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Abstract 

As one of the most popular social media platforms, Twitter has become a primary source of 

information for many people. Unfortunately, both valid information and rumors are propagated 

on Twitter due to the lack of an automatic information verification system. Twitter users com-

municate by replying to other users' messages, forming a conversation structure. Using this 

structure, users can decide whether the information in the source tweet is a rumor by reading the 

tweet’s replies, which voice other users’ stances on the tweet. The majority of rumor detection 

researchers process such tweets based on time, ignoring the conversation structure. To reap the 

benefits of the Twitter conversation structure, we developed a model to detect rumors by mod-

eling conversation structure as a graph. Thus, our model’s improved representation of the con-

versation structure enhances its rumor detection accuracy. The experimental results on two ru-

mor datasets show that our model outperforms several baseline models, including a state-of-the-

art model. 

1 Introduction 

Social media platforms have become a primary source of information due to the ease of sharing infor-

mation they provide. The latest survey from the Pew Research Center states that 68% of American adults 

occasionally read news on social media platforms (Holcomb et al., 2013). However, the credibility of 

the massive amount of news propagated through social media is questionable due to the absence of 

editors who can validate it (Zubiaga et al., 2018). As a result, social media platforms have become per-

fect avenues for spreading unverified information and rumors. 

 Users on social media platforms communicate by replying to other users' posts, repeatedly respond-

ing to one another, forming a conversation structure. The conversation structure established by social 

media consists of a tree representation of the information distributed by users posting at a specific time 

in response to a source post. (Belkaroui et al., 2014; Cogan et al., 2012; Magnani et al., 2011). Further-

more, Pace et al. (2016) distinguish two types of conversation: dialogic (horizontal conversation among 

users) and dialectic (vertical conversation with a source post) conversations. 

Conversations on social media can influence users' perception of the information within them (Pace 

et al., 2016). For example, Figure 1 shows a rumor conversation on Twitter in which users give opinions, 

make conjectures, or supply evidence in reply to the source post or other users’ replies. Users can obtain 

clues about the truth of the source post by reading the replies in the conversation structure. Ma et al. 

(2018) refer to this self-correcting mechanism in their research. However, the majority of users disregard 

such comments, preferring to immediately share tweets; thus, this self-correcting mechanism cannot 
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prevent the spread of rumors in social media. Therefore, an automatic rumor detection mechanism is 

necessary.  

 Several researchers have attempted to automatically detect rumors by analyzing the text features 

(Ajao et al., 2018; T. Chen et al., 2018; Guo et al., 2018; Ma et al., 2016; Yu et al., 2019; Zubiaga et al., 

2017), user and message features (Liu et al., 2015; Yang et al., 2012; Zhao et al., 2015), or both (Lukasik 

et al., 2016; Nguyen et al., 2017). However, most of the existing approaches rely on analyzing a single 

message and ignore the topological information of the social media conversation structure. 

Ignoring the conversation structure can lead to information misinterpretation and affect rumor detec-

tion accuracy. For example, in Figure 1, the numbers indicate the sequence of tweet publishing times, 

and the words depicted in red font represent the stance of the posts, namely, support, deny, or comment, 

symbolized by (+), (-), and (O), respectively. Because each specific reply is directly related to the source 

tweet or other responses, a conversation structure is formed. Deep learning methods such as RNNs (in-

cluding LSTM and GRU) and CNNs ignore this relationship and oversimplify it into a time-based chain 

structure for encoding tweets (see Figure 2). For instance, based on the tweet publication time, the 5th 

tweet will be fed into the model after the 4th tweet and before the 6th tweet. According to this time-

based chain structure and the tweets’ stances, the 5th tweet supports the 4th tweet, and the 6th tweet 

denies the 5th tweet. However, the 5th tweet is actually a reply to the source tweet, not the 4th tweet. In 

other words, there is no actual relationship between the 4th, 5th, and 6th tweets, but the time-based chain 

structure assigns them a false relationship. 

A social media conversation can be illustrated by a graph where each message is a node, and the 

relationships between posts are edges. Figure 3 shows a graph representation of the conversation struc-

ture described in Figure 1 that maintains the original conversation structure. 

To utilize the conversation structure between a source tweet and its replies, we propose a graph-based 

deep learning model for rumor detection. The graph structure overcomes the shortcomings of RNNs and 

CNNs by processing tweets based on conversation structure rather than based on time. Our model con-

sists of the following three hierarchically structured modules: the Tweet Representation Module (TRM), 

the Conversation Propagation Module (CPM) and the Classifier Module (CM). The TRM captures the 

high-level information of a tweet and creates its representation, the CPM propagates the tweet’s repre-

sentation through a graph structure, and the CM is a deep neural network for rumor classification. 

The main contributions of our study are as follows: 

• To the best of our knowledge, our study is the first to empirically integrate both the conversation 

structure and graph neural networks to detect rumors. 

• Experiments based on two Twitter datasets show that our model achieves the highest accuracy 

and outperforms state-of-the-art baselines.  

• Our model can successfully detect rumor in early stages. 

 

 
Figure 1. Conversation structure 
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2 Related Work 

Rumor detection is generally approached as a classification task employing two major methodologies: 

traditional machine learning and deep learning. Traditional machine learning relies on structured data 

and hand-crafted features to identify rumors. Castillo et al. (2011) proposed a large number of features 

for rumor detection by analyzing users’ behavior, messaging, and linking to external sources. Yang et 

al. (2012) introduced two new features to enrich the feature set of previous researchers: client-based 

features and location-based features. Wu et al. (2015) employed 23 features divided into three categories 

(message-based, user-based, and repost-based features) in a hybrid SVM.  

On the other hand, deep learning does not depend on hand-crafted features and automatically extracts 

features from data. RNNs are the most widely used deep learning models for text classification tasks, 

including rumor detection. RNNs can extract features and learn contextual information from text over 

time (Ma et al., 2016; Rath et al., 2017). To shorten the training time and enhance the prediction accuracy, 

Ajao et al. (2018) proposed a hybrid approach that integrates CNNs and RNNs.  

Regardless of their traditional machine learning or deep learning approaches, all of the aforemen-

tioned researchers process data based on time, ignoring structure information. To take advantage of the 

event structure in social media, Guo et al. (2018) proposed a hierarchical structure combined with social 

attention to process the data based on an event. These authors divided the process into three levels: word, 

post, and subevent levels. However, this event structure does not reflect the actual conversation structure. 

Using another approach, Ma et al. (2018) constructed a recursive neural network to handle conversa-

tional structure. This model generates a tree structure by bottom-up or top-down propagation. However, 

the nodes' influences are unbalanced, as the last nodes have a greater impact on the representation results. 

Moreover, because this model uses an RNN as a processing unit, it also encounters the long-term de-

pendencies problem. In addition, an acyclic graph is required as input; thus, graph generalization is 

unreliable. 

Graph neural networks (GNNs) have recently become a popular model in deep learning research. 

GNNs process information by modeling the dependencies between nodes through message passing. 

Moreover, GNNs achieve a state that contains information from their neighborhood with varied depth 

(Xu et al., 2019; J. Zhou et al., 2018). GNN variants have demonstrated solid performance on a variety 

of NLP tasks, e.g., text classification, sentiment analysis, neural machine translation, and multihop read-

ing comprehension. The GNN variant GraphSAGE uses a general inductive model to learn embedded 
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Figure 3. Graph representation 
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nodes where each node is represented by the aggregation of its neighbors (Hamilton et al., 2017). 

GraphSAGE can learn from dynamic graphs such as those found in social media conversations with 

variable numbers of graph nodes. 

3 Model Architecture 

We formulate our task as a supervised classification problem, designating the detection unit as a con-

versation involving a single source post and its replies. Let C denote a conversation  𝐶𝑒 =
{𝑃𝑠, 𝑃1, 𝑃2, … , 𝑃|𝑐|} where 𝑃𝑠 is the source post, and 𝑃|𝑐| is the last relevant post. Note that the numbers 

assigned to each post do not indicate that the conversation has a sequential structure; rather, the links 

between each post are based on reply or repost relationships. The objective of our model is to classify 

𝐶𝑒  as ‘rumor’ or ‘nonrumor’. The classifier performs learning through labeled information, i.e.,  

𝑓𝑒: 𝐶𝑒 → 𝑦𝑒. 

The core concept of our approach is to strengthen the representation of the information by propagating 

it through conversation structure. To achieve this goal, we designed three modules: the Tweet Represen-

tation Module (TRM), Conversation Propagation Module (CPM), and Classifier Module (CM) (Figure 

4). 

3.1 TRM 

The TRM module contains two components: a word embedding component that maps input words into 

fixed-sized vectors and a deep BiLSTM that processes sequential word vectors and extracts high-level 

information from each tweet. 

In the word embedding layer, we map the words in post 𝑥𝑡 into vectors, yielding fixed-length vectors 

for each word: 

 𝑥𝑡 = 𝐸𝛩𝑥𝑡 (1) 

where 𝑥𝑡 is the 𝑡𝑡ℎ word in a post, and 𝐸 is a special word embedding matrix. 

A deep BiLSTM is used to capture the relationships between words and generate the tweet represen-

tation: 

 ℎ𝐿𝑆𝑇𝑀𝑖
= 𝐵𝑖𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝐿𝑆𝑇𝑀𝑖−1

) (2) 

3.2 CPM 

To propagate through the conversation structure and generate improved representations of the conver-

sation, we use GraphSAGE to create low-dimensional vector representations from both training and 

unseen nodes (Hamilton et al., 2017). The output of the TRM module is a set of tweet-embedding vectors 

lacking conversation structure information. Thus, before the vectors are fed into the CPM module, a 

mapping process needs to be performed. This mapping process aims to map the conversation structure 

to a graph object where one post becomes one node, and the edges reflect the reply relationship it has 

with each of the other posts: 

 G = (V, E, U)  
 V = [ℎ𝐿𝑆𝑇𝑀𝑝𝑠

, ℎ𝐿𝑆𝑇𝑀𝑝1
, ℎ𝐿𝑆𝑇𝑀𝑝2

, … ℎ𝐿𝑆𝑇𝑀𝑝|𝑐|
]  

 E = [𝑣𝑝𝑠
→ 𝑣𝑝1

, … , 𝑣𝑝𝑛
→ 𝑣𝑝𝑚

] (3) 

 U = 𝑦𝑝𝑠
  

 
Figure 4. Rumor detection model 
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𝐺 is a graph object that consists of vertices 𝑉, edges 𝐸, and properties 𝑈. 𝑉 contains the output of 

the TRM module represented as hLSTMpi. 𝐸 is the relationship of the vertices, and 𝑈 is the global prop-

erty of the graph. Since the model is trained in a supervised manner, the label of the conversation is 

saved as the global property of the graph object. 

 At the beginning of the forward propagation step, the feature of each node is assigned to the nodes 

in the hidden state as follows: 

 ℎ𝑔𝑟𝑎𝑝ℎ𝑣

0 ← ℎ𝐿𝑆𝑇𝑀𝑣
, ∀𝑣 ∈ 𝑉 (4) 

where h0graphv is the initial hidden state of the nodes in GraphSAGE 

GraphSAGE works by aggregating information from local neighbor nodes at each iteration until all 

the nodes are accessed. This process makes the nodes gain incrementally richer information (Hamilton 

et al., 2017): 

 ℎ𝑔𝑟𝑎𝑝ℎΝ(𝑣)

𝑘 ← 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸({ℎ𝑔𝑟𝑎𝑝ℎ𝑢

𝑘−1 , ∀𝑢 ∈ 𝑁(𝑣)}) (5) 

ℎ𝑔𝑟𝑎𝑝ℎ𝑣

𝑘 ← 𝜎(𝑊𝑘 ∙ 𝐶𝑂𝑁𝐶𝐴𝑇(ℎ𝑔𝑟𝑎𝑝ℎ𝑣

𝑘−1 , ℎ𝑔𝑟𝑎𝑝ℎΝ(𝑣)

𝑘 ))  

where hkgraphN(v) is the aggregated neighborhood vector, 𝑘 is the depth of the information transmission 

updates (the number of times the graph information is updated), 𝑁 is the neighborhood function, 𝑁(𝑣) 

is the set of the node’s immediate neighborhood, and AGGREGATE is the aggregation function. 

In this paper, we use the max pooling aggregator to aggregate a node with neighborhood information, 

where max is the element-wise max operator, and 𝜎 is a nonlinear activation function: 

 AGGREGATEk
pool

= max ({σ (Wpool ∙ hgraphΝ(v)

k + bpool) , ∀ui ∈ N(v)}) (6)  

After k iterations, we obtain the output representation 𝐶𝑣, the conversation embedding results: 

 𝐶𝑣 ← ℎ𝑔𝑟𝑎𝑝ℎ𝑣

𝑘 , ∀𝑣 ∈ 𝑉 (7) 

3.3 CM 

The CM module is an MLP module. Based on the output of the CPM, we use a softmax function in the 

output layer to predict the label of the conversation: 

 �̂� = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑉 ∙ 𝐶𝑣 + 𝑏𝑦) (8) 

where 𝑉 and 𝑏𝑦 are parameters in the output layer. 

For each training process, the goal is to minimize the standard deviation between the predicted and 

output values using the following loss function: 

 𝐿 = ∑(𝑦𝑒 − �̂�)2 + ∑‖𝜃𝑖‖2 (9)  

where 𝑦𝑒 is the target value, and 𝜃𝑖 is the model parameters to be estimated. The L2-regularization 

penalty is used for trading off the error and scale of the problem. 

Statistic PHEME 2017 PHEME 2018 

Users 49,345 50.593 

Posts 103,212 105,354 

Events 5,802 6,425 

Avg words/post 13.6 13.6 

Avg posts/event 17.8 16.3 

Max posts/event 346 246 

Rumor 1972 2402 

Non-rumor 3830 4023 

Balance degree 34.00% 37.40% 

Table 1. Datasets statistic 
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4 Experiments and Results 

4.1 Dataset 

Two Twitter datasets are used to extensively evaluate our proposed model, PHEME 2017 and PHEME 

2018, which were created by (Zubiaga, Liakata, and Procter, 2016) and (Zubiaga, Liakata, Procter, et 

al., 2016), respectively. Table 1 describes the statistics of these dataset. 

4.2 Experimental Setup 

In our preprocessing phase, we empirically clean the text by deleting hyperlinks, emojis, and stop-words. 

We use Twitter 27B pretrained GloVe data with 200 dimensions for word embedding and set the maxi-

mum vocabulary to 80,000. We use Adam with a 0.001 learning rate to optimize the model during train-

ing.  

The hyperparameters on TRM are: batch size = 64; dropout rate = 0.5; hidden size = 70; and number 

of layers = 2. For CPM, they are: batch size = 128; aggregation function is the maximum; and activation 

function is ReLU. For CM, they are: number of layers = 2; dropout rate = 0.5; activation function be-

tween layers is ReLU and Sigmoid in the last layer to predict rumors. 

4.3 Experiments 

We compared our model with the following baseline models, among which RDM is considered the state-

of-the-art model:  

• SVM-BOW: an SVM classifier using bag-of-words and N-gram (e.g., 1-gram, bigram, and tri-

gram) features (Ma et al., 2018).  

• CNN: a convolutional neural model for obtaining the representation of each tweet and classifying 

tweets with a softmax layer (Y.-C. Chen et al., 2017).  

• BiLSTM: a bidirectional RNN-based tweet model that considers the bidirectional contexts be-

tween targets and tweets (Augenstein et al., 2016). 

• BERT: a fine-tuned BERT to detect rumors (Devlin et al., 2019) 

• RDM: a method integrating GRU and reinforcement learning to detect rumors at an early stage 

(K. Zhou et al., 2019). 

Table 2 shows that our model outperforms the other models, including the state-of-the-art model, 

RDM. The SVM uses bag-of-words features for text encoding and statistical methods that miss essential 

text features, which leads to low rumor detection accuracy. CNN, BiLSTM, and RDM process tweets 

based on time, thus they lose valuable information from the conversation structure. BERT has a 

Dataset Method Acc Pre Rec F1 

PHEME 2017 

SVM-BOW 0.669 0.535 0.524 0.529 

CNN 0.787 0.737 0.702 0.719 

BiLSTM 0.795 0.763 0.691 0.725 

BERT 0.865 0.859 0.851 0.855 

RDM* 0.873 0.817 0.823 0.820  

Our Model 0.900 0.893 0.869 0.881 

PHEME 2018 

SVM-BOW 0.688 0.518 0.512 0.514 

CNN 0.795 0.731 0.673 0.701 

BiLSTM 0.794 0.727 0.677 0.701 

BERT 0.844 0.834 0.835 0.835 

RDM* 0.858 0.847 0.859 0.853 

Our Model 0.919 0.892 0.923 0.907 

* state-of-the-art 

Table 2. Experiment result 
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multilayer architecture that performs well in various NLP tasks; however, BERT also processes tweets 

based on time; therefore, it has the same disadvantage as the other models. On the other hand, our model 

benefits from the utilization of conversation structure, where every reply supports, denies or comments 

on the source message. The results show that exploiting conversation structure enables improved rumor 

detection performance. 

4.4 Conversation representation impact study 

To further investigate the impact of the tweet representation used in our model, we evaluated several 

conversation information extraction approaches by replacing the TRM module with hand-crafted fea-

tures and sentence embedding, namely: (1) GNN-U: user features; (2) GNN-M: message features; (3) 

GNN-MU: both user and message features; (4) GNN-S: fastText sentence embedding with GloVe 840B 

embeddings; and (5) GNN-SB: BERT (feature-based) sentence embedding. 

 As shown in Table 3, the performance of the first three models based on hand-crafted features is low, 

as characterized by accuracies of less than 68%. This low performance indicates that hand-crafted fea-

tures with small dimensions are unlikely to represent all the helpful information in a conversation. 

On the other hand, the sentence embedding methods GNN-S and GNN-SB achieve higher perfor-

mance than the first three models. GNN-S outperforms GNN-MU by 7.62% on the PHEME 2017 dataset 

and 5.61% on the PHEME 2018 dataset, while GNN-SB achieves 15.35% and 13.95% higher accuracies 

on the PHEME 2017 and PHEME 2018 datasets, respectively. These results show that information prop-

agation through the conversation structure based on the text can generate a more comprehensive repre-

sentation. 

Overall, we found that TRM as a Twitter conversation representation achieves the best performance 

because it was built to perform well on the rumor detection task. Unlike the other representations, TRM 

can learn through its loss function that can change the way posts are represented. 

4.5 Early detection performance 

Detecting rumors at an early stage of propagation is vital so that interventions can be carried out as soon 

as possible. 

To evaluate our model’s performance on the early detection of rumors, we created eight test sets re-

flecting real scenarios of rumors spreading on Twitter. Unlike other researchers who define early rumors 

based on time, we define them based on the number of replies. We claim that, on the one hand, a small 

number of replies to a source tweet means that the rumor has just begun to spread because only a few 

tweets refer to it. On the other hand, a large number of replies to a source tweet suggests that the rumor 

has been widely spread. 

The detection capability of the SVM is deficient in all the cases, achieving accuracies of less than 

70%. Improved results of approximately 80% accuracy are obtained by CNN and BiLSTM. Moreover, 

CNN and BiLSTM exhibit higher accuracy when they use only a few replies (less than ten replies). In 

Dataset Method Acc Pre Rec F1 

PHEME 2017 

GNN-U 0.606 0.6005 0.602 0.602 

GNN-M 0.630 0.597 0.598 0.597 

GNN-MU 0.622 0.585 0.586 0.585 

GNN-S 0.737 0.734 0.735 0.734 

GNN-SB 0.816 0.837 0.823 0.830  

TRM 0.900 0.893 0.869 0.881 

PHEME 2018 

GNN-U 0.581 0.563 0.560 0.561 

GNN-M 0.588 0.565 0.559 0.562 

GNN-MU 0.646 0.625 0.628 0.626 

GNN-S 0.731 0.669 0.677 0.673 

GNN-SB 0.798 0.816 0.804 0.810  

TRM 0.919 0.892 0.923 0.907 

Table 3. Conversation representation study 
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Figure 5, we see that the accuracies of CNN and BiLSTM slightly decrease as the number of replies 

increases. This result occurs because CNN and BiLSTM ignore conversation structure information and 

use a time-based chain structure. As a result, CNN and BiLSTM are unable to encode correct represen-

tations when the number of replies is greater than ten.  

Unlike the other models, our model benefits from encoding information based on conversation struc-

ture, thus obtaining the correct representation. The results show that, in every case, our model outper-

forms the other methods, suggesting that our models can classify rumors at very early or late stages. 

5 Conclusions 

We introduce a novel model that shows how the conversation structure of social media can help detect 

rumors. By viewing conversation structure as a graph, we propagate a message through its structure and 

benefit from users’ related stances. In experiments using the PHEME 2017 and PHEME 2018 datasets, 

which contain only small amounts of data, our model outperforms the baseline and state-of-the-art mod-

els. We expect that our model’s performance will increase when it is trained on larger datasets. 

 Moreover, since the CPM module can aggregate information from local neighbors and create a 

representation of unseen nodes, our model can be used for unsupervised tasks because it enables nearby 

nodes to have a similar representation while enforcing the highly distinct representation of the disparate 

node. In the future, we will investigate unsupervised models on massive amounts of unlabeled rumor 

data from social media. 
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