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Abstract

Conversational Emotion Recognition (CER) is a crucial task in Natural Language Processing
(NLP) with wide applications. Prior works in CER generally focus on modeling emotion influ-
ences solely with utterance-level features, with little attention paid on phrase-level semantic con-
nection between utterances. Phrases carry sentiments when they are referred to emotional events
under certain topics, providing a global semantic connection between utterances throughout the
entire conversation. In this work, we propose a two-stage Summarization and Aggregation Graph
Inference Network (SumAggGIN), which seamlessly integrates inference for topic-related emo-
tional phrases and local dependency reasoning over neighbouring utterances in a global-to-local
fashion. Topic-related emotional phrases, which constitutes the global topic-related emotional
connections, are recognized by our proposed heterogeneous Summarization Graph. Local de-
pendencies, which captures short-term emotional effects between neighbouring utterances, are
further injected via an Aggregation Graph to distinguish the subtle differences between utter-
ances containing emotional phrases. The two steps of graph inference are tightly-coupled for
a comprehensively understanding of emotional fluctuation. Experimental results on three CER
benchmark datasets verify the effectiveness of our proposed model, which outperforms the state-
of-the-art approaches.

1 Introduction

Conversational Emotion Recognition (CER) has attracted increasing interests for its promising applica-
tions in intelligent interactive systems with diverse functionalities, including medical-care systems and
online recommendation systems (Zhang et al., 2014; Gkotsis et al., 2016; Chen et al., 2018; Shen et
al., 2020). As shown in Figure 1, conversations in CER datasets are segmented into multiple utterances
based on breaths or pauses of the speaker, and each utterance is associated with an emotion label.

Existing works with deep learning approaches generally capture emotional features solely from an
utterance-level perspective by modeling interactions between utterances via Recurrent Neural Network
(RNN) structures (Hazarika et al., 2018b; Hazarika et al., 2018a; Majumder et al., 2019) or graph struc-
tures (Ghosal et al., 2019). However, phrase-level semantic connection between utterances is still under-
explored, creating a substantial barrier for comprehensively understanding of the source of emotional
fluctuation. An example of a topic-related emotional phrase is shown in Figure 1, where the noun phrase
“fifty dollars” is not an emotional expression at first, but under the topic of compensation, it has been
associated with anger and frustration by referring to the unsatisfactory compensation. Therefore, it is
crucial to recognize phrase-level emotional patterns globally across different utterances. Furthermore,
topic-related emotional phrases generally scatter in different utterances throughout the conversation, and
the emotions they convey depend on local context. To accurately distinguish emotions behind these
“fifty dollars” phrases, the model is required to be comprehensively aware of both the topic about com-
pensation and the subtle differences in attitude from the responses of the male speaker. By seamlessly
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FemaleMale

We‘d be willing to give you fifty 

dollars to reimburse you for the bag. 

All you're going to do is just give me fifty dollars and 

say go have fun on your vacation without any of your stuff? 

What am I gonna do without anything for three weeks?

[NEURAL]

[ANGRY]

⋮ [FRUSTRATED]

There are some shops here in the airport.

[NEURAL]

But fifty dollars isn't going to get me anything.

[ANGRY]

I realize this. But I have to ask you 

to move so I can help the next person.

⋮

[NEURAL]

Can I at least have my fifty dollars, please?

[FRUSTRATED]

It sounds like it's no big deal 

whatever. It's a big deal to me.

[ANGRY]

Figure 1: A sample conversation from the IEMOCAP dataset for demonstrating topic-related emotional phrases. The female
speaker is complaining that her bag is lost during the flight and the amount of compensation provided by the airline is un-
satisfactory. Originally, the noun phrase “fifty dollars” does not contain emotions, however in this context, it has become a
topic-related emotional phrase repeatedly used by the female speaker to express her disappointment towards the airline service.

combining global features from topic-related emotional phrases and local features on local dependen-
cies from neighbouring utterances, the emotions associated with each utterance are fully excavated in a
global-to-local fashion.

Graphs with multiple types of nodes are called the heterogeneous graph and have been applied to
various NLP tasks for aligning information from different domains (Yao et al., 2019; Tu et al., 2019;
Yu et al., 2019; Wang et al., 2020), nevertheless it is still a relatively new territory for the CER task. A
tricky issue for exploring phrase-level semantic connections is the recognition of topic-related emotional
phrases, which requires a meticulous reasoning over different utterances to judge whether a phrase is
referred to an emotional event under the topic. Intuitively, the heterogeneous graph can be applied to
align among phrase-level and utterance-level features, providing a thorough reasoning of topic-related
emotional phrases.

In this paper, we propose a two-stage Summarization and Aggregation Graph Inference Network
(SumAggGIN) for ERC, which seamlessly integrates inference for topic-related emotional phrases and
local dependency reasoning over neighbouring utterances in a global-to-local fashion. A heterogeneous
Summarization Graph which consists of two types of nodes (i.e. utterance nodes and phrase nodes)
is proposed to infer topic-related emotional phrases. This Summarization Graph enables information
propagation between utterances and phrases via overlapping phrases and utterance phrase relations,
thereby enhances utterance representation with summarized phrase-level semantic connections. Sub-
sequently, an Aggregation Graph is constructed to further inject speaker-related local dependencies into
the topic-aware utterance representation for capturing short-term emotional effects between neighbouring
utterances. The Summarization Graph and the Aggregation Graph are tightly-coupled to bridge global
topic-related phrase patterns and local speaker-related utterance-level features for a comprehensively
understanding of emotional fluctuation.

The main contributions of our work are highlighted as follows:
(1) We propose a novel two-stage Summarization and Aggregation Graph Inference Network

(SumAggGIN), which comprehensively captures emotional influences in a global-to-local fashion.
(2) To the best of our knowledge, we are the first to construct a heterogeneous Summarization Graph

for inferencing global emotional interactions across utterances based on phrases.



4155

(3) Extensive experiments on three publicly available CER datasets demonstrate that our model attains
a substantial improvement and achieves state-of-the-art performance.

2 Related Work

2.1 Emotion Recognition in Conversation
Emotion recognition, i.e. sentiment analysis, is a fundamental task in NLP with wide applications (Xia
et al., 2011; Liu, 2012). For medical-care systems, conversational emotion recognition can be incor-
porated to accurately monitor patients’ emotional fluctuation and detect potential mental health issues
(i.e. depression and suicidal intention) in time (Gkotsis et al., 2016; Korkontzelos et al., 2016; Chen et
al., 2018). Moreover, emotion recognition can bring benefits to online recommendation on social media
platforms by modeling users’ short-term preferences (Zhang et al., 2014; Shen et al., 2020). Recently,
an increasing number of models have been proposed to solve CER using various structures. Poria et al.
(2017) propose to capture context-aware utterance representation via a Bi-directional LSTM network.
Additionally, they adopt an attention mechanism to re-weight the outputs for a more informative out-
put. Memory networks proposed by Sukhbaatar et al. (2015) are performed by some prior works to
capture speaker-related historical information. In CMN, proposed by Hazarika et al. (2018b), two dis-
tinct memory cells are employed to model dialogue history of the two speakers. Hazarika et al. (2018a)
further extend CMN by utilizing another memory cell for modeling global emotional influences across
speakers. For distinguishing participants in a multiparty conversation, Majumder et al. (2019) propose
DialogueRNN with three GRUs (Tang et al., 2015) tracking individual participant states, global context
and emotional states respectively. Jiao et al. (2020) proposes an attention gated hierarchical memory
network for real-time emotion recognition without future context. The state-of-the-art DialogueGCN
(Ghosal et al., 2019) leverages speaker and temporal dependency from an utterance level by performing
graph convolution on a homogeneous graph with each utterance as a node. Nevertheless, none of these
methods explicitly models global semantic interactions based on topic-related emotional phrases.

2.2 Applications of Heterogeneous Graph for NLP
Graphs comprised of multiple types of nodes are called the heterogeneous graph. These graphs are
constructed to simulate the real-world scenario with multiple granularity levels of information included
and have been widely adopted in solving NLP tasks. In text classification, Yao et al. (2019) propose to
build a heterogeneous text graph for a corpus based on phrase co-occurrence and term frequency-inverse
document frequency (TF-IDF) weights. Tu et al. (2019) design a heterogeneous document-entity graph
with candidates, documents and entities in specific document context, facilitating accurate reasoning for
multi-hop reading comprehension. For the task of visual commonsense reasoning, Yu et al. (2019) con-
struct a vision-to-answer heterogeneous graph and a question-to-answer heterogeneous graph to bridge
the proper semantic alignment between vision and linguistic domains. Wang et al. (2020) propose to cap-
ture relations between sentences by constructing a heterogeneous graph network consisting of semantic
units of different granularity for extractive document summarization. These prior studies inspire us to
align among phrase-level and utterance-level features for recognizing topic-related emotional phrases via
a heterogeneous graph.

3 Methodology

Before diving into the details of our proposed model, we begin by introducing the basic mathematical
notations and terminologies for the task of CER. The goal of CER is to infer the emotion label (happy,
sad, neutral, angry, excited, and frustrated) for each utterance in a conversation. Given a CER dataset
D, an example of the dataset is denoted as {Ui, si, yi}ni=1, where U = {U1, U2, ..., Un} represents the
n utterances of the conversation with each utterance Ui containing li words. Assuming there are M
participants, the speaker corresponds to the i-th utterance Ui is represented as si ∈ {0, ...,M − 1}.
yi ∈ {0, ..., N − 1} indicates the emotion label for utterance Ui.

An overview of our proposed SumAggGIN model is shown in Figure 2, which consists of an Encoding
module, a Summarization Graph, an Aggregation Graph and a Classification module.
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Figure 2: The architecture of our SumAggGIN model. For simplicity, we demonstrate our graph structures via a dyadic
conversation with 4 utterances, and each utterance includes the same 5 overlapping phrases. s1 and s2 represent the two
distinct speakers in the conversation. ⊕ denotes the concatenation operation.

3.1 Encoding

For words in utterances, we convert them into 300 dimensional pretrained 840B GloVe word embeddings
(Pennington et al., 2014). A TextCNN (Kim, 2014) is performed to capture n-grams information from
each utterance Ui. We use convolution filters of sizes 3, 4 and 5 with each filter containing 50 feature
maps. The outputs of convolutions are further processed by max-pooling and ReLU activation (Nair
and Hinton, 2010). We concatenate these activation results and feed them to a 150 dimensional fully
connected layer, whose outputs are denoted as {ui}ni=1. Subsequently, based on local utterance features
from TextCNN, we apply a bidirectional LSTM (BiLSTM) to capture sequential contextual information.
We denote vi ∈ Rd as the sequential context-aware utterance representation for the i-th utterance and d
is the hidden size of BiLSTM.

3.2 Summarization Graph

In this section, a heterogeneous Summarization Graph is constructed to recognize topic-related emotional
phrases so as to explicitly model topic-related emotional interactions throughout the entire conversation.
Phrases are extracted from utterances by TextRank (Mihalcea and Tarau, 2004). Through exchange of
information between utterances and phrases on the Summarization Graph, utterance representation can
be enhanced with summarized phrase-level semantic connections from a global perspective.

3.2.1 Summarization Graph Construction
We denote our Summarization Graph as Gsum = (V, Esum), where V = Vo ∪ Vu represents a node
set composing of phrase nodes and utterance nodes and Esum stands for edges between nodes. Vo =
{o1, ..., om} and Vu = {U1, ..., Un} represent the m key phrases of the utterances and n utterances in
the conversation, respectively. eij ≥ 0 denotes the weight of the edge between the i-th phrase and
the j-th utterance. In particular, eij = 0 indicates that the i-th phrase does not appear in the j-th
utterance. Self-loops are included to ensure that the original features of each node can be preserved
in the course of message propagation. For phrase nodes in Vo, their feature vectors are initialized by
averaging pretrained GloVe embeddings of the constituting words. As for utterance nodes Ui ∈ Vu, they
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are initialized with the corresponding sequential context-aware utterance representation vi obtained from
BiLSTM. Therefore, the feature matrices of phrase and utterance nodes are denoted as Xo ∈ Rm×dw

and Xu ∈ Rn×2d respectively, where dw is the dimension of the word embedding. In our experiments,
we have dw = 2d.

To infuse relation importance about the edge between a phrase node and an utterance node, we use
TF-IDF weights of the phrase in the utterance as suggested by Yao et al. (2019). Term frequency is the
number of times phrase oi occurs in an utterance Uj , while inverse document frequency represents the
logarithmically scaled inverse fraction of the number of utterances containing the phrase oi.

3.2.2 Message Propagation
We apply a variant of Graph Attention Network (GAT) (Veličković et al., 2018) to propagate information
among nodes in the Summarization Graph. The hidden states of input nodes are denoted as gi ∈ R2d×1,
i ∈ {1, ..., (m + n)}. A Multi-Layer Perceptron (MLP) is applied to compute attention coefficients
between a node i and its neighbor j (j ∈ Ni) at layer t:

p
(t)
ij = W (t)

a (ReLU(W
(t)
b [g

(t−1)
i ⊕ g(t−1)j ⊕ eij ])), (1)

where W t
a and W t

b are trainable parameters at the t-th layer, ⊕ denotes the concatenation operation,
and Ni denotes the set of neighbors of node i. Subsequently, the coefficients are normalized using the
softmax function:

α
(t)
ij = softmaxj(p

(t)
ij ) =

exp(p
(t)
ij )∑

k∈Ni
exp(p

(t)
ik )

. (2)

Finally, we utilize the normalized attention coefficients to compute a linear combination of the neigh-
bouring features. The updated feature vector for node i at the t-th layer is formulated as:

g
(t)
i =

∑
j∈Ni

α
(t)
ij g

(t−1)
j . (3)

Although utterance nodes are not directly connected, stacking 2 layers of GAT enables the indirect
exchange of information between pairs of utterances through co-appearing phrases. Inspired by Trans-
former (Vaswani et al., 2017), we further apply a position-wise feed-forward (FFN) layer after each GAT
layer. The summarized representation for the i-th utterance after propagation is denoted as gi = g

(2)
i .

3.3 Aggregation Graph
The utterance representation obtained from Summarization Graph mainly captures global topic-related
emotional interactions throughout the whole conversation. To further explore short-term emotional ef-
fects between neighbouring utterances, we construct an Aggregation Graph for modeling speaker-related
context dependencies from a local perspective.

3.3.1 Aggregation Graph Construction
An Aggregation Graph can be denoted as Gagg = (Vu, Eagg,R), where Vu represents the node set con-
taining utterance nodes solely, Eagg stands for edges between nodes, andR denotes the type of the edges.
Each utterance node Ui ∈ Vu is initialized with the corresponding summarized utterance representation
gi obtained from the Summarization Graph.

To explicitly model speaker dependencies between utterances, we divide edges in Eagg into 2 cate-
gories, i.e. edges towards the same speaker and edges towards a different speaker. To capture emotional
patterns only from neighbouring utterances, we construct the edges by keeping a context window size of
W . As a result, each utterance node Ui only links to W utterances in the past (Ui−W , Ui−W+1, ..., Ui−1)
and W utterances in the future (Ui+1, Ui+2, ..., Ui+W ). The edge weights zij are obtained from the
cosine similarity between the feature vectors hi and hj of the two utterance nodes Ui and Uj :

zij =
hTi hj

‖hi‖2 · ‖hj‖2
. (4)
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To ensure that for each utterance node, the incoming set of edges receives a total weight contribution
of 1. The edge weights are further normalized by the softmax function:

βij = softmaxj(zij) =
exp(zij)∑i+W

k=i−W exp(zik)
. (5)

3.3.2 Message Propagation
To pass messages between neighbouring utterance nodes, graph convolution is performed on the ba-
sis of the Aggregation Graph. A message passing strategy concerning different types of edges from
(Schlichtkrull et al., 2018) is adopted:

h
(t)
i = ReLU(

∑
r∈R

∑
j∈N r

i

βi,j
ci,r

W (t)
r h

(t−1)
j + βi,iW

(t)
0 h

(t−1)
i ), (6)

where N r
i represents the set of neighbors of node i under edge type r ∈ R, βi,j and βi,i are the normal-

ized edge weights. The normalization constant ci,r is set to be |N r
i |, the number of neighbouring nodes

of node i under edge type r. W (t)
r and W (t)

0 are trainable parameters. A two-step graph convolution
process is applied and the final aggregated representation for the i-th utterance is denoted as hi = h

(2)
i .

3.4 Classification
The aggregated utterance representation hi from the Aggregation Graph is fed into a fully-connected
network to obtain the final prediction results for emotion classification:

ỹi = softmax(Wchi + bc), (7)

where Wc and bc are trainable parameters of the classifier.

4 Experiments

4.1 Datasets and Evaluation Metrics
We evaluate the performance of our SumAggGIN model on three benchmark datasets for the CER task,
i.e. IEMOCAP (Busso et al., 2008), AVEC (Schuller et al., 2012), and MELD (Poria et al., 2019),
which are also used by several prior works, including DialogueRNN(Majumder et al., 2019) and Dia-
logueGCN(Ghosal et al., 2019). These multimodal datasets originally contain textual, visual and acoustic
information about the utterances in each conversation. However, for the task of CER, we only focus on
textual modality to conduct our experiments.

IEMOCAP: The Interactive Emotional Dyadic Motion Capture database (Busso et al., 2008) is a
multimodal dataset consisting of videos of dyadic sessions. Each video contains a single conversation,
which is segmented into multiple utterances. Each utterance is annotated with one of six emotion labels,
i.e. happy, sad, neural, angry, excited and frustrated. The dataset is officially split into a training set con-
sisting of 120 conversations with 5,810 utterances and a test set containing 31 conversations with 1,623
utterances. We randomly select 10% of training conversations as evaluation split for selecting hyper-
parameters. We use weighted average of accuracy and f1-score for evaluating the overall performance.

AVEC: The continuous Audio/Visual Emotion Challenge (Schuller et al., 2012) dataset is a modifica-
tion of SEMAINE database (McKeown et al., 2012), which records interactions between human users
and virtual agents. Different from IEMOCAP, utterances in the AVEC dataset are labeled every 0.2 sec-
ond with four real valued attributes: valence ([−1, 1]), arousal ([−1, 1]), expectancy ([−1, 1]), and power
([0,∞)). Following Majumder et al. (2019), the attributes are averaged over the span of an utterance
to obtain utterance-level annotations. The standard split of AVEC dataset contains 63/32 conversations
(4,368/1,430 utterances) for training and testing. 10% of the training conversations are randomly selected
for evaluation. Mean Absolute Error (MAE) for the regression task is applied for model evaluation.

MELD: the Multimodal EmotionLines Dataset (Poria et al., 2019) is a multimodal and multiparty
dataset extended from the EmotionLines dataset (Hsu et al., 2018). It contains more than 1,400 con-
versations and 13,000 utterances from the Friends TV series. The utterances are annotated with one of
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the seven emotion labels (anger, disgust, sadness, joy, surprise, fear and neutral). Following Poria et al.
(2019), we split the dataset into 1,039/114/280 conversations (9,989/1,109/2,610 utterances) for training,
evaluation and testing. We use weighted average of f1-score to evaluate our model.

4.2 Baselines

We choose the following baseline models to evaluate the performance of our SumAggGIN model:
TextCNN (Kim, 2014) is the baseline convolutional neural network based model. It is a sub-

component of our Encoding module (Section 3.1), which captures n-grams information from each ut-
terance independently. However, it is not capable of capturing context-aware information from the sur-
rounding utterances.

bc-LSTM+Att (Poria et al., 2017) utilizes Bi-directional LSTM network for capturing context-aware
utterance representations. These representations are speaker agnostic for the reason that they are encoded
irrespective of their speakers. Additionally, an attention mechanism is adopted to re-weight features and
provide a more informative output.

CMN (Hazarika et al., 2018b) exploits two distinct GRUs for modeling the historical utterances of
two speakers, and generates speaker-aware utterance representation.

ICON (Hazarika et al., 2018a) extends CMN by incorporating inter-speaker emotional influences into
the original output of CMN, which only takes self-speaker historical information into consideration.

DialogueRNN (Majumder et al., 2019) is a recurrent network with three GRUs capturing speaker
states, global context and emotional states respectively. It can be applied on multiparty datasets for
distinguishing different participants in a conversation interactively.

AGHMN (Jiao et al., 2020) proposes an attention gated hierarchical memory network which keeps
track of the individual party states throughout the conversation for real-time emotion recognition without
future context.

DialogueGCN (Ghosal et al., 2019) is the state-of-the-art model for the CER task. It employs graph
convolutional network for capturing self- and inter-speaker influences between utterances.

4.3 Implementation Details

All experiments are carried out using a single NVIDIA Tesla M40 24GB card. The batch size is set to
16. We adopt Adam (Kingma and Ba, 2015) as the optimizer with an initial learning rate of 3e-4 and
L2 weight decay of 1e-5. We use an early stopping strategy on f1-score (IEMOCAP and MELD) and
MAE (AVEC) of the validation set, with a patience of 20 epochs. Hyper-parameters are tuned on the
validation set. The hidden size of the Summarization Graph and the Aggregation Graph is set to 100 for
IEMOCAP/AVEC and 200 for MELD. We set the context window size W in the Aggregation Graph to
10 for IEMOCAP/AVEC and 5 for MELD. Dropout rate with 0.5 is applied to avoid over-fitting.

4.4 Overall Performance

As shown in Table 1, we compare the performance of our proposed SumAggGIN model with the state-
of-the-art DialogueGCN and other strong baseline models on textual modality using three CER datasets.
The results reveal that our SumAggGIN model attains a substantial improvement compared to the state-
of-the-art on all three datasets. Our SumAggGIN model pushes up state-of-the-art results by 1.51% and
2.43% in terms of weighted average accuracy and f1-score on IEMOCAP dataset, respectively. On AVEC
dataset, our model outperforms on all four attributes compared to the state-of-the-art DialogueGCN. As
for the MELD dataset, our SumAggGIN model attains the state-of-the-art average f1-score of 58.45%.

4.5 Ablation Study

In order to examine the effectiveness of our proposed SumAggGIN model, we perform ablation test with
respect to the two graph inference modules on IEMOCAP dataset, and the results are listed in Table 2.
The two modules are removed one at a time to examine its contribution on the entire model.

w/o Aggregation Graph In this setting, the Aggregation Graph is removed from the full model. From
the result, we can observe a 2.87% and 2.50% drop in terms of f1-score and accuracy, indicating the
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Models
IEMOCAP AVEC MELD

Average Valence Arousal Expectancy Power Average
Accuracy F1 MAE F1

CNN 48.92 48.18 0.545 0.542 0.605 8.71 55.02
bc-LSTM+Att 56.32 56.19 0.189 0.213 0.190 8.67 56.70
CMN 56.56 56.13 0.192 0.213 0.195 8.74 -
ICON 59.09 58.54 0.180 0.190 0.180 8.45 -
DialogueRNN 63.40 62.75 0.168 0.165 0.175 7.90 57.03
AGHMN 63.50 63.50 - - - - 58.10
DialogueGCN 65.25 64.18 0.157 0.161 0.168 7.68 58.10
SumAggGIN 66.76 66.61 0.145 0.156 0.160 7.55 58.45

Table 1: Comparison of our model with baselines on IEMOCAP, AVEC and MELD datasets. For IEMOCAP, Average rep-
resents the weighted average of all six labels (i.e. happy, sad, neural, angry, excited and frustrated). As for MELD, Average
represents the weighted average of all seven labels (i.e. anger, disgust, sadness, joy, surprise, fear and neutral). ‘-’ denotes that
the results are not reported in the original paper.

importance of the Aggregation Graph for capturing speaker-related local dependencies on short-term
emotional effects between neighbouring utterances.

w/o Summarization Graph If we only consider local dependencies from the Aggregation Graph and
remove global connections from the Summarization Graph, f1-score and accuracy degrade by 4.03% and
3.98%, respectively. This proves that the global connections via topic-related emotional phrases are of
vital importance for emotional recognition.

w/o inference graphs Here, we remove both the Aggregation Graph and the Summarization Graph,
and use the sequential context-aware utterance representation output by BiLSTM for emotion recogni-
tion. The experimental results show a significant drop of 10.18% and 8.60% in terms of f1-score and
accuracy, which demonstrates the efficacy of modeling emotional influences via a two-stage graph infer-
ence network in a global-to-local fashion.

Model
F1 Accuracy

Test ∆ Test ∆

Full model 66.61 - 66.76 -
w/o Aggregation Graph 63.74 2.87 64.26 2.50
w/o Summarization Graph 62.58 4.03 62.78 3.98
w/o inference graphs 56.43 10.18 58.16 8.60

Table 2: Ablation results on the test set of the IEMOCAP dataset.

4.6 Visualization
Figure 3(a) shows the comparison of f1-score between our SumAggGIN model and other three baselines
on six emotion labels of the IEMOCAP dataset. The bc-LSTM+Att model, which only takes sequentially
encoded context information into consideration, attains an inferior performance on all six labels com-
pared to the other models, which proves the importance of modeling speaker-related local dependencies
between utterances in the conversation.

Our SumAggGIN model surpasses AGHMN on four emotion labels (i.e. ‘happy’, ‘sad’, ‘neutral’ and
‘excited’) and achieves competitive results on ‘angry’ and ‘frustrated’. We believe our improvement
comes from the graph structures we designed for modeling utterance connections. For the conversations
with over 100 utterances in the IEMOCAP dataset, the RNN structure in AGHMN for dependency mod-
eling suffers from long-term information propagation issues resulted from gradient vanishing problem.
On the contrary, our Summarization Graph and Aggregation Graph directly aggregate information from
neighbouring utterances, which greatly shortens the path for information propagation and achieves a
better result in modeling emotions.
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Figure 3: (a) The f1-score of our SumAggGIN and other three baselines on six emotion labels of the IEMOCAP dataset. (b)
Plots of the average number of overlapping phrases per utterance in Summarization Graph (left y-axis), and the difference in
f1-score between our SumAggGIN and DialogueGCN (right y-axis) on the test set of the IEMOCAP dataset.

The comparison between our SumAggGIN and another graph-based method DialogueGCN shows
that our model outperforms DialogueGCN on the positive emotion labels (i.e. ‘happy’ and ‘excited’) by
a large margin, and attains comparable results on the other four labels. We surmise that the improve-
ment comes from our proposed heterogeneous Summarization Graph, which effectively explores global
semantic connections provided by topic-related emotional phrases.

We further investigate the effect of our Summarization Graph by examining the average number of
overlapping phrases per utterance for each emotion label, as shown in Figure 3(b). For the utterances
labeled with negative emotions (i.e. ‘sad’, ‘angry’ and ‘frustrated’), the average number of overlapping
phrases per utterance is much higher than that of the utterances with positive emotions. We argue that
global semantic connections are beneficial to capture emotional patterns, but excessive connections from
overlapping phrases result in bringing noise signals into the Summarization Graph and causing perfor-
mance degradation.

5 Conclusion

In this work, we present a two-stage Summarization and Aggregation Graph Inference Network
(SumAggGIN) for the CER task. Combining global topic-related emotional interactions from the hetero-
geneous Summarization Graph and short-term emotional effects from the Aggregation Graph, our model
is capable of comprehensively capturing emotional influences in a global-to-local fashion. Experimental
results show that our proposed SumAggGIN outperforms the state-of-the-art approaches on three CER
benchmark datasets. In the future, we plan on applying our two-stage graph inference framework to other
multi-turn dialogue tasks.
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