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Abstract
Sentence intention matching is vital for natural language understanding. Especially for
Chinese sentence intention matching task, due to the ambiguity of Chinese words, se-
mantic missing or semantic confusion are more likely to occur in the encoding process.
Although the existing methods have enriched text representation through pre-trained
word embedding to solve this problem, due to the particularity of Chinese text, differ-
ent granularities of pre-trained word embedding will affect the semantic description of a
piece of text. In this paper, we propose an effective approach that combines character-
granularity and word-granularity features to perform sentence intention matching, and
we utilize soft alignment attention to enhance the local information of sentences on the
corresponding levels. The proposed method can capture sentence feature information
from multiple perspectives and correlation information between different levels of sen-
tences. By evaluating on BQ and LCQMC datasets, our model has achieved remarkable
results, and demonstrates better or comparable performance with BERT-based models.

1 Introduction
As a branch of sentence semantic matching (SSM), sentence intention matching (SIM) is critical
to question answering systems in certain applications. In general, SSM is to judge whether two
sentences express the same meaning. However, in a question answering system, SIM intends to
determine whether two questions share the same intention and could be addressed by the same
answer, which is more challenging than other SSM tasks. As an example shown in Table 1,
although both sentences in Q1 and Q2 share similar intention in fact, it is difficult to distinguish
whether they are similar at the semantic intention level without considering the deep context.

With the development of deep learning, a series of SSM models are proposed for semantic
matching tasks (Wang et al., 2017; Gong et al., 2018; Huang et al., 2019; Li et al., 2019; Liu
et al., 2020). However, these models simply consider the characteristics of the semantic level
of the text but overlook the deep intentional features. Researchers have attempted to extract
deeper semantic features through attention mechanisms (Tan et al., 2018; Tay et al., 2018),
memory networks (Cheng et al., 2016), as well as the addition of external syntactic structures
and lexical datasets as in WordNet (Chen et al., 2017). Although the above methods obtain
deep semantic features from different perspectives, they cannot completely overcome the feature
missing phenomenon in the encoding process. Especially due to the diversity of Chinese semantic
features, the above existing methods cannot better capture complicated deep semantic features.
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Table 1: Examples from BQ corpus.
Sentence Pairs
Q1: 我提交申请时，说身份信息输入错误次数过多
EN: When I submitted my application, I was notified that my identity information was
inputted incorrectly too many times
Q2: 我的微粒贷怎么申请时显示身份信息输入错误
EN: Why did it show that my identity information was inputted incorrectly when I
applied for my Webank loan

In English SSM tasks, Wang et al. and Gong et al. employ multi-granularity fusion to extract
the corresponding richer semantic features, where the more fine-grained character embeddings
are employed together with the traditional word embeddings (Wang et al., 2017; Gong et al.,
2018). Although the introduction of character embeddings is beneficial to enrich English text
representation, one single English character is hard to express a special meaning. Different
from English, a Chinese character is able to represent a solid meaning, which can convey more
semantic features and information. Thus, there should be great interest and potential to explore
and combine multi-granularity embeddings for Chinese SSM tasks. Huang et al. (Huang et al.,
2017) and Zhang et al. (Zhang et al., 2020) achieve better performance by combining character,
word, and other granularities to obtain semantic encoding features from Chinese text. The multi-
granularity fusion method can be applied to extract the semantic features of a text sequence,
which can effectively alleviate the phenomenon of missing semantic features in the encoding
process.

In this paper, inspired by the existing work, we push forward this line of research by propos-
ing a better multi-granularity fusion approach to capture semantic features from text sequences.
In (Huang et al., 2017) and (Zhang et al., 2020), the encoding features in multi-perspective
granularities are integrated to generate the final text encodings. However, the correlation and
distinction between text features on different granularities are not considered, thus the corre-
sponding semantic features are not further explored in these works. Sequential inference models
based on chain LSTMs are implemented in (Chen et al., 2017), enabling the capture of more
features from different perspectives. They incorporate syntactic parsing information in tree
LSTM into the classic BiLSTM model with the help of soft alignment attention. In our work, in
order to better extract the correlations between different granularities in SIM, inspired by the
work in (Chen et al., 2017), we employ soft alignment attention to enhance local information
representation between different granularities and capture more sentence correlation.

Our contributions are summarized as follows:

• We propose a novel sentence intention matching model, named intra-correlation encod-
ing model (ICE), to better extract sentence intention features. It can capture sentence
feature information from multiple perspectives and the correlation information between
sentences on character-granularity and word-granularity.

• We propose a novel deep neural architecture for sentence intention matching task, which
includes a multi-granularity embedding layer, an intra-correlation encoding layer, a global
inference composition layer, and a prediction layer. Our source code is publicly available on
GitHub 1. This work may provide a new reference for researchers in the NLP community.

The rest of the paper is structured as follows. We describe our novel sentence intention
matching model in Section 2. Section 3 demonstrates the experimental results. Related work is
introduced in Section 4, followed by conclusions in Section 5.
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Figure 1: Architecture of our intra-correlation encoding model.

2 Model

We propose a multi-granularity (character-granularity and word-granularity) neural sentence
model, whose architecture is shown in Figure 1. We utilize the siamese network structure in the
SIM task. Our model architecture consists of four parts: a multi-granularity embedding layer, an
intra-correlation encoding layer, a global inference composition layer, and a prediction layer. In
the following subsections, we first describe the initial representation, including word-granularity
and character-granularity embeddings, then introduce the intra-correlation encoding layer in
detail. Next, we describe the global inference composition layer, which measures the feature
information between two sentence representations. Finally, the prediction layer is introduced,
which predicts whether the corresponding sentences match each other in semantic intention.

2.1 Multi-Granularity Embedding Layer
In our notation, we have two Chinese sentences Q1=(q11,q12, · · · ,q1i) and Q2=(q21,q22, · · · ,q2 j).
We employ different segmentation methods to segment Q1 for character and word 2, and obtain
the multi-granularity sentence representation of character-based Q1 and word-based Q1. An
example is shown in Table 2. Sentence Q2 is processed in the same way. The character-based
and word-based sentences are padded to the same length N. Corresponding embedings at the
character and word levels are obtained by pre-training Word2Vec (Mikolov et al., 2013) on the
target dataset, such as BQ or LCQMC in our experiments.

1https://github.com/XuZhangp/ICE
2https://github.com/fxsjy/jieba
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Table 2: Examples of multi-granularity based sentences.
Sentence Pairs
Sentence Q1: 我提交申请时，说身份信息输入错误次数过多
Character-based Q1: 我/提/交/申/请/时/，/说/身/份/信/息/输/入/错/误/次/数/过/多/
Word-based Q1: 我/提交/申请/时/，/说/身份/信息/输入/错误/次数/过多/
Sentence Q2: 我的微粒贷怎么申请时显示身份信息输入错误
Character-based Q2: 我/的/微/粒/贷/怎/么/申/请/时/显/示/身/份/信/息/输/入/错/误/
Word-based Q2: 我/的/微粒贷/怎么/申请/时/显示/身份/信息/输入/错误/

2.2 Intra-Correlation Encoding Layer
LSTM and BiLSTM are utilized to encode input sentences Q1 and Q2 at their character and
word level granularities, respectively, as shown in Equations 1 and 2.

q1c
n = [BiLSTM([LSTM(Q1c),Q1c],n);LSTM(Q1c,n)], n ∈ (1,2, · · · ,N),

q1w
m = [BiLSTM([LSTM(Q1w),Q1w],m);LSTM(Q1w,m)], m ∈ (1,2, · · · ,N),

(1)

where, we utilize q1c
n and q1w

m to represent the hidden (output) state generated by the basic
encoding module for the n-th character and m-th word, respectively. The same is applied to q2c

n
and q2w

m. In this way, we generate multi-granularity representations of encoding features for two
sentences with the basic encoding components.

As shown in Equation 1 for character-based Q1, the LSTM Layer is the first layer in the basic
encoding components after the multi-granularity embedding layer. Next, the concatenated out-
puts from the multi-granularity embedding layer (Q1c) and the LSTM layer (LSTM(Q1c)) flow
to the BiLSTM layer. Finally, the outputs of the BiLSTM layer (BiLSTM([LSTM(Q1c),Q1c]))
and the LSTM layer (LSTM(Q1c)) are combined as the final feature representation. Our model
follows a siamese network structure, which applies the same encoding method to word-based
Q1, word-based Q2, and character-based Q2 as shown in Equations 1 and 2.

q2c
n = [BiLSTM([LSTM(Q2c),Q2c],n);LSTM(Q2c,n)], n ∈ (1,2, · · · ,N),

q2w
m = [BiLSTM([LSTM(Q2w),Q2w],m);LSTM(Q2w,m)], m ∈ (1,2, · · · ,N).

(2)

In order to capture the correlation information between different granularities of the same sen-
tence, we employ the soft alignment attention work of Chen et al. on the text semantic matching
task (Chen et al., 2017). They utilize the attention mechanism to compute the attention weights
as the similarity of a hidden state tuple between a premise and a hypothesis.

From this inspiration, we compute the attention weights eq1nm as the similarity of a hidden
state tuple <q1c

n, q1w
m> for Q1 between character-granularity and word-granularity, as shown in

Equation 3, where q1c
n and q1w

m are computed earlier in Equations 1 and 2. The same is applied
to Q2, as shown in Equation 4. In this way, we can obtain the text feature correlation between
different granularities and extract more abundant semantic features.

eq1nm = q1c
n

T q1w
m, n,m ∈ (1,2, · · · ,N), (3)

eq2nm = q2c
n

T q2w
m, n,m ∈ (1,2, · · · ,N). (4)

Through the above Equations 3 and 4, we obtain the correlation attention weights for sentence
features on different granularities, i.e., eq1nm and eq2nm. For the hidden state of the n-th
character in character-based Q1, i.e., q1c

n, its correlation semantics in the word-based Q1 is
identified based on eq1nm, as shown in Equation 5.

q1c
n =

N

∑
m=1

exp(eq1nm)

∑N
k=1 exp(eq1nk)

q1w
m, n ∈ (1,2, · · · ,N), (5)
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where q1c
n is a weighted summation of {q1w

m}N
m=1. Intuitively, the content in {q1w

m}N
m=1 that is

relevant to q1c
n will be selected and represented as q1c

n. The same is performed for each word
represented in the word-based Q1 with Equation 6.

q1w
m =

N

∑
n=1

exp(eq1nm)

∑N
k=1 exp(eq1km)

q1c
n, m ∈ (1,2, · · · ,N). (6)

Using Equations 3 - 6, we obtain the correlation feature expressions q1c
n and q1w

m for sentence
Q1. Similarly, we can obtain the correlation features for sentence Q2, using:

q2c
n =

N

∑
m=1

exp(eq2nm)

∑N
k=1 exp(eq2nk)

q2w
m, n ∈ (1,2, · · · ,N),

q2w
m =

N

∑
n=1

exp(eq2nm)

∑N
k=1 exp(eq2km)

q2c
n, m ∈ (1,2, · · · ,N).

(7)

With the above operations, we generate the sentence feature representations q1c ({q1c
n}N

n=1),
q1w ({q1w

m}N
m=1), q2c ({q2c

n}N
n=1), and q2w ({q2w

m}N
m=1) for sentences Q1 and Q2. In addition, we

also generate the feature representations of correlations q1c ({q1c
n}N

n=1), q1w ({q1w
m}N

m=1), q2c

({q2c
n}N

n=1), and q2w ({q2w
m}N

m=1) between multi-granularity sentences.

2.3 Global Inference Composition Layer
Thus far we have obtained a series of basic and correlation encoding feature representations
through the intra-correlation encoding layer. We now apply average and max pooling operations
on them and obtain the final feature representations for Q1 (q1c

avg, q1w
avg, q1c

avg, q1w
avg, q1c

max,
q1w

max, q1c
max, q1w

max) and Q2 (q2c
avg, q2w

avg, q2c
avg, q2w

avg, q2c
max, q2w

max, q2c
max, q2w

max) as shown
in Equations 8 - 11.

q1c
avg =

1
N

N

∑
n=1

q1c
n, q1c

max = max
along axis n

q1c, q1w
avg =

1
N

N

∑
m=1

q1w
m, q1w

max = max
along axis m

q1w, (8)

q1c
avg =

1
N

N

∑
n=1

q1c
n, q1c

max = max
along axis n

q1c
, q1w

avg =
1
N

N

∑
m=1

q1w
m, q1w

max = max
along axis m

q1w
, (9)

q2c
avg =

1
N

N

∑
n=1

q2c
n, q2c

max = max
along axis n

q2c, q2w
avg =

1
N

N

∑
m=1

q2w
m, q2w

max = max
along axis m

q2w, (10)

q2c
avg =

1
N

N

∑
n=1

q2c
n, q2c

max = max
along axis n

q2c
, q2w

avg =
1
N

N

∑
m=1

q2w
m, q2w

max = max
along axis m

q2w
. (11)

Through the above Equations 8 - 11, we can employ average and max pooling to obtain high-
order feature representations from the basic and correlation feature representations of different
granularities for sentences Q1 and Q2. Conceptually speaking, the average and max pooling are
able to extract a set of global and key features, respectively.

Using the outputs of the above pooling operations, we can now generate the final sentence-
level representations. First of all, for sentence Q1, we generate its final feature representation
by combining all its feature representations, as shown in Equation 12. Similarly, the feature
representation of sentence Q2 is generated with Equation 13. Next, we can generate the multi-
granularity correlation feature representations for sentences Q1 and Q2 respectively, as shown
in Equation 14.

f1 = [q1c
avg;q1w

avg;q1c
avg;q1w

avg;q1c
max;q1w

max;q1c
max;q1w

max], (12)

f2 = [q2c
avg;q2w

avg;q2c
avg;q2w

avg;q2c
max;q2w

max;q2c
max;q2w

max], (13)
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f3 = [q1c
avg;q1w

avg;q1c
max;q1w

max;q2c
avg;q2w

avg;q2c
max;q2w

max]. (14)

In addition, we utilize the final semantic representations (f1 and f2) of sentences Q1 and Q2
to obtain their interactions, using the following operations:

ab = |f1 − f2|, mu = f1 × f2, (15)

where × denotes the element-wise multiplication.
Finally, we concatenate these interactions to generate the final representation of multi-

granularity correlation with Equation 16, which is transferred to the prediction layer.

F = [ab;mu; f3]. (16)

2.4 Prediction Layer
The prediction module is a multi-layer perceptron (MLP) classifier. It has three dense sub-layers,
where the first two dense layers are activated with the ReLU function (Nair and Hinton, 2010)
and the last dense layer is connected with the sigmoid activation function in our experiments.

2.5 Loss Function
For training, we utilize the modified binary cross-entropy loss (Su, 2017). In our notation, ytrue
is the actual label of a training sample and ypred is the corresponding predicted label. For the
convenience of comparison, the traditional binary cross-entropy is given in Equation 17:

Lold =−∑(ytrue logypred +(1− ytrue) log(1− ypred)). (17)

In order to improve its performance, the unit step function θ(x) (defined in Equation 18) and
threshold m (set as 0.7) are introduced. The newly modified binary cross-entropy loss is de-
fined in Equation 19. With this novel loss function, the model will be forced to focus on the
indistinguishable training samples, which makes the classification perform better.

θ(x) =


1,x > 0
1
2
,x = 0.

0,x < 0

(18)

Lnew =−∑λ (ytrue,ypred)(ytrue logypred +(1− ytrue) log(1− ypred)), (19)

where λ (ytrue,ypred) is defined as:

λ (ytrue,ypred) = 1−θ(ytrue −m)θ(ypred −m)−θ(1−m− ytrue)θ(1−m− ypred). (20)

3 Experiments and Results

3.1 Datasets
We conduct experiments on two Chinese sentence intention matching data sets, i.e., BQ and
LCQMC. BQ is a Chinese bank question pair data set for sentence intention equivalence iden-
tification, which is a classic intention matching task (Chen et al., 2018). LCQMC is a generic
corpus mainly for intention matching collected from Baidu Knows (Liu et al., 2018). The two
datasets consist of a large set of instances in the form of (Q1, Q2, Label), where Q1 and Q2
are two Chinese sentences, and Label is the label indicating whether Q1 and Q2 share the same
semantic intention. A summary of these data sets is provided in Table 3.
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Table 3: Experimental data sets.
Dataset Language Source Scale (train/valid/test) pos:neg
LCQMC Chinese Baidu Knows 238,766/8,802/12,500 1.35:1
BQ Chinese WeBank 100,000/10,000/10,000 1:1

3.2 Parameter Settings
In our experiments, the embedding dimension is 300 in the multi-granularity embedding layer.
The encoding dimension is set as 300 in the intra-correlation encoding layer. For the LSTM layer,
dropout (Srivastava et al., 2014) rates of 0.5 and 0 are used for BQ and LCQMC respectively. In
the BiLSTM layer, the dropout rates are set to 0.52 and 0.25 respectively for BQ and LCQMC.
Dropout rate of 0.5 is used in the prediction component which actually consists of two densely
connected hidden layers with 600 units in each layer and one classification output node with a
sigmoid activation function. Adam with default parameters is adopted as the optimizer (Kingma
and Ba, 2015). All the experiments are executed on a Thinkstation P910 workstation equipped
with dual Xeon E5-2600 processors, 192 GB memory, and one Nvidia 2080Ti GPU.

3.3 Experimental Results
A comparison of our work with the baseline methods is shown in Table 4. We can observe
that the performance of our model (ICE) is superior to all the compared methods in terms
of most measures. There are three choices for pre-trained embeddings. The first one is word
embedding with Word2Vec (Mikolov et al., 2013), the other is word embedding with GloVe
(Pennington et al., 2014), and the last one is Glyce embedding which is first applied in Chinese
tasks (Meng et al., 2019). The differences among them lie in that Word2Vec is a predictive
model, GloVe is a count-based model, and Glyce generates glyph-vectors for Chinese character
representations. Predictive models learn their embeddings in order to improve their predictive
ability; count-based models learn their embeddings by essentially reducing dimension on the
co-occurrence matrix; and Glyce, just like word embeddings, provides a general way to model
character semantics in logographic languages. Similar to experiments using BiLSTM, BiMPM,

Table 4: Experimental results on LCQMC and BQ.
Task Model Precision Recall F1-score Accuracy

BiLSTMword 67.4 91.0 77.5 73.5
BiLSTMchar 70.6 89.3 78.9 76.1
BiMPMword 77.6 93.9 85.0 83.4
BiMPMchar (Chen et al., 2018) 77.7 93.5 84.9 83.3
DFFword 78.58 93.88 85.51 84.15

LCQMC DFFchar (Zhang et al., 2019) 77.69 94.08 85.06 83.53
MSEM (Huang et al., 2019) 78.90 93.73 85.68 -
MGF (Zhang et al., 2020) 81.39 92.90 86.72 85.83
BiMPM+Glyce (Meng et al., 2019) 80.4 93.4 86.4 85.3
ICE 83.34 91.80 87.33 86.73
BiLSTMword 75.04 70.46 72.68 73.51
BiMPMword (Chen et al., 2018) 82.28 81.18 81.73 81.85
DFFword 84.43 77.48 80.70 81.59
DFFchar (Zhang et al., 2019) 85.38 76.33 80.52 81.69

BQ MSEM (Huang et al., 2019) 82.88 84.36 83.62 -
MGF (Zhang et al., 2020) 89.24 74.67 81.21 82.86
BiMPM+Glyce (Meng et al., 2019) 81.93 85.54 83.70 83.34
ICE 84.06 85.65 84.77 84.71
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DFF, and MGF, our model utilizes the pre-trained word embedding from Word2Vec. Compared
with BiLSTM, BiMPM, and DFF, our model dramatically outperform them. This is probably
because the three compared methods only consider one specific granularity, i.e., character or
word, which is inadequate to capture enough features. Different from them, our model considers
multi-granularity features to encode sentences, which can provide more effective information. In
comparison with MSEM and MGF, our model performs better in terms of F1-score and accuracy.
Although MSEM and MGF consider concatenating word and character embeddings together
to generate the final text representation, they do not capture the correlation features between
different granularities, which leads to limited performance improvement. Besides, MSEM utilizes
GloVe embeddings, which does not improve the performance. Compared with BIMPM+Glyce,
even though Glyce has achieved good results on other Chinese language tasks, our model also
outperforms it in current task.

3.4 Further Analysis
3.4.1 Comparison with BERT
Compared with BERT-based methods, our model performed comparably as reported in Table
5. BERT utilizes context information of characters to extract features, and dynamically adjusts
embeddings of characters according to different contexts, which solves the polysemy problem
suffering Word2Vec and thus helps achieve outstanding performances (Devlin et al., 2019). Ac-
cording to Table 5, our model surpasses BERT-based models on LCQMC and works comparably
with them on BQ. This is probably because our model implements the intra-correlation encoding
component, which enables us to capture sentence feature information from multiple perspectives
and correlation information between sentences on different granularities.

Table 5: Comparison of our model with BERT-based methods.
Task Metrics Model (M = Million)

Accuracy(#FLOPs) BERT (Liu et al., 2020) 86.68(21785M)
Accuracy(#FLOPs) DistilBERT (6 layers) 84.12(10918M)
Accuracy(#FLOPs) DistilBERT (3 layers) 84.07(5428M)

LCQMC Accuracy(#FLOPs) DistilBERT (1 layers) 71.34(1858M)
Accuracy(#FLOPs) FastBERT (speed=0.1) 86.59(12930M)
Accuracy(#FLOPs) FastBERT (speed=0.5) 84.05(6352M)
Accuracy(#FLOPs) FastBERT (speed=0.8) 77.45(3310M)
Accuracy(#FLOPs) ICE 86.73(4.1M)

BQ Accuracy(#FLOPs) BERT (Sun et al., 2020) 84.8(-)
Accuracy(#FLOPs) ICE 84.71(2.5M)

Moreover, in contrast to BERT-based approaches, our model is more concise and requires less
computing power. We employ the #FLOPs to further evaluate the model. #FLOPs (number
of floating-point operations) is a measure of the computational complexity of models, which
indicates the number of floating-point operations that the model performs for a single process.
Generally speaking, the bigger the model’s #FLOPs is, the longer the inference time will be.
With the same accuracy, models with lower #FLOPs are more efficient. When our graph-
ics processing card resources are insufficient, ICE has much lower #FLOPs than BERT-based
approaches but achieves comparable results.

3.4.2 Effectiveness of Modified Loss Function
In this section, we verify the effectiveness of the modified binary cross-entropy (BCE) loss. As
shown in Table 6, compared with the traditional binary cross-entropy defined in Equation 17,
the modified binary cross-entropy loss function in Equation 19 has achieved better performance.



5201

This corroborates that the modified BCE loss function is more effective to allow the model to
focus on the indistinguishable training samples, making the classification perform better.

Table 6: Experimental results using different loss functions.
Task Model Precision Recall F1-score Accuracy
BQ ICE(BCE) 83.74 84.68 84.15 84.16

ICE(Modified BCE) 84.06 85.65 84.77 84.71
LCQMC ICE(BCE) 81.65 92.35 86.64 85.81

ICE(Modified BCE) 83.34 91.80 87.33 86.73

4 Related Work

Sentence intention matching is critical for a series of downstream tasks, such as information
retrieval, question answering, and machine translation.

With the development of deep neural networks, sophisticated models for SSM task have been
evolving rapidly (Chen et al., 2017; Lai et al., 2019; Huang et al., 2019; Liu et al., 2020). The
companion of attention mechanism with sequence models have achieved promising performance
in machine translation (Bahdanau et al., 2015) and then is applied in many other tasks in natural
language processing. It has also rendered encouraging effects in the SSM task (Wang et al., 2015;
Wang et al., 2017; Tay et al., 2018; Duan et al., 2018; Kim et al., 2019). Wang et al. propose
a multi-angle bidirectional attention mechanism in SSM task, and the effect of the model is
remarkable (Wang et al., 2017). In addition, Sha et al. put forward an attention mechanism
by repeating two sentences to improve the model’s memory and obtain better textual semantic
representation (Sha et al., 2016). Generally speaking, through using attention mechanisms, key
feature representations in the text can be captured and benefit precise matching.

Although the above methods extract key feature representations with the attention mech-
anisms or introduce external syntactic information in the text sequences, these methods only
achieve limited improvement. A number of researchers discover that the granularity of text is
also crucial for capturing deep semantic features of the text. In particular, Huang et al. propose
a word representation layer, which consists of word embedding and character representation,
to capture multi-granularity feature representations (Huang et al., 2017). The acquisition and
integration of text features at different granularities are considered in (Zhang et al., 2020) and
achieve interesting results. However, their work simply integrates multi-granularity features,
without taking into account the correlation of text features between different granularities.

The pre-trained language model BERT, which solves the polysemy problem of Word2Vec, has
proven to be highly effective (Devlin et al., 2019). However, BERT is often computationally
expensive in many practical scenarios. Thus, it is hard to be readily implemented with limited
resources. Therefore, a series of smaller, faster, cheaper, and lighter of pre-trained BERT-based
models emerge widely, such as DistilBERT (Sanh et al., 2019) and FastBERT (Liu et al., 2020).
These models are optimized in terms of running speed and resource utilization, which inevitably
reduces the effectiveness of the original BERT model. How to achieve comparable performance
with BERT and require less computational resources is critical and urgent in model design for
NLP applications.

In this paper, in order to better capture correlation features between different granularities, we
propose an intra-correlation encoding framework for SIM task, which considers the correlation
between text features from character-granularity and word-granularity. With less requirement
on computational resources, our proposed model can achieve better or comparable performance
with the state-of-the-art BERT.
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5 Conclusions
For sentence intention matching tasks, we propose a novel method, named the intra-correlation
encoding model. It combines character-granularity and word-granularity features to model sen-
tence intention, and utilizes soft alignment attention to enhance the local information of sen-
tences on the different levels. It can capture sentence feature information from multiple per-
spectives and correlation information between different levels of sentences. Experiments on two
datasets demonstrate that our model outperforms non-BERT-based models and achieves at least
comparable accuracy with BERT-based models, but runs much more efficiently than BERT. In
the future, we would attempt to join multi-granularity embeddings and BERT together, so as
to further improve the performance. The generalization of our model to other languages will
also be investigated.

Acknowledgements
The research work is partly supported by National Key R&D Program of China under Grant
No.2018YFC0831700 and No.2018YFC0830705, National Natural Science Foundation of China
under Grant No.61502259, and Key Program of Science and Technology of Shandong under
Grant No.2019JZZY020124.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly

learning to align and translate. In Proceedings of the International Conference on Learning Represen-
tations.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. 2017. Enhanced LSTM
for natural language inference. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics, pages 1657–1668.

Jing Chen, Qingcai Chen, Xin Liu, Haijun Yang, Daohe Lu, and Buzhou Tang. 2018. The BQ cor-
pus: A large-scale domain-specific Chinese corpus for sentence semantic equivalence identification. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 4946–4951.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016. Long short-term memory-networks for machine
reading. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages
551–561.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 4171–4186.

Chaoqun Duan, Lei Cui, Xinchi Chen, Furu Wei, Conghui Zhu, and Tiejun Zhao. 2018. Attention-fused
deep matching network for natural language inference. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, pages 4033–4040.

Yichen Gong, Heng Luo, and Jian Zhang. 2018. Natural language inference over interaction space. In
Proceedings of the International Conference on Learning Representations.

Jiangping Huang, Shuxin Yao, Chen Lyu, and Donghong Ji. 2017. Multi-granularity neural sentence
model for measuring short text similarity. In Proceedings of the International Conference on Database
Systems for Advanced Applications, pages 439–455.

Qiang Huang, Jianhui Bu, Weijian Xie, Shengwen Yang, Weijia Wu, and Liping Liu. 2019. Multi-task
sentence encoding model for semantic retrieval in question answering systems. In Proceedings of the
International Joint Conference on Neural Networks, pages 1–8.

Seonhoon Kim, Inho Kang, and Nojun Kwak. 2019. Semantic sentence matching with densely-connected
recurrent and co-attentive information. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 6586–6593.



5203

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proceedings
of the International Conference on Learning Representations.

Yuxuan Lai, Yansong Feng, Xiaohan Yu, Zheng Wang, Kun Xu, and Dongyan Zhao. 2019. Lattice CNNs
for matching based Chinese question answering. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 6634–6641.

Xiaoya Li, Yuxian Meng, Xiaofei Sun, Qinghong Han, Arianna Yuan, and Jiwei Li. 2019. Is word
segmentation necessary for deep learning of Chinese representations? In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 3242–3252.

Xin Liu, Qingcai Chen, Chong Deng, Huajun Zeng, Jing Chen, Dongfang Li, and Buzhou Tang. 2018.
LCQMC: A large-scale Chinese question matching corpus. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 1952–1962.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, and Qi Ju. 2020. FastBERT: A
self-distilling BERT with adaptive inference time. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics.

Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie, Fan Yin, Muyu Li, Qinghong Han, Xiaofei Sun,
and Jiwei Li. 2019. Glyce: Glyph-vectors for Chinese character representations. In Advances in Neural
Information Processing Systems, pages 2742–2753.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on International Conference on Machine Learning,
pages 807–814.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. GloVe: Global vectors for
word representation. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 1532–1543.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter. In Proceedings of the 33th Conference on Neural
Information Processing System.

Lei Sha, Baobao Chang, Zhifang Sui, and Sujian Li. 2016. Reading and thinking: Re-read LSTM unit for
textual entailment recognition. In Proceedings of the 26th International Conference on Computational
Linguistics, pages 2870–2879.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Jianlin Su. 2017. Text emotion classification (IV): Better loss function. Web page. https://spaces.
ac.cn/archives/4293.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, and Haifeng Wang. 2020. ERNIE
2.0: A continual pre-training framework for language understanding. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Chuanqi Tan, Furu Wei, Wenhui Wang, Weifeng Lv, and Ming Zhou. 2018. Multiway attention networks
for modeling sentence pairs. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence, pages 4411–4417.

Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2018. Hermitian co-attention networks for text matching
in asymmetrical domains. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence, pages 4425–4431.

Mingxuan Wang, Zhengdong Lu, Hang Li, and Qun Liu. 2015. Syntax-based deep matching of short
texts. In Proceedings of the 24th International Conference on Artificial Intelligence, pages 1354–1361.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017. Bilateral multi-perspective matching for natural
language sentences. In Proceedings of the 26th International Joint Conference on Artificial Intelligence,
pages 4144–4150.

https://spaces.ac.cn/archives/4293
https://spaces.ac.cn/archives/4293


5204

Xu Zhang, Wenpeng Lu, Fangfang Li, Xueping Peng, and Ruoyu Zhang. 2019. Deep feature fusion model
for sentence semantic matching. Computers, Materials & Continua, 61(2):601–616.

Xu Zhang, Wenpeng Lu, Guoqiang Zhang, Fangfang Li, and Shoujin Wang. 2020. Chinese sentence
semantic matching based on multi-granularity fusion model. In Proceedings of the Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, pages 246–257.


	Introduction
	Model
	Multi-Granularity Embedding Layer
	Intra-Correlation Encoding Layer
	Global Inference Composition Layer
	Prediction Layer
	Loss Function

	Experiments and Results
	Datasets
	Parameter Settings
	Experimental Results
	Further Analysis
	Comparison with BERT
	Effectiveness of Modified Loss Function


	Related Work
	Conclusions

