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Abstract

Summarization is an important natural language processing (NLP) task in identifying key infor-
mation from text. For conversations, the summarization systems need to extract salient contents
from spontaneous utterances by multiple speakers. In a special task-oriented scenario, namely
medical conversations between patients and doctors, the symptoms, diagnoses, and treatments
could be highly important because the nature of such conversation is to find a medical solution to
the problem proposed by the patients. Especially consider that current online medical platforms
provide millions of public available conversations between real patients and doctors, where the
patients propose their medical problems and the registered doctors offer diagnosis and treatment, a
conversation in most cases could be too long and the key information is hard to be located. There-
fore, summarizations to the patients’ problems and the doctors’ treatments in the conversations can
be highly useful, in terms of helping other patients with similar problems have a precise reference
for potential medical solutions. In this paper, we focus on medical conversation summarization,
using a dataset of medical conversations and corresponding summaries which were crawled from a
well-known online healthcare service provider in China. We propose a hierarchical encoder-tagger
model (HET) to generate summaries by identifying important utterances (with respect to problem
proposing and solving) in the conversations. For the particular dataset used in this study, we
show that high-quality summaries can be generated by extracting two types of utterances, namely,
problem statements and treatment recommendations. Experimental results demonstrate that HET
outperforms strong baselines and models from previous studies, and adding conversation-related
features can further improve system performance.1

1 Introduction

Applying natural language processing (NLP) techniques to the medical field is a prevailing trend nowadays
and has great potential in many applications, such as key information extraction in medical literature (Kim
et al., 2011; Dernoncourt et al., 2017; Ševa et al., 2018), risk factor identification in electronic health
records (Chang et al., 2015; Cormack et al., 2015; Cheng et al., 2016), and medical question answering
(Pampari et al., 2018; Tian et al., 2019). As the demand for healthcare services increases greatly in the
past decades,2 it is urgent to improve the quality and efficiency of healthcare, reduce workload and mental
stress of health providers and increase patient satisfaction. Recently, Internet-based healthcare platforms
such as online doctor systems and doctor-patient cyber communities have been increasingly used by
patients and health professionals with the hope that they would alleviate the ever-increasing demands for
healthcare services and reduce the inaccessibility of services caused by geographical and socio-economic
barriers. In such platforms, a patient can start a conversation to a registered doctor by typing their medical
problems and then the doctor may ask the patients to specify his/her problem (e.g., symptoms, treatment
has been taken, etc.). Since the conversation is asynchronous, it is possible that one speaker (either the

*Equal contribution.
1Our code, models, and the dataset are released at https://github.com/cuhksz-nlp/HET-MC.
2E.g., in China, the number of outpatient visits exceeded 7 billions and inpatient visits over 200 millions in a recent year.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://

creativecommons.org/licenses/by/4.0/.
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Role Utterance Translation Tag

Conv.

P 胆碱能性荨麻疹怎么治疗 How to treat cholinergic urticaria and measles PD

D 这种情况多长时间了？用什么治疗过？ How long has this condition last? What treatment have
you used?

OT

P 好长时间了，之前治疗过，中西药都吃过
就没治好

It has been a long time. I have taken both Chinese and
Western medicine, but it is not working.

OT

D 主要是避免诱因。胆碱能性荨麻疹要保持
身体凉爽、避免出汗、避免精神紧张、进
食热饮或酒精饮料等。

You need to avoid triggers of cholinergic urticaria.
Keep your body cool and avoid sweating, mental
stress, hot drink, alcoholic beverages, etc.

DT

P 那怎么样能根治呢 How can it be cured? OT

D 目前医疗上，没有明确的根治方法。 At present, there is no clear cure for this disease. OT

D 内服药物之外还可以中药外洗.这个方法
也有一定的效果。蚕砂、苦参、芒硝、白
矾、荆芥准备二十克，把这些药一起煎了
进行外洗，一天二次。

In addition to taking medicines, you can also wash the
skin with Chinese medicine, which has some effect.
Use the decoction of Silkworm litter, Sophora
flavescens, Glauber’s salt, alum, and Nepeta, 20 grams
for each, to wash your skin twice a day.

DT

SUM1 胆碱能性荨麻疹怎么治疗 How to treat cholinergic urticaria and measles

SUM2

A

胆碱能性荨麻疹要保持身体凉爽，避免出
汗，避免精神紧张、进食热饮或酒精饮料
等。内服药物之外还可以通过中药进行外
洗。这个方法也有一定的效果。蚕砂、苦
参、芒硝、白矾、荆芥准备二十克,把这
些药一起煎了进行外洗，一天二次。

You need to avoid triggers of cholinergic urticaria. keep your
body cool and avoid sweating, mental stress, hot drink,
alcoholic beverages, etc. In addition to taking medicines, you
can also wash the skin with Chinese medicine, which has
some effect. Use the decoction of Silkworm litter, Sophora
flavescens, Glauber’s salt, alum, and Nepeta, 20 grams for
each, to wash your skin twice a day.

B
口服脱敏药物，同时避免诱因。胆碱能性
荨麻疹要保持身体凉爽，避免出汗，避免
精神紧张、进食热饮或酒精饮料等。

You need to take desensitization drugs and avoid triggers.
You should keep the body cool, avoid sweating, mental
stress, hot drink, alcoholic beverages, etc.

Figure 1: An example of a conversation and its different types of summaries. P and D stand for speaker
roles, i.e., patient and doctor, and PD, DT, and OT in the last column refer to the utterance tags for
problem description, diagnosis or treatment, and others, respectively. SUM1 is a summary of the medical
problem from the patient; SUM2 is a summary of the diagnosis and treatment from the doctor. The English
translation is not part of the corpus, which is added as a reference.

patient or the doctor) may type multiple lines (utterances) before the other speaker responds. Through
this process, all key information regarding to a medical problem, as well as its diagnosis and medical
recommendations, are recorded in the entire conversation. Once the platforms make all such conversations
publicly available, other patients with similar medical problems can search relevant conversations and
find potentially helpful solutions. However, when a conversation is too long or the key information is
scattered in it, one could hardly find the essential contents or misread them in many cases. As a result, the
summarization of the conversation, especially for problem statement and treatment recommendations, is
an important task to help new patients locate useful information to address their medical concerns.

Due to the nature of medical conversation, i.e., a task that seeks solutions to provide medical recom-
mendations for particular health problems, it is possible to perform the task by identifying important
utterances in such conversations. In this study, important utterances refer to the utterances that contain key
information for the medical problem or for the treatment. Therefore, our focus is different from existing
studies on utterances in conversations, where they pay more attention to assessment of utterances with
respect to the functionalities of utterances in the conversations, such as analyzing automatically generated
utterances regarding their suitability within particular conversational contexts (Inaba and Takahashi, 2016;
Lison and Bibauw, 2017), evaluation of human conversational performance on readability, sensibility, and
social involvement (Dascalu et al., 2010), and identification of segments of utterance that are produced
with more emphases for certain interactional purposes (Takeuchi et al., 2007). Little research has been
done to identify important utterances that contribute to a specific outcome of a conversation, which in this
study refers to the content about patient’s problem and recommendation treatment in the conversation.

To conduct the medical conversation summarization task, in this paper, we propose a new benchmark
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Data
Total # Avg. # per Case Avg. Length

Case Utt. Utt. PD DT OT P D Utt. SUM1 SUM2

All 44,983 855,403 19.0 1.3 4.5 13.3 9.7 9.3 16.4 22.8 113.0

Train 35,987 684,611 19.0 1.3 4.5 13.3 9.8 9.3 16.4 22.9 112.8
Test 8,996 170,792 19.0 1.3 4.5 13.2 9.7 9.3 16.5 22.8 114.0

(a) Statistics of the cleaned corpus. “P” and “D” are the number of utterances by patients
and doctors, respectively. SUM2 is the concatenation of SUM2-A and SUM2-B. Avg.
length is the average number of Chinese characters in an utterance, SUM1, or SUM2.

A Only BOTH

Train 33,306 2,681
(92.5%) (7.5%)

Test 8,299 697
(92.3%) (7.7%)

(b) The number (percentage) of con-
versations with SUM2-A only and
with both SUM2-A and SUM2-B.

Table 1: The statistics of the corpus. Table 1a illustrates the overall statistics, and Table 1b reports the
number of conversations with SUM2-A only or with both SUM2-A and SUM2-B.

dataset in Chinese, which has over 40K cases covering nearly 2K disease types. In each case, there is a
medical conversation between a patient and a doctor, and two summaries: one for problem statement and
the other for treatment recommendations. Figure 1 shows an example conversation with the two types
summaries: “SUM1” for problem statement and “SUM2” for treatment recommendations. SUM2 has
two types, i.e., type A and B, which will be explained in the next section.

Besides, we propose a hierarchical encoder-tagger (HET) model for extractive summarization to tag
each utterance in a medical conversation with regard to whether an utterance is a problem statement or a
treatment recommendation. We further enhance the model with end-to-end memory networks (Sukhbaatar
et al., 2015) to incorporate the information in relevant utterances in the conversation. We use BERT
(Devlin et al., 2019) as the token-level encoder and try several utterance-level encoders and taggers.
Experimental results show that HET outperforms strong baselines as well as models from previous studies
on this dataset. Analyses are also conducted to better understand our findings from the results.

2 A Corpus of Medical Conversations

Medical conversation is a type of task-oriented conversation. Different from ordinary conversations in
which topics are often fluid, in task-specific conversations, participants interact to accomplish a projected
set of goals and sub-goals (Litman and Allen, 1987; Drew and Heritage, 1992). Specifically, for conversa-
tions in the medical domain from online medical platforms, the projected goal is for the doctor to diagnose
and offer treatment recommendation for the patient’s problem (Drew and Heritage, 1992; Robinson, 2012;
Wang et al., 2020). Particularly in China, many platforms make such medical conversations publicly
available so that new patients with similar problem can search relevant conversations and find helpful
information from them. Therefore, summarization of the patient’s problem and doctor’s recommendations
in a conversation could be highly important because such summaries can help the new patients locate the
key information, especially when a conversation is too long. To conduct such summarization, a straightfor-
ward solution is to identity the important utterances that contain key information for problem statements
or treatment recommendations. However, limited corpus can be found to train such summarization model,
especially for Chinese. Therefore, we develop a corpus in Chinese for medical conversation summarization
and illustrate the details in the following text.

The Raw Data The original data are crawled from one of the most well-known online health provider
platforms3 in China, under a section called “Frequently Inquired Health Problems.”4 In these conversations,
patients consult registered doctors5 about some health problems; doctors help them to determine the nature
of the problems, provide treatment recommendations, and/or advise them to seek further medical attention
from other health facilities. Instead of isolated question-answer segments or part of the conversations, this
data contain full conversations between patients and doctors, covering the entire interaction process. In
addition to dialogues, each conversation contains meta information such as the type of disease and the
corresponding hospital department, as well as the speakership of the utterances in conversation.6 Many

3https://www.chunyuyisheng.com/
4https://www.chunyuyisheng.com/pc/qalist/
5Normally, these doctors are manually verified by the website.
6While the patient is allowed to interact with the doctor using typed messages, audio messages, uploaded photos, or emojis,
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(but not all) conversations include a summary added by doctors after the conversations are conducted. The
summary has two parts: SUM1 describes the medical problem that the patient has; SUM2 summarizes
the doctor’s diagnosis or treatment recommendations. SUM2 is of two types: Type A (we denote it as
SUM2-A) is the concatenation of a few utterances in the conversation, whereas Type B (we denote it as
SUM2-B) is a more concise summary written by the doctor and may contain text that does not appear in
the conversation. In all, we crawled 109,850 conversations from 23 hospital departments or sub-divisions,
and the conversations cover 1,839 disease types, which forms our raw corpus. Among them, only half of
them contains both SUM1 and SUM2. This again emphasizes the necessity of this summarization task,
because if we can automatically generate the missing summaries for problem statement and treatment
recommendations, new patients may have more references when they search conversations that are relevant
to their problem.

Data Processing To facilitate the task of conversation summarization, we process the raw corpus by
only reserving the conversations that have both SUM1 and SUM2, and further clean the resulted data by
removing duplicates and those conversations containing only one utterance. The cleaned data contain both
input and output for the summarization task. Particularly, SUM1 and SUM2-A are the concatenation of
selected utterances in the conversation that provide key information for problem statement and treatment
recommendations. Therefore, the important utterances identified in a conversation are those likely to
appear in the summary. In detail, following Nallapati et al. (2017) and Chen and Bansal (2018), we use
ROUGE scores to measure the overlap between an utterance and a summary, and label the utterances
accordingly; that is, we break the summary into segments,7 and then for each segment, find the closest
utterance in the conversation according to ROUGE-1 score. If the score is greater than a threshold, we
label that utterance as “PD” if the summary is SUM1 and “DT” if it is SUM2. For all other utterances, we
label them with “OT”. We call those resulting “PD”, “DT”, and “OT” as silver-standard labels.

Data Properties Table 1 shows the statistics of the processed dataset, where Table 1a reports the overall
statistics of all data and the train/test splits (we use 80% for training and 20% for testing), and Table 1b
illustrates the number of conversations where SUM2 is SUM2-A only or has both SUM2-A and SUM2-B.
A few points are worth mentioning. First, on average, each dialogue includes 19.0 UTTERANCE (and about
half of them are by the doctor), but only 4.5 of them are tagged with label “DT”, which demonstrates that
more than half of doctors’ utterances are not included in the summary. Such utterances can be greetings,
symptom inquiry, etc. Second, the conversations between the patient and the doctor are asynchronous:
either party can type some messages, walk away, and later come back to continue the discussion. This
property makes the corpus different from other benchmark corpora (such as AMI (McCowan et al., 2005))
consisting of dialogues during in-person meetings. Third, for SUM2, all conversations have SUM2-A,
and only a small portion (around 7.5% in the training and testing sets) have both SUM2-A and SUM2-B.
Therefore, for the conversations with both SUM-2A and SUM-2B, we use their concatenation to compute
the average length reported in Table 1a. Forth, while this paper focuses on summarization, the corpus can
be used for other NLP tasks such as question answering and dialogue analysis.

3 Summarization via Tagging

To model conversation, a common approach is to use a two-level hierarchical sequential model (Serban
et al., 2016), in which a conversation may be modeled as a sequence of utterances, and each utterance
is modeled as a sequence of words or characters. Using such hierarchical models, conventional studies
mainly focused on conversation generation (Sordoni et al., 2015; Serban et al., 2016; Serban et al., 2017),
where a decoder is employed to generate responses conditioning upon the vectors encoded from the
hierarchical modeling of previous utterances.

For our dataset, there is a big overlap between utterances and the summaries; for instance, as shown
in Table 1b, SUM2 in the majority of the conversations (92.5% in training and 92.3% in the test set) are

in this dataset we only include typed messages for our research.
7The summary in this corpus often uses a full-width comma (U+FF0C) as a delimiter, and we use this delimiter to break a

summary into segments.
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Figure 2: An illustration of the hierarchical encoder-tagger model (HET) with memory networks for
identifying important utterances in conversations. Here, ui is the ith utterance in the conversation.

of type SUM2-A only and the rest contain both SUM2-A and SUM2-B, where SUM2-A is generated
by concatenating several utterances in the conversation. To take advantage of such a property, we treat
summarization as a tagging task; that is, we generate the summaries by first labeling the utterances with
the PD, DT, OT tags and then concatenating the labeled utterances to form summaries.

We define the input utterance sequence as U = u1, u2, · · · , ui · · · , un with each ui presented as a
sequence of basic tokens (e.g., word or character) ui = wi,1, wi,2, · · · , wi,li . To model the input, our
model follows the typical hierarchical structure in which the tokens and utterances are encoded with by
separate encoders and hierarchically stacked. Then a tagger is attached at the utterance-level to predict
PD/DT/OT labels. Afterwards, we concatenate the utterances labeled by PD and DT to generate the
summary of medical problems and doctor’s diagnosis, respectively. To further enhance our model, we
adopt memory networks (Sukhbaatar et al., 2015) to incorporate the information from relevant utterances
in the conversation. Therefore, our model is a hierarchical encoder-tagger (HET) with the memory
module applied between the token-level and utterance-level encoders, which is illustrated in Figure 2.
Also, it is worth noting that our method can generate the two types of summaries simultaneously, since
they directly come from the predicted PD/DT/OT labels. In the following texts, we firstly introduce the
memory module and then elaborate the whole hierarchical tagging process with the memories.

3.1 Utterance Memories

As discussed above, we regard our summarization task as an utterance tagging process. Similar to other
tagging tasks in which contextual information is highly helpful in determining the output tags (Song and
Xia, 2012; Marcheggiani and Titov, 2017; Higashiyama et al., 2019; Tian et al., 2020a; Tian et al., 2020b),
for each utterance ui in the conversation, relevant utterances in each conversation also provide useful
information (Zhang et al., 2018) to determine whether a particular utterance is important. To exploit the
information from relevant utterances, we adopt end-to-end memory networks (Sukhbaatar et al., 2015),
which (as well as the variants) have been demonstrated to be useful in many tasks (Miller et al., 2016;
Tian et al., 2020c), to learn from them to facilitate important utterance tagging. In doing so, we first map
all utterances [u1, · · · , uj , · · · , un] in the conversation into their memory vectors and value vectors. The
memory vectors (denoted by mj for uj) are directly copied from the utterance representation obtained
from the token encoder; the value vectors (denoted by vj for uj) are obtained by a BiLSTM encoder.
Specifically, memory vectors mj are used to compute the similarity with the input utterance; while vj

carries uj’s encoding information for generating final memory output. Then for each utterance ui with its
representation hi, we use it to address relevant utterance through the memory, which is formalized as

pi,j =
δi,j · exp(hi ·mj)∑lj
j=1 δi,j · exp(hi ·mj)

(1)
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Here, δi,j ∈ {0, 1} is a binary activator which equals 1 if the speaker of uj is identical with that of ui and
equals 0 otherwise; mj = hj because the memory vectors are copied from the utterance representation
obtained from the token encoder (TE); pi,j is the weight measuring the relevance between uj and ui.
Afterwards, the value vectors vj of uj are weighted with pi,j and summed by

ai =
l∑

j=1

pi,jvj . (2)

where ai is the vector to represent the information from relevant utterances via a weighted sum operation.

3.2 The Hierarchical Encoder-tagging with Memories

To obtain the representation of each input utterance ui, we apply BERT (Devlin et al., 2019) as our
token-level encoder (TE), and use the encoded hidden vector of “[CLS]”8 as hi to represent the utterance
ui. Once ai is obtained from the memory module, we concatenate it with hi and get the resulting utterance
representation for the utterance level encoding9 by

h′i = hi ⊕ ai (3)

Then, an utterance-level encoder (UE) is applied to model the utterance representations in a sequential
way. For example, if we use LSTM for UE, the utterance-level encoding is formulated as

oi = LSTM(oi−1, h
′
i) (4)

where the oi is the step-wise state for utterances and hi is used as the input to the UE at each time step.
Note that, in addition to LSTM, there are many other ways for UE, e.g., BiLSTM. Herein we use LSTM
as an example of the UE for the sake of simplicity.

On the top of the encoder, there is the tagger layer performing the identification task, where a trainable
matrix W and bias vector b is used to align oi to the output space:

o′i = W · oi + b (5)

Afterwards, a softmax or conditional random field (CRF) (Lafferty et al., 2001) algorithm is applied to o′i
to obtain the output tags. Finally, we concatenation all utterance with the label PT and DT to generate the
summary of patient’s problem (SUM1) and doctor’s diagnoses (SUM2), respectively.

4 Experiments

4.1 Settings

We experiment our HET model with and without the memory on our corpus. For model implementation,
at the token-level encoder (TE), we use the Chinese version of BERT10 and ZEN (Diao et al., 2019)11 with
their default settings, where for both BERT and ZEN, we use 12 layers of multi-head attentions with the
dimension of hidden vectors set to 768; for the utterance level, we firstly run experiments with no encoder;
then following previous studies such as (Kalchbrenner and Blunsom, 2013; Zhao et al., 2017; Kumar et
al., 2018), we experiment with two recurrent neural network models (namely, LSTM and BiLSTM) to
encode the utterance sequence for each conversation, where the dimension of hidden states is set to 300
for LSTM and 150 for BiLSTM encoder.

In the memory module, the embedding matrix and BiLSTM encoder for obtaining the value vectors vj

for uj are applied directly to the Chinese characters in the utterance. All parameters in the embedding
matrix and the BiLSTM encoder in the memory module are initialized randomly, with the dimension of
embedding and hidden states set to 768 and 384, respectively (which allows the dimension of vi to match
that of the hidden vector of BERT and ZEN).

For the tagger, we run two types of them, i.e., softmax and CRF, in order to test whether there is a strong

8“[CLS]” is the sentence initial symbol added by BERT.
9There are different naming schemes for the hierarchy of conversation encoders. To clarify, TE in this paper is called utterance

encoder in other studies, while our UE is also called context- or conversation-level encoder elsewhere.
10We use the Chinese base model from https://s3.amazonaws.com/models.huggingface.co/.
11We obtain the pre-trained ZEN model from https://github.com/sinovation/ZEN.
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UE Tagger M
PD (SUM1) DT (SUM2)

P R F R-1 R-2 R-L P R F R-1 R-2 R-L

None
softmax × 90.01 81.94 85.78 87.18 83.85 87.18 86.09 90.26 88.12 79.62 70.58 79.59√

89.11 84.03 86.49 87.06 83.55 87.06 87.63 89.64 88.62 80.03 70.98 80.00

CRF × 89.76 83.91 86.74 87.58 84.78 87.58 86.31 89.67 87.96 79.99 70.73 79.95√
90.85 82.83 86.65 87.37 84.58 87.37 87.96 90.12 89.02 80.17 71.29 80.13

LSTM
softmax × 91.58 85.95 88.68 90.80 86.78 90.80 87.67 89.14 88.40 80.41 71.29 80.38√

92.35 85.67 88.88 90.85 86.83 90.85 88.89 88.98 88.93 80.75 71.76 80.71

CRF × 90.78 86.39 88.53 90.05 86.08 90.05 86.95 89.92 88.41 80.08 71.20 80.05√
91.26 85.70 88.39 90.14 86.17 90.14 88.52 89.69 89.10 80.54 71.60 80.50

BiLSTM
softmax × 91.56 85.68 88.52 91.02 87.12 91.02 88.68 89.77 89.22 80.74 71.61 80.70√

92.02 85.24 88.50 91.06 87.15 91.06 88.73 90.44 89.57 80.94 72.40 80.91

CRF × 91.65 85.24 88.33 90.98 87.28 90.98 87.53 89.28 88.40 80.44 71.36 80.41√
92.03 85.25 88.51 91.01 87.38 91.01 88.88 89.88 89.37 80.87 72.07 80.84

(a) Results from BERT

UE Tagger M
PD (SUM1) DT (SUM2)

P R F R-1 R-2 R-L P R F R-1 R-2 R-L

None
softmax × 88.24 84.78 86.48 87.34 83.97 87.34 90.58 88.37 89.46 80.11 71.64 80.08√

90.66 82.54 86.41 87.32 83.94 87.32 89.84 89.21 89.52 80.42 71.99 80.39

CRF × 89.83 83.96 86.80 87.73 84.32 87.73 89.52 89.13 89.32 80.18 71.60 80.15√
91.07 82.97 86.83 87.59 84.18 87.59 89.94 89.22 89.58 80.46 71.99 80.43

LSTM
softmax × 92.55 85.90 89.11 91.07 87.08 91.07 90.94 88.92 89.92 80.96 72.73 80.93√

91.86 85.74 88.70 90.91 86.93 90.91 90.92 89.35 90.13 81.28 73.17 81.25

CRF × 90.89 86.66 88.73 90.15 86.12 90.15 89.96 88.55 89.25 80.72 72.25 80.68√
91.39 85.81 88.51 90.21 86.24 90.21 89.92 89.94 89.93 81.10 72.75 81.07

BiLSTM
softmax × 91.75 85.93 88.75 91.13 87.19 91.13 90.64 89.62 90.13 81.80 73.62 81.77√

91.76 85.27 88.39 91.26 87.36 91.26 90.73 89.88 90.30 81.96 73.89 81.93

CRF × 91.88 85.40 88.53 91.16 87.28 91.16 90.45 89.82 90.13 81.51 73.32 81.48√
93.25 84.81 88.83 91.20 87.38 91.20 93.14 87.04 89.99 81.90 73.88 81.87

(b) Results from ZEN

Table 2: The results of HET using BERT and ZEN as the token encoder with and without the memory
module (M). We also try different combinations of utterance encoders (UE) (i.e., none, LSTM, and
BiLSTM) and taggers (i.e., softmax and CRF). PD and DT are the two tags for important utterances; P, R,
and F are the precision, recall, and F scores of the predicted labels when compared with the silver-standard
PD/DT/OT labels; R-1, R-2, and R-L are ROUGE-1, ROUGE-2, and ROUGE-L scores of the generated
summaries when compared with gold references in the corpus (i.e., the SUM1 and SUM2).

dependency between the importance labels of adjacent utterances. We use cross-entropy and negative
log-likelihood as loss functions for softmax and CRF, respectively.

For evaluation, we use F scores for the tagging results12 and use ROUGE-1, ROUGE-2, and ROUGE-L
scores13 to evaluate the generated summaries using SUM1 and SUM2 in the dataset as the gold standard. If
the SUM2 of a conversation includes both SUM2-A and SUM2-B, we treat the concatenation of SUM2-A
and SUM2-B as the gold standard for SUM2 in all the experiments, except the results in Table 4.

4.2 Basic HETs

The first experiment is to explore how the HET models perform under different settings on the proposed
dataset, where models with and without the memory module and configured with different token encoders
(BERT and ZEN), UEs (no UE, LSTM, and biLSTM), and taggers (softmax and CRF) are tested. Table
2(a) and 2(b) show the results of utterance tagging (in terms of precision, recall, and F scores) and
summarization (in terms of ROUGE-1, ROUGE-2, and ROUGE-L) for both problem statement (SUM1)

12We use the code in the sklearn framework https://scikit-learn.org/stable/modules/classes.html.
13The code is from https://github.com/google-research/google-research/tree/master/rouge.
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Models
PD (SUM1) DT (SUM2)

P R F R-1 R-2 R-L P R F R-1 R-2 R-L

Nallapati et al. (2017) 76.69 81.74 79.13 89.03 84.68 89.03 78.70 72.66 75.56 52.10 37.90 52.07
Wang et al. (2019) 76.86 81.41 79.07 89.25 84.92 89.25 77.77 71.66 74.59 53.34 37.41 47.73

Ours (BERT) 92.02 85.24 88.50 91.06 87.15 91.06 88.73 90.44 89.57 80.94 72.40 80.91
Ours (ZEN) 91.76 85.27 88.39 91.26 87.36 91.26 90.73 89.88 90.30 81.96 73.89 81.93

Table 3: Experimental results of our runs of models from previous studies as well as our best HET (with
BiLSTM UE, softmax tagger, and the memory module).

and treatment recommendation (SUM2) when BERT and ZEN token encoders are used.
Some observations are stated in order below. First, the overall results demonstrate that the method of

generating summaries via tagging works well on our dataset. In most cases, models that perform well
on tagging (F scores) also perform well on summarization (ROUGE scores). Second, for both BERT
and ZEN encoders, the HET model works well with different combinations of UEs and taggers, which
illustrates the validity of our approach. Among different settings, the one using BiLSTM UE outperforms
others, suggesting that the sequential organization of utterances play an important role in identifying
important utterances in conversations. Third, compared with models without the memory module, models
with memories achieve greater improvements on the doctor diagnoses (SUM2). However, the effect of
memories is not as good for the problem description (SUM1). One possible explanation could be that
the information of other utterances is more useful for determining whether an utterance can be tagged
for SUM2 than that for SUM1; the memory module can appropriately model such information and thus
including the memory module in HET is more helpful on SUM2 than that for SUM1.

4.3 Comparison with Previous Studies

On our dataset, we compare our approach with two previous extractive summarization models. The first
one is SummaRuNNer (Nallapati et al., 2017) and the other is a contextualized extractive method (CEM)
proposed by Wang et al. (2019).14 Since these models are originally designed for document summarization,
which cannot generate summaries for patient’s problem and doctor’s diagnosis simultaneously, in our
experiments, we directly concatenation all utterances to form a document as the input (i.e., the conversation
utterances are regarded as document sentences) and train the models for SUM1 and SUM2 separately . For
both models, we apply the Chinese character embeddings from Tencent Embedding15 (Song et al., 2018)
and select the top ranked 7%, and 24%16 of the utterances (sentences) as the summarization of patient’s
problem and doctor’s diagnosis, respectively. Table 3 shows the best results of the two reference models
as well as our model using BERT and ZEN with the best setting (i.e., BiLSTM UE, softmax tagger, as
well as the memory module), where our approach outperforms both referential systems on both SUM1
and SUM2, where the model with ZEN obtains the best results.

4.4 SUM2-A vs. SUM2-B as Gold Standard

As shown in Table 1b, 7.7% of conversations in the test set contain both SUM2-A and SUM2-B. So far,
for those conversations, we have used the concatenation of SUM2-A and SUM2-B as the gold standard
(see Table 2-3). Table 4(a) shows the performance of the four systems (i.e., Ref-1 from Nallapati et al.
(2017) and Ref-2 from Wang et al. (2019)) and our model using BERT and ZEN as TE under the best
setting (e.g., BiLSTM UE, softmax tagger, with the memory module)) on the entire test set, but with
SUM2-A as the gold standard. Not surprisingly, for all three models, their performances with SUM2-A
as the gold standard are higher than the ones with concatenation of SUM2-A and SUM2-B as the gold
standard (see the last three columns in Table 3).

14We use their released code at https://github.com/hpzhao/SummaRuNNer and https://github.com/
hongwang600/Summarization.

15We use the official release at https://ai.tencent.com/ailab/nlp/embedding.html.
16The two numbers are selected according to the percentage of utterances labeled by PD and DT in uttereances in each

conversation in the training set (see Table 1).
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Model
SUM2-A

R-1 R-2 R-L

Ref-1 53.27 38.98 53.24
Ref-2 54.29 38.39 48.77

Ours (BERT) 82.24 73.83 83.22
Ours (ZEN) 83.25 75.32 83.23

(a) Results on the entire test set with SUM2-
A as the gold standard.

Model
SUM2-A SUM2-B

R-1 R-2 R-L R-1 R-2 R-L

Ref-1 57.79 42.98 57.77 17.21 12.01 17.20
Ref-2 58.96 42.69 54.58 16.73 11.33 15.75

Ours (BERT) 78.99 69.81 78.99 21.08 16.18 21.08
Ours (ZEN) 79.62 70.90 79.62 21.07 16.24 21.07

(b) Results on the 697 test conversations that have both SUM2-A and
SUM2-B, with either SUM2-A or SUM2-B as the gold standard.

Table 4: ROUGE scores of two reference models (i.e., Ref-1 (Nallapati et al., 2017) and Ref-2 (Wang
et al., 2019)) and our best model (with BiLSTM UE, softmax tagger, and the memory module), where
different part (i.e., SUM2-A or SUM2-B) of SUM2 is regarded as the gold standard.

Table 4(b) reports the results on the 697 conversations in the test set that have both SUM2-A and
SUM-2B, with either SUM2-A or SUM-2B as the gold standard. For all three systems, ROUGE scores
with SUM2-B as gold standard are much lower than the ones with SUM2-A, indicating that generating
summaries that are similar to manually crafted summaries is still a challenge task.

4.5 HETs with Meta-Information
In addition to the utterances, each conversation in the dataset has three major types of meta information;
namely, speaker role (patient or doctor) (SR), hospital department (HD), and disease name (DN). We
experiment with adding such meta-information on top of our model using BERT and ZEN as TE under the
best setting. To incorporate the meta-information, we use a single-layer neural network to transfer them
into vectorized representation, and concatenate them to their correspondent encoder layers. Specifically,
SR is added to TE; HD and DN are added to UE.17

Table 5 reports the performance of our HET models with different combination of the meta-information,
where the results without using any meta-information are shown in the first row (which is identical to the
last row in Table 3). Compared to the baselines, models with meta-information achieve better performance
in most cases. Specifically, adding SR results in higher improvements compared with HD and DN. One
possible explanation could be that the utterances from the patient and the doctor could be more important
in generating problem statement (SUM1) and treatment recommendation (SUM2), respectively. Therefore,
adding SR would help our model to focus more on the utterances for the patients and the doctors when it
is predicting PD and DT labels for SUM1 and SUM2, respectively.

5 Related Work

5.1 Extractive Summarization
As a direct research line related to our work, extractive summarization aims to extract important sentences
in the input and use them to form a summary. Most previous studies focused on document summarization
(Nallapati et al., 2017; Narayan et al., 2018; Wang et al., 2019; Zhang et al., 2019; Xiao and Carenini,
2019; Luo et al., 2019) while some focused on summarization of meeting transcripts (Riedhammer et
al., 2010; Singla et al., 2017), where their problem settings and data preparation are different from ours.
Specifically, compared with summarization for documents, our task of conversation summarization is
more challenging because utterances in the conversation are less formally written and there are speaker
role changes during the entire conversation; compared with summarization for meeting transcripts, where
the summary is similar to a short meeting-log, our task requires to generate more informative summaries
to facilitate the needs of providing useful information to potential patients from the online platform.
General extractive approaches for summarization always face challenges of redundancy when they use
extracted sentences to generate an informative and readable summary within a length, in which additional
modeling is required to address it even though with powerful neural models, e.g., BiLSTM (Nallapati et
al., 2017), transformers (Zhang et al., 2019), and attentions (Xiao and Carenini, 2019). On the contrary,

17More specifically, we concatenate the SR representation with hi obtained from Eq. 3 and concatenate the DR and DN
representation with oi from Eq. 4.
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Meta-info PD (SUM1) DT (SUM2)

SR HD DN P R F R-1 R-2 R-L P R F R-1 R-2 R-L

× × × 92.02 85.24 88.50 91.06 87.15 91.06 88.73 90.44 89.57 80.94 72.40 80.91√
× × 95.45 83.74 89.21 92.40 88.72 92.40 91.60 89.12 90.34 82.17 74.15 82.14

×
√

× 93.39 84.67 88.81 91.71 87.84 91.71 88.62 89.58 89.10 81.18 72.25 81.16
× ×

√
92.54 85.73 89.01 91.17 87.24 91.17 89.40 88.75 89.08 81.24 72.33 81.20√ √ √
95.75 83.94 89.46 92.67 88.88 92.67 90.92 89.30 90.10 82.47 74.43 82.44

(a) Results from BERT

Meta-info PD (SUM1) DT (SUM2)

SR HD DN P R F R-1 R-2 R-L P R F R-1 R-2 R-L

× × × 91.76 85.27 88.39 91.26 87.36 91.26 90.73 89.88 90.30 81.96 73.89 81.93√
× × 95.61 83.83 89.33 92.49 88.77 92.49 92.52 89.42 90.94 83.10 75.31 83.07

×
√

× 93.42 84.64 88.82 91.95 88.12 91.95 91.83 89.23 90.51 82.12 74.30 82.10
× ×

√
92.98 85.29 88.97 91.48 87.65 91.48 91.43 90.08 90.75 82.11 74.40 82.08√ √ √
95.95 84.04 89.60 92.80 88.97 92.80 91.11 90.66 90.88 83.31 75.48 83.29

(b) Results from ZEN

Table 5: Results of our models using BERT and ZEN TE under the best setting (with BiLSTM UE,
softmax tagger, and the memory module). “SR”, “HD”, and “DN” stand for the meta-information of
speaker roles, hospital departments, and disease names, respectively.

in our work, this challenge may not be an issue because the redundancy in the original input is limited
and directly concatenating selected utterances with their same order in the original conversation does not
lead to unreadable summmaries in most cases. Therefore, to have a good performance in conversation
summarization in the medical domain, task-specific designs of summarization model are expected.

5.2 Utterance Modeling in Conversations
Studies on dialogue systems have drawn much attention recently, where many of them have been done on
utterance modeling in human-human conversations (Wang et al., 2018a; Liu et al., 2019). In these studies,
one stream of utterance modeling focuses on dialogue act classifications, which aims to attribute one of
predefined acts to each utterance in conversations (Lee and Dernoncourt, 2016; Liu et al., 2017; Kumar et
al., 2018; Wang et al., 2018b; Raheja and Tetreault, 2019). Another stream focuses on assessment of utter-
ances in terms of their quality in various aspects, such as sentiment analysis (Inaba and Takahashi, 2016;
Lison and Bibauw, 2017; Misra et al., 2019). Our study on extractive summarizations for conversation can
be regarded as in the line of the latter stream in evaluating utterances for human-human conversations,
where little research has been done for utterances based on their importance to the pragmatic outcomes
(i.e., summaries for problem statement and treatment recommendations in our study) of the conversations.

6 Conclusion and Future Work

In this paper, we proposed a new task of medical conversation summarization, which is performed by
identifying important utterances in the conversation between patients and doctors. Based on the real data
from a Chinese online medical service provider, a hierarchical encoder-tagger model (HET), which is
enhanced by the memory module, was proposed to tag each utterance in a conversation with problem
statement or treatment recommendation. The labeled utterances are then concatenated to form summaries.
The experimental results demonstrate the validity of our approach to medical conversation summarization
via identifying important utterances on the proposed dataset. For future work, we plan to perform further
key information extraction on the conversation summaries from similar medical problems, so that we can
obtain relevant information such as symptoms and treatment recommendations to a particular medical
problem and help new patients to locate more precise references that are covered in many cases.
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