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Abstract

In this paper, we target improving the joint dialogue act recognition (DAR) and sentiment clas-
sification (SC) tasks by fully modeling the local contexts of utterances. First, we employ the
dynamic convolution network (DCN) as the utterance encoder to capture the dialogue contexts.
Further, we propose a novel context-aware dynamic convolution network (CDCN) to better lever-
age the local contexts when dynamically generating kernels. We extended our frameworks into
bi-channel version (i.e., BDCN and BCDCN) under multi-task learning to achieve the joint DAR
and SC. Two channels can learn their own feature representations for DAR and SC, respectively,
but with latent interaction. Besides, we suggest enhancing the tasks by employing the DiaBERT
language model. Our frameworks1 obtain state-of-the-art performances against all baselines on
two benchmark datasets, demonstrating the importance of modeling the local contexts.

1 Intorduction

Dialogue act recognition (DAR) aims to detect speaker’s intentions (e.g., question, agreement or state-
ment) in each utterance, which can facilitate dialog systems to produce appropriate responses (Inui et al.,
2001). Recent studies have further revealed that simultaneously recognizing the dialog act and detecting
the sentiment in dialog can result in better grasping of speaker’s intention (Cerisara et al., 2018; Qin et
al., 2020). These two tasks are closely relevant, i.e., they mutually promote each other by being jointly
performed. On the one hand, the DAR provides clues for sentiment classification (SC). In return, the
sentiment transitions also can benefit dialogue act prediction. Taking the utterances in Table 1 as exam-
ples, it is quite common that a same sentiment following previous utterance’s will be expressed once the
dialogue act Agreement is assigned. Meanwhile, when the speaker changes the sentiment from Negative
to Neutral, the dialogues act tends to transition into Statement.

Speaker Utterance Dialogue Act Sentiment
A Does anyone ever feel anxious and empty at the same time? Question Negative
B All the time. Answer Negative
B I feel like I’m losing my mind a little bit. Statement Negative
A Relatable. I’m always anxious and if I’m not feeling empty

or depressed I’m angry. Also usually dissociating.
Aggrement Negative

B I needa go smoke. Statement Neutral

Table 1: Example utterances from Mastodon dataset for joint dialogue act and sentiment detection.

Prior works model the joint DAR and SC as sequence labeling problem, all accomplishing with
recurrent-like neural models, e.g., Long Short-Term Memory Network (LSTM) (Chen et al., 2018; Ra-
heja and Tetreault, 2019). However, one crucial drawback in these models is failing to fully incorporate

1Codes are publicly available at https://github.com/ljynlp/BCDCN.
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(a)	Dynamic	convolution. (b)	Context-aware	dynamic	convolution.

Head1 HeadN

N	heads

k

Kernel	GenerationKernel	Generation

N	heads

Figure 1: The shadow boxes are the source context for generating the corresponding kernels. Dynamic
convolution (a) of each head at time-step i generates a kernel with only current i-th input, while our
proposed context-aware dynamic convolution (b) computes kernels within a wide context window.

the local contextual information among the dialog. Intuitively, for current utterance, its nearer dialogue
neighbors are always more influential and informative than the remoter ones, due to the closer replying
relationships between them. This can be exemplified by the two cases we mentioned above, where the
inter-impacts between dialogue acts and sentiments more often occur within adjacent utterances. There-
fore, in this paper we target fully capturing the local contexts for improving the joint tasks.

Convolutional Neural Networks (CNN) are the preferred alternatives on effectively extracting local-
feature in discourses in natural language processing (NLP) community (Kalchbrenner et al., 2014; Kim,
2014). The recent advanced CNN variants, dynamic convolutions (Wu et al., 2019), have been proposed
for bringing enhanced capabilities. As illustrated in Figure 1(a), it operates by multiple heads of convo-
lutions with the shared dynamic kernel over dimension, which enables to dynamically generate different
convolution kernels for different input elements at each time-step. Compared with vanilla CNN, the
dynamic convolution network is much more flexible on mining the contextual features, and meanwhile
effectively reduces model parameters (Kaiser et al., 2018). In this work, we consider taking advantage
of the dynamic convolution network as the utterance context extractor for the joint tasks. However, we
can notice that the dynamic convolutions generate kernels merely under current input utterance while
ignoring the surroundings of the utterance, which may be problematic when encoding the utterance fea-
ture representation. Therefore, we further adapt the dynamic convolutions by designing a context-aware
dynamic convolution, as in Figure 1(b). Our context-aware dynamic convolutions dynamically calculate
kernels under the guidance of wider utterance contexts, which allows to better filter or integrate dialogue
act and sentiment from various heads, and yield more informative contextual representation in dialogue.

We take the dynamic convolution network (DCN) and our context-aware dynamic convolution network
(CDCN) as the utterance context encoders, respectively. As shown in Figure 2(a), to satisfy the joint DAR
and SC tasks, we extend the models into bi-channel version (i.e., BDCN or BCDCN) under a multi-
task learning framework, with each channel for each subtask. Two channels can separately learn their
own feature representations but with latent interactions. First, the bi-directional LSTM (BiLSTM) layer
encodes the input utterance into representations. Then, in utterance encoder layer, multi-layer BDCN
(or BCDCN) captures the context representations for DAR and SC, respectively. Finally, after linear
transformation, our model makes final predictions for two tasks separately. In addition, we consider
exploiting the BERT pre-trained contextualized representations, which have been demonstrated to bring
nearly 10% improvements for the joint DAR and SC tasks on Mastodon data (Qin et al., 2020). However,
one entire dialog often consists of far more than two utterance sentences, while the BERT restricts the
input with at maximum two sentence pieces, which consequently limits the utility. We thus adopt the
DiaBERT (Liu and Lapata, 2019) to yield the enhanced utterance representations at dialogue level.

We experiment on two benchmarks, including Mastodon (Cerisara et al., 2018) and DailyDialog (Li
et al., 2017). The results show that both our BDCN and BCDCN systems can beat the current best
baseline with large margins for the joint DAR and SC tasks. Especially our BCDCN model achieves the
state-of-the-art performances, demonstrating its advances. With the DiaBERT, the performances can be
significantly boosted when data is sufficient (e.g., in DailyDialog). Further analysis shows the necessity
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of capturing the local contexts for the joint tasks. In summary, we make following contributions. 1) We
are the first proposing to improve the joint dialog act recognition and sentiment classification by fully
capturing the utterance local contexts. 2) We employ the dynamic convolutions network for better en-
coding local contexts of utterances, based on which we further propose a novel context-aware dynamic
convolutions network for enhancement. 3) Our proposed frameworks achieve the state-of-the-art per-
formances against the current best baselines on two tasks in two datasets. 4) We obtain significantly
reinforced results by employing the DiaBERT and BERT language models.

2 Related Work

Dialogue Act Recognition (DAR) plays an important role in building intelligent and interactive conver-
sation systems and producing appropriate responses. Existing researches for DAR can be summarized
into two categories. Initial works make a prediction for each dialogue utterance independently by tradi-
tional statistical classifiers with hand-crafted discrete features (Stolcke et al., 2000; Keizer et al., 2002;
Surendran and Levow, 2006; Lendvai and Geertzen, 2007; Tavafi et al., 2013). Later, researchers treat
DAR as a sequence labeling problem and apply neural network methods to reach significant improve-
ments (Kalchbrenner and Blunsom, 2013; Chen et al., 2018; Kumar et al., 2018; Raheja and Tetreault,
2019; Colombo et al., 2020). On the other hand, capturing the sentiment polarity or opinions according
to the texts, aka. sentiment classification has long been a heated research topic in NLP community (Ren
et al., 2016; Amplayo et al., 2018; Fei et al., 2019; Fei et al., 2020b). It has been revealed recently that
the dialogue act recognition and sentiment classification can be closely related, and the joint learning of
these two tasks is more beneficial (Cerisara et al., 2018; Kim and Kim, 2018; Qin et al., 2020). In this
work, we follow these works by employing the joint scheme of the two tasks. Differently, we aim to
better capture the local contexts of dialogue utterances for task improvements.

This work also relates to the CNN models. CNN is prominent on retrieving the local features among
texts or discourses (Kim, 2014; Zhang et al., 2015; Lei et al., 2015), functioning by capturing the n-gram
patterns within input contents (Kim, 2014). A large body of studies considers retrofit CNN to yield better
task performances. For example, Kaiser et al. (2018) apply depth-wise separable convolutions to neural
machine translation, which perform convolutions independently over every channel dimension. Based on
the work of Kaiser et al. (2018), Wu et al. (2019) introduce dynamic convolutions. They define a number
of convolution heads where each head shares kernel over every dimension computed at each time step. In
this work, we take advances of the CNN-like models for sufficiently mining the local context information
in dialogue utterances. Based on the dynamic convolutions, we newly propose context-aware dynamic
convolutions, which is expected to give the enhanced capability of local feature extraction for our task.

3 Framework

We cast both the DAR and SC as a sequence labeling problem. Given a dialogue C with a sequence
of utterances U = {u1, u2, . . . , uT }, where T is the length of the sequence, the objective of DAR is to
predict the corresponding dialogue act labels Y d = {yd1 , yd2 , . . . , ydT }. In SC, the goal is to determine the
utterance sequence to the corresponding sentiment labels Y s = {ys1, ys2, . . . , ysT }.

Our framework is built based on either the dynamic convolution network (DCN) or context-aware
dynamic convolution network (CDCN). We achieve the joint tasks of DAR and SC by extending these
networks into bi-channel version (i.e., BDCN or BCDCN), where each subtask takes one channel but
with latent interactions. These two tasks can be jointly trained under the multi-task learning framework.

As illustrated in Figure 2(a), the overall architecture of our framework consists of three tiers. At the
input layer, the BiLSTM encodes the input utterance texts into representations. Then at the utterance
encoder layer, the stacked multi-layer BDCN (or BCDCN) captures the context representations for DAR
and SC, respectively. Finally, at the output layer, the model predicts labels for two tasks separately.

3.1 Input Layer

We denote the word sequence in t-th utterance ut as Xt = {wt,1, wt,2, . . . , wt,r}, where r is the length
of the sequence. We first map the surface words Xt into vectorial representation Xt via a look-up table.
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(a)		Joint		model	for	DAR	and	SC. (b)		The	structure	of	DiaBERT	language	model

E[CLS]

EA

E1

E1-st

EA

E2

Eutt

EA

E3

E[SEP]

EA

E4

E[CLS]

EB

E5

E2-nd

EB

E6

Eutt

EB

E7

E[SEP]

EB

E8

E[CLS]

EA

Ei

ET-th

EA

Ei+1

Eutt

EA

Ei+2

E[SEP]

EA

Ei+3

...

...

...

Transformer	Layers

H[CLS] H1-st Hutt H[SEP] H[CLS] H2-nd Hutt H[SEP] E[CLS]H[CLS] HT-th Hutt H[SEP]...
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Figure 2: Illustrations of our proposed framework architecture (a) and the DiaBERT language model (b).

We then adopt BiLSTM to encode the embeddings and obtain the input utterance representations:

ht = BiLSTM(Xt) , (1)

where ht is the desired input utterance representations for ut. The order information of the utterance se-
quence is quite crucial to our task. We thus consider adding the sinusoidal position embedding (Vaswani
et al., 2017) to encode the absolute position of each utterance. We concatenate the input utterance repre-
sentation with this position embedding for each utterance.

ht := ht + PE(t) , (2)

where PE(·) denotes the desired representation from positional encoding function.

3.2 Utterance Encoder Layer

As we described earlier that the nearer neighbors of an utterance ut can be more informative than far-
ther ones, we consider fully modeling the local contexts via convolution networks. We use either the
dynamic convolution network (DCN) or context-aware dynamic convolution network (CDCN) as our ut-
terance encoder, respectively. In what follows we first elaborate the technical details of DCN and CDCN
separately. Then we demonstrate how to integrate DAR and SC jointly with two channels.

Dynamic convolution network. Compared with vanilla text convolutions (Kim, 2014), dynamic con-
volutions can dynamically generate varying convolution kernels for different input elements at each
time-step, being more flexible on mining the contextual features. Dynamic convolution is based on the
depth-wise separable convolution (Kaiser et al., 2018), where a convolution is performed independently
over each input dimension. Based on the t-th utterance, the input of the convolution with the k window
width (i.e., kernel size of k = 2k′ + 1) is denoted as Ct = [ht−k′ , · · · ,ht+k′ ]. Then the depth-wise
separable convolution (SConv) operates as:

ot = SConv(Ct|Wc) =
∑d

i=1Wc,ict,i , (3)

where Wc is the kernel (i.e., convolution weight), ot is the output representation from the depth-wise
separable convolution, d is the dimension of the hidden state, ct,i is the dimension i of Ct .

In dynamic convolutions (DConv), each head of the convolutions is based on the depth-wise separable
convolution, while tying the convolution weights over the dimension of multiple heads (i.e., N heads),
and learning the weights dynamically over time. This mechanism extends a similar spirit to the recent
multi-head self-attention (Vaswani et al., 2017), where multiple heads can jointly capture latent features
from different representation subspaces. The calculation in dynamic convolutions can be formulated as:

DConv(Ct|WDConv) = (head1 ⊕ · · · ⊕ headN )WO , (4)

where headn = SConv(Ct|WDConv) , (5)

WDConv = KerGen(ht) ≡ softmax(Wnht) , (6)

where ⊕ denotes the concatenation operation, Wn is learnable parameters. WDConv is the kernel in n-th
convolution head dynamically generated by the kernel generation function KerGen(·) in Eq. 6.
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Context-aware dynamic convolution network. Instead of using the current t-th utterance represen-
tation ht for producing the kernels as in dynamic convolution, we propose the context-aware dynamic
convolution (CDConv) to generate kernels (i.e., in Eq 6) with wider contexts.

CDConv(Ct|WCDConv) = DConv(Ct|WCDConv) , (7)

whereWCDConv = KerGen(Vt) ≡ softmax(WnCt) (8)

Vt=[ht−m′ , · · · ,ht+m′ ] (m=2m′+1 is window width) is the kernel-generation context for t-th utterance.
We can abstract all the above convolution operations, and encapsulate them into a layer:

ĥt = ConvLayer(ht) , (9)

where ĥt is the corresponding output representation for t-th utterance. We can take either DConv or
CDConv as the underlying convolutions in ConvLayer, referred to as DCN or CDCN.

Multi-layer bi-channel convolution network for joint DAR and SC. In our practice, we first stack
the DCN or CDCN with multiple layers, so as to expand the receptive field for fully extracting the context
features among the dialogue level. For l-th layer, the t-th utterance representation h

(l)
t is updated as:

h
(l)
t = ReLU(ConvLayer(l)(LayerNorm(h

(l−1)
t ))) . (10)

where LayerNorm(·) is a layer normalization operation (Ba et al., 2016).
Next, inspired by the multi-channel CNN (Kim, 2014), we use two same separate convolution net-

works as two channels to model the DAR and SC parallel (namely, BDCN and BCDCN), as shown in
Figure 2(a). Two channels perform learning separately but with latent interactions, such that the two
tasks are expected to propagate information from different aspects, and aggregate them with dynamic
convolution operations. To reach this, we let the input representation of each channel at l-th layer as the
concatenation of the output representations of the both two channels at the last layer.

h
(l),∗
t = ReLU(ConvLayer(LayerNorm(h

(l−1),d
t ⊕ h

(l−1),s
t ))) , (11)

where the superscript ∗ ∈ {d, s} presents either the channel for DAR (d) or for SC (s), alternatively.

3.3 Output Layer

At the last layer (i.e., L-th layer), we separately apply two linear layers concatenated with softmax
functions to calculate the output probability for the two tasks, respectively:

y∗t = Softmax(Linear(hL,∗
t )) . (12)

3.4 Learning

We optimize the model by minimizing the negative cross-entropy between the predictions y∗ and the
gold labels ŷ∗ for both DAR and SC:

L∗ = −
1

T

∑T
t=1ŷ

∗
t logy

∗
t . (13)

We perform joint learning of two tasks by combing the above loss for them (i.e., Ld and Ls). Specif-
ically, instead of using constant coupling co-efficiency, we employ the homoscedastic uncertainty strat-
egy(Kendall et al., 2018) for learning weights automatically during the training:

L =
1

2σ2d
Ld +

1

2σ2s
Ls + log σdσs , (14)

where σd and σs are the variances of DAR loss and SC loss over training instances, respectively.

4 DiaBERT: Pre-trained Contextualized Utterance Representation

In §3.1 we use a look-up table for getting the initial word embedding. Pre-trained contextualized word
representations from BERT language model (Devlin et al., 2019) have brought great benefits to a wide
range of downstream NLP tasks (Jia et al., 2019; Fei et al., 2020a). The very recent work (Qin et al.,
2020) demonstrates that using BERT brings large-scale task improvements for DAR and SC. In this work
we intend to borrow these advances from BERT as well. Nevertheless, original BERT limits the input
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Dataset
#Dialogues #Utterances #Labels

Train Dev Test Train Dev Test SC DAR
Dailydialog 11,118 1,000 1,000 87,170 8,069 7,740 7 4
Mastodon 240 25 266 979 84 1,142 3 15

Table 2: Statistics of the two datasets.

with maximum two sentence pieces, while often one dialog can comprise far more than two utterance
sentences. Directly using BERT can lead to discourse information incoherence.

To this end, we leverage a dialogue-level (discourse-level) BERT-based encoder DiaBERT (Liu and
Lapata, 2019) to take the whole dialogue and output the complete representation. In BERT there can
be only one [CLS] token for splitting at most a pair of utterance sentences, while DiaBERT treats each
utterance as a segment, each with a [CLS] token at the start of the utterance for distinguishing different
utterance, as illustrated in Figure 2(b). DiaBERT entails token-level and dialog-level output features.

{hDB
1 , · · · ,hDB

T } = DiaBERT(X1, · · · , XT ) , (15)

where hDB denotes the output for input utterance X . So we can either make use of the word representa-
tion from DiaBERT, or take the one from each [CLS] token as the corresponding utterance representation.

5 Experimental Setting

5.1 Dataset and Evaluation
We evaluate our methods on two benchmark datasets, Mastodon2 and DailyDialog3. Table 2 shows the
detailed statistics. Specifically, since no developing set is in Mastodon, we randomly split 10% of the
training set dialogues. Following Qin et al. (2020), we use the macro-averaged Precision (P), Recall (R)
and F1 as the major metrics measuring two tasks on DailyDialog. On Mastodon, following Cerisara et al.
(2018), we ignore the neutral sentiment label in SC, and for DAR we adopt the average of the F1 scores
weighted by the prevalence of each dialogue act. For all experiments, we pick the model that performs
best on developing set, and all the results on the test set are presented on average after 20 times running.

5.2 Hyper-parameter and Resource
The BDCN and BCDCN are set to 3 layers for best performances according to preliminary experiments.
We adopt Adam as the optimizer with an initial learning rate of 5e-4 with weight decay of 1e-5. The mini-
batch size is 16. To alleviate overfitting, we use a dropout rate of 0.5 on the input layer and the output
layer. For fair comparisons, we randomly initialize word embedding without pre-training, following
Qin et al. (2020), and the dimension is selected in [100,200,300,400]. Our DiaBERT shares the same
architecture with the official BERT4 (Base version) and is pre-trained in the same way.

5.3 Baseline System
We divide the state-of-the-art baseline models into three categories. 1) The models for DAR, including
HEC (Kumar et al., 2018), CRF-ASN (Chen et al., 2018) and CASA (Raheja and Tetreault, 2019). 2)
The models for SC, including VDCNN (Conneau et al., 2017), Region.emb (Qiao et al., 2018) and Dia-
logueRNN (Majumder et al., 2019). 3) the joint learning models for DAR and SC, including JointDAS
(Cerisara et al., 2018), IIIM (Kim and Kim, 2018) and DCR-Net (Qin et al., 2020). Also, we run our
DCN and CDCN for two single separate tasks.

5.4 Developing Experiment
We first conduct developing experiments for our BDCN and BCDCN encoders based on the developing
sets of two datasets, to study the best hyper-parameters of k and m. Figure 3 plots the varying results.

2https://github.com/cerisara/DialogSentimentMastodon
3http://yanran.li/dailydialog
4https://github.com/google-research/bert
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Figure 3: Developing experiments for BDCN and BCDCN encoders. ‘Avg. F1’ is the averaged F1 score
for DAR and SC tasks. Each x values (e.g., [3,3,5]) refers to the k or m values at each of three layers.

Mastodon DailyDialog

SC DAR
Avg.

SC DAR
Avg.

F1 P R F1 P R F1 P R F1 P R
• Separate learning of two tasks

HEC - - - 56.1 56.5 55.7 - - - - 77.8 77.8 76.5 -
CRF-ASN - - - 55.1 56.5 53.9 - - - - 76.0 78.2 75.6 -
CASA - - - 56.4 55.7 57.1 - - - - 78.0 77.9 76.5 -
VDCNN 39.6 44.0 31.6 - - - - 39.7 55.2 35.6 - - - -
Region.emb 40.3 42.8 33.6 - - - - 41.0 56.4 36.6 - - - -
DialogueRNN 41.5 40.5 42.8 - - - - 40.3 44.5 37.7 - - - -
BERT 57.4 45.4 77.9 66.3 65.3 67.4 61.9 50.8 56.0 47.9 80.9 81.4 80.5 65.9
DCN 44.1 36.0 60.2 58.0 54.7 61.7 51.1 47.4 52.3 44.9 79.6 79.1 80.2 63.5
CDCN 44.7 36.2 60.7 58.7 56.4 61.2 51.7 47.8 55.0 45.5 79.9 79.5 80.4 63.9

+BERT 59.2 47.2 79.9 68.5 67.8 69.2 63.9 52.3 56.8 49.6 81.7 82.1 81.0 67.0
+DiaBERT 58.0 45.8 78.9 67.3 66.7 68.0 62.7 53.0 58.3 51.8 82.1 81.0 82.5 67.6

• Joint learning of two tasks
JointDAS 37.6 36.1 41.6 53.2 55.6 51.9 45.4 31.2 35.4 28.8 75.1 76.2 76.2 53.2
IIIM 39.4 38.7 40.1 54.3 56.3 52.2 46.9 33.0 38.9 28.5 75.7 76.5 76.5 54.4
DCR-Net 45.1 43.2 47.3 58.6 60.3 56.9 51.9 45.4 56.0 40.1 79.1 79.1 79.0 62.3

+BERT 55.1 56.5 56.5 67.1 69.2 65.2 61.1 48.9 63.2 46.9 80.0 80.2 79.9 64.5
BDCN 45.6 37.4 61.8 59.0 57.1 61.0 52.3 48.1 55.2 43.9 80.0 79.3 80.8 64.1
BCDCN 45.9 38.2 62.0 59.4 57.3 61.7 52.7 48.6 55.2 45.7 80.3 80.0 80.6 64.5

+BERT 60.3 47.7 82.2 69.9 68.1 71.7 65.1 52.9 57.3 51.1 82.0 82.2 82.0 67.5
+DiaBERT 59.5 47.5 81.4 68.3 67.4 69.2 63.9 54.4 58.8 53.7 82.6 82.0 83.4 68.5

Table 3: Main performances. Avg. represents the averaged F1 score over SC and DAR on the dataset.
All the scores of baseline models are reprinted from Qin et al. (2020) without any modification.

BDCN and BCDCN perform the best when kernel sizes k are both set as [3,5,7] on both Mastodon
and DailyDialog datasets. Meanwhile, keeping the best k as [3,5,7] for BCDCN, the utilities are the
best when the context window m of kernel generation is set as [3,5,7] on Mastodon, and [3,3,3] on
DailyDialog. We keep these configurations for BDCN and BCDCN for the following experiments.

6 Result and Analysis

6.1 Main Result
We compare the performances by all systems under 1) the separate learning of two tasks of SC and DAR,
and 2) the joint learning of two tasks, respectively. In Table 3 we show the main results on Mastodon and
DailyDialog datasets, respectively, from which we can have the following observations.

First of all, on both two datasets, the models under joint task learning universally outperform these
under separate learning of two single tasks, which can be informed by the comparisons between the
results from DCN/CDCN and those from BDCN/BCDCN. This verifies the necessity of conducting joint
training of DAR and SC. Among the models by separate task learning, our DCN and CDCN perform
much better than baselines, demonstrating the effectiveness of capturing the local contexts for the tasks.
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Model Param. SC DAR
BCDCN 9.42M 48.6 80.3
w/o position embedding 9.42M 47.3 80.1
w/o bi-channerl interaction (in Eq. 11) 9.12M 47.5 79.6
w/o dynamic weight 9.03M 47.4 79.7
Vanilla convolution (CNN, k=3) 17.66M 45.5 78.8
Vanilla convolution (CNN, k=3,5,7) 26.30M 46.2 79.2
Depth-wise convolution (SConv) 9.06M 47.2 79.6
Dynamic convolution (DConv) 9.24M 48.1 80.0
Fixed loss co-efficiency (0.5Ld + 0.5Ls) 9.42M 47.6 79.9

Table 4: Ablation study on BCDCN model. Values for
SC and DAR are F1 scores. ‘w/o’ means ‘without’.
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Figure 4: F1 scores against varying data
scale for fine-tuning BERT and DiaBERT.

Second, among joint learning of two tasks, our BDCN consistently shows better results than the
current state-of-the-art model (i.e., DCR-Net). Especially our BCDCN achieves the best F1 scores,
with an average 52.7% on Mastodon and 64.5% on DailyDialog. This again proves the advances in the
local feature extraction for DAR and SC. Besides, we find that improvements by our BCDCN (than best
baseline) are overall higher on DailyDialog (2.2%=64.5-62.3) than on Mastodon (0.8%=52.7-51.9).

Third, we see that with the help of pre-trained contextual language models (i.e., BERT and DiaBERT),
the performances on both the separate task learning and the joint tasks can be greatly boosted. Notably,
the enhancements are much significant on Mastodon than on DailyDialog. For example, with BERT, our
BCDCN gives increase by 12.4%(65.1-52.7) F1 on Mastodon, and 3.4%(67.5-64.1) on DailyDialog. It
is largely due to that the small size of the Mastodon data can give limited supervision signals for training,
and in this case the external information can be greatly beneficial. Also, with language models, BCDCN
even gains much higher F1 scores than DCR-Net. Last but not least, similar to BERT, DiaBERT can
bring great improvements for the tasks, where however the help for DailyDialog are more significant
than for Mastodon. This largely lies in the differences of the data scale provided for fine-tuning.

6.2 Ablation Study

We now take a further step, studying our model under various configurations. We conduct ablation exper-
iments for the BCDCN model based on DailyDialog data, as shown in Table 4. First, without the position
embeddings at the input layer, we see the slight performance drops. Next, we focus on the convolution
part of our model. Further, we cancel the latent interactions between DAR and SC by taking h

(l−1),∗
t

instead of h(l−1),d
t ⊕ h

(l−1),s
t (in Eq. 11) as ∗ channel’s input in l-th layer, separately. Removing the dy-

namic kernel of BCDCN model also results in minor drops. When replacing the context-aware dynamic
convolution with 1) vanilla text convolution, 2) depth-wise convolution and 3) dynamic convolution,
respectively, we can observe varying degrees of performance decreases. In particular, by employing
advanced convolution rather than the vanilla text convolution, the number of model parameters can be
greatly reduced. Significant reductions for both two tasks can consequently be witnessed. Finally, using
the fixed coupling co-efficiency for the multi-task training loss (i.e., 0.5Ld + 0.5Ls), rather than the
adopted homoscedastic uncertainty strategy, can result in suboptimal learning performances.

6.3 The Impact of Data Scale for Fine-tuning Language Model

In Table 3 we notice that the DiaBERT can outperform BERT on the tasks only where comparatively
larger data for fine-tuning is offered (i.e., DailyDialog). Otherwise, the improvements become inferior
to that by BERT (i.e., Mastodon). Here we explore the influence that the DiaBERT is subject to data
scarcity. Based on DailyDialog data, we vary the training set for fine-tuning DiaBERT and BERT, and
test the F1 scores for DAR and SC by BCDCN. From the trends in Figure 4, we see that the performances
with BERT are better than that with DiaBERT when the used training data are less than 20%. In addition,
DiaBERT gains more improvements than BERT when training signals are abundant.
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Index Speaker Utterance Dialogue Act Sentiment
#1 A There’s no way to make a post visible to just your local TL and not federated TL Statement Negative
#2 B correct ? Question Negative
#3 A I don’t think there is Answer Negative
#4 B thanks Thanking Positive
#5 A didn’t think so. Agreement Negative

(a)	Kernel	weights	in	SC	(left)	and	DAR	(right)	channel	in	BDCN. (b)	Kernel	weights	in	SC	(left)	and	DAR	(right)	channel	in	BCDCN.
#1 #2 #3 #4 #5 #1 #2 #3 #4 #5 #1 #2 #3 #4 #5 #1 #2 #3 #4 #5

Figure 5: Visualization of kernel weights in different channels and heads (bottom heatmaps), based on
the dialog (upper table). The Current input for models is the 3-rd utterance. Each x label (e.g., s→d)
indicates the attentive interaction (by Eq. 6) of one channel (e.g., SC) to another channel (e.g., DAR).

6.4 Visualization on Bi-channel Dynamic Convolution Mechanism

Finally, we empirically visualize the convolution weights to better understand the mechanism of the bi-
channel dynamic convolution in BDCN and BCDCN encoders. Specifically, we illustrate the dynamic
kernel weights with 3-rd utterance as the current time step, under the attentive interaction (by Eq. 6) of
one channel to another channel, as in Figure 5. Firstly, we can learn that the dynamic kernels can help
to retrieve informative clues for the corresponding tasks, which is inferred by those highlighted weights
in different heads and channels of convolutions in both two encoders. Each channel actively pays more
attention to its own responsibility, respectively.

More importantly, the dynamic convolutions in different channels can work collaboratively with an-
other channel. For example, the highly-weighted kernel of the heads for utterance in the DAR channel,
as highlighted by the red box in Figure 5(a) (right), where the kernel shows attention to both SC and
DAR channels (i.e., d→s), with the previous utterance’s dialogue act Question and the current sentiment
Negative, the model is consequently informed to transitioning the dialogue act from Question to An-
swer. This indicates that our proposed interactive bi-channel mechanism is effective for coordinating the
joint tasks with latent interaction. Besides, we see that there are more activated highlighted-weights in
BCDCN than in BDCN. With wider local contexts modeled by dynamic kernel generation mechanism,
BCDCN can be more prominent on mining informative clues for the joint DAR and SC tasks.

7 Conclusion

In this work, we proposed to improve the joint dialogue act recognition (DAR) and sentiment classifica-
tion (SC) by fully modeling the local contexts of utterances. Based on the dynamic convolution network,
we proposed a context-aware dynamic convolution network for better leveraging the local dialogue con-
texts when generating convolution kernels. We extended our frameworks into bi-channel version under
multi-task learning for the joint DAR and SC. Our models obtained state-of-the-art performances on two
benchmark datasets, demonstrating the significance of modeling the local contexts for the joint task.
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