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Abstract

Ensuring smooth communication is essential in a chat-oriented dialogue system, so that a user
can obtain meaningful responses through interactions with the system. Most prior work on dia-
logue research does not focus on preventing dialogue breakdown. One of the major challenges
is that a dialogue system may generate an undesired utterance leading to a dialogue breakdown,
which degrades the overall interaction quality. Hence, it is crucial for a machine to detect di-
alogue breakdowns in an ongoing conversation. In this paper, we propose a novel dialogue
breakdown detection model that jointly incorporates a pretrained cross-lingual language model
and a co-attention network. Our proposed model leverages effective word embeddings trained
on one hundred different languages to generate contextualized representations. Co-attention
aims to capture the interaction between the latest utterance and the conversation history, and
thereby determines whether the latest utterance causes a dialogue breakdown. Experimental re-
sults show that our proposed model outperforms all previous approaches on all evaluation metrics
in both the Japanese and English tracks in Dialogue Breakdown Detection Challenge 4 (DBDC4
at IWSDS2019).

1 Introduction

In today’s world, we often use interactive virtual conversational agents in our daily lives, such as Siri,
Google Assistant, Alexa, etc. Such chat-oriented dialogue systems assist users in their daily lives through
interaction in the form of conversations. Through information obtained via a conversation, a system can
understand a user’s need and generate the corresponding response, such as reporting weather forecasts,
booking tickets, or entertaining the user by chit-chatting. To facilitate hassle-free communication, the
system needs to generate proper and rational responses without any ambiguity. Furthermore, while gen-
erating a response, the system should consider not only the last turn in the conversation but also all
previous utterances so that the response generated is coherent with the entire conversation history. The
user experience degrades when a dialogue breakdown occurs, where the system generates an inappro-
priate response which breaks the conversation flow. Dialogue breakdown detection is one of the major

User utterances System utterances Breakdown?
U1: What do you like to do? S1: I like to eat out and eat. NO

U2: I like to eat too. Hamburgers and
french fries are my favorite.

S2: I love fries. I love cheese. NO

U3: Where do you work? S3: I work for a company. NO

U4: As a what? S4: I have a lot of friends. YES

Table 1: An example dialogue where the last system-generated response causes a dialogue breakdown.
Ui and Sj denote the i-th user utterance and the j-th system utterance in the dialogue, respectively.
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challenges faced by current chat-oriented dialogue systems, but it has still not been carefully studied by
the research community.

The dialogue breakdown detection task is designed to test a system’s capability of identifying the un-
desired utterance causing a dialogue breakdown, which is expected to further help us to build more fluent
dialogue systems. The dialogue breakdown detection task requires a participating system to determine
whether an utterance generated by a system causes a dialogue breakdown (Higashinaka et al., 2016).
Table 1 shows an example of a dialogue breakdown in an ongoing conversation. In this example, the last
system response causes a dialogue breakdown, since it does not answer the question “As a what?” in the
last user utterance but instead gives a completely irrelevant response “I have a lot of friends.”

Dialogue Breakdown Detection Challenge 4 (DBDC4)1 is a shared task dedicated to dialogue break-
down detection. In this paper, we use the dataset released in DBDC4 for our experiments. Since whether
a system utterance causes a dialogue breakdown is somewhat subjective, the task is modeled as a classi-
fication task with three classes: Breakdown (B), Possible Breakdown (PB), and Not a Breakdown (NB).
Every single instance in the dataset is annotated by multiple annotators. Each instance is assigned a
gold-standard (majority) class, and a probability distribution based on all annotators’ predictions. The
task has two tracks involving two different languages: Japanese and English. The evaluation metrics
consist of both classification-related metrics and distribution-related metrics. We will introduce them in
detail in Section 4.3.

Prior work has exploited feature-engineered machine learning approaches like random forests, neural
network architectures such as LSTM (Hendriksen et al., 2019; Shin et al., 2019; Wang et al., 2019),
and the monolingual pretrained language model BERT (Devlin et al., 2019; Sugiyama, 2019). Most
prior work treats the dialogue history and the last system response in the same manner. In feature-based
approaches (Wang et al., 2019), the features are extracted from the concatenation of both the dialogue
history and the last system response, while in other models using pretrained word embeddings (Hendrik-
sen et al., 2019; Shin et al., 2019; Sugiyama, 2019), the interaction between the dialogue history and the
last system response is also not explicitly captured.

Recently, cross-lingual language models such as XLM (Conneau and Lample, 2019) and XLM-
R (Conneau et al., 2020) demonstrate strong performance on many cross-lingual natural language pro-
cessing (NLP) tasks (Wang et al., 2018; Conneau et al., 2018). They also outperform pretrained monolin-
gual language models on tasks with low-resource languages. By utilizing shared word embeddings over
different languages and multilingual parallel texts, cross-lingual language models encode input texts into
one single representation space shared by all languages. This removes the cost of language-specific train-
ing. In this paper, we utilize pretrained cross-lingual language models to benefit from the multilingual
training data. To the best of our knowledge, ours is the first work to incorporate pretrained cross-lingual
language models in dialogue breakdown detection.

Typically, pretrained language models are not trained in a task-specific setting. When we utilize them
for a particular task, it might not perform well if the training data is not too large. To better capture the
interaction between the previous dialogue history and the last utterance, we propose to integrate a co-
attention network with the cross-lingual language model. Experimental results show that our co-attention
network significantly improves the performance of our model on the DBDC4 dataset. The source code
and trained models of this paper are available at https://github.com/nusnlp/CXM.

2 Task Overview

A dialogue history H consists of a sequence of alternating user and system utterances. The target utter-
ance T for dialogue breakdown detection is the succeeding system utterance. Each instance (H, T ) is
assigned one of three candidate classes: Breakdown (B), Possible Breakdown (PB), and Not a Break-
down (NB). The output of a model includes two components: a predicted class from one of the three
candidates {B, PB, NB}, and a probability distribution over the three classes. DBDC4 includes two
tracks in two different languages (Japanese and English) with the same task setting.

1https://sites.google.com/site/dialoguebreakdowndetection4/
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Figure 1: The architecture of our proposed model for DBDC4. Hi denotes the i-th token in the tokenized
dialogue history and Tj denotes the j-th token in the tokenized target utterance.

3 Model Description

We propose a Co-attentive Cross-lingual Neural Model (CXM), which is based on a pretrained cross-
lingual language model and a co-attention network to tackle the task of DBDC4. We give a detailed
description of CXM in this section. We present the overall architecture of the proposed model in Figure 1.

3.1 Pretrained Cross-lingual Embeddings
For the embedding layer, we adopt a state-of-the-art cross-lingual pretrained language model named
XLM-R (Conneau et al., 2020), which is pretrained on large-scale multilingual corpora. Compared with
other cross-lingual language models mBERT (Devlin et al., 2019) and XLM (Conneau and Lample,
2019), the data used to pretrain XLM-R is enlarged by orders of magnitude, especially for low-resource
languages. The CC-100 corpus used for pretraining XLM-R includes significantly larger size of both
Japanese and English texts than the Wiki-100 corpus on which mBERT and XLM are pretrained (Con-
neau et al., 2020). In this paper, we choose the largest model of XLM-R with hidden dimension size
d = 1024.

Assume that the dialogue historyH consists of user-system utterances with h tokens after tokenization,
and the target system utterance T consists of t tokens. We first concatenate these two parts into a
combined input representation to XLM-R, and then we obtain the last layer output, denoted as G ∈
R(h+t)×d:

G = emb([H; T ]) = [H;T] , (1)

where d is the hidden dimension size of XLM-R, H ∈ Rh×d is the last layer output corresponding to
the words in the dialogue history, and T ∈ Rt×d is the last layer output corresponding to the words
in the target utterance. With XLM-R embeddings, we utilize data from other languages to enrich the
training dataset during training, so as to transfer the knowledge learned from other languages to the
target language.

3.2 Co-Attentive Encoding
To further capture the interaction, we propose to utilize a co-attentive encoder to compute a combined
representation of the dialogue history and the target utterance. The co-attention network (Lu et al., 2016)



4204

was initially proposed for visual question answering (VQA). In VQA, it was used to jointly reason over
image and question attention. Xiong et al. (2017) adapted the co-attention network for machine reading
comprehension (e.g., SQuAD). They used a co-attention network to capture the interaction between
the question and passage for answer span extraction. While Xiong et al. (2017) used the co-attentive
encoder for single-turn machine reading comprehension, we utilize the co-attentive encoder in a more
complex dialogue breakdown detection task in a multi-turn conversation setting. The proposed approach
of utilizing the co-attentive encoder is described as follows.

To capture the interaction between the dialogue history H and the target utterance T , we use a co-
attentive encoder to compute a combined representation of H and T . We first calculate the token-wise
contextual similarity A ∈ Rt×h between the dialogue history and the target utterance.

A = TH> (2)

where Ai,j calculates the similarity of the i-th token in the target utterance (i.e., the i-th row of T) and
the j-th token in previous dialogue utterances (i.e., the j-th row of H).

We apply a row-wise softmax function for normalization to produce the attention scores over the
dialogue history for each word in the target utterance, resulting in Ã. Next, we compute a summary or
weighted representation of the dialogue history corresponding to each word of the target utterance:

Tx = Ã H ∈ Rt×d (3)

Next, the initial target utterance encoding vectors in T (i.e., each row of T), and the vectors in Tx

are concatenated, and passed through a bidirectional LSTM, which results in T̃ ∈ Rt×d. T̃ essentially
captures the interaction between the dialogue history and the target utterance by jointly encoding them.

We use a self-attention layer on top of T̃, which can effectively aggregate evidence from the joint
encoding vectors to infer the output. First, we compute the self-attention matrix:

As = T̃ W T̃> ∈ Rt×t , (4)

where W ∈ Rd×d is a trainable bi-linear matrix. Next, we apply a row-wise softmax function for
normalization, resulting in Ãs. Now, the self-attentive encoding vectors can be aggregated as:

Ts = ÃsT̃ ∈ Rt×d (5)

Then, we concatenate the joint encoding vectors in T̃ with the self-attentive encoding vectors in Ts,
followed by a feed-forward layer, which results in Y ∈ Rt×d.

We aggregate the vectors in Y for the output layer. If the ith row of Y is represented as yi ∈ Rd, the
aggregated vector v ∈ Rd can be written as:

αi ∝ exp(yi w
>) ; v = α Y (6)

where α ∈ Rt and w ∈ Rd is a trainable vector.
Output Layer: In the output layer, we use a simple feed-forward layer on top of v. The number of

output units is three for the three different classes. For training, we minimize the mean squared error
(MSE) loss summing over all the training instances.

4 Experiments

4.1 Datasets
In our experiments, we focus on the official annotated dataset of DBDC4 including both Japanese and
English versions. Following the practice of the DBDC4 participating systems (Hendriksen et al., 2019;
Sugiyama, 2019; Wang et al., 2019; Shin et al., 2019), we also utilize the official annotated data released
in previous Dialogue Breakdown Detection Challenges including DBDC1, DBDC2, and DBDC3.

We present the dataset statistics in Table 2. We adopt the split of the training set and development
set as described in (Sugiyama, 2019). Each dialogue session consists of multiple turns of user-system



4205

Japanese Train Dev Test
Dataset DBDC1

-JP-dev
DBDC1
-JP-eval

DBDC2
-JP-dev

DBDC2
-JP-eval

DBDC4
-JP-dev

DBDC3
-JP-eval

DBDC4
-JP-eval

# sessions 20 80 150 150 73 150 223
# instances 220 880 1650 1650 1168 1650 2818

English Train Dev Test
Dataset DBDC3

-EN-dev
DBDC4
-EN-dev

DBDC3
-EN-eval

DBDC4
-EN-eval

# sessions 415 211 200 200
# instances 4150 2110 2000 2000

Table 2: Statistics of the datasets. The upper table shows the Japanese datasets and the lower table shows
the English datasets.

interactions. The gold-standard distributions over the three labels for the evaluation on distribution-
related metrics are calculated based on labeling decisions from all the annotators. The gold-standard
labels for the evaluation on classification-related metrics are decided by majority voting. In the Japanese
track, the official test set is DBDC4-JP-eval which consists of 2818 instances. In the English track, the
official test set is DBDC4-EN-eval with 2000 instances.

Previous models (Hendriksen et al., 2019; Sugiyama, 2019; Wang et al., 2019; Shin et al., 2019)
tested on DBDC4 used only the official datasets for training in a monolingual setting, i.e., the model
only incorporated English training data in the English track and Japanese training data in the Japanese
track. For training and validation, we use data released in DBDC1, DBDC2, DBDC3, and DBDC4. We
evaluate our model on the DBDC4 test set.

4.2 Training

We prepare the training data for our proposed CXM model in two ways. We denote the model trained
on single language data as CXM-S and on two languages as CXM-D. Specifically, in the Japanese
track, CXM-S utilizes Japanese training set during training, including DBDC1-JP-dev, DBDC1-JP-eval,
DBDC2-JP-dev, DBDC2-JP-eval, and DBDC4-JP-dev. Based on CXM-S, CXM-D adds additional En-
glish data during training, including DBDC3-EN-dev, DBDC3-EN-eval, and DBDC4-EN-dev. The de-
velopment set for both CXM-S and CXM-D is DBDC3-JP-eval.

Similarly in the English track, the training set for CXM-S includes DBDC3-EN-dev and DBDC4-EN-
dev, while CXM-D utilizes additional Japanese training data consisting of DBDC1-JP-dev, DBDC1-JP-
eval, DBDC2-JP-dev, DBDC2-JP-eval, DBDC3-JP-eval, and DBDC4-JP-dev. The development set is
DBDC3-EN-eval.

The parameters in the XLM-R embedding layer are pretrained on corpora of one hundred lan-
guages (Conneau et al., 2020) and updated during training. We use mean squared error for the loss
function during training.

4.3 Evaluation Metrics

The official evaluation metrics of DBDC4 include classification-based and distribution-based metrics.
Classification: The classification-based metrics consist of accuracy and F1 scores.

• Accuracy: the number of correctly classified instances divided by the total number of instances.

• F1 (B): F1 score corresponding to the classification label B.

• F1 (PB+B): F1 score corresponding to the classification labels PB and B grouped together.

For classification-related metrics, a higher score indicates better performance.

Distribution: The distribution-based metrics utilize Jensen-Shannon divergence (JSD) and Mean
Squared Error (MSE).
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• JSD (NB, PB, B): Jensen-Shannon divergence calculated over the predicted distribution of all three
labels.

• JSD (NB, PB+B): JSD calculated over the predicted distribution of two labels (PB and B are com-
bined and considered as one single label).

• JSD (NB+PB, B): Same as JSD (NB, PB+B) except that NB and PB are combined.

• MSE (NB, PB, B), MSE (NB, PB+B), and MSE (NB+PB, B): Similar to the above metrics except
using mean squared error instead of Jensen-Shannon divergence.

Distribution-based metrics measure the difference between the predicted distribution and the gold-
standard distribution, so a lower score indicates better performance.

4.4 Participating DBDC4 Models

We compare our proposed CXM model with all previous participating models in DBDC4. We give brief
descriptions of these models as follows.
NTTCS19 (Sugiyama, 2019): This model uses a BERT classifier on inputs consisting of the dialogue
history, target utterance, and other textual features. The model participated in both Japanese track and
English track.
RSL19BD (Wang et al., 2019): This model includes a feature-based random forest regression model,
a feature-based LSTM model, and an ensemble of component models. The model participated in both
Japanese track and English track.
LIIR (Hendriksen et al., 2019): This is an LSTM model with GloVe embeddings, with inputs consisting
of the dialogue history and the target system utterance. The model participated in the English track only.
BitTalk (Shin et al., 2019): This model is a bidirectional LSTM with self-attention on inputs consisting
of the dialogue history and the target system utterance. The model participated in the English track only.
Baseline (Higashinaka et al., 2019): This is a conditional random field (CRF) baseline model with
textual features extracted from the dialogue history and the target utterance. The model was created by
the DBDC4 organizers and it participated in both Japanese and English tracks.

5 Results

In this section, we present the comparison results and an ablation study to better understand our model.

5.1 Model Comparison

We present the comparison results on DBDC4 Japanese track and English track in Table 3 and Table 4,
respectively. We denote NTTCS19 models as NTT, RSL19BD models as RSL, and the organizer’s
Baseline as BL. The number following the model name is the index of a run. The scores of previous
participating models are retrieved from (Higashinaka et al., 2019). The reported scores of our models
are calculated by the official evaluation script provided by the organizers. The results show that our best-
performing model CXM-D outperforms all previous models significantly on every evaluation metric in
both Japanese and English tracks.

In the Japanese track, when evaluated on classification-based metrics, CXM-D outperforms the best
previous models by 13.13%, 13.25%, and 5.57% on accuracy, F1 (B), and F1 (PB+B), respectively.
CXM-D improves the previous best models by 34.7%, 32.0%, and 45.6% when evaluated on three
JSD-based metrics. When evaluated on MSE-based metrics, the improvements are 36.9%, 39.7%,
and 46.0%. For each of the JSD and MSE metrics, the percentage of improvement is obtained by
100− (ours/previous best)× 100.

In the English track, CXM-D outperforms the previous best models by 7.60%, 11.35%, and 0.92% on
accuracy, F1 (B), and F1 (PB+B), respectively. CXM-D improves the previous best models by 14.8%,
13.6%, and 22.4% on the three JSD-based metrics. On the three MSE-based metrics, the improvements
are 10.7%, 14.4%, and 14.6%.
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Model Accuracy F1
(B)

F1
(PB+B)

JSD
(NB,PB,B)

JSD
(NB,PB+B)

JSD
(NB+PB,B)

MSE
(NB,PB,B)

MSE
(NB,PB+B)

MSE
(NB+PB,B)

BL 0.5330 0.4367 0.6592 0.3839 0.2628 0.2342 0.1997 0.2293 0.2085
NTT-1 0.5841 0.5387 0.7091 0.0953 0.0620 0.0612 0.0463 0.0635 0.0507
NTT-2 0.5724 0.5255 0.7254 0.1014 0.0642 0.0674 0.0504 0.0670 0.0581
NTT-3 0.4808 0.4605 0.7011 0.1259 0.0840 0.0871 0.0653 0.0915 0.0779
NTT-4 0.4446 0.4512 0.7026 0.1361 0.0937 0.0933 0.0715 0.1028 0.0848
RSL-1 0.5390 0.4568 0.6560 0.0975 0.0627 0.0647 0.0492 0.0671 0.0568
RSL-2 0.5412 0.4613 0.7014 0.0989 0.0623 0.0684 0.0509 0.0674 0.0622
RSL-3 0.5476 0.4589 0.6811 0.0967 0.0615 0.0659 0.0493 0.0662 0.0591
RSL-4 0.5412 0.4583 0.6782 0.0954 0.0602 0.0646 0.0480 0.0643 0.0568
RSL-5 0.5444 0.4603 0.6667 0.0947 0.0601 0.0636 0.0475 0.0640 0.0556
CXM-S 0.6831 0.6508 0.7710 0.0734 0.0489 0.0411 0.0376 0.0489 0.0371
CXM-D 0.7154 0.6712 0.7811 0.0618 0.0409 0.0333 0.0292 0.0383 0.0274

Table 3: Experimental results on the DBDC4 Japanese track.

Model Accuracy F1
(B)

F1
(PB+B)

JSD
(NB,PB,B)

JSD
(NB,PB+B)

JSD
(NB+PB,B)

MSE
(NB,PB,B)

MSE
(NB,PB+B)

MSE
(NB+PB,B)

BL 0.4635 0.3421 0.5803 0.4381 0.3176 0.2670 0.2237 0.2788 0.2295
BitTalk 0.4355 0.3901 0.6492 0.0992 0.0706 0.0570 0.0506 0.0734 0.0513
LIIR 0.5335 0.0981 0.0984 0.4245 0.4193 0.4186 0.1323 0.2641 0.2853
NTT-1 0.4880 0.4641 0.7664 0.0733 0.0389 0.0504 0.0378 0.0444 0.0465
NTT-2 0.5320 0.4482 0.6369 0.0752 0.0391 0.0481 0.0377 0.0432 0.0429
NTT-3 0.5345 0.4547 0.6724 0.0709 0.0417 0.0449 0.0361 0.0472 0.0399
NTT-4 0.5560 0.4403 0.6079 0.0693 0.0407 0.0433 0.0351 0.0455 0.0384
RSL-1 0.4990 0.4411 0.6740 0.0700 0.0420 0.0438 0.0362 0.0480 0.0398
RSL-2 0.4730 0.4483 0.7276 0.0725 0.0439 0.0462 0.0374 0.0506 0.0414
RSL-3 0.5200 0.4554 0.6961 0.0675 0.0401 0.0424 0.0346 0.0455 0.0381
RSL-4 0.5050 0.4650 0.7174 0.0690 0.0412 0.0438 0.0353 0.0469 0.0389
RSL-5 0.5255 0.4690 0.6947 0.0662 0.0389 0.0416 0.0336 0.0439 0.0369
CXM-S 0.6205 0.5303 0.6471 0.0586 0.0351 0.0333 0.0312 0.0396 0.0318
CXM-D 0.6320 0.5825 0.7756 0.0564 0.0336 0.0323 0.0300 0.0370 0.0315

Table 4: Experimental results on the DBDC4 English track.

More importantly, CXM-D gives the best scores on all metrics in both DBDC4 Japanese track and
English track. It is the first model to achieve dominance on this task. Additionally, we show that when
trained on the same monolingual training data as previous models, CXM-S still achieves excellent perfor-
mance. CXM-S outperforms all previous models on all metrics in the Japanese track, and on all metrics
except F1 (PB+B) in the English track.

5.2 Ablation Study

We conduct an ablation study on our proposed model CXM-D on the development set, in order to better
understand the effectiveness of our proposed model. We present the results of our ablation study in
Table 5. First, we experiment with removing the co-attention component. In this case, we use the output
from the first position ([CLS]) of the XLM-R last layer output as the contextualized representation. We
then use a feed-forward layer followed by a softmax function to output the probability distribution over
three labels. Next, we experiment with training the model with single-language data, similar to prior
work (Sugiyama, 2019).

By removing the co-attention component, the accuracy drops by 1.77% and 1.65% on the Japanese
track and English track, respectively. This indicates that co-attention does better capture the interaction
between the dialogue history and the target system utterance. If we use only single-language data during
training, the accuracy also drops by 2.01% and 2.85% on the Japanese track and English track, respec-
tively. This indicates that transfer learning from other languages to the target language improves the
performance in this task. We observe a further decrease in accuracy on both tracks if we do not use both
the co-attention network and the dual-language data.

We analyze 100 randomly selected examples from the development set where CXM-D predicts cor-
rectly but the model without co-attention fails. Two examples are given in Table 6. It is evident that
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Model Accuracy (Japanese) Accuracy (English)
Full model (CXM-D) 68.74 54.70
– Co-attention 66.97 53.05
– Other lang 66.73 51.85
– Co-attention, other lang 65.76 49.40

Table 5: Ablation study of our proposed model on the development set.

Error type Dialogue history Target utterance Prediction
– Co-attention Gold

Similar
topic

...
S: Let’s talk about movies.
U: I love movies.

S: I like pop music. NB B

Irrelevant
response

...
U: Did you vote for President last year?
S: I did.
U: I did too. Who did you vote for?

S: Thanks. Glad to hear that. NB B

Table 6: Examples of different error types of incorrect predictions on the development set by the model
without co-attention. The full model makes the correct predictions in these examples.

co-attention helps to identify the undesired utterance with respect to the dialogue history topic. It also
manages to make better predictions in the cases where the target system response is completely irrelevant
with respect to the the dialogue history.

5.3 Error Analysis

We also perform an error analysis on 100 randomly selected examples from the development set where
CXM-D fails to make correct predictions. We identify the following three primary cases where our
model tends to make incorrect predictions.
Continuous questions The target utterance is a question and the dialogue history involves continuous
question turns where the user and system take turns to ask questions.
Sarcasm We observe that it is challenging for the model to distinguish an undesired response from a
sarcastic but appropriate response. In these cases, our model is most likely to classify them as Possible
Breakdown (PB).
Overly long responses While the target utterance consists of multiple sentences, it is also challenging
to capture how they are interacting with the dialogue history.

6 Related Work

Several prior works on the dialogue breakdown detection task are based on long short-term mem-
ory (LSTM). Hendriksen et al. (2019) incorporated LSTM with pretrained word embeddings, such as
word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014). Wang et al. (2019) followed a
similar idea but added convolutional neural network (CNN) to perform textual feature extraction. Shin
et al. (2019) utilized bidirectional LSTM and self-attention layers to incorporate the dialogue in repre-
sentation learning. Prior works also include feature-engineered models. Wang et al. (2019) proposed to
utilize a curated set of features including keyword counts and TF-IDF scores to build a regression model
based on random forests.

Pretrained language models achieve state-of-the-art performance on many NLP tasks. Sugiyama
(2019) developed a model based on BERT (Devlin et al., 2019). Instead of directly using the [CLS]
token, the model took the concatenation of the entire dialogue including the target system utterance,
dialogue acts, and textual features as input to a BERT encoder and utilized the entire last layer for repre-
sentation learning.

Among the participating models in DBDC4, none of the prior models achieve dominance on both
classification-based and distribution-based metrics in either the Japanese or English track. This indicates
that it is challenging for a single model to perform well on all metrics. The desired model should possess
the capability to alleviate the mismatch between the training objective of classification-based metrics and
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distribution-based metrics.
Pretrained language models have been employed in several dialogue tasks and show good perfor-

mance. BERT (Devlin et al., 2019) and XLNet (Yang et al., 2019) have been utilized to encode system
and user utterances in dialogue state tracking (Gao et al., 2019; Ma et al., 2020; Lee et al., 2019). Liu
et al. (2020) also incorporated BERT-based contextualized word embeddings for dialogue generation in
chat-oriented dialogue systems.

Recently, cross-lingual transfer learning has gained much popularity in the NLP research commu-
nity (Chen et al., 2019). Cross-lingual pretrained language models are able to map words from different
languages to one single shared embedding space. Empirical results show that cross-lingual language
models trained on one hundred languages outperform language-specific language models on several
standard NLP benchmarks (Conneau and Lample, 2019; Conneau et al., 2020). However, cross-lingual
transfer learning has not been explored in dialogue breakdown detection, and our work is the first to in-
corporate a pretrained cross-lingual language model for dialogue breakdown detection. On the one hand,
we use cross-lingual word embeddings to transfer the knowledge learned from multiple languages. On
the other hand, as different languages can be mapped to a single shared space in XLM-R (Conneau et al.,
2020), we further enrich the training data by adding available data in other languages.

Co-attention network has been used before to tackle the task of single-turn QA (Lu et al., 2016; Xiong
et al., 2017; Yu et al., 2019). It shows good capability in capturing the interaction between the context
passage and the question in reading comprehension-based QA. In visual QA, it captures the interaction
between the compressed image representation and the question. In contrast, we treat the dialogue history
and the target system utterance as the two components which interact with each other. The co-attention
encoder attends to the two interacting components simultaneously and finally combines both attention
contexts.

7 Conclusion

In this paper, we have proposed a novel model based on a cross-lingual language model and a co-attention
network for dialogue breakdown detection. Our model achieves new state-of-the-art scores in Dialogue
Breakdown Detection Challenge 4. Our proposed model is the first to achieve the best scores on all
the evaluation metrics, significantly outperforming all previous models. We have also observed that our
model outperforms previous monolingual models on this task. We exploit transfer learning using a cross-
lingual language model to utilize training data from other languages and further improve the performance
of our model on this task. The co-attention network built on top of the cross-lingual language model
better captures the relation between the current utterance and the dialogue history. This helps to reduce
the probability of a system generating an undesired response, so that communication and user experience
are further improved.
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