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Abstract

Emotion recognition in conversations (ERC) has received much attention recently in the natural
language processing community. Considering that the emotions of the utterances in conversa-
tions are interactive, previous works usually implicitly model the emotion interaction between
utterances by modeling dialogue context, but the misleading emotion information from context
often interferes with the emotion interaction. We noticed that the gold emotion labels of the
context utterances can provide explicit and accurate emotion interaction, but it is impossible to
input gold labels at inference time. To address this problem, we propose an iterative emotion in-
teraction network, which uses iteratively predicted emotion labels instead of gold emotion labels
to explicitly model the emotion interaction. This approach solves the above problem, and can
effectively retain the performance advantages of explicit modeling. We conduct experiments on
two datasets, and our approach achieves state-of-the-art performance.

1 Introduction

Emotion recognition in conversations (ERC) aims to recognize the emotion of each utterance in conver-
sations. Recently it has received much attention due to its applications in various conversation scenes,
such as emotional chatbots (Zhou et al., 2018), emotion detection of customers in artificial services (Song
et al., 2019), sentiment analysis of comments in social media (Chatterjee et al., 2019), and so on.

Different from the common sentence-level emotion recognition task, ERC is special due to some
characteristics. The first one is that the utterances are context dependent, and modeling context can
provide more information for emotion recognition (Poria et al., 2017; Jiao et al., 2019). The second
characteristic of ERC is that the utterances are speaker-sensitive, thus many researchers modeled the
state of speakers and the inter-speaker dependency relations (Hazarika et al., 2018b; Majumder et al.,
2019; Zhang et al., 2019; Ghosal et al., 2019). In this paper, we observe another characteristic that is the
emotions of the utterances are interactive. For example, in Figure 1, the emotion of the utterance from
Speaker A can directly influence Speaker B. Thus, modeling the emotion interaction between utterances
is helpful for the ERC task.

Previous works usually implicitly model the emotion interaction by modeling dialogue context (Po-
ria et al., 2017; Jiao et al., 2019). However, because of the arbitrariness of the dialogue, the context
utterances often convey misleading emotion information when recognizing the emotion of the target ut-
terance, such as in Figure 1(a). To solve this problem, we observe that the gold emotion labels (such
as “happy”, “angry”) of the context utterances can provide explicit and accurate emotion interaction be-
tween utterances, such as in Figure 1(b). Thus, we can introduce the emotion labels to explicitly model
the emotion interaction between utterances.

However, a challenging problem is this approach requires inputting gold labels of context utterances,
which is impossible at inference time. We observe a phenomenon, the utterances which are helpful for
the emotion recognition of the target utterance are usually near the target utterance and the number is
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Speaker A (Context)

There will still be a blackout today, 
it is really great.

Speaker B (Current)

Same here, I don't understand what 
they are doing.

Neutral✘

AngerHappy✘
Speaker A (Context)

There will still be a blackout today, 
it is really great.

Speaker B (Current)

Same here, I don't understand what 
they are doing.

Anger✓

Gold Label
Misled 

by Sarcasm

(a) Implicitly model the emotion interaction (b) Explicitly model the emotion interaction

Figure 1: A short conversation example which shows the difference between two methods of modeling
emotion interaction. (a) The emotion prediction of Speaker B is wrong, because of the interference from
Speaker A’s sarcasm. (b) Due to modeling emotion interaction explicitly, the interference from Speaker
A’s sarcasm is reduced and the emotion prediction of Speaker B is right.

often limited. As long as the emotion labels of these utterances are correct, the emotion recognition of
the target utterance can benefit from our explicit approach. Therefore, we speculate that even if only part
of emotion labels are correct, the correct part can still help related utterances recognize their emotions
better. This process can be iterated, which will make the emotion recognition result better and better.
Experiments in Section 3.5 also confirm this.

Based on the above idea, we propose an iterative emotion interaction network for emotion recogni-
tion in conversations. This network explicitly models the emotion interaction between utterances, and
meanwhile solves the problem of no gold labels at inference time by iterative improvement mechanism.
Specifically, we first adopt an utterance encoder to obtain the representations of utterances and make an
initial prediction for the emotions of all utterances. Next, we integrate the initial prediction and the utter-
ances by an emotion interaction based context encoder to make an updated prediction for the emotions.
Finally, we use the iterative improvement mechanism to iteratively update the emotions, in which a loss
function is employed to constrain the prediction of each iteration and the correction behavior between
two adjacent iterations.

The contributions of this work are summarized as follows:

• We explicitly model the emotion interaction between utterances, which is superior to the previous
works implicitly modeling the emotion interaction.

• We propose an iterative emotion interaction network, which not only explicitly models the emotion
interaction between utterances, but also solves the problem of no gold labels at inference time.

• We conduct experiments on the IEMOCAP dataset and the MELD dataset. Experimental results
show that our approach achieves state-of-the-art performance.

2 Method

In this section, we introduce our proposed iterative emotion interaction network as shown in Figure 2.
Our network consists of three components: an utterance encoder, an emotion interaction based context
encoder, and iterative improvement mechanism. The utterance encoder is used to obtain the represen-
tations of all utterances in a conversation. The emotion interaction based context encoder introduces
the emotion probabilities of the utterances and integrates them and the utterance representations to ex-
plicitly model the emotion interaction. The iterative improvement mechanism contains initial emotion
prediction, iterative emotion feedback and loss for iteration, which combines the above two encoders to
iteratively improve the emotion predictions. In the following sections, we describe these components in
detail.
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Figure 2: Overview of our proposed iterative emotion interaction network. The utterance encoder is used
to obtain the utterance representations. The emotion interaction based context encoder (EC-Encoder) is
used to explicitly model the emotion interaction and obtain the updated emotion probabilities. The iter-
ative improvement mechanism (including the initial emotion prediction, the iterative emotion feedback
and the loss for iteration ) is used to build the iterative framework and calculate the loss for iteration.
These components work together and finally improve the performance.

2.1 Utterance Encoder

In our framework, the goal of the utterance encoder is to obtain the representation for each utterance.
Suppose, given an utterance u = {w1, w2, ..., wM} consisting of a sequence of M words, we first ob-
tain the embedding forms {x1,x2, ...,xM} by fedding them into the word embedding layer, which is
initialized by pretrained word embeddings. A BiGRU is used to capture the contextual information from
{x1,x2, ...,xM}, yielding two sequences of hidden states {

−→
h1,
−→
h2...,

−→
hM} and {

←−
h1,
←−
h2, ...,

←−
hM}. We

concatenate
−→
hi and

←−
hi into a single vector hi for the word wi, which is defined as follows:

hi = [
−→
hi;
←−
hi] (1)

To obtain a single vector representation for the utterance u, we aggregate the sequence of hidden states
{h1,h2...,hM} with an attention mechanism, which can be formulated as follows:

αi =
exp(h>i Wu)∑
j exp(h

>
j Wu)

(2)

u =

M∑
i=1

αihi (3)

where u is the vector representation for the utterance u. Similarly, given a conversation C =
{u1, u2, ..., uN}, the sequence of all utterances can be represented as U = {u1,u2, ...,uN}.
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2.2 Emotion Interaction Based Context Encoder

The emotion interaction based context encoder is used to explicitly model the emotion interaction. It
introduces the emotion probabilities of the utterances, and integrates them and the utterance represen-
tations to achieve this goal. It consists of three components: an emotion embedding layer, a BiGRU
encoder, and an emotion classifier. It takes the utterance representations U = {u1,u2, ...,uN} and the
context emotion probabilities P = {p1,p2, ...,pN} as inputs and then outputs the updated version of P,
named P

′
. Thus, it is also the basic unit of iterative improvement in our framework.

Emotion Embedding Let L = {l1, l2, ..., l|L|} represents the set of emotion labels, and then map
each label li to an embedding vector xi which is the representation of this emotion. For each utterance
emotion probability vector pi ∈ P, we define pi = {p1i , p2i , ..., p

|L|
i } and then use these as weights to

obtain the utterance emotion representation ei, which is a weighted sum of all emotion embeddings:

ei =

|L|∑
j=1

pjixj (4)

Based on the above, we can obtain the context emotion representations E = {e1, e2, ..., eN}.
BiGRU Encoder For each utterance ui, we concatenate ui ∈ U and ei ∈ E, and feed the result into

GRU units. The process can be defined as follows:

−→
hi =

−−−→
GRU([ui; ei],

−−→
hi−1) (5)

←−
hi =

←−−−
GRU([ui; ei],

←−−
hi+1) (6)

hi =
−→
hi +

←−
hi + [ui; ei] (7)

where hi is the hidden state, which is included in the context hidden states H = {h1,h2, ...,hN}.
Emotion Classifier For each hi ∈ H, we feed it into the emotion classifier which is a softmax layer:

p
′
i = softmax(Wehi + be) (8)

where p
′
i is the updated emotion probability vector, which is included in the updated context emotion

probabilities P
′
.

2.3 Iterative Improvement Mechanism

The iterative improvement mechanism is the core of our proposed approach. It consists of three parts:
initial emotion prediction, iterative emotion feedback, and loss for iteration. These three parts com-
bines the above two encoders to build an iterative framework, which can iteratively improve the emotion
predictions. In this section, we introduce these three parts in detail.

Initial Emotion Prediction Generally, the initial value is an important part of the iteration. In our
framework, we obtain the initial context emotion probabilities P0 by feeding the utterance representa-
tions U into a softmax layer. The process can be defined as follows:

p0
i = softmax(Wpui + bp) (9)

where ui is an utterance representation from U, and p0
i is the initial emotion probability vector which

should be contained in P0.
Iterative Emotion Feedback This component is crucial to achieve iterative improvement. As men-

tioned in Section 2.2, the basic iterative unit is the emotion interaction based context encoder (EC-
Encoder), which takes the context emotion probabilities as input and outputs an updated version. The
iterative emotion feedback mainly uses the updated context emotion probabilities as the input of the
EC-Encoder again, thereby achieves an iterative update of the emotion prediction.

Formally, the process of obtaining the updated context emotion probabilities in the i-th step can be
defined as follows:
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Pi = EC-Encoder(Pi−1,U) (10)

where i ≥ 1, U is the utterance representations, Pi−1 is the context emotion probabilities at step i-1,
and Pi is the context emotion probabilities at step i.

Loss for Iteration To achieve iterative improvement, we design a loss to constrain the prediction of
each iteration and the correction behavior between two adjacent iterations.

For each iteration, we use cross-entropy function to obtain the loss:

Liiter = −
1

Na

Na∑
j=1

|L|∑
k=1

yj,k log(p
i
j,k) (11)

We add margin-ranking loss between two adjacent iterations, which can punish incorrect modification:

Li, i+1
adj =

1

Na

Na∑
j=1

|L|∑
k=1

yj,k max(0, pij,k − pi+1
j,k ) (12)

The final loss can be defined as follows:

L =
1

T + 1

T∑
i=0

Liiter + λ ∗ 1

T

T−1∑
i=0

Li, i+1
adj (13)

where T is a hyperparameter which represents the number of iterations, Na is the number of all
utterances in the dataset, and |L| is the number of emotions labels. yj denotes the one-hot vector of gold
labels, and yj,k is the element of yj for emotion k. Similarly, pij,k and pi−1j,k are the elements of pi

j and
pi−1
j for emotion k. In addition, λ is a hyperparameter that balances two types of losses.

3 Experiments

3.1 Datasets

We evaluate the performance of our approach on two publicly available datasets, IEMOCAP (Busso et
al., 2008) and MELD (Poria et al., 2019).

IEMOCAP The IEMOCAP dataset1 was collected by SAIL lab at USC. It consists of approximately
12 hours of multimodal conversation data, we only use the text modality in this paper. It is grouped into
five sessions, we use the first four sessions as the training set and use the last one as the test set. Besides,
we use 10% dialogues of the training set as a validation set. The dataset contains 152 dialogues with a
total of 7,433 utterances, and it comes with six emotion categories.

MELD The MELD dataset2 contains the conversations from Friends TV show transcripts, which is
a multimodal extension of the EmotionLines dataset (Hsu et al., 2018). In this paper, we only use the
text modality. The dataset contains 1,433 dialogues with a total of 13,708 utterances, and it comes with
seven emotion categories.

3.2 Baselines

We compare our approach with the following baselines:
CNN (Kim, 2014) This is a CNN model trained on context-independent utterances, hence the con-

textual information is unused in this baseline.
cLSTM (Poria et al., 2017) This is a context-level LSTM model. This baseline uses CNN to ex-

tract context-independent utterance features, and uses LSTM to capture contextual features for emotion
recognition.

1https://sail.usc.edu/iemocap/
2https://affective-meld.github.io/
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Models
IEMOCAP

happy sad neutral anger excited frustrated w-Avg.

CNN 32.91 50.41 52.33 55.24 46.84 54.51 50.15
cLSTM 30.66 69.86 55.15 58.52 55.93 60.74 57.01
cLSTM+CRF 35.71 69.59 56.43 62.44 50.34 60.23 56.98
DialogueRNN 38.74 76.08 58.26 63.10 68.75 60.37 62.15
DialogueGCN 51.87 76.76 56.76 62.26 72.71 58.04 63.16

Our Approach 53.17 77.19 61.31 61.45 69.23 60.92 64.37

Table 1: Performance of different approaches on the IEMOCAP dataset.

Models
MELD

neutral surprise fear sadness joy disgust anger w-Avg.

CNN 77.24 50.54 0.32 22.28 54.19 2.86 42.88 58.48
cLSTM 76.47 50.17 0.92 26.51 55.62 9.65 46.77 59.33
cLSTM+CRF 76.42 50.22 1.48 26.29 55.58 8.51 46.96 59.29
DialogueRNN 76.23 49.59 0.00 26.33 54.55 0.81 46.76 58.73
DialogueGCN 76.02 46.37 0.98 24.32 53.62 1.22 43.03 57.52

Our Approach 77.52 53.65 3.31 23.62 56.63 19.38 48.88 60.72

Table 2: Performance of different approaches on the MELD dataset.

cLSTM+CRF This is a modified model based on cLSTM (Poria et al., 2017). We add a CRF
(Conditional Random Fields) layer after the contextual LSTM, so that this baseline could capture the
dependencies between emotion labels.

DialogueRNN (Majumder et al., 2019) This is a RNN-based model, which uses three GRUs to
model the speaker, the context given by the preceding utterances, and the emotion behind the preceding
utterances. This baseline could set separate states for each speaker and associate states with the speaker’s
utterance. In our experiment, we use the open-source codes3 of DialogueRNN provided by the authors.

DialogueGCN (Ghosal et al., 2019) This is a GCN-based model. This baseline uses a GCN to model
the conversation, the nodes in the graph represent utterances, and the types of edges are determined based
on the speaker information. In our experiment, we use the open-source codes4 of DialogueGCN provided
by the authors.

3.3 Experimental Settings

In our experiment setting, we use the pretrained 840B GloVe embedding (Pennington et al., 2014) to
initialize the 300 dimensional word embedding layer, and we set the emotion embedding dimension to
32. In utterance encoder, the hidden size of GRU is 50 for IEMOCAP and 100 for MELD. In emotion
interaction based context encoder, the hidden size of GRU for two datasets is 132 and 232 respectively.

We use Adam (Kingma and Ba, 2015) to optimize the parameters in our models, and use a mini-
batch size of 32. To regulate our models, we set the weight decay to 0.0001, and apply dropout with a
dropout rate at 0.1. Based on validation performance on IEMOCAP, the learning rate is set to 0.0002,
the hyperparameter λ is set to 50, and the maximum iteration number T is set to 3. Based on validation
performance on MELD, the learning rate is set to 0.0001, the hyperparameter λ is set to 5, and the
maximum iteration number T is set to 2.

3https://github.com/SenticNet/conv-emotion/tree/master/DialogueRNN/
4https://github.com/SenticNet/conv-emotion/tree/master/DialogueGCN/
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3.4 Overall Results
We compare our approach with the baseline methods on IEMOCAP and MELD datasets, and the exper-
imental results are shown in Table 1 and Table 2 respectively. We report the F1-score for each emotion
class, and evaluate the overall performance using weighted average F1. For each result of our approach,
we repeat the experiment 12 times to get the average value. For fair comparison, we re-run all baseline
methods with the same setting. Therefore, the results of baseline methods are slightly different from
those in original papers.

Table 1 presents the results on IEMOCAP dataset. Among all baseline methods, DialogueGCN
achieves the best overall performance of 63.16% on weighted F1 score. In comparison, the performance
of our approach outperforms DialogueGCN by 1.21%, which can preliminarily prove the effectiveness
of our proposed approach. In addition, our approach obtains improvements on most emotion classes
compared to baseline methods, although some performance degradations occur on anger and excited.
But overall, our approach balances them well and improves overall performance.

Table 2 presents the results on MELD dataset. The cLSTM model achieves the best overall perfor-
mance of 59.33% on weighted F1 score among all baseline methods. In comparison, the performance of
our approach outperforms cLSTM by 1.39%. Similar to the results on IEMOCAP dataset, our approach
also achieves the best performance on most emotion classes. In particular, though emotion class dis-
gust only contains a few utterances, our approach improved the performance greatly (about 10%), which
shows that our approach has the capability to recognize the emotions of minority classes.

3.5 Analysis
Our proposed approach achieves state-of-the-art performance. In this section, we analyze our approach
from the following aspects.

Effectiveness of Emotion Interaction We analyze the effectiveness of modeling the emotion inter-
action on both datasets, and the experimental results are shown in the Table 3. First, we train a model
based on our proposed network without emotion embedding and iterative emotion feedback, denoted No
Label. This model represents an extreme case where the emotion labels are not used at all, which is the
case of most implicit modeling emotion interaction methods. Second, we train a model without itera-
tive emotion feedback but initialize context emotion representations with gold emotion labels, denoted
Gold Label. This model represents another extreme case where the emotion labels are optimally used,
which is the best way to explicitly model the emotion interaction, but it is impossible at inference time.
From the results, we can see that: 1) The performance of No Label is the worst, the performance of
Gold Label is the best, indicating that explicit modeling has more advantages than implicit modeling. 2)
The performance of our approach falls somewhere in between, indicating that our iterative improvement
mechanism can not only solve the problem of no gold labels, but also effectively retain the performance
advantages of explicit modeling.

Models IEMOCAP MELD

No Label 60.22 59.91

Our Approach, iter = 1 61.22 60.07

Our Approach, iter = 2 63.66 60.72
Our Approach, iter = 3 64.37 60.64

Gold Label 66.75 62.28

Table 3: An analysis of the effectiveness of emotion interaction on two datasets. Best values among our

models are highlighted in bold.

Impact of Maximum Iteration Number We plot the performance trends of our approach with
increasing the maximum iteration number on both datasets. As presented in Figure 3, the performance
shows a trend of increases at first and then decreases, and the best performance is obtained when the
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maximum iteration number is 3 for IEMOCAP and 2 for MELD. This result shows that appropriately
increasing the maximum iteration number can gradually improve the performance, which is consistent
with our expectation. However, too many iterations lead to a decrease in performance. This phenomenon
is also consistent with our expectation, and one possible explanation is that too many iterations will lead
to overfitting on the training set.
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Figure 3: Performance trends with different maximum iteration number on two datasets.

Analysis of Iterative Correction Behavior We analyze the iterative correction behavior of our
approach when the maximum iteration number is fixed, the performance of each step and the correction
behavior between two adjacent steps are shown in the Table 4. For IEMOCAP and MELD datasets, we
select the models with the maximum iteration number of 3 and 2 for analysis, respectively. From the
results, we can see that: 1) The performance of each step gradually increases on both datasets, which
shows that the iterative improvement mechanism works. 2) Among the changes of predicted emotion
labels between all two adjacent steps on both datasets, the cases which are changed from wrong to right
(W→ R) are the most. This shows that our approach does make effective emotion prediction correction
in the iterative process.

Dataset (Iteration) Step w-F1 Step i→ Step j R→W W→ R W→W

IEMOCAP (iter=3)

step = 1 61.97
step 1→ step 2 27.84% 46.25% 25.91%

step = 2 63.71

step 2→ step 3 27.81% 47.78% 24.41%
step = 3 64.37

MELD (iter=2)
step = 1 60.45

step 1→ step 2 32.53% 39.86% 27.61%
step = 2 60.72

Table 4: An analysis of the iterative correction behavior on two datasets. R→W means the percentage
of cases which are changed from right to wrong, W→ R and W→W have similar meanings.

3.6 Case Study

We give a case study to illustrate the effectiveness of our proposed iterative improvement mechanism, as
is shown in Table 5. We present a sample dialogue from the MELD test set and show the emotion labels
predicted by our approach at each step, where the maximum iteration number is set to 2. It can be seen
that the emotion prediction result of the first step has more errors, which is a less accurate result. As the
iteration number increases, the situation of prediction errors is gradually corrected. Such as in the 8th
utterance said by Joey, the emotion of this utterance is difficult to judge only based on its text, and the
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No. Speaker Utterance Step=1 Step=2 Gold
1 Chandler What are you doing tonight? neutral neutral neutral
2 Joey Huh? Uh. neutral neutral neutral
3 Chandler Dude. Dude. neutral neutral surprise
4 Joey Oh, Sorry. Uh, I’ve got those plans with Phoebe, why? neutral neutral neutral
5 Chandler Oh really? Uh, Monica said she had a date at 9:00. surprise surprise surprise
6 Joey What? Tonight? surprise surprise surprise
7 Chandler That’s what Monica said. neutral neutral neutral
8 Joey After she gave me that big speech? neutral surprise surprise
9 Joey She goes and makes a date on the same night she has plans with me? neutral anger anger

10 Joey I think she’s trying to pull a fast one on Big Daddy. anger anger anger

Table 5: An example of emotion prediction from the MELD test set output by our approach.

prediction of the first step is wrong. However, the prediction of the second step is modified to be correct,
which is due to the context utterances and the anger emotion of the 10th utterance predicted correctly in
the first step. This case shows that the iterative improvement mechanism is effective.

4 Related Work

Our work focuses on emotion recognition in conversations (ERC), which requires considering some
characteristics in conversations. Early works on ERC noticed that dialogue context can provide more
information. Poria et al. (2017) proposed the c-LSTM model, which used LSTM model to capture
contextual features. Jiao et al. (2019) suggested the HiGRU model, which introduced a word-level GRU
and an utterance-level GRU with self-attention and features fusion. Especially, Zhong et al. (2019)
proposed the KET model, which introduced external commonsense knowledge to the ERC task. Qin
et al. (2020) proposed the DCR-Net model, which improved the performance of the ERC task through
multi-task learning. Recent works found that the state of the speakers and the inter-speaker dependency
relations also need to be considered. These works can be divided into two categories: RNN-based models
and GCN-based models. RNN-based models include CMN (Hazarika et al., 2018b), ICON (Hazarika et
al., 2018a), and DialogueRNN (Majumder et al., 2019). CMN and ICON used different GRUs for both
parties in the conversation and used memory networks to fuse the contextual information. DialogueRNN
set separate states for each speaker and associated states with the speaker’s utterance. GCN-based models
include ConGCN (Zhang et al., 2019) and DialogueGCN (Ghosal et al., 2019). ConGCN represented
each utterance and each speaker as a node and linked the utterances to the speakers by undirected edges.
DialogueGCN also used a GCN to model the conversation. The graph constructed by DialogueGCN
contains only utterance nodes, but the type of edge is determined based on the speaker information.

Different from these works, we focus on another characteristic that is the emotion interaction between
utterances and propose an iterative emotion interaction network to explicitly model it. The related works
usually model dialogue context, which only implicitly model the emotion interaction. Therefore, the
motivations and practices of our work are different from the related works.

5 Conclusion

In this paper, we explicitly model the emotion interaction between utterances in ERC. To solve the
problem of no gold emotion labels at inference time, we propose an iterative emotion interaction network,
which uses iteratively predicted emotion labels instead of the gold emotion labels. The network consists
of three components: the utterance encoder, the emotion interaction based context encoder, and the
iterative improvement mechanism. These components work together and finally iteratively improve the
emotion predictions. Experimental results on two datasets show that our approach achieves state-of-the-
art performance, and extensive analysis further proves the effectiveness of our approach.
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