
Proceedings of the 28th International Conference on Computational Linguistics, pages 5718–5730
Barcelona, Spain (Online), December 8-13, 2020

5718

SumTitles: a Summarization Dataset with Low Extractiveness

Valentin Malykh
Huawei Noah’s Ark lab,

Moscow, Russia

Konstantin Chernis
Huawei Noah’s Ark lab,

Moscow, Russia

Ekaterina Artemova
Huawei Noah’s Ark lab,

HSE University
Moscow, Russia

Irina Piontkovskaya
Huawei Noah’s Ark lab,

Moscow, Russia

Abstract

The existing dialogue summarization corpora are significantly extractive. We introduce a method-
ology for dataset extractiveness evaluation and present a new low-extractive corpus of movie
dialogues for abstractive text summarization along with baseline evaluation. The corpus contains
153k dialogues and consists of three parts: 1) automatically aligned subtitles, 2) automatically
aligned scenes from scripts, and 3) manually aligned scenes from scripts. We also present an
alignment algorithm which we use to construct the corpus.1

1 Introduction

As most written communication is held in the form of dialogues, the amount of dialogue data increases
over time. This poses a requirement for efficient dialogue mining tools for information extraction,
search, and natural language understanding. An attractive path towards efficient information search is
a compact representation, e.g., in the form of summarization. Although summarization methods could
ease processing a large amount of textual data, few are applicable to dialogues. The main reason for this
is that most of the datasets used for summarization models are completely different. Probably, the most
well known corpus for summarization, CNN/DailyMail (Hermann et al., 2015), comprises news articles,
while other cover social media posts (Völske et al., 2017a) and web documents (Chen et al., 2020). Deep
summarization methods, both extractive (Zhong et al., 2020) and abstractive (Lewis et al., 2019), show
high performance for these datasets. Dialogue data poses new challenges: first, a dialogue presents a
conversation of two or more people, while news articles or social media posts are written by one person
only. This means that multiple points of view can be expressed, and all of them need to be accounted for
in the summary. Second, the grammar and the structure of the utterances differ drastically: more personal
pronouns and colloquial expressions are used. Finally, the conventional sentence order is distorted: two
consequent sentences may not be semantically related. These challenges limit the application of extractive
summarization methods and push towards abstractive ones.

This paper is based upon an early work in dialogue dataset construction, namely AMI (Carletta et al.,
2005). AMI corpus is small in size (141 dialogues) and does not allow the deep models training. In
this paper, we try to overcome this significant flaw of AMI by developing a new large-scale dataset, a
thousand times larger. We gather movies subtitles and freely available synopses into a dataset we call
“corpus for Summarization of movie subTitles“ (SumTitles). Section 3 describes SumTitles in details. The
construction of the SumTitles dataset is a challenging task, and we present an algorithm to create alignment
for scripts in Section 4. To compare SumTitles to the other summarization datasets, we introduce a new
methodology, which is described in Section 5. The results of the comparison are also provided there. We
experiment with state-of-the-art summarization approaches to create summaries for the dialogues (Liu
and Lapata, 2019; Lewis et al., 2019) and therefore Section 6 contains the description of the baselines
and the results achieved for SumTitles dataset and state-of-the-art results for CNN/DailyMail dataset for
comparison. Section 7 conclude the paper and outline the future research directions.

1https://github.com/huawei-noah/sumtitles
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://

creativecommons.org/licenses/by/4.0/

https://github.com/huawei-noah/sumtitles
 http://creativecommons.org/licenses/by/4.0/
 http://creativecommons.org/licenses/by/4.0/
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The main contributions of this paper are the following. First, we present a novel dataset, SumTitles,
which aims at dialog summarization (Section 3) and a splitting algorithm which we used to construct the
corpus (Section 4). Secondly, we use multiple state-of-the-art summarization models on the SumTitles
dataset to establish baselines (Section 6). Last but not least, we propose a novel Extractiveness Coefficient,
based on which we conduct the comparison of existing datasets and SumTitles (Section 5).

2 Related Work

2.1 Summarization Methods

Many aspects in text summarization have been studied extensively since the first papers (Luhn, 1958).
Research in machine learning methods for summarization dates back to early 2000. TextRank (Mihalcea
and Tarau, 2004) is a simple and unsupervised yet efficient method for extractive summarization and
keyphrase extraction. Supervised methods began to emerge towards the middle of 2010’s when the first
annotated corpora were developed, and neural machine translation (NMT) architectures were adopted for
the task. While trainable methods for extractive methods confine to selecting and rearranging passages
from the source text (Nallapati et al., 2017), abstractive methods involve generation plausible and fluent
summaries from scratch. Sequence-to-sequence architectures, when conditioned of the source text and
supervised for word prediction, are capable of composing a summary, though they suffer from several
drawbacks. Their ability to handle unknown words and generate readable text seems to a certain extent
limited. The first issue was alleviated by augmenting the standard sequence-to-sequence attentional model
with a pointing network (See et al., 2017), which can copy words from the source text. To avoid generating
redundant and repetitive summaries, a new training paradigm was proposed to combine the standard
training objective is combined with reinforcement learning (Paulus et al., 2017). This helps to reduce
exposure bias and improve the quality of generated summaries. Alternative training objectives include (Li
et al., 2019) Determinantal Point Processes, producing better attention distributions in seq2seq models,
improving thus both summary quality and diversity.

As of the late 2010s, transfer learning and transformer-derived language models are thoroughly
integrated into the vast majority of natural language processing tasks. BertSumExt (Liu and Lapata,
2019) showcase how BERT can be usefully applied in extractive summarization by re-using of special
token embeddings to represent and classify sentences. Abstractive summarization, in general, has seen a
great deal of recent work. T5 (Raffel et al., 2019) is a unified sequence-to-sequence framework, which
is pre-trained with a language model objective and fine-tuned for a number of downstream tasks, each
treated as a text generation task. BART (Lewis et al., 2019), being a denoising autoencoder, is trained
to reconstruct corrupted input. The reconstruction loss helps the model develop an efficient copying
mechanism, which is core for abstractive models.

2.2 Datasets

Newspapers are a significant source for summarization data. Such low-scale datasets as DUC 2002 (Over
and Liggett, 2002) and bf TAC 2008 (Dang and Owczarzak, ) comprise almost 600 and 1000 English news
articles, correspondingly, aiming at single-document and multi-document summarization. CNN/Daily
Mail (Hermann et al., 2015) is one of the most studied datasets, which being large enough, suits for both
extractive and abstractive summarization. Gigaword (Rush et al., 2017) consists of news articles and
corresponding headlines and can be treated as a source dataset for very short summaries. Social media
can be seen as a more diverse source: WikiHow (Koupaee and Wang, 2018) and Webis-TLDR-17 (Völske
et al., 2017b) comprise text and self-summaries written by different authors on a variety of subjects on
WikiHow and Reddit platforms, correspondingly.

To the best of our knowledge, dialogue summarization has not received due attention so far. Two
datasets, AMI (Carletta et al., 2005) and SAMSum (Gliwa et al., 2019), are the only datasets available for
the task. AMI is a small dataset, created from meeting notes. It was re-designed in (Goo and Chen, 2018)
to construct abstractive summarization dataset named DialSum. The initial 141 long dialogues were split
to 7864 shorter ones. The topic descriptions are treated as summaries for these dialogues. Unfortunately,
the speaker’s information was lost in the transition. SAMSum was created by professional linguists, who
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were hired to, first, create chat-like dialogues, and second, annotate them with summaries. The SAMSum
design focuses on information about the speakers and on the preservation of the messenger-like structure.
The collected dialogues are considerably short, thus leading the summaries to be very extractive, as it
is shown in Section 5. A similar issue was spotted by the authors of PersonaChat dataset (Zhang et al.,
2018), where the dataset has been partially re-written after initial release due to often copied substrings
from a person description to the utterances.

3 The SumTitles Dataset

Following (Gorinski and Lapata, 2015), we use movie scripts as the main source of data for corpus
construction. The core concepts used for corpus construction are the following:

• The subtitles are captions for movies and series episodes. For our purpose subtitles are a joint
text containing the utterances of the movie characters. The utterances separated by some special
characters.

• A script is the text of movies and series episodes. Similarly to subtitles, it consists of utterances.
However, each utterance is also labeled with the name of the movie character, whom this utterance
belongs to. Typically, a script contains additional text, captioning a narrator’s speech, which we do
not use in our study.

• A scene is a subdivision of a movie or a series episode; the script consists of scenes. Each scene can
be seen as a single dialogue. The scene is usually accompanied by a description of the internal or
external space in which it occurs.

• A plot summary is a text summarizing a movie or a series episode contents in a few sentences.

• A synopsis is a text summarizing a movie or a series episode contents in the several paragraphs.

• A cast is a list of full character names, and sometimes their alter egos (i.e. “Tony Stark Iron Man”).

The plot summaries, synopses, and casts are collected from the open sources, while for the subtitles and
partially the scripts we use the existing datasets.

SumTitles consists of three parts: 1) Subtitles, 2) Scripts, and 3) Gold. Subtitles part has only rough
alignment between the whole movie and a plot summary, since there is no information about characters
and a scene separation. Scripts part comprises scenes which are automatically, but quite accurately, aligned
with the synopses, most commonly a sentence per a scene. The last part, which we refer to as Gold, is
labeled by human experts for an alignment between scenes and synopses.

The Subtitles part is an extraction from the OpenSubtitles corpus (2018 version), which is described
in (Lison et al., 2019). We use only subtitles in English, and among them, only those which have plot
summary available. We additionally filter the subtitles for the movies and series, which are not present in
Scripts and Gold parts. The subtitles in OpenSubtitles dataset do not contain character names and scene
separators. Thus we consider the whole subtitle to be a single dialogue of anonymous characters. The
sample dialog accompanied with a movie plot is presented at Fig. 1. Although the subtitle could be split
into several pieces to produce multiple dialogues, in this case, a plot summary will be covered by the split
dialogue only partially.

The Scripts part itself consists of two parts: the movie scripts available from the open sources2 and
Friends series scripts described in (Chen and Choi, 2016). We consider the scripts for the movies which
have synopses available only, while fortunately, Friends series has a synopsis for each episode3. We
developed an algorithm, allowing us to split a synopsis in an automatic fashion to produce the dialogues
accompanied with their summaries derived from the synopsis. The detailed description of the algorithm is
available in Section 4.

2The scripts are collected from International Movie Scripts Database.
3We use plots published at Friends-TV.org: http://www.friends-tv.org/epshort.html

https://www.imsdb.com/
http://www.friends-tv.org/epshort.html
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Pl
ot In the futuristic year of 2019, Los Angeles has become a dark and depressing metropolis, filled with urban decay. Rick

Deckard, an ex-cop, is a “Blade Runner”. Blade runners are people assigned to assassinate “replicants”. The replicants
are androids that look like real human beings. When four replicants commit a bloody mutiny on the Off World colony,
Deckard is called out of retirement to track down the androids. As he tracks the replicants, eliminating them one by
one, he soon comes across another replicant, Rachel, who evokes human emotion, despite the fact that she’s a replicant
herself. As Deckard closes in on the leader of the replicant group, his true hatred toward artificial intelligence makes
him question his own identity in this future world, including what’s human and what’s not human.

Sc
en

e

- Care if I talk?
- I’m kind of nervous when I take tests.
- Just please don’t move.
- Oh, sorry.
- I already had an IQ test this year.
- I don’t think I’ve had one of these.
- Reaction time is a factor, so pay attention.
- Now answer as quickly as you can.
- Sure.
- 1187 at Hunterwasser.
- That’s the hotel.
- What?
- Where I live.
- Nice place?
- Yeah, sure, I guess.
- Is that part of the test?
- No. Just warming you up. That’s all.
- It’s not fancy or anything.
- You’re in a desert, walking along in the sand, when...
- Is this the test, now?
- Yes. You’re in a desert, walking along in the sand...
- ...when you look down...
- What one?
- What?
- What desert?
- Doesn’t make any difference.
- It’s completely hypothetical.

Figure 1: An example of a movie plot accompanied with a subtitles excerpt from Subtitles part of
SumTitles dataset. The original scene is an opening one from movie “Blade Runner“ (1982).

Sy
n. Ron goes to hospital again and Eve tries to help him because he is giving a hard time to nurse Frazin, but Ron is being

jerk to her, shouting that he doesn’t need a nurse but a doctor.

Sc
en

e

NURSE FRAZIN: Dr. Sevard’s not on today.
RON: Do I look like I can wait til tomorrow?
NURSE FRAZIN: If you’ll tell me what the problem is...
RON: Problem? Which problem you want to hear about? My lungs bleeding, my skin crawling, the jackhammer in my
head... hell that’s just the beginning of my problems sweetheart.
EVE: Mr. Woodroof?
RON: I don’t want no nurse. I want a doctor. A goddamn doctor! Today! NOW!
EVE: Fine. How can I help you?
RON: Are you f***in’ deaf, lady?
EVE: No. I’m a f***ing doctor!
EVE : If you want to discuss your list of problems, you can meet me in my office in twenty minutes.
RON: Twenty minutes?

Figure 2: An example of synopsis-scene pair from Scripts part of SumTitles dataset. The original scene
comes from movie “Dallas Buyers Club“ (2013).

The movies in the Gold part are picked from Scripts, but human experts controlled the splitting. The
statistics of the dataset is available in Table 1. A sample from the Scripts part is presented in Figure 2.
Interestingly, the sample alignment was achieved automatically.

4 Splitting a Script

A synopsis consists of the sentences, which we consider independent as each sentence describes a separate
scene. To dampen the effects of this strong assumption, we develop an algorithm to split and join script
scenes and sentences from a synopsis. The algorithm is presented as Algorithm 1.

https://www.imdb.com/title/tt0083658/
https://www.imdb.com/title/tt0790636/
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Corpus
Metric

#Samples Ave.
Speakers

Ave. Text
Utt-s

Ave. Sum.
Sents

Ave. Text
Tokens

Ave. Sum.
Tokens

News summarization
CNN/DailyMail 312,084 N/A N/A 3.75 781 56

Dialog summarization
AMI 142 4.02 833.72 8.72 6041.5 178.65
DialSum 7864 N/A 9.00 1.00 72.54 3.66
SAMSum 16,369 2.09 9.13 1.92 121.61 21.92
SumTitles: Subtitles 131,864 N/A 852.65 4.12 6405.60 84.93
SumTitles: Scripts 21,469 4.88 28.44 3.75 423.06 55.03
SumTitles: Gold 290 5.52 26.77 3.57 394.80 51.02

Table 1: Summarization datasets’ statistics.

Pre-processing is conducted in several steps. Firstly, we substitute scene speakers with cast character
names, listed in the movie description. To this end, we estimate the similarity between scene speakers and
character names by means of symbol-level n-gram Jaccard similarity. Next, we split each scene and each
synopsis into separate sentences. Then we embed every sentence to get the vector representations. We use
the pre-trained Universal Sentence Encoder model, described in (Cer et al., 2018)4.

To implement the algorithm, we use several functions and formulae, which are referred to in a sim-
ilar manner. We use Jaccard similarity to compare sentences and cosine similarity to compare vector
representations. Merge function is merging the input of scenes list into one scene which collects all the ut-
terances, annotated synopsis sentences, and character lists from the input scenes in the order of appearance.
LastSynId and FirstSynId are returning the last and first (respectively) synopsis sentence indices
from the ones annotated to an input scene. Len returns length of an input set, Append appends an input
element to an input set. Max, Mean, Union, Intersect, Sort, and Argmax function according to
their names.

There are additional helper functions presented as algorithms: JaccardBest (Alg. 3), BestSplit
(Alg. 5), Annot (Alg. 4). Also there are two functions important for similarity computation:
CastSimilarity (Alg. 6) and TextSimilarity (Alg. 7). The output of these two functions
is a base for the splitting algorithm. Their description could be found in the appendix A.

Also the splitting algorithm is using RestrictedDTW presented as Algorithm 2. It is a modification
of classic dynamic time-warping algorithm (Vintsyuk, 1968). In our case the restriction is that each cluster
should contain exactly one synopsis sentence. If necessary, we add padding symbols to fill in the scenes
that are speech free and do not have any utterances and actual sentences.

The splitting algorithm (Alg. 1) has several hyper-parameters: α, β, γ, δ, which are the weight coeffi-
cients for different similarity measures computed on the input data. These hyper-parameters are chosen
based on the algorithm performance on the held out Gold part.

4.1 Splitting Quality
The hyper-parameters hyper-parameters α, β, γ, δ could be tuned to achieve better splitting. We need to
define a quality for a split. We use three measures to represent quality of proposed split.

The first measure is Accuracy, which is defined as following:

Accuracy =
1

N ·M

N∑
i=1

M∑
j=1

EQV (Iaij , I
h
ij), (1)

where N is number of scenes, M is number of synopsis sentences, EQV is an equivalency function, i.e.
its operands should be equal to each other, Iij is an indicator function, whether scene i corresponds to
sentence j, the indicator function could be a for algorithmic one, and h for human one.

4The model is available here: https://tfhub.dev/google/universal-sentence-encoder-large

https://tfhub.dev/google/universal-sentence-encoder-large
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Algorithm 1: Alignment algorithm for the
scenes and sentences.
Data: scenes - list of scenes, syn sents list

of synopsis sentences, cast, α, β, γ, δ
Result: alignment for the scene and sentences
jac, osj ←
CastSimilarity(scenes, syn sents, cast);

sim max, sim mean←
TextSimilarity(scenes, syn sents);
sim← α · sim max+ β · sim mean;
sim← sim+ γ · jac+ δ · osj;
syn2scene← RestrictedDTW (sim);
scenes←
Annot(scenes, syn sents, syn2scene);
ids← Sort(syn2scene);
m← [Merge(scenes[: ids[0]])];
for i← 0 to Len(ids) do

c, n← ids[i], ids[i+ 1];
bs← BestSplit(scenes, c, n, sim);
m[−1]←
Merge([m[−1]] + scenes[c+ 1 : bs]);
Append(m,Merge(scenes[bs : n]));

m[−1]←
Merge([m[−1]] + scenes[ids[−1] + 1 :]);

Algorithm 2: RestrictedDTW algorithm.
Data: similarity matrix S of size m× n
Result: mapping for synopses to scenes
initialize sim matrix of size (2m+ 1, n) with
zeros;

initialize d matrix of size (2m+ 1, n) with
−∞;

initialize parent matrix of size (2m+ 1, n)
with −1;
sim[1 :: 2, :]← S;
d[0, 0]← 0;
initialize dir as an empty array;
for i← 1 to n do

for j ← 1 to m do
dir ← [d[i− 1, j], d[i− 1, j − 1]];
if i mod 2 = 1 then

Append(dir, d[i, j − 1]);
parent[i, j]← Argmax(dir);
d[i, j]←
sim[i− 1, j − 1] +Max(dir);

map← [(−1, 0), (−1,−1), (0,−1)];
syn← 2m;
sc← n− 1;
initialize array syn2scene of size (2m+ 1)
with zeros;

while syn · sc 6= 0 do
syn2scene[syn− 1] = sc− 1;
change← map[parent[syn, sc]];
syn← syn+ change[0];
sc← sc+ change[1];

return syn2scene[1 :: 2];

Precision, the second measure, is defined as:

Precision =

∑N
i=1

∑M
j=1 I

a
ij · Ihi j∑N

i=1

∑M
j=1OR(I

a
ij , I

h
ij)
, (2)

where OR is a disjunction function, which returns 1 if at least one operand is 1.
And the last one is Recall. It is formulated as follows:

Recall =

∑N
i=1

∑M
j=1 I

a
ij · Ihij∑N

i=1

∑M
j=1 I

h
ij

, (3)

We have randomly chosen two movie titles from Gold part of the dataset to tune the parameters onto
(The Avengers, 2012 and 12 Monkeys). With this parameters we achieve 88.0% of accuracy, 27.0% of
Precision, and 40.9% of Recall on the Scripts part.

5 Comparison to the Other Datasets

There are two aspects which could be considered for comparison: the size of the dataset and its extrac-
tiveness. The size of the dataset could be measured in different measurement units (number of speakers,
tokens, utterances, summary sentences and summary tokens). The collected statistics for the datasets are
presented in the Table 1. One could see that the number of samples, size of documents and summaries in
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our dataset is comparable to CNN/DailyMail, while the number of participants in our dataset is close to
AMI corpus.

We introduce a compositional approach to define what extractiveness is. The existing approaches, such
as (Grusky et al., 2018; Cibils et al., 2018), are evaluating different aspects of the extractivity itself such
as coverage and fragment. Our goal is to capture the complex phenomenon. We use already existing
approaches and extend them to achieve the final Extractiveness Coefficient (EC).

5.1 Extractive Score
As the first part to EC we use extractive score proposed in (Cibils et al., 2018). It is a metric measuring to
what degree is a summary extracted from an input text. It accounts for long substrings of the source text,
which occur in the summary. It is defined as follows:

ext. score(S) =
∑

s∈P (ACSs)

s× (es−1 − (1− s)/e), (4)

where S is the summary, the ACSs is the set of all long non-overlapping common sequences between S
and the document, P (ACSs) is the set, where each element is the length of a common sequence divided
by the length of the summary. This approach has a limitation of usage only the longest substrings, thus
ignoring the short pieces which could be reused in the summary.

5.2 Extractive Oracle
The next part is so called “extractive oracle”. This algorithm was proposed in (Liu and Lapata, 2019). It
is a greedy algorithm aimed to generate an oracle summary for each document. The algorithm greedily
select sentences from the input document which can maximize the ROUGE scores (Lin, 2004) against
golden summary.

Essentially, the ROUGE metric is counting common token sequences in ground truth and system
output sequences. There are three main variants: ROUGE-1, ROUGE-2, and ROUGE-L. ROUGE-1 and
ROUGE-2 are using unigrams and bigrams respectively to compute a score. ROUGE-L is using longest
common subsequence for a reference and a system output to compute the score. Here are the formulae for
ROUGE metrics from original paper (Lin, 2004):

ROUGE-N =

∑
r∈{references}

∑
w∈r Match(w)∑

r∈{references}
∑

w∈r Count(w)
, (5)

where N stands for the length of a n-gram w, Match is the maximum number of n-grams co-occurring in
a candidate summary (system output) and in a set of reference summaries, and Count is a number of all
n-grams in references’ set.

In particular, the ROUGE-N formulae mentioned above are describing how much the system output
is capturing the reference summary and is often referred as the recall variant of ROUGE-N metrics, or
simply RN-R or RL-R for the “longest” variant. As there are no control over the length of the system
output, so it can capture almost all of the reference summary while being excessively long. This issue is
solved by the precision modification of ROUGE-N metrics that has the same formulae but the Count
variable is now referred to the number of all n-grams in system output set. The ROUGE-N-F score is
calculated as classical F1 measure with ROUGE-N-Precision and ROUGE-N-Recall using harmonic mean
(RN-F for short). We use F1 variant of ROUGE-1, -2, & -L scores for this evaluation. This approach is
free from the limitation of previous one and it evaluates both the long and the sort pieces. The limitation
of this approach is immanent to its design: the existing phrases would capture only the main pieces from
text in summary, while leaving aside pieces scatter around the text.

5.3 Summary-Input
The last part to EC is Recall-based ROUGE scores (uni-, bigram and longest) for the summaries interpreted
as references against the input text used as system output. This approach is called to overcome the
limitations of previous ones, it handles the scattered text pieces in the text. Although it has its own
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limitation - due to the nature of piece scattering, one could not measure the precision, only the recall of
collected pieces.

5.4 BERT-Score
We also provide results of a metric aimed to capture the semantic similarity between the source text and
its summary. We use a variant of BERT-Score defined in (Zhang et al., 2020) as following:

BERT-Score =

∑
xi∈x idf(xi)maxyj∈y(x

T
i · yj)∑

xi∈x idf(xi)
, (6)

where idf is inversed document frequency, x is a set of token embeddings for a document text, and y is a
set of token embeddings for a summary text.

Corpus \Metric EC
ext. score extractive oracle summary-input

BERT-Sc.
(1e-4) R1-F R2-F RL-F R1-R R2-R RL-R

News summarization
CNN/DailyMail 77.31 175.56 54.09 32.35 50.51 90.12 51.25 87.32 90.94

Dialog summarization
AMI 34.91 0.28 24.93 5.12 22.26 82.27 28.69 80.80 82.30
DialSum 8.46 2.35 9.53 0.51 9.02 18.72 1.06 18.06 32.90
SAMSum 95.52 384.58 51.38 22.63 49.05 68.95 25.59 66.44 83.48
ST: Subtitles 32.92 30.76 9.71 2.48 8.69 79.34 21.72 77.72 80.04
ST: Scripts 14.32 17.84 26.26 4.38 23.20 13.75 2.07 12.75 60.06
ST: Gold 16.70 10.31 26.19 3.86 23.26 26.19 3.86 23.26 58.28

Table 2: Extractiveness Coefficient (EC) and the other metrics for the considered datasets. ST stands for
SumTitles.

5.5 Extractiveness Coefficient
Thus we decided to combine the previously described approaches (namely, extractive score, extractive
oracle, and summary-input) and achieve the reasonable extractiveness evaluation. To compute the desired
Extractiveness Coefficient we scale all scores so they are put in the same domain: ROUGE scores are
multiplied by 100, and the extraction score is multiplied by 10000. Afterwards all the collected metrics
are averaged.

The Table 2 contains the computed scores for several datasets. One could see that the collected dataset
is much closer both to AMI corpus and to its variant DialSum than any previously presented one. BERT-
Score measures the similarity of a text and its summary, basing on vector representations. One could
mention that CNN/DailyMail and SAMSum datasets have high similarity, but also high extractiveness,
while AMI has low extractiveness. Interestingly, DialSum dataset, composed from AMI using sliding
window has significantly lower extractive score, but also BERT-Score one. As we hope the presented
dataset passed between Scylla and Charybdis and while keeping low extractive score has comparatively
high BERT-Score.

6 Experiments

To better understand our dataset’s properties, we evaluate several current summarization models on it,
accounting for both extractive and abstractive approaches.

We evaluate the baseline model in multiple settings:

• no speakers setting. In this setting, we used an anonymized version of SumTitles. To anonymize the
dataset, we remove cast character names from the synopsis.

• with speakers setting. A non-anonymized version of SumTitles consists of concatenated cast
character names and their utterances.
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6.1 BertSumExt
BertSumExt model, introduced in (Liu and Lapata, 2019), treats extractive summarization as a binary
sequence classification task to determine whether each sentence should be included in the summary. It
utilizes BERT (Devlin et al., 2018) as an encoder and stacks several Transformer layers (Vaswani et
al., 2017) on top of it with final softmax function to produce the logits. We use the speaker feature for
BertSumExt training, which is an extension of an original utterance with cast character name.

6.2 BART
BART model, described in (Lewis et al., 2019), presents a denoising autoencoder pre-training objective
(text masking and sentence shuffling), leveraged to improve model generation capabilities of the original
Transformer architecture.

We evaluated the BART model with two additional training features. Firstly, we introduced special
separator tokens, which was not used during the original BART pre-training procedure. The separator
tokens are used to join the utterances. Secondly, we use speaker feature analogously to BertSumExt
baseline.

6.3 Results
In this section we present the results for baseline algorithms on the collected SumTitles dataset. We
explore several different ways of feeding utterances into the model, namely:

• concatenating all the utterances (default);

• representing each utterance in “Speaker: Utterance” format (capitalized speaker name separated with
colon) and then concatenating (w/ speakers);

• adding separators between utterances (w/ seps): [START ] Utt1 [END] [START ] Utt2 [END]

• combined approach (w/ speakers & seps): [START ] Speaker1 [SEP ] Utt1 [END].

We propose the following usage of the SumTitles: Subtitles part could be used for pre-training. Scripts
part is used for training, and Annotated part is used for evaluation. As metrics we are using F1 variant of
ROUGE-1, -2, & -L. In our experiments, we truncated longer dialogues to 1024 tokens.

For the technical details, BertSumExt usage is used almost identical to the CNN/DailyMail experiments.
The only change made is the number of generated sentences, which is set to 6, based on the train set
statistics. This should account for shorter sentences. We use epoch checkpointing instead of steps due to a
smaller dataset. As for the BART, we follow an original experiment design.

The Table 3 presents the evaluation results. The BART model, although showing higher results than
BertSumExt, still demonstrates twice as low results in comparison with the results on CNN/DailyMail
dataset (see Table 4). This relation keeps roughly the same for the extractive oracle results on the SumTitles
dataset.5

7 Conclusion

We target creating a dataset, which will show the limitations of previously presented summarization
datasets, which seem to borrow a lot from the original texts. We presented SumTitles dataset, which on
the one hand, is significantly larger than the previous low extractive AMI/DialSum datasets. On the other
hand, SumTitles is comparable in size with recent abstractive datasets, such as CNN/DailyMail, which are
highly extractive. To compare the summarization datasets, we presented a methodology for extractiveness
evaluation. The alignment of scripts and summaries proved to be a challenging task that we could solve
with a specialized algorithm. This algorithm could be used to extend the current work and be adopted to
other long texts to produce a split in semantically coherent units to facilitate training.

5The code for extractive oracle was released with BertSumExt model and is available online https://github.com/
nlpyang/BertSum, although we have inspected the code and found that it has some issues. After fixing them, we have
re-evaluated the results on CNN/DailyMail and achieved better performance than in original paper (Zhong et al., 2020). We
report the improved results.

https://github.com/nlpyang/BertSum
https://github.com/nlpyang/BertSum
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Model R1 R2 RL

Ext. oracle w/ speakers 26.19 3.86 23.26
Extractive

BertSumExt w/ speakers 17.93 1.65 15.98
Abstractive

BART 19.08 2.36 15.47
BART w/ seps 19.51 2.49 16.10
BART w/ speakers 20.77 2.71 16.75
BART w/ speakers & seps 21.16 3.10 17.36

Table 3: Evaluation of baseline runs on SumTitles by
ROUGE F1.

Model R1 R2 RL

Extractive oracle 54.09 32.35 50.51
Extractive

BertSumExt 42.73 20.13 39.20
Abstractive

BART 44.16 21.28 40.90

Table 4: Evaluation of baseline runs on
CNN/DailyMail by ROUGE F1.

There are a few directions for the future works. Firstly, the additional markup could be done to extend
the Annotated part of the dataset. Secondly, major modifications to the current state of the art models
are demanded to improve the performance on the dialogue summarization task. Thirdly, the proposed
algorithm could be applied to other domains, such as fiction books.
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Michael Völske, Martin Potthast, Shahbaz Syed, and Benno Stein. 2017b. TL;DR: Mining Reddit to learn au-
tomatic summarization. In Proceedings of the Workshop on New Frontiers in Summarization, pages 59–63,
Copenhagen, Denmark, September. Association for Computational Linguistics.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. 2018. Personalizing
dialogue agents: I have a dog, do you have pets too? In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 2204–2213.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. 2020. Bertscore: Evaluating text
generation with bert. In Proceedings of International Conference on Learning Representations.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang, Xipeng Qiu, and Xuanjing Huang. 2020. Extractive
summarization as text matching. arXiv preprint arXiv:2004.08795.

A Helper Functions

Algorithm 3: JaccardBest function.
Data: query, set of options
Result: closest to query by Jaccard distance element from options
for i← 0 to Len(options) do

d[i]← Jaccard(query, options[i]);
return options[Argmax(d)];

Algorithm 4: Annot function.
Data: syn sents - set of synopsis sentenses, scenes - set of scenes, syn2scene - mapping of

synopsis sentences to scenes
Result: scenes annotated with syn sents according to syn2scene map
for i← 0 to Len(syn2scene) do

sc← scenes[syn2scene[i]];
AddSynToScene(syn sents[i], sc);

return scenes;

Algorithm 5: BestSplit function.
Data: scenes - list of scenes, sc1 - first scene index, sc2 - second scene index, sim - similarity

matrix
Result: best partition of not annotated scenes according to similarity matrix sim
syn1← LastSynId(scenes[sc1]);
syn2← FirstSynId(scenes[sc2]);
for split← sc to sc2 do

s1← Sum(sim[syn1, sc1 : split]);
s2← Sum(sim[syn2, split : sc2]);
score[split]← s1 + s2;

return Argmax(score);
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Algorithm 6: CastSimilarity function.
Data: scenes - list of scenes, syn sents list of synopsis sentences, cast
Result: similarity matrices of scene and synopsis characters
initialize scene roles as array of size Len(scenes) with empty arrays; for i← 0 to Len(scenes)

do
for speaker ∈ scenes[i] do

r ← JaccardBest(speaker, cast);
Append(scene roles[i], r);

initialize syn roles as array of size Len(syn sents) with empty arrays; for i← 0 to
Len(syn sents) do

for every window w for syn sents[i] do
if there is a capitalized word in w then

r ← JaccardBest(w, cast);
Append(syn roles[i], r);

initialize jac and osj with zeros;
for i← 0 to Len(syn roles) do

syn r ← syn roles[i];
for j ← 0 to Len(scene roles) do

sc r ← scene roles[j];
is← Intersect(syn r, sc r);
un← Union(syn r, sc r);
jac[i, j]← Len(is)/Len(un);
osj[i, j]← Len(is)/Len(syn r);

return jac, osj;

Algorithm 7: TextSimilariry function.
Data: scenes - list of lists of scene sentences, syn sents - list of synopsis sentences
Result: similarity matrices for scenes and synopsis sentences
for i← 0 to Len(syn sents) do

syn← syn sents[i];
for j ← 0 to Len(scenes) do

for k ← 0 to Len(scenes[j]) do
sim[k]← CosineSim(syn, scenes[j][k]);

sim max[i, j]←Max(sim);
sim mean[i, j]←Mean(sim)

return sim max, sim mean
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