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Abstract

Machine translation provides powerful methods to convert text between languages, and is therefore
a technology enabling a multilingual world. An important part of communication, however, takes
place at the non-propositional level (e.g., politeness, formality, emotions), and it is far from clear
whether current MT methods properly translate this information.

This paper investigates the specific hypothesis that the non-propositional level of emotions is at
least partially lost in MT. We carry out a number of experiments in a back-translation setup and
establish that (1) emotions are indeed partially lost during translation; (2) this tendency can be
reversed almost completely with a simple re-ranking approach informed by an emotion classifier,
taking advantage of diversity in the n-best list; (3) the re-ranking approach can also be applied to
change emotions, obtaining a model for emotion style transfer. An in-depth qualitative analysis
reveals that there are recurring linguistic changes through which emotions are toned down or
amplified, such as change of modality.

1 Introduction

The quality of machine translation (MT) models in some areas follows close behind that of humans
(Barrault et al., 2019). MT is deployed widely to support human-to-human communication across
languages, e.g., in chat systems, customer support, or (social) media. It is also employed in downstream
NLP tasks such as sentence simplification (Xu et al., 2016), error correction (Yuan and Briscoe, 2016),
paraphrasing (Mallinson et al., 2017; Wieting and Gimpel, 2018), or cross-lingual resource creation
(Barnes and Klinger, 2019). With the increasing use of MT, however, expectations about output quality
also grow, and now that the goal of adequacy with regard to propositional content is met more often
than not, more subtle aspects start receiving attention. One such aspect is affective content. Establishing
common ground is essential for successful MT-assisted communication (Yamashita et al., 2009), but it is
still unclear how well MT promotes this, especially when handling the affective qualities of texts. On the
one hand, it is able to mostly preserve author sentiment (Balahur and Turchi, 2012). On the other, it is
known that translation obfuscates some socio-demographic characteristics of authors, like gender and
personality traits (Mirkin et al., 2015; Rabinovich et al., 2017).

In this paper, we investigate the question of how well emotions are preserved in MT. Answering this
question and, if necessary, increasing the degree of emotion preservation, is important both theoretically
(to inform cross-lingual studies that use translation as part of their experimental setup) and practically
(to improve the usefulness of MT). The starting point of our research is a study by Rabinovich et al.
(2017), who show that some semantic nuances tend to vanish in translation. In fact, just like human
translation, MT is not guaranteed to preserve any of the linguistic properties of input texts (e.g., politeness
markers may exist in one language but not in the other, passive sentences may be turned into active,
metaphoric expressions can be rendered by a more literal paraphrase). Therefore, to counteract the fading
of emotions through translation, we establish emotion-based translation candidate re-ranking that is
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Research Question Sentence

(Input) He was furious at the apparent disregard for rules.

RQ1: Does MT dilute emotions? He was worried at the apparent disregard for rules.
RQ2: Can we recovered the original emotion? He was quite enraged at the inattention to rules
RQ3: Can we change the emotion? He was unhappy that the rules were ignored.

Table 1: Illustration of three emotion-related research questions about MT, with examples for the associated
tasks to be solved.

applied as post-processing to an MT system’s n-best output. This re-ranking can be defined, for example,
on the basis of a standard emotion classifier with probabilistic output, to select a candidate such that its
emotional connotation is as close as possible to the input. We investigate whether such an approach is
feasible and promising.

To carry out this re-ranking in practice, we would need comparable emotion classifiers for the source
and target languages. We avoid this issue by adopting a back-translation setup (Mallinson et al., 2017):
instead of analyzing the translations automatically obtained by a system performing source→target,
we consider the output of a back-translation pipeline source→target→source, which we can
examine with only one emotion classifier for the source language. We acknowledge that this solution
makes a simplifying assumption, namely that experimenting with back-translation can give a realistic
picture of what would happen in a source→target setting. Still, adding a translation step seems a
reasonable compromise in the absence of comparable emotion classifiers for different languages.

Within this framework, we address three research questions (Table 1 shows motivating examples).
We first ask if a state-of-the-art machine translation system, namely FAIRSEQ (Ott et al., 2019), loses
emotional information during translation (RQ1). (Yes.) Next, we propose a post-processing step to
re-rank n-best translation candidates and evaluate if this improves emotion preservation (RQ2). (It does.)
Finally, we exploit the emotional variation in MT output to investigate whether this approach can actively
change the input emotion (RQ3), essentially performing emotion style transfer (Helbig et al., 2020). (It
can.) The implementation of the pipeline is available at http://www.ims.uni-stuttgart.de/
data/emotion-transfer.

2 Related Work

Affect, Sentiment, and Emotion in Translation. Preserving affect in text is an issue for translation
and other cross-linguistic studies (Wierzbicka, 2013; Wassmann, 2017; Hubscher-Davidson, 2017). On
the one hand, there are linguistic constraints on translation, like the absence of terms for certain states
(e.g., Sehnsucht is German for “a longing for some absent thing”) or colexification phenomena (i.e.,
naming related emotions with the same word, like grief and regret in Persian) which vary from language
to language (Jackson et al., 2019). On the other hand, aesthetic considerations often call for making
texts more readable or pleasant. These factors hamper methods that transfer affect or sentiment across
languages, as they cause both translation errors (for human and machines alike) and stylistic choices which
subvert the sentiment of words (Petrova and Rodionova, 2016). Thus, assessing the quality of sentiment-
annotated resources produced by translation (Banea et al., 2008; Chen and Skiena, 2014; Buechel et al.,
2020, i.a.) is crucial. With this goal, Kajava et al. (2020) compare sentiment and emotion annotations of
movie subtitles in English, Finnish, Italian, and French and find that the emotion preservation depends on
the language pair. Validating resources for Romanian created from English ones, Mihalcea et al. (2007)
notice that human translation can obscure the subjectivity of a lexicon. A comparable observation is drawn
for polarity by Balahur and Turchi (2012) with SMT, and by Salameh et al. (2015) and Mohammad et al.
(2016) who find that translation can corrupt textual sentiment, flattening positive and negative aspects
down to neutrality.

In MT research, some studies specifically try to incentivize the preservation of sentiment. Lohar et al.
(2017) build separate translation models for data coming from each sentiment category. Si et al. (2019)

http://www.ims.uni-stuttgart.de/data/emotion-transfer
http://www.ims.uni-stuttgart.de/data/emotion-transfer
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Figure 1: Overview of emotion preservation and transfer (method).

directly incorporate sentiment in their neural MT system, implementing a Seq2Seq English-to-Chinese
translation model that keeps not only the semantics but also the sentiment of input text, both by including
the sentiment label in source sentences, and by learning the negative/positive meanings of the ambiguous
word as separate embeddings.

While these studies gained some insight on translated polarity, subjectivity, valence, dominance and
arousal, to our knowledge there are no studies that investigate specifically the preservation of emotions in
MT.

Style Transfer. Related to ours is the task of style transfer. This research direction leverages a variety
of methods, from rule-based lexical substitution to sophisticated neural architectures, aiming at retaining
the semantics of texts while modifying their linguistic properties, like genre (Lee et al., 2019; Jhamtani et
al., 2017), romanticism (Li et al., 2018), politeness/offensiveness and formality (Sennrich et al., 2016;
Nogueira dos Santos et al., 2018; Wang et al., 2019) and, importantly for us, affect-related attributes
(Guerini et al., 2008; Whitehead and Cavedon, 2010; Shen et al., 2017; Fu et al., 2018; Xu et al., 2018;
Smith et al., 2019; Helbig et al., 2020). Yet, only a handful of style transfer studies have considered
emotions. Helbig et al. (2020), for instance, propose an interpretable framework based on lexical
substitution which sequentially determines the portion of text to modify, performs the change, and filters
out undesired output. Smith et al. (2019), instead, leverage a denoising auto-encoder and a back-translation
objective to push the text generated during decoding towards a specific target attribute.

The style transfer challenge is to create a fluent output that is semantically similar to the input, but
differs systematically in style. Helbig et al. (2020) control for the balance between content, style and
fluency with a dedicated component in their modular pipeline: after a text is re-written in many emotion
variations, these are re-ranked by an objective function that measures their perplexity, preservation of
content and expression of a target style. Evaluation metrics for these three desiderata are applied in the
reinforcement learning approach of Gong et al. (2019) to impose constraints on output generation. Other
attempts focus on the explicit separation between content and sentiment style (Li et al., 2018; Wen et al.,
2020). Prabhumoye et al. (2018) do so using neural back-translation: in the latent representation of an
input text, its stylistic properties are overwritten, which results in a style-specific paraphrase.

Like them, we tap on back-translation as a paraphrasing strategy, but we transfer emotions, which
we conceptualize as fine-grained styles. Using state-of-the-art off-the-shelf systems, we move from the
problem of guaranteeing fluency and similarity to an input. In line with ours, a few other works have
attempted to generate emotionally loaded text for given emotion classes, for instance in dialogue systems
(Song et al., 2019; Zhou and Wang, 2018), but they create novel texts rather than re-styling existing ones.

3 A Method for Emotion Preservation in Neural Machine Translation

We conceptualize emotion preservation in NMT as a post-processing re-ranking step. As shown in
Figure 1, this involves three components: a translation model, an emotion classifier, and a candidate
selection procedure. Starting from an input in source language S, we generate the n-best translation
candidates in a target language T with an NMT system, which is presumably agnostic to emotion-specific
considerations. Then, we re-rank these candidates based on probabilities produced by an emotion classifier,
and select the best hypothesis given those emotion-level considerations. Hence, the crucial variable is
the diversity of the n-best list: the more diverse, the better the emotion classifier can promote hypotheses
that express particular emotions even if they are not optimal from the point of view of the overall scoring
function of the NMT system.

Translation model. We require a translation model that returns a list of n-best translation candidates,
which is the case for essentially every statistical or neural MT system. We use FAIRSEQ (Ott et al., 2019),
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an open-source sequence-to-sequence modeling toolkit applicable to various tasks, MT included. It shows
state-of-the-art performance and it was developed with the goal to replicate other model architectures.
Therefore, we assume that it is reasonably representative for other models.

Importantly, FAIRSEQ supports different search algorithms, like beamsearch and top-k sampling,
which differ in their ability to encourage diversity in the output. Beamsearch searches the space of
hypotheses left-to-right, retaining at each time step a number of top-scoring candidates that equals the
width of the beam, and expanding on those. Sequences decoded with beamsearch differ on minimal
portions (Gimpel et al., 2013), while they are more varied when generated with sampling strategies. Top-k
sampling, for instance, does not aim at maximizing the likelihood of text. Instead, it randomly samples
words step-wise and outputs from the top-k most probable ones (Fan et al., 2018).

Emotion Classification Model. To estimate the probability distribution over emotions for a given text,
we use a biLSTM with a self-attention mechanism. This model architecture has been shown to perform
close to state-of-the-art in emotion analysis (Baziotis et al., 2018). We treat the output of this emotion
classifier as a scoring function emo(t, e) = p(e|t), i.e., the conditional probability of an emotion given
a text t, and we assume that it is comparable across languages (see Section 4 for a discussion of this
assumption).

Translation Candidate Selection. Once the n translation candidates (called hypotheses in Equations 1
and 2 below) are scored by the emotion classifier, we re-rank them based on their probability for specific
emotions, and select a top candidate based on our research question.

The setup described above permits us to address our three different research questions (RQs). In RQ1,
where we only consider a single translation hypothesis, the output selected by emotion selection is trivially
the one coming out of the translation — it is picked based on properties of a standard translation procedure.
For RQ2, we preserve the dominant emotion of the input by selecting the output such that

output = arg min
c∈hypotheses(input)

|emo(c, ê)− emo(input, ê)| where ê = arg max
e∈Emotions

emo(input, e) . (1)

Measuring the absolute difference in emotion load for two texts is similar to Luo et al. (2019), who
analyze the change in sentiment intensity with mean absolute errors.

Finally, in RQ3, where we aim at maximizing some user-chosen emotion e′, we define

output = arg max
c∈hypotheses(input)

emo(c, e′) . (2)

Our method does not condition the MT system towards a specific emotion. Instead, we evaluate the extent
to which the n-best lists of a state-of-the-art MT system contain sufficient variation in their candidates as
to manipulate the emotional load of a translation – either by optimizing preservation of the input emotion
(RQ2) or by changing the emotion connotation (RQ3).

4 Experimental Setup: Back-translation

The most natural setup to study emotion preservation in translation, and the framework outlined in the
previous section, would be bilingual: analyzing the translation of some source language text into a target
language. For instance, one could compare the distribution of emotion probabilities for a translation
against the corresponding distribution for the source text. However, a meaningful cross-lingual comparison
of emotion probabilities is methodologically challenging: this would require either manual annotation or
highly comparable emotion classifiers for several languages. Manual annotations are costly, and emotion
annotation is known to be tricky in terms of intersubjective replicability (Schuff et al., 2017). Neither are
we aware of emotion classifiers with evidently similar behavior across languages.

To circumvent this problem, our experimental setup uses a back-translation version of the method
described above, shown in Figure 2. We compose two translation steps (S→T and T→S) such that the
output is a paraphrase of the input in the same language S (Bannard and Callison-Burch, 2005) and
the pitfalls of cross-lingual comparability can be avoided. Formally, given an input in S and a target
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Figure 2: Instantiation of the method with back-translation. S is the source language; T is the target.

emotion, we generate the best translation in T; this is then translated back into multiple hypotheses,
providing a set of n paraphrases for the original input. We acknowledge that this type of setup is a
conceptual simplification of the problem, which does not measure the loss of emotion in one direction,
nor accounts for where the change in emotion occurs. As a matter of facts, it risks overestimating the
absolute magnitude of problems in emotion preservation in MT, but this is a price to pay for the usage of
our monolingual emotion classifiers. On the other hand, we can still compare the magnitude of emotion
loss across different MT settings (which we do in the sections below). In addition, results that would
indicate that we can improve emotion preservation in back-translation would conversely be stronger than
such results obtained on a single translation step.

4.1 Experimental Setup Details

Following the considerations of the previous paragraph, we do not run a single experiment, but instead
carry out a series of comparisons, varying the different parameters of the emotion preservation method.

NMT Model: Varying target language and sampling method. We use FAIRSEQ with English–
German and English–Russian models1 (Ng et al., 2019). These sentence-level models are based on
transformers (Vaswani et al., 2017) and pretrained on bitext and back-translated news data, fine-tuned on
in-domain data and used for decoding with a noisy channel approach to re-rank the n-best hypotheses.
We use these models both with beamsearch and top-k sampling (cf. Section 3).

Micro F1

Em. ISEAR Blogs Tales TEC

A .51 .55 .39 .37
D .58 .64 .12 .26
F .70 .56 .33 .55
G .55 — — —
J .72 .69 .45 .69
No — .88 .79 —
Sa .61 .49 .37 .45
Su — .41 .27 .49
Sh .46 — — —

Table 2: Classification results
(“—”: the emotion is not a label
in the respective corpus).

Data Sets: Varying Emotion Realization. Emotions manifest
themselves in various linguistic realizations, for instance with direct
mentions (sad) or indirect associations (abandoned). These realiza-
tions differ widely across domains and genres (Bostan and Klinger,
2018). To gain a representative picture and investigate the effect of
translation on different emotion realizations, we compare four English
corpora. ISEAR (Scherer and Wallbott, 1994) includes ≈7k descrip-
tions of events. Each description is labeled with the emotion that it
induced in the experiencers (anger, disgust, fear, guilt, joy, sadness
and shame). TEC (Mohammad, 2012) contains ≈ 21k tweets associ-
ated to the six fundamental Ekman’s emotions (Ekman, 1992). The
corpora by Aman and Szpakowicz (2007) and by Alm et al. (2005)
are repertoires of ≈5k and ≈15k sentences from a number of Blogs
and (fairy-)Tales, respectively (using Ekman+noemo). These corpora
differ in labels (see Figure 3 vs. 4), topics, registers and communica-
tive purposes: TEC collects short, spontaneous expressions, ISEAR
provides statements that were produced in-lab.

Emotion Classifier. Due to these differences in linguistic realization among corpora, emotion classifiers
generalize badly (Bostan and Klinger, 2018). To avoid this problem, we re-train our emotion classifier (cf.
Section 3) for each dataset. We train the model on 70% of the instances (cf. Section 4), validating it on the
10% and using the remaining 20% to evaluate our emotion preservation method. We use 300-dimensional
GloVe embeddings (Pennington et al., 2014); for regularization, we use Gaussian noise, a dropout rate of

1https://github.com/pytorch/fairseq/tree/master/examples/wmt19

https://github.com/pytorch/fairseq/tree/master/examples/wmt19
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Figure 3: RQ1: Emotion loss (∆) on ISEAR, found with different parameter configurations. Rows are
input emotions, columns are the output emotions (A: anger, D: disgust, F: fear, G: guilt, J: joy, Sa: sadness,
Sh: shame). Each row shows the average ∆ in per-class emotion output.
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Figure 4: RQ1: Emotion loss on other corpora, using beamsearch for decoding and En↔De as language
pairs. Rows are input emotions, columns are the output emotions (No: no emotion, Su: surprise).

0.1, and early stopping. Table 2 shows that performance on the various corpora is comparable to previous
work on the same setup (Bostan and Klinger, 2018).

Evaluation. For evaluation, we re-use the emotion scores employed in candidate ranking. Our basic
measure is again based on probability differences with regarding to a specific emotion e in a set S of
input–output pairs:

∆(S, e) =
1

|S|
∑

(s1,s2)∈S

emo(s1, e)− emo(s2, e). (3)

For RQ1, S is the set of inputs and their 1-best backtranslations. For RQ2, S is the set of inputs and their
backtranslations as selected by Eq. (1) for each input emotion. In RQ3, S is the set of inputs and their
backtranslations as selected by Eq. (2) for each emotion.

We acknowledge that using the emotion classifier both for ranking and evaluation introduces a potential
circularity. To avoid this problem, the reliability of the classifier is crucial. We therefore carry out a
detailed qualitative inspection of examples (Sec. 5.4) to gauge the classifier output with our linguistic
judgment.

5 Results

5.1 RQ1: Does translation preserve the emotion connotation of texts?

We first present results of our three research questions, then provide a qualitative discussion. To begin
with, we turn to the question if the off-the-shelf system FAIRSEQ indeed reduces emotion connotations.

This analysis is purely based on the n = 1 best output from the translation system, which we compare
to the original input. Figure 3 and 4 show the ∆ values between the input and output emotion probabilities.
Each cell in the heatmaps contains the average difference between the group of texts that are associated
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with the emotion on the row (as determined by our emotion classifier) and their backtranslations. For
instance, the first row informs us about the extent to which emotions change when texts expressing
predominantly anger are back-translated (probability is reduced by an average of 21%, while it increases
a bit for all the other emotions). Hence, the expectation that the backtranslations have a lower emotional
score for the emotion characterizing the input should reflect on the diagonal, which reports the ∆ values
between the emotion identified by the classifier in an input text and the same emotion as measured in its
backtranslation.

In order to establish what patterns have generally validity, we vary three parameters (cf. Section 4
for details), namely the data set (ISEAR, TEC, Tales, Blogs) – to measure the influence of domain and
annotation procedure, the language (from English to German and from English to Russian), and the
decoding strategy, comparing beamsearch, which is more conservative, to sampling, which generates
more diverse results.

Varying Decoding Method and Target Language. We analyze decoding method and target language
on ISEAR. Figure 3 reports the results obtained when using beamsearch (a) against sampling (b) and
German (a) against Russian (c). There is no significant difference between German and Russian (p=.23,
Mann Whitney U test), nor between decoding methods (p=.76). Hence, we conclude that the ability of
translations to preserve emotion is unrelated both to the target/pivot language, as well as to the generation
strategies we employed.

The values on the diagonals, indicating a general loss of the dominant emotion in the input, are of the
lowest magnitude and negative. The backtranslations of inputs expressing anger and shame are those with
the greatest loss in those same emotions (−.21 and −.22, respectively), followed by guilt (−.18), joy and
sadness (−.15), disgust and, lastly, fear (−.14 and −.13). Off-diagonal cells, instead, are positive, with
the exception of the degree of joy in items originally containing disgust when the decoding is sampling.
In the three cases, the highest increases are recorded for the instances originally labeled as disgust, which
increase in their shame scores, and for the shame examples, whose amount of guilt is scaled up. Overall,
this means that (back)translations express the original emotion to a lower extent than the input, and the
decrease of the original emotion is balanced out by an increase of the others, confirming our hypothesis.

Varying Corpora. Given the non-significant difference between the parameters we tested, we continue
our experiments fixing the decoding method and language pair to beamsearch and En↔De, and investigat-
ing if we can generalise our observations to datasets other than ISEAR. The results, which are reported
in Figure 4, suggest that the loss of original emotions visible in the diagonal is a persistent trend across
corpora, together with the fact that original emotions are toned down more than any other.

We observe that the emotion change on TEC is the most similar to ISEAR, despite the difference in
their labels. Further, interesting observations include the amount of anger gained by the translations of
text classified as disgust in Figure 3 (a) vs. Figure 4 (b). This could be an effect of the presence of the
label noemo, which does not exist in ISEAR. It is also interesting to notice that translations of Blogs and
Tales tend to increase in neutrality more than in other emotions. Exceptions are translations that were
already classified as containing no emotion, and which lose their neutral status (see cell noemo-noemo in
the diagonal of both (b) and (c), Figure 4).

5.2 RQ2: Can an emotion-informed translation selection restore the original emotion?

We now evaluate our emotion-informed post-processing. Figure 5 (a) reports the results on ISEAR with
beamsearch: for an input, we obtain its forward translation, and n = 50 backtranslations; among them,
we pick the one minimizing the ∆ with the input emotion, following Eq. (1). Like before, the emotions
on the rows are expressed by the input text. Columns are those for which the delta is computed between
the output and input. For instance, the cell A-D shows the average ∆ between the disgust score of the
texts classified as anger, and the disgust score in their backtranslations.

What interest us is the diagonal, showing the average differences between the original emotion and
that emotion as expressed by the output. Once more these values are negative, indicating that at least for
some texts, the translation with the closest emotion to the original one still has less of that emotion. As we
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(b) Transfer – Beamsearch
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(c) Transfer – Sampling
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Figure 5: RQ2 and RQ3. RQ2: Heatmap (a) Recover Emotion reports the ∆s for the second experiment.
RQ3: Heatmaps (b) and (c) report the ∆s for the third. In both cases, the dataset is ISEAR, input emotions
are on the rows, columns are target emotions. See Figure 3 for emotion abbreviations.

minimize the deltas, values close to 0 indicate success. Most are actually close; the cells that depart from
0 the most are A-A, Sh-Sh and G-G, with ∆ = −.042,−.042 and −.022. In a comparison to Figure 3
(a), we see that indeed we can recover emotions. The loss of anger (A-A) is 5 times smaller than it was
when exploiting the 1-best backtranslation; likewise, sadness (Sa-Sa) is preserved ≈21 times more. These
numbers suggest that the behavior of NMT tools can be improved with the n-best lists produced by the
systems themselves, since these hypotheses provide enough information to preserve emotions.

As a last sanity check, we investigate if descending the n-best list in the search of an emotionally
adequate translation has an impact on its translation adequacy. To do so, we compute the BLEU-4 score
for the top outputs returned by the system (i.e., those analysed in RQ1) and our emotion-preserving
backtranslations, and we compare their averages. Translation quality remains stable: in the first case
we obtain .49 BLEU, in the latter we find a BLEU of .51. This indicates that it is possible to find an
emotion-preserving variation further down the space of candidate outputs (at least to a certain point)
without sacrificing the system’s performance.

5.3 RQ3: Can we exploit overgeneration to transfer a target emotion on a text?

Having shown that MT prefers to output sentences with a toned-down emotion, and that it is possible
to subselect instances with a similar emotional connotation as the input, we now turn to the question
if diversity in MT output can be used for the task of emotion style transfer. In this setting, our back-
translation pipeline is used for paraphrasing with style transfer, following Xu et al. (2012) and Prabhumoye
et al. (2018). Given an input text t and an emotion e, we want to produce a variation t′ which respects
the following desiderata (Mir et al., 2019): it maximizes similarity with t; it is fluent and it expresses
emotion e. Backtranslations provide us with a particularly easy setup: since MT systems are trained to
maximize the fluency of their output and their faithfulness to the input, we assume that it is sufficient to
pay attention to the presence of the target emotion (see Eq. (1)). Forward and backward translation steps
alike are carried on through beamsearch or top-k sampling, with k=10, both producing n=50 paraphrases.

Since this experiment tries to promote stylistic diversity, n-best lists could have been leveraged also
in the target language2. However, our aim is also to limit the artefacts introduced by our usage of back-
translation: we assumed that employing only one forward translation could approximate a more realistic
setting, in which the mapping between source and target occurs in a single step.

Varying Decoding. Figure 5 shows the results on ISEAR with beamsearch (b) and sampling (c). Each
cell reports the average ∆ of all instances for a pair of input (rows) and target (columns) emotions. It
quantifies the intensity of the transfer, or how much more of a target emotion is present in the selected
backtranslation. The first row in (b), for example, considers the backtranslations of texts expressing anger:
those on which anger itself was transferred (i.e., those selected as having the highest degree of anger)
express that emotion .05 points more than their original counterparts; disgust is .36 points higher than

2We actually experimented with n-best translations in the target language both for RQ2 and RQ3, obtaining results similar to
those we report here.



4348

before in those backtranslations where disgust was the target emotion.
As expected, the diagonal has the lowest numbers in both matrices, since it corresponds to target

emotions that were already there in the first place. Yet, there is quite a substantial improvement overall,
indicating that our method can be used for emotion transfer. The highest ∆s are mainly among pairs of
negative emotions. We also notice that it is easier to transfer joy onto negative emotions than the other
way around (see column joy, which has some of smallest off-diagonal values). In line with the fact that
emotions are not binary, this suggests there are interdependencies between the source text emotion and
the desired target emotion.

In both the beamsearch and sampling cases, the strength of transfer depends on input and target
emotions. Successful transfers take place for sentences originally labeled as joy that are re-phrased as
sadness. Given shame, guilt can be increased to a considerable extent, as can shame given guilt, which
is an interesting symmetry because these two emotions are attributed to the self (Tracy and Robins,
2006). Other than these similarities, however, we find a significant difference between the two matrices
(p=1.11 · 10−09, Mann Whitney U test). The higher numbers in (c) corroborate the idea that sampling
efficiently induces diversity in the n-best outputs. Also, emotion diversity in the translations can be
variously achieved considering hypothesis space of different sizes. While in heatmap (c) the diagonal
mean is .05 and the off-diagonal 0.2, with n=20 paraphrases, the diagonal decreases to a mean of .04 and
the off-diagonal to .18; with n=100, the diagonal and off-diagonal means are respectively .09 and .39,
showing that a higher n enables a stronger transfer.

5.4 Analysis

To gain further insight on our procedure, we show some instances from ISEAR which we found challenging
for our models, and show them across the three experiments in the beamsearch scenario (Table 3, letters in
bold correspond to inputs). Their backtranslations have lost the original connotation, so much so that the
classifier assigns them to a different emotion class (this happens for 387 inputs in setup (a), see Figure 3).

Change in emotion (both loss and alteration) often seems to involve a relatively small number of
recurring linguistic transformations, like the change of modality (c. and f.), or in the intensity of the
adjectives (b. and d.). The fact that disgust leaves room for shame (c.) appears coherent with the theory
that the latter is related more to the self (Tracy and Robins, 2006): as opposed to the output of the transfer,
the input presents the action as one that the experiencer had to take. In d., sadness replaces disgust with the
use of a softer expression, such as “loathe”. This example also highlights that removing a direct emotion
word can determine a switch in connotation. Another reason why the backtranslation in b. is associated to
fear could be that silence, in ISEAR, mostly occurs in the description of disruptive, frightening events,
similarly to being “approached” by strangers (and hence, the joyful sentence in e. turns into fear).

There are also signals that emotion changes show a gender bias (Sun et al., 2019): characterising the
subject as a male moves anger to guilt or joy (a.), while we have found that female characters can elicit an
association with shame.

As for the transfer, it is possible that smaller lexical changes are sufficient to change emotions when the
input label and the new emotions can co-occur. For instance, anger and guilt, being negative emotions,
are more likely to co-occur than anger and joy, corresponding to output 1 and 3 for the first sentence.
These examples also show that transfer can happen without disrupting grammaticality nor content – at
least within the relatively small top-n lists we considered. Yet, this observation needs further exploration,
because striking a balance between all transfer desiderata and aggregate their separate evaluations still
represents a challenge in the field. Moreover, we need a better understanding of the contrast between the
findings of Mohammad et al. (2016) (altering polarity hampers human’s ability to determine the original
sentiment of the text but does not mislead automatic predictions) and ours (emotion changes in the above
examples are comparatively marginal).

6 Conclusion and Future Work

Our goal was to understand if automatic translation retains the emotional substance of texts. We found
that a state-of-the-art NMT system tends to tone down emotion connotations, thus presenting a problem
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RQ Emotion Sentence

A a. When I have to take exams I am very excited and have not much time for the housekeeping. Then my
friend has to do everything

1 G When I have to take exams, I am very excited and do not have much time for the budget. Then my
boyfriend has to do everything.

2 A When I have to take exams, I am very excited and have little time for housekeeping. Then my girlfriend
has to do everything she can.

3 J When I have exams, I’m very excited and I don’t have much time for the household. Then my boyfriend
has to take care of everything.

A b. When a friend told me a story and I stayed dumb because I had no story to tell.
1 F When a friend told me a story and I remained silent because I had no story to tell.
2 A If a friend told me a story and I was mute because I had no story to tell.
3 G When a friend told me a story, I stayed silent because I had nothing to tell.

D c. On New Years eve I drank too much alcohol, so much that I had to vomit in the presence of other
people.

1 Sh On New Year’s Eve I drank so much alcohol that I vomited in the presence of other people.
2 D On New Year’s Eve I drank so much alcohol that I had to vomit in the presence of other people.
3 G On New Year’s Eve, I drank too much alcohol, so much that I threw up in the presence of other people.

D d. I feel disgusted with the bootlickers, with helpless people.
1 Sa I loathe the bootleggers, the helpless people.
2 D I am disgusted by the boot-lickers, by the helpless people.
3 Sh I loathe boots, I loathe helpless people.

J e. When a person that I like very much got near to me.
1 F If a person I like very much approached me.
2 J If a person I like very much got close to me.
3 D If someone I like came up to me.

F f. I was going to knock down a pedestrian with my car.
1 A I was trying to push a pedestrian over with my car.
2 F I was going to knock over a pedestrian with my car.
3 J I wanted to overturn a pedestrian with my car.

Sh I tried to knock over a female pedestrian with my car.

Table 3: Examples for the three research questions tackled in this paper. Backtranslations with a different
emotion connotation correspond to RQ1; those where the emotion is recovered to RQ2; and those with a
different emotion correspond to RQ3. Input ids are in bold.

for the development of affect-aware MT products, for cross-lingual research based on the translation of
existing data, and for communication aided by MT. We showed how an emotion-informed subselection
of translation candidates can improve this situation without adversely affecting translation accuracy.
Moreover, we used the same post-processing methodology to induce emotion variability and address the
task of emotion style transfer.

Results show that MT outputs can be improved in their emotion rendering, but we relied on a back-
translation pipeline instead of a real-world translation scenario. This motivates an important next research
step, namely the development of an emotion classifier which estimates emotion probability distributions
in multiple languages in a comparable manner. It is still open how to measure comparability and how to
optimize that measure. Finally, our analysis relied on a single NMT system, namely FAIRSEQ. Despite
our argument that this tool is representative for a range of systems, our study should be extended to other
systems and other target languages.
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A Example Outputs

Challenging examples for the models. Sentences corresponding to RQ1 show how the same sentence is
transformed by the MT system as is. Those corresponding to RQ2 were produced by our emotion-based
procedure to recover the original emotion connotations, and those corresponding to RQ3 were selected by
the same emotion-based procedure, when used to transfer emotions.

RQ Emotion Sentence

G Feeling guilt after greed, buying chocolate and pigging out to the point of feeling sick, especially as
I am fat.

1 D Feelings of greed, buying chocolate and exploitation to the point of nausea, mainly because I’m fat.
2 G Feeling guilty about greed, buying chocolate and feeling sick, especially because I’m fat.
3 Sh Feelings of greed, buying chocolate and feeling ill, mainly because I’m fat.

F When I was first exposed to the dead bodies, for dissecting purposes at the school of medicine.
1 D When I was first confronted with the corpses to dissect them in medical school.
2 F The first time I was confronted with the bodies, I dissected them in the medical school.
3 F The first time I was confronted with the bodies, I dissected them in the medical school.

Sa When my sister had the still born child, she was emotionally very deep down, and it took her a long
time to recover.

1 J When my sister gave birth to the baby, she was very emotional and it took a long time for her to
recover.

2 Sa When my sister had the baby, she was emotionally very deep inside and it took a long time for her
to recover.

3 A When my sister had the baby, she was emotionally very low and it took a long time for her to recover.

A During a recent meeting, Mr. A showed his excitement and overindulged in the notes delivered.
Though his curiosity could not be blamed, his way of accquiring knowledge was an extreme be-
haviour e.g he always tried to know what I was reading and gained everything he could.

1 D During a recent meeting, Mr. A. showed his enthusiasm and left himself to the notes handed down.
Although his curiosity could not be reproached, his way of acquiring knowledge was extreme, i.e.
he always tried to know what I was reading and gained everything he could.

2 A During one recent meeting, Mr. A. showed his enthusiasm and indulged excessively in the handed
down notes. Although his curiosity could not be blamed, his way of acquiring knowledge was
extreme, i.e. he always tried to know what I was reading and gained all he could.

3 Sa During a recent meeting, Mr. A. showed his enthusiasm and revelled excessively in the notes handed
down. Although he could not be blamed for his curiosity, his way of acquiring knowledge was
extreme, that is, he always tried to know what I was reading and gained everything he could.

D 3 years ago I served in the army. Once a collegue denounced me because of a delict, which is usually
committed. I was arrested for 3 days. I still detest this man.

1 G I served in the Army three years ago. A colleague once reported me for a crime that is normally
committed. I was arrested for three days. I still loathe this man.

2 D I served in the military three years ago. One time, a colleague reported me for a crime that is usually
committed. I was arrested three days ago. I still detest that man.

3 Sa Three years ago I was in the army. On one occasion a colleague reported me for an offence that is
usually committed. I’ve been detained for three days. I still despair of this man.

A When another fellow worker decided to leave the company. We had been very close and we would
not be able to work with eachother any longer.

1 Sa When another employee decided to leave the company. We were very close and couldn’t work
together.

2 A As another employee decided to leave the firm. We were close and couldn’t work together any more.
3 G When one more employee decided to leave the company. We were very close and could no longer

work with one another.

Table 4: Examples for the three research questions tackled in this paper, with ISEAR. A: anger, D: disgust,
F: fear, G: guilt, J: joy, Sa: sadness, Sh: shame.
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