
To train the neural network models, we optimize the multi-label max-margin loss function over training
data concerning all model parameters. We adopt the Adam optimization algorithm with a decreasing
learning rate of 0.0001, and the decay rate of 0.9. We utilize the pre-trained BERT (BERT-base, cased)
with the number of transformer blocks is 12, the hidden layer size is 768, and the number of self-
attention heads is 12. We also choose GloVe pre-training embeddings of size 300 for word-character
representation. The hidden state of LSTMs is in size of 200.

We use hyperparameter τ as the maximum gap for selected labels. τ is optimized through validation
sets (10% of testing examples). Another strategy is for the prediction on overall dataset. We consider
type inference over the predicted fine-grained type to include its parent coarse type into the final decision.
Because we expect that such type inference can improve the recall score.

4.5 Evaluation Metrics
Following prior FNET works (Ling and Weld, 2012; Ma et al., 2016; Obeidat et al., 2019), we evaluate
our methods and baselines on three metrics: strict accuracy (Acc), Marco-F1, and Micro-F1. Given
a collection of mention M , we denote the set of the ground truth and predicted labels of a men-

tion m ∈ M as Ym and Ŷm, respectively. Strict Accuracy (Acc) =
∑

m∈M σ(Ym=Ŷm)

M , where σ(·) is
an indicator function. Macro-F1 is based on Macro-Precision(Pma) and Macro-Recall(Rma), where
Pma = 1

|M |
∑

m∈M
|Ym∩Ŷm|

Ŷm
, Rma = 1

|M |
∑

m∈M
|Ym∩Ŷm|

Ym
Micro-F1 is based on Micro-Precision(Pmi)

and Micro-Recall(Rmi), where Pmi =
∑

m∈M |Ym∩Ŷm|∑
m∈M Ŷm

, Rmi =
∑

m∈M |Ym∩Ŷm|∑
m∈M Ym

.

Methods Overall Level 1 Level 2
Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1

OTyper 0.203 0.447 0.451 0.501 0.589 0.591 0.189 0.202 0.209
DZET + bert 0.214 0.481 0.509 0.517 0.634 0.665 0.207 0.234 0.246
ProtoZET 0.251 0.582 0.631 0.620 0.676 0.677 0.214 0.239 0.257
MZET + avg emb 0.285 0.588 0.669 0.672 0.691 0.691 0.262 0.293 0.304
MZET 0.294 0.606 0.687 0.700 0.710 0.710 0.288 0.301 0.316

Table 1: Fine-grained entity typing evaluation on BBN dataset. DZET+bert utilizes mention embedding
form Obei (2019) and label embedding from BERT.

4.6 Results and Discussion
Zero-Shot FNET Evaluation We first evaluate our methods for FNET on BBN dataset. Following
Ma(2016), we train the models on coarse-grained types, while testing in three ways: (1) Overall, predict-
ing on both coarse-grained and fine-grained testing types; (2) Level 1, predicting only on coarse-grained
types; (3) Level 2, predicting only on fine-grained types which are unseen before. Level-1 shows the
performance for seen types, Level-2 evaluates the ability for zero-shot FNET, and Overall balances the
performance between seen types and unseen types.
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Methods BBN OntoNotes Wiki
Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1

OTyper 0.211 0.497 0.513 0.211 0.256 0.259 0.269 0.543 0.547
DZET+bert 0.236 0.530 0.542 0.231 0.276 0.281 0.285 0.551 0.560
ProtoZET 0.251 0.582 0.631 0.281 0.337 0.345 0.296 0.551 0.564
MZET + avg emb 0.285 0.588 0.669 0.328 0.411 0.413 0.317 0.554 0.577
MZET 0.294 0.606 0.687 0.337 0.423 0.437 0.319 0.555 0.579

Table 2: The oeverall performance on 3 benchmark datasets. Results are evaluations of overall types
including both coarse-grained and fine-grained types in the testing dataset.

Methods Overall Level 1 Level 2
Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1 Acc Ma-F1 Mi-F1

MZET 0.294 0.606 0.687 0.700 0.710 0.710 0.288 0.301 0.316
MZET - Memory - 3.4 - 2.2 - 3.2 - 1.1 - 1.3 - 1.3 - 2.6 - 2.3 - 2.7
MZET - Cntxt Attn - 2.0 - 1.7 - 2.1 - 1.0 - 1.3 - 1.3 - 1.1 - 1.4 - 1.6
MZET - Word Char - 2.7 - 2.4 - 2.8 - 2.0 - 2.2 - 2.2 - 2.5 - 2.0 - 2.4
MZET - BERTm - 2.4 - 2.1 - 2.6 - 1.8 - 1.7 - 1.7 - 2.5 - 1.8 - 2.5

Table 3: Ablation study on BBN dataset. All the results are percentages. The minus number means per-
formance drop after remove or replace the methods. (-Memory) means replacing the memory part (3.1)
with regular zero-shot mapping function like the way in (Ma et al., 2016). (-Cntxt Attn) means removing
context representation mc in 3.2.2. (-Word Char) means removing word and character representation mw

in 3.2.1. (-BERTm) means remove mention BERT contextual embedding mb (3.2.2).

Table 1 illustrates the performance of the baselines and MZET on these 3 aspects. We see that for
the coarse-grained typing (Level 1), MZET improvements strict accuracy significantly up to 19%. For
the zero-shot setting that testing on fine-grained types (Level 2), MZET achieves the highest scores and
gains up to 10% on strict accuracy. MZET attains the best with a 9% gain on accuracy over the overall
types. Compared to MZET+avg emb and ProtoZET, MZET gains significance performance from the
Label Processor. Apart from the benefit from Label Processor, MZET also takes advantage of Mention
Processor and Memory Network to achieve the best performer over the other baselines. At last, perfor-
mance on all-grained types indicates the superiority of MZET over the rest, especially for the Micro-F1,
which indicates the achievements over infrequent types.

To show the effectiveness of our proposed model, not only on the unseen fine-grained types but also
on seen coarse-grained types, we evaluate the overall performance for three benchmark FNET datasets:
BBN, OntoNotes, and Wiki. As Table 2 shows, there are significant improvements of MZET on small
datasets, BBN and OntoNotes. For the large-size Wiki data, MZET also attains the highest scores for all
metrics. Compared with ProtoZET and MZET+avg emb, MZET shows only small improvement on Wiki
but surpasses OTyper and DZET+bert almost 5% on strict accuracy. This indicates that when the size of
data increases, Mention Processor and Memory Network plays a great role for our model’s ever-growing
strength. As mentioned before, OntoNotes contains fine-grained entity type in 3-level hierarchy. Form
the results over OntoNotes, MZET shows its superiority of Memory Network and Mention Processor
with a significant margin especially for the most fine-grained dataset.

Ablation Study We carry out ablation studies that quantify the contribution of each component in our
framework shown in Figure 1. As Table 3 shows, the vital parts are the memory network and the word
and character representation. The performance decreases significantly over 2.5% in strict accuracy by
removing either of them. The memory network contributes decent augmentations on fine-grained typ-
ing, which indicates the noteworthy associations between the seen labels and mentions, as well as seen
labels and unseen labels. The word and character representation shows its importance on capturing the
morphological and semantic information for a single entity mention. The secondary important is the
informative context part with attention. It is aggregated into the final representation of the mention to
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guide the classification. Last, mb in Figure 1 plays a considerable complementary role, as leading the
BERT to embed a mention enables the model to gather more contextual information to avoid ambiguity
for the polysemantic, like the word “valley” in mention “Silicon Valley”.

Case Study We visualize how to match the entity mention and type in the association space in Figure 2.
Example 1 is a simple case as the unseen label words appear in seen types. This case shows agreement
matching on most of the dimensions between the unseen type “/person/artist” and the mention “Carel
Balth”. Example 2 is more complex in the type similarity map as the new word “hospital” has scattered
associations with multiple seen types, like “medicine” and “disease”. But they provide informative
association about the unseen type for linking it to related mentions, like “Baxter Creek Veterinary Clinic”
in the case.

Error Analysis We also provide insights into specific reasons for the mistakes made by our model. First,
all the datasets follow long-tail frequency distributions. The examples for each label are significantly
imbalanced. Accordingly, the model is prone to assign frequent types for the infrequent ones. For
example, the training set processes 719 examples of “/LOCATION” and 6,672 examples of “/GPE”
(Geopolitical Entity). The model prefers predicting on the fine-grained type “/GPE/CITY” rather than
“/LOCATION/REGION”.

Second, types are incorrectly tagged in the raw data. To test the ratio for incorrect tagging, we ran-
domly pick out 100 examples in the raw data, including types coming from both training and testing
sets. We find there are about 11% for BBN, 10% for OntoNotes, 13% for Wiki with noise, such as
mentions with incoherent labels, or missing the correct mention words for the corresponding tagged la-
bels. For example, “The government estimates corn output at 7.45 billion bushels , up 51% from last
fall.” labeled “The” with two types: [“/ORGANIZATION/CORPORATION”, “/ORGANIZATION”].
The correct mention should be the “The government” other than “The” for the assigned labels.

Figure 2: Two examples to show the association between the zero-shot fine-grained type and a mention
in an utterance. Their similarities with seen types are shown with the heat maps. Each dimension in
the map links to one seen type. The above type heat map denotes the similarity between this unseen
fine-grained type and all seen types. The mention heat map in the bottom is the output from Zero-shot
Memory Network before the component Sigmoid+R in Figure 1.

5 Related Work

FNET is a long-standing task in Natural Language Processing (Xia et al., 2019). Most of the proposed
FNET methods are based on a distant supervisor, but diverse in classification architectures. Ling et
al.(Ling and Weld, 2012) propose multi-label and multi-class multilayer perceptron model assigns each
mention of the corresponding label tags. Naka et al.(Nakashole et al., 2013) type newly emerging out-of
Knowledge Base entities by a fine-grained typing system and harnesses relational paraphrase with type
signatures for probabilistic weight computation. Del et al.(Del Corro et al., 2015) designs a system,
FINET, with the help from WordNet (Miller, 1995). Ren et al.(Ren et al., 2016) propose AFET for au-
tomatic fine-grained entity typing with hand-crafted features and label embedding from the hierarchical
type path. Shim et al.(Shimaoka et al., 2016) and Anan et al.(Abhishek et al., 2017) adopt attentive neural
network models for FNET. Attention information and contextural embedding are proposed to enhance
FNET performance. Those methods develope, from hand-crafted features to neural network learned fea-
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tures, to allow fine-grained typing system fancy, automatic and effective. But their architectures can not
apply to new and unseen entity types.

To handle unseen types, zero-shot learning (Xia et al., 2018) is introduced for named entity typing.
Several works (Zhou et al., 2018; Huang et al., 2016) propose to solve unseen entity typing with clus-
tering. These works cluster mentions and propagate type information from representative mentions to
unseen types. Another direction is to construct a shared space for linking the seen and unseen data.
These models (Ma et al., 2016; Yuan and Downey, 2018; Obeidat et al., 2019) map the mention and
label embedding into a shared latent space, then estimate the closeness score for each mention-label pair.
Most of the existing zero-shot FNET methods limit the model’s flexibility with considerable auxiliary
resources or pre-prepared hand-crafted features. In the perspective of entity type representations, most
recent researchers (Huang et al., 2016; Zhou et al., 2018; Obeidat et al., 2019) obtain informative entity
type representations by assembling related Wikipedia pages. Their performances are decent yet resource-
costing. Others (Ren et al., 2016; Ma et al., 2016; Shimaoka et al., 2016; Abhishek et al., 2017; Yuan and
Downey, 2018) exploit typical pre-trained semantic label embedding, which is easily-applied but pale in
performance. Apart from various methods for entity type representation, mention reion approaches are
also evolving recently. Yuan (2018) and Ma (2016) ultilize the pre-prepared hand-crafted features, while
others (Obeidat et al., 2019; Zhou et al., 2018) embed the mention by some pre-trained wording em-
bedding methods (Pennington et al., 2014; Peters et al., 2018). But, these methods are insufficient and
inefficient when challenged by polysemantic, ambiguity, or even the newly-emerged mention.

6 Conclusions

In this paper, we propose an end-to-end neural network, MZET, that enables zero-shot fine-grained
named entity typing. It extracts comprehensive representations concerning word and character, men-
tion, mention’s context, and raw label text without auxiliary information. It adopts the memory network
to gather the representations for zero-shot paradigm. Extensive experiments on three public datasets
show prominent performances obtained by MZET, which surpasses the state-of-the-art neural network
models for Zero-Shot FNET.
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