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Abstract

Emotion lexicons provide information about associations between words and emotions. They
have proven useful in analyses of reviews, literary texts, and posts on social media, among other
things. We evaluate the feasibility of deriving emotion lexicons cross-lingually for over 350 lan-
guages, many of them resource-poor, from existing emotion lexicons in resource-rich languages.
For this, we start out from very small corpora to induce cross-lingually aligned vector spaces.
Our study empirically analyses the effectiveness of the induced emotion lexicons by measuring
translation precision and correlations with existing emotion lexicons, along with measurements
on a downstream task of sentence emotion prediction.

1 Introduction

Two main forms of classifying emotions are often distinguished: representing them along continuous
dimensions, or breaking them into discrete categories (Stevenson et al., 2007; Calvo and Kim, 2013). A
prominent instance of the former approach is the PAD model by Russell and Mehrabian (1977), which
represents affect along 3 dimensions: pleasure, arousal, and dominance. An example of the latter is the
Wheel of Emotions by Plutchik (1980), who argued that most emotions can be derived from a set of eight
basic ones – anger, fear, sadness, disgust, surprise, anticipation, trust, and joy.

There have been efforts to create emotion lexicons, where each word is assigned either scores or
discrete classes reflecting the associated emotions. Such lexicons are useful in emotional analyses of
product reviews, literary texts, or posts on social media, inter alia. Bradley et al. (1999) solicited human
affective norm ratings to create such a dataset for English based on the PAD model. Mohammad and
Turney (2013) relied on crowdsourcing to annotate words with Plutchik’s 8 basic emotions, providing
binary labels. The recent NRC Emotion Intensity Lexicon (Mohammad, 2018) reconciles the notion of
discrete emotions, corresponding to commonly invoked emotion names, with the benefits of continuous
scoring in accounting for degrees of emotion intensity. Again relying on crowdsourcing, the lexicon
provides intensity scores for Plutchik’s eight basic emotions.

Affective norm ratings have as well been procured for certain other languages. An alternative route is
to draw on automated techniques such as machine translation, as has been done for the NRC Emotion
Intensity lexicon, where the English words are translated to other languages using Google Translate while
retaining the original scores. Buechel et al. (2020) used Google Translate to translate a source emotion
lexicon to a target lexicon that serves as training data, based on which valence/arousal/dominance or 5
basic emotions are predicted for a range of resource-rich languages. However, at the time of writing
this paper, Google Translate serves around 100 languages. This raises the question of whether similar
resources can be induced for resource-poor languages using minuscule amounts of data.

In this paper, we investigate simple means of deriving emotion ratings for resource-poor languages.
In particular, we consider the case of drawing on very small corpora, focusing on partial translations of
the Bible. We explore different cross-lingual embedding alignment techniques that allow us to transfer
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English emotion ratings to over 350 languages, assessing the accuracy of translations and of our induced
emotion ratings. We have made the resulting induced emotion lexicons freely available1.

2 Related Work

2.1 Monolingual Emotion Lexicon Construction

Ground-truth emotion lexicons are typically constructed by manually annotating words with associated
emotions. Bradley et al. (1999) aggregated results of a questionnaire to create an emotion lexicon with
ratings for the PAD model, Warriner et al. (2013) compiled a similar dataset with larger coverage, and
Shoeb and de Melo (2020) solicited emotion ratings for emojis. Crowd-sourcing platforms such as
Amazon’s Mechanical Turk can be used to expedite the annotation process (Mohammad and Turney,
2013), with techniques such as best-worst scaling to better account for the variance between crowd
workers (Kiritchenko and Mohammad, 2016).

Apart from manual compilation, different strategies can be invoked to construct monolingual emotion
lexicons automatically. For instance, the DepecheMood lexicon (Staiano and Guerini, 2014) was de-
rived using statistical measures based on emotionally tagged text crawled from specific Web sites. Raji
and de Melo (2020) revealed that unsupervised distributional semantics can outperform such supervised
techniques.

2.2 Cross-Lingual Emotion Lexicon Induction

Leveau et al. (2012) showed that word translations across languages are strongly correlated in emotion.
As machine translation gradually increased in accuracy, inducing affect-related resources cross-lingually
become more feasible (Mihalcea et al., 2007). Lexicons for sentiment polarity have been induced cross-
lingually using various forms of supervision (Chen and Skiena, 2014; Abdalla and Hirst, 2017; Barnes
et al., 2018; Dong and de Melo, 2018b; Dong and de Melo, 2018a). In terms of emotion, Buechel et
al. (2020) induced fine-grained emotion lexicons for the 91 languages for which Google Translate was
available. However, machine translation tools are limited by the amount of available training data.

In recent years, induction has thus often been achieved by means of cross-lingual word embeddings.
While numerous approaches for bilingual embedding training (Gouws and Søgaard, 2015) have been
explored, it can be more convenient to draw on potentially larger amounts of monolingual data for em-
bedding training and then achieve a post-hoc alignment of the embedding spaces. Mikolov et al. (2013)
showed that word vectors in different languages can often be aligned with reasonably high accuracy us-
ing simple linear transformations. Xing et al. (2015) showed that enforcing orthogonality on the linear
transformation matrix may result in better translation accuracy. There are now also several unsupervised
alignment algorithms seeking to identify orthogonal transformations of embedding vector spaces (Lam-
ple et al., 2018; Artetxe et al., 2018; Grave et al., 2019). In this paper, we investigate such approaches
for cross-lingual emotion lexicon induction.

Work so far has been limited in at least one of the following ways: 1) polarity lexicon induction as
opposed to fine-grained emotion lexicons, 2) induction dependent on supervised data, or 3) unsupervised
induction but with languages for which resources like Google Translate or pre-trained fastText embed-
dings are available. In the following sections, we present a method of emotion lexicon induction that
works with resource-poor languages for which such tooling is unavailable.

3 Proposed Method

In this section, we introduce some pertinent definitions and provide a brief overview of our methodology
to induce emotion ratings for resource-poor languages.

We consider a target language LT that is typically a resource-poor one, for which no emotion ratings
are available, and a source language LS, for which emotion ratings are available. We define an emotion
rating σe(w) ∈ [0, 1] as an emotion intensity score, i.e., the degree of emotional association of word w
with emotion e ∈ E for a set of target emotions E . Accordingly, an emotion lexicon E can be regarded

1http://emotionlexicon.org/

http://emotionlexicon.org/
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as a function of the form V × E → [0, 1] that maps words w from a vocabulary V paired with emotions
e ∈ E to word–emotion ratings σe(w).

Our method requires three resources: a monolingual text corpus for each ofLT andLS, and an emotion
lexicon ES for the source language. We induce a target-language ET in a two-step process: First, we
induce a cross-lingual word embeddings space covering both LT and LS, by drawing on the monolingual
corpora as well as unsupervised cross-lingual alignment (Section 4). Subsequently, we derive emotion
ratings for LT using this vector space, based on the source lexicon ES (Section 5).

Our empirical investigations focus mainly on the first step. We evaluate three algorithms to induce
cross-lingual word embeddings in such low-resource settings. We also explore additional supervision
when the input corpora possess sentence-level alignments, that is, information about which sentences in
LT are translations of which sentences in LS. This is the case for the Bible translations considered in
this study, due to the presence of verse identifiers.

4 Cross-Lingual Embedding Induction

In this section, we explain our overall approach to obtain cross-lingually aligned word embeddings, and
then briefly outline three of the algorithms we use for alignment along with our modifications.

4.1 Approach

For each input corpus, we first invoke the fastText skip-gram algorithm to learn monolingual word em-
beddings (see Section 6.2 for details). The text in each monolingual corpus is preprocessed to eliminate
all Unicode punctuation and converted to lower case. We obtain two embedding matrices XS and XT

for the source and target languages, respectively, with corresponding vocabularies VS and VT.
Our goal is to induce a single cross-lingual embedding matrix XC that covers both VS and VT in

a single space. For this, we explore three algorithms to align XS and XT: Wasserstein-Procrustes
(Grave et al., 2019), Unsupervised Orthogonal Refinement (Artetxe et al., 2018), and a neural language
model (Wada et al., 2019). We also consider modifications of the latter two algorithms and evaluate these
modified variants alongside the original ones. Note that the neural language model does not require word
embeddings to have already been trained on monolingual corpora, as it jointly trains on two corpora to
produce embeddings that already reside in a common space. Thus, only the preprocessing steps are
performed for it. In the following, we describe each of these techniques in more detail.

4.2 Wasserstein-Procrustes

Given two matrices XS and XT containing word embeddings in two different languages, the Wasserstein-
Procrustes technique by Grave et al. (2019) calculates a projection matrix such that the Euclidean dis-
tances of the projected embeddings are minimized:

W = argmin
W

||XSW −XT||2

This is done in an iterative fashion by alternatively a) finding a permutation of XT that minimizes the
above equation, then b) using stochastic gradient descent to move to a more optimal value of W and
then using singular value decomposition to obtain the nearest orthogonal matrix. Grave et al. also use an
initialization wherein they employ a convex relaxation of the equation they try to optimize in the iterative
phase, allowing them to solve for an approximation of the orthogonal matrix W in the above equation.
Ultimately, we obtain the final cross-lingual embedding matrix XC =

[
XSW
XT

]
.

4.3 Unsupervised Orthogonal Refinement

Artetxe et al. (2018) presented another algorithm for unsupervised alignment. The goal is to compute
orthogonal transformation matrices WS and WT to align embedding matrices XS and XT in the same
embedding space, while also building a bidirectional translation mapping between the words in either
language. This is achieved in four steps:
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1. Normalization. Embedding matrices are length normalized, then centered around the mean
dimension-wise, then normalized again (to obtain unit vectors for each embedding).

2. Unsupervised initialization. In this step, π(
√
MS) and π(

√
MT) are computed, where MS =

US2Uᵀ for USVᵀ = SVD(XS) (making MS the SVD of XSX
ᵀ
S), and similarly for MT. Here, π

sorts each row of its operand in descending order. The idea is that π(XSX
ᵀ
S) and π(XTX

ᵀ
T), unlike

XS and XT, are approximately identical up to a permutation of their rows (an assumption that has
already been made in the form of assuming the embedding spaces for different languages are at least
approximately isometric, as otherwise without it, attempting to find orthogonal mapping matrices is
a futile effort). These sorted matrices are then used to compute an initial bilingual dictionary using
step b) of the next phase.

3. Iterative refinement. The orthogonal mapping matrices and the bilingual dictionary are iteratively
refined by repeating two steps until convergence: a) Compute the optimal orthogonal mapping
matrices WS and WT such that similarities for words that translate to each other in the bilingual
dictionary are maximized. b) Compute the optimal bilingual dictionary by using a variation of
nearest neighbors to identify words in the other language that are closest in the aligned embedding
space. The exact scoring mechanism for computing the nearest neighbors is discussed later in
Section 5. This phase employs an annealing dropout-like mechanism that randomly deletes entries
from the bilingual dictionary to help escape poor local optima.

4. Final refinement. After the previous iterative phase converges on a solution, the mapping matrices
are re-weighted according to the cross-correlation in each component, increasing the relevance of
those dimensions that best match across languages.

4.4 Orthogonal Refinement with Sentence Alignment Initialization

We modified the technique from Section 4.3 for the setting of sentence-level alignments being available,
as is the case for the Bible translations that we consider in this study. To exploit this auxiliary source of
supervision, we modified the unsupervised initialization phase, the second of the four phases described
in Section 4.3. Normally, this step hinges on the assumption that words that are translations of each
other have similar statistical distributions. Starting from matrices XS, XT whose rows contain word
embeddings trained on monolingual corpora, an initial bilingual dictionary is induced. This is then
iteratively refined in the subsequent phase.

Rather than use word embedding matrices, we modified this phase to align term–sentence matrices DS,
DT. These are sparse matrices whose rows correspond to words and columns correspond to sentences.
Each entry reflects the count of words in that sentence. Thus, we compute USVᵀ = SVD(DS), such
that MS = SVD(DSD

ᵀ
S), and likewise for MT based on DT. In our experiments described in Section

7.1, we find that this greatly enhances the robustness of the approach.

4.5 Neural Language Model

Finally, we consider a neural language model for unsupervised joint representation induction, as pro-
posed by Wada et al. (2019). The idea is to use jointly-trained forwards and backwards LSTMs trained
on monolingual corpora from multiple languages. Different word embedding layers and decoders are
used for each language, but weights in the hidden layers are shared, along with the embeddings for
the beginning and end-of-sentence tokens, and the weights for calculating the probability of the end-of-
sentence token. The shared weights encourage the word embeddings across different languages to be
encoded in roughly the same space. After training, the initial word embedding layer weights are used to
project word tokens into the same aligned embedding space.

We also investigated a variant of this technique, replacing the LSTMs in the model with QRNNs
(Bradbury et al., 2017), and adopting one-cycle learning rate scheduling (Smith, 2018) to reduce the
training time and improve the model’s precision.
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Method SPA HIN NLD ELL RUS YOR GLA SIN MRI

Procrustes 34.7 32.8 48.9 0.0 0.1 25.2 36.6 0.0 36.1
10.9 6.5 11.2 0.0 0.02 1.0 5.0 0.0 7.1

Orth. Ref. 38.6 34.8 52.3 0.1 1.0 0.0 39.5 24.1 0.2
12.1 6.9 12.0 0.02 0.2 0.0 5.4 1.2 0.04

NLM 23.0 2.4 35.8 11.7 4.7 2.4 3.6 0.4 6.1
7.6 0.51 8.5 2.4 1.0 0.1 0.5 0.02 1.3

Mod. Orth. Ref. 38.2 34.1 53.6 36.0 34.1 27.1 39.5 24.1 38.4
12.0 6.8 12.3 7.2 7.0 1.0 5.4 1.2 7.6

Mod. NLM 36.6 5.4 47.2 24.7 10.4 6.9 15.6 2.1 11.2
12.1 1.1 11.2 5.1 2.2 0.3 2.3 0.1 2.4

Table 1: Precision@3 for nine languages. The top row for each method considers the subset of the
gold bilingual dictionary excluding out-of-vocabulary words. The bottom row considers the entire gold
dictionary, treating out-of-vocabulary words as incorrect. Top precision scores are marked in bold.

5 Cross-Lingual Emotion Rating Induction

Equipped with our cross-lingual embedding space XC, we are now able to induce emotion ratings cross-
lingually based on the source language emotion lexicon ES. For each target language word w ∈ VT and
each emotion e ∈ E , we compute a score

σe(w) =
1

|Tw|
∑

w′∈Tw

σe(w
′), (1)

where σe(w′) is the emotion rating of a word w′ from LS according to the source emotion lexicon ES,
and

Tw = argmax
W⊂VS,|W |=k

∑
w′∈W

µ(vw,v
′
w), (2)

i.e., the set of k = 3 words w′ from the source language vocabulary VS that are most related to w in
terms of the corresponding cross-lingual word vectors vw, vw′ from XC.

To compute the relatedness µ(vw,v
′
w), we adopt Cross-Domain Similarity Local Scaling (CSLS)

scores. CSLS assesses the relatedness between two word embeddings v1 and v2 from two different
languages L1 and L2 as follows:

µ(v1,v2) = 2
vᵀ
1v2

||v1|| ||v2||
−RL1(v2)−RL2(v1) (3)

RLi(v) =
1

K

∑
v′∈NLi

(v)

vᵀv′

||v|| ||v′|| (4)

The advantage of CSLS over simple cosine similarities is that it compensates for hubness, the property
that some vectors in an embedding space reside near overly many other vectors (Lazaridou et al., 2015).
It achieves this by subtracting hubness factors RL1(v2) and RL2(v1) for v1, v2, where RLi(v) yields
the average cosine similarity of the K = 10 nearest neighbors of v in the other language Li.

6 Experimental Setup

In the following, we present an empirical analysis of the feasibility of inducing emotion ratings using
the above methods when drawing on very small monolingual corpora. We first present our data sources
(Section 6.1) and algorithmic parameters (Section 6.2), and then discuss various methods of measurement
to verify the effectiveness of our methods (Section 6.3). The results follow in Section 7.
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Method SPA HIN COS EST KIR LTZ
7.9K 8K 3.8K 9.4K 11K 8K

Procrustes 1.1 0.8 0.6 0.5 0.2 0.0
0.3 0.1 0.02 0.04 0.02 0.0

Orth. Ref. 0.4 0.0 0.0 0.2 0.2 0.0
0.1 0.0 0.0 0.02 0.02 0.0

NLM 8.0 0.7 1.1 2.1 0.2 0.0
2.4 0.1 0.06 0.2 0.02 0.0

Mod. Orth. Ref. 4.7 7.7 0.5 0.8 1.1 2.8
1.3 1.2 0.02 0.06 0.1 0.1

Mod. NLM 16.1 0.9 1.9 1.3 0.0 2.0
4.8 0.2 0.1 0.1 0.0 0.2

Table 2: Precision@3 for six languages. The training data for these languages was much smaller in size.
The number of sentences in each language is in the table header, below each language code. The rest of
the layout is similar to Table 1.

6.1 Data Sources
Languages and Corpora. For data to train and align word embeddings, we crawled Bible texts for
around 1,600 languages from several sources.2 Each of these languages differ in the number of Bible
verses available. Around 350 of these languages have at least 30K verses available (for comparison, the
English King James Version has 31,102 verses).

We used English as our resource-rich language LS. We selected our resource-poor languages LT

in two groups. We picked nine languages that had the full 31K verses present in one group. In this
group, Spanish, Hindi, Dutch, Greek, and Russian are present. While these are not actually resource-
poor, we included these to have a useful point of reference against which to compare the performance of
our methods with other languages. This group also includes Yoruba, Scots Gaelic, Sinhala, and Maori,
languages that have fewer speakers and less data available on the Internet.

In our second group, we picked six languages that had around 10K or fewer verses available. We
picked Spanish and Hindi as reference languages again, this time with Bible translations including only
the New Testament (around 8K verses). We also picked Corsican, Estonian, Kyrgyz, and Luxembourgish,
for which the only Bibles we obtained were ones with around 10K or fewer verses.

Source Lexicon. For the emotion lexicon in English (ES), we used the NRC Emotion Intensity Lexicon
(EIL) by Mohammad (2018). The NRC EIL contains English words with real-valued intensity scores for
eight basic emotions – anger, anticipation, disgust, fear, joy, sadness, surprise, and trust.

Ground Truth. The NRC EIL also includes emotion lexicons for around 100 other languages obtained
by translating the English words using Google Translate (note that we have fully translated Bibles for
over 350 languages, so we are able to cover many more languages than the NRC EIL does). The NRC
EIL’s machine-translated emotion lexicons serve as a silver standard ground truth against which we
compare the emotion ratings we induce using our methods.

6.2 Settings and Parameters
When creating fastText skip-gram embeddings for Wasserstein-Procrustes and Orthogonal Refinement,
for each language, we trained for 25 epochs with a learning rate of 0.1 and learned 100-dimensional
embeddings. These were created only for words with a frequency count of 5 or greater when training
on Bibles with 31k sentences, while the frequency cutoff was set to 2 for smaller Bibles with fewer
translated sentences.

For Orthogonal Refinement, we used the same settings as the original version by Artetxe et al. (2018).
For our variant from Section 4.4, we modified the initialization phase. We picked the common verses

2We considered digitalbibleplatform.com, png.bible, and bible.com

https://www.digitalbibleplatform.com/
https://png.bible/
https://www.bible.com/
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(a) Emotion correlation: larger dataset languages
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(b) Emotion correlation: smaller dataset languages

Figure 1: Pearson Correlation of induced emotion ratings with the NRC EIL. The top figure shows ratings
for each emotion averaged across the larger dataset languages (from Table 1). The bottom one shows the
same, except with ratings averaged across the smaller dataset languages (from Table 2).

from Bibles in LS and LT and used those to create the term–sentence frequency matrix. We also trained
the initial fastText embeddings only on the common verses. The remaining hyperparameters for the
alignment were the same as for the original version.

For the neural language model, we used the same settings as in the original paper by Wada et al.
(2019), except for an increase in the number of epochs from 10 to 20. This was to match the number of
epochs used in our modified model, so as to provide a fair comparison. For our modified variant of the
neural language model, we used SGD optimization and set the maximum learning rate for the one-cycle
scheduling to 0.2, training the model for 20 epochs. We used similar frequency count cutoffs as with the
fastText embeddings, except for setting the threshold for English to 3, as this worked better empirically.
We trained a model for each language pair LS, LT.

6.3 Measurement Methods
Cross-Lingual Embedding Quality. To assess the quality of the cross-lingual embeddings, we used
the bilingual dictionaries with 5k word translations from Lample et al. (2018) for the languages for which
they are available as a gold standard. For others, we used the NRC EIL, as it contains English words
that are machine-translated to other languages to assign them emotion ratings. We report two metrics for
each language LT:

a) We take each word in LT present in the gold standard dictionary, but we remove out-of-vocabulary
words not present in our corpus vocabulary VT, as these are irrelevant for our later downstream
emotion ratings task. On this set, we calculate the fraction of words for which our cross-lingual
embeddings XC yield the correct translations according to Eq. 3, in terms of precision at k = 3.

b) For comparison, we also report the same precision at k = 3 scores as above, but without eliminating
out-of-vocabulary words. Here, if a word in the gold standard dictionary is not present in our
induced dictionary, we simply count it as incorrectly translated.

Emotion Rating Induction. To evaluate the accuracy of our emotion ratings for each language LT,
we take the intersection of words in the NRC EIL and in the respective target corpus vocabulary VT, and
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Emotion
SPA HIN NLD ELL RUS YOR GLA SIN MRI

9.3K 7.1K 7.8K 10.7K 11.5K 4.2K 8.0K 12.9K 3.4K

Anger 0.635 0.421 0.672 0.628 0.672 0.676 0.438 0.688 0.234
Anticipation 0.794 0.589 0.791 0.649 0.831 0.735 0.690 0.415 0.538
Disgust 0.657 0.225 0.740 0.554 0.766 0.682 0.844 0.635 0.293
Fear 0.484 0.434 0.623 0.517 0.467 0.589 0.549 0.620 0.313
Joy 0.636 0.551 0.796 0.564 0.733 0.504 0.729 0.659 0.536
Sadness 0.577 0.592 0.603 0.471 0.729 0.639 0.455 0.271 0.572
Surprise 0.918 0.652 0.915 0.806 0.898 0.614 0.751 0.933 0.253
Trust 0.518 0.329 0.688 0.439 0.398 0.485 0.630 0.432 0.342

Table 3: Induced emotion ratings using our variant of Orthogonal Refinement. These ratings are for the
nine large dataset languages. The bottom row of the header is the size of the induced emotion lexicon,
calculated by counting the number of word–emotion pairs for a given language.

calculate the Pearson correlation coefficient for each language and each emotion. Unlike with translation
precision, we do not also consider results without eliminating out-of-vocabulary words, as very few
words per emotion (typically less than 100) are shared by both our induced dictionary and the NRC EIL,
while thousands of words per emotion are often present in either the NRC EIL or in our induced emotion
ratings individually. Thus, calculating the correlation on the entire set does not yield meaningful results.

7 Results

We present the evaluation of cross-lingual embeddings in Section 7.1 and of the resulting emotion ratings
in Section 7.2. Additionally, we conduct a case study on sentence-level emotion ratings in Section 7.4.

7.1 Cross-Lingual Embedding Induction

In Tables 1 and 2, we provide the evaluation of our cross-lingual embedding induction phase in terms of
translation precision. Table 1 considers the set of languages with the full 31K verses of translated Bible
text. We observe that Wasserstein-Procrustes is frequently outperformed by Orthogonal Refinement,
although the latter fails entirely for a greater number languages.

Exploiting parallel information, our modified Orthogonal Refinement is substantially more robust and
obtains the best results for most of the languages, losing out on just a few to the original Orthogonal
Refinement. However, the original method is not as robust, failing to arrive at embedding alignments for
4 out of 9 languages. Our initialization procedure, while not affecting precision much where alignments
could already be found without it, appears to aid in bootstrapping the alignment process. While our
procedure is clearly less scalable than operating on the word embedding matrices, on our datasets with
just 31k sentences or fewer, the computations could be performed on a single GPU in just a few minutes.
Hence, we conclude that our variant is best-suited for small aligned corpora, whereas for large corpora
the original method is likely to work well enough.

Our variant of the Neural Language Model (NLM) performs significantly better than the original by
Wada et al. (2019), and also is more robust than the original Orthogonal Refinement. However, it does
not prevail over our variant of Orthogonal Refinement.

Table 2 provides the results for languages with around 10K or fewer verses translated. Across the
board, all algorithms fail to achieve satisfactory results. Our algorithm variants show slightly better
results than the original methods, but the absolute precision remains low. It appears that such neural
representation learning methods require more data in order to start arriving at robust embeddings suitable
for accurate translation induction.
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7.2 Emotion Ratings
The correlation of induced emotion ratings with those in the ground truth are presented in the graphs in
Figure 1, reported separately for each method and emotion. Figure 1a considers the set of nine languages
with large datasets (as listed in Table 1), and each reading was obtained by averaging the coefficients
across the nine languages. Our variant of Orthogonal Refinement attains the best scores across all emo-
tions. Figure 1b is similar to Figure 1a but presents the correlations for the smaller dataset languages
(those listed in Table 2). As expected, the correlation scores are generally lower here compared to the
languages with larger datasets, confirming that such minuscule amounts of training data are insufficient
to induce emotion ratings using our methods.

7.3 Qualitative Analysis
To better understand in what ways our induced emotion ratings deviated from the NRC EIL, we per-
formed a qualitative analysis. We took the 50 Spanish, 30 Yoruba and 30 Sinhala words whose induced
emotion rating deviated the most from the NRC EIL’s and labeled each of them with the cause of error
based on our inspection of the nearest source language neighbors and their corresponding emotion rat-
ings. The results of this analysis are presented in Table 4. The following discussion focuses on Spanish,
as the error categories are essentially the same for Yoruba and Sinhala.

Error Category
Frequency

SPA YOR SIN
50 30 30

Random Mistranslation 21 18 21
Exaggeration 10 2 2
Ambiguity 6 0 0
Antonym Mistranslation 4 0 3
Adjacent Mistranslation 4 3 2
Questionable NRC Ratings 3 7 1
Random Addition 2 0 1

Table 4: Emotion error category frequencies. The
number below the language code in the header indi-
cates the number of words analyzed.

While 21 of the Spanish word errors appeared
to be due to random mistranslations with no
identifiable patterns, we were able to catego-
rize the remaining 29. 10 of these seemed to
be exaggerated translations (falso to murderer
instead of just false, engañar to evil instead of
just cheat, cambio to turmoil instead of change).
An interesting theme here is the exaggeration of
words for deceit, cunning, and falsehoods (astu-
cia, supposed to be cunning or craftiness, was
translated to evil, hatred, and slander). Such
shifts may stem from the biblical narrative in our
source corpora, which may diverge from com-
mon use.

The next frequent issue is ambiguity, where a
word has multiple meanings and the NRC EIL picked one, while our methods picked another. We also
observed words being translated to their antonyms (calma to madness instead of calm, contento to ruin
and sad instead of happiness) and adjacent ideas (ayuda to distress instead of aid, médico to disease
instead of doctor). This is an expected result when drawing on distributional semantics, as antonyms and
adjacent concepts appear in similar contexts as the original words. Finally, we encounter the issue of
correct translations for a word being the top ones, but incorrect translations also getting included at the
end of the list, which ends up skewing the final emotion rating.

A notable deviation from the error category frequency pattern is that of questionable NRC ratings for
Yoruba. Inspecting Yoruba literature corpus searches yielding translations in context, we noticed that
the NRC translations appeared to be incorrect surprisingly frequently, which led to our emotion ratings
deviating significantly from those of the NRC for these mistranslated words.

7.4 Sentence-Level Evaluation
As an additional case study, we also evaluate our induced emotion ratings on the downstream task of
predicting the emotion of sentences in an unsupervised manner.

Data. Due to the scarcity of emotion-labeled corpora for low-resource languages, we here rely on the
Spanish language LiSSS corpus (Torres-Moreno and Moreno-Jiménez, 2020), but again induce our Span-
ish ratings using our corpora of just 31k / 7.9k Bible verses. LiSSS provides around 500 sentences from
the literary domain, each manually annotated with one or more of five emotions – love, fear, happiness,
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Method
Precision

Unweighted IDF

NRC EIL 0.598 0.607

Procrustes 0.477 0.470
Orth. Ref. 0.551 0.540
NLM 0.292 0.262

Mod. Orth. Ref. 0.467 0.491
Mod. NLM 0.287 0.329

(a) Alignment methods trained on 31K Spanish Bible.

Method
Precision

Unweighted IDF

Procrustes 0.306 0.301
Orth. Ref. 0.273 0.266
NLM 0.283 0.301

Mod. Orth. Ref. 0.290 0.292
Mod. NLM 0.262 0.252

(b) Alignment methods trained on 7.9K Spanish Bible.

Table 5: Precision of induced emotion ratings from various alignment methods on the LiSSS corpus.

anger, and sadness. We dropped the sentences labeled exclusively with love, as that is not an emotion
present in the NRC EIL. We were left with 428 sentences, which we used for evaluation.

Method. Given a sentence S, we predict its emotion as

argmax
e∈E

∑
w∈S

λwσe(w), (5)

where E is the set of four candidate emotions. We consider two different weighting schemes: The first
simply sets λw = 1, while the second sets it to the the IDF score of w in the Spanish Bible corpus. For
sentences labeled with a single emotion, the predicted emotion must match it to be counted as correct.
For sentences labeled with multiple emotions, the predicted emotion must be among the true emotions.

Results. Table 5a shows the results of the evaluation against the LiSSS corpus when our method is
trained on the full 31K verse Spanish Bible. For reference, the expected precision that random guessing
would achieve is 0.271. The NRC EIL, as expected, does the best, as it used Google Translate, while our
methods had only small Bible corpora as training data. The NRC EIL also shows a slight improvement
upon adding IDF weighting. Interestingly, the three unmodified alignment methods produce emotion
ratings that actually do better without IDF weighting. We conjecture that this is because the translation
precision for rarely seen words is too low in these methods for IDF to be effective. Another interesting
observation is that while the our modified Orthogonal Refinement and NLM methods attained a compa-
rable translation precision, this does not correlate with comparable precision on the LiSSS corpus. In
fact, NLM does hardly better than chance, while our modified Orthogonal Refinement does almost twice
as well as chance. Table 5b shows the results of the LiSSS evaluation when training only on the 7.9K
verses Bible version. Here, none of the methods do much better than chance.

8 Conclusion

In this paper, we investigate approaches to cross-lingually induce emotion ratings based on very small
training corpora. This is achieved by taking an emotion lexicon for a resource-rich language and inducing
a cross-lingual embedding space to transfer the source language emotion ratings to words in the resource-
poor target languages. We compare several strategies to achieve this and evaluate them in terms of both
translation precision and the final correlation of the induced emotion ratings with existing emotion lex-
icons. Generally, we find that our modified variants of the original algorithms yield important gains in
such low-resource settings. We also evaluate them on the downstream task of unsupervised sentence-
level emotion prediction on a human-annotated literary corpus. Overall, while the methods do not work
sufficiently well with 10K or fewer verses, we attained satisfactory results on languages for which trans-
lated Bibles with at least 31K verses exist. This still leaves us with the ability to induce cross-lingual
emotion ratings for over 350 languages, available online at http://emotionlexicon.org/.

http://emotionlexicon.org/
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