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Abstract

While pre-trained word embeddings have been shown to improve the performance of down-
stream tasks, many questions remain regarding their reliability: Do the same pre-trained word
embeddings result in the best performance with slight changes to the training data? Do the same
pre-trained embeddings perform well with multiple neural network architectures? Do imputation
strategies for unknown words impact reliability? In this paper, we introduce two new metrics to
understand the downstream reliability of word embeddings. We find that downstream reliability
of word embeddings depends on multiple factors, including, the evaluation metric, the handling
of out-of-vocabulary words, and whether the embeddings are fine-tuned.

1 Introduction

Pre-trained word embeddings have been shown to improve neural networks’ performance across a wide
variety of tasks. For instance, pretrained word embeddings improve the performance of models for text
classification (Kim, 2014), relation extraction (Nguyen and Grishman, 2015), named entity recogni-
tion (Lample et al., 2016), and machine translation (Qi et al., 2018). However, neural network perfor-
mance is unstable when retrained multiple times on the same dataset (Kolen and Pollack, 1991). Small
changes in the training data can result in substantial differences in overall performance. Similarly, after
retraining word embeddings instead of the model (i.e., to incorporate out-of-vocabulary words or cap-
ture changes in their semantic meanings), the instability of the word embeddings themselves, can cause
differences in downstream performance (Leszczynski et al., 2020). Yet, retraining is still important.
Otherwise, performance will deteriorate over time (Kim et al., 2017). In this paper, we evaluate the
downstream reliability of pre-trained word embeddings.

Leszczynski et al. (2020) discuss how model instability can increase a company’s cost of deploying
and keeping natural language processing (NLP) pipelines in production. Let X and X̄ be two different
sets of embeddings, and let gX and gX̄ be two models trained on X and X̄. Leszczynski et al. (2020)
define instability as

DIT (X, X̄) =
1

N

N∑
i=1

L(gX(zi), gX̄(zi)), (1)

where {zi}Ni=1 is a held-out test set for task some task T , and L is a fixed loss function. If L is the zero-
one loss, then the measure captures the fraction of predictions that disagree between models trained on
each set of embeddings. They analyze the model disagreement between two sets of embeddings trained
on corpora collected from the same source at different time periods. They show that slight changes made
to the beginning of an NLP pipeline (word embeddings) have a considerable impact on downstream
performance. Intuitively, NLP engineers can potentially spend a lot of time searching for potential bugs
caused by concept drift in word embeddings. Moreover, the time and resources required to train many
state-of-the-art neural networks are growing substantially over time (Strubell et al., 2019; Schwartz et
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al., 2019). This trend results in a potential increase in greenhouse gasses (Strubell et al., 2019), as well as
increasing the social cost to participate in natural language processing research (Schwartz et al., 2019).

In many scenarios, it is expected that different sets of embeddings may result in better performance,
e.g., training on new domains (Moen and Ananiadou, 2013). Thus, there are many aspects related to the
reliability and stability of the NLP pipeline that is neither cost-effective nor efficient and have yet to be
studied. For example, instead of slight changes in word embeddings trained on the same source corpora,
but collected at different times, what if task T ’s training dataset changed? What if the embeddings are
the same, and the model g() changes? Will the same pre-trained embeddings work if the dataset changes?
Will the same embeddings work for different models? How will changes in pre-trained embeddings affect
downstream fairness? Overall, if an NLP engineer does not need to evaluate every model, with every set
of pre-trained word embeddings, for every question of interest, both the computational cost of putting
models into production and the engineer’s time spent evaluating model variations may be reduced.

Toward addressing the above methodological gaps, this paper presents the following contributions:
(1.) We introduce two new metrics to measure the downstream reliability of word embeddings: Cross–
Dataset Reliability (CDR) and Cross-Model Reliability (CMR); (2.) using our reliability measures, we
provide a comprehensive analysis of the downstream reliability of word embeddings on three offensive
language datasets, multiple standard classification and fairness metrics, and multiple neural network ar-
chitectures; and (3.) we provide an in-depth discussion about our findings, their implications, as well as
the limitations of our study.

2 Related Work

In this section, we briefly describe the main areas of research in which this paper is based: word embed-
dings, word embedding instability, and the downstream impact of word embeddings.

Word Embeddings. Word embeddings capture the distributional nature between words, i.e., word
vectors will encode the context in which words frequently appear. There are multiple word embedding
methods, such as, latent semantic analysis (Deerwester et al., 1990), Word2Vec (Mikolov et al., 2013a;
Mikolov et al., 2013b), and GLOVE (Pennington et al., 2014). The basic component driving our research
is that pre-trained word embeddings have been shown to be useful for a wide variety of downstream NLP
tasks, such as text classification (Kim, 2014), relation extraction (Nguyen and Grishman, 2015), named
entity recognition (Lample et al., 2016), and machine translation (Qi et al., 2018). So, we want to
understand more about their downstream impact.

Word Embedding Instability. There have been significant findings in the instability of word embed-
dings (Hellrich and Hahn, 2016; Hellrich et al., 2019; Antoniak and Mimno, 2018; Burdick et al., 2018;
Pierrejean and Tanguy, 2018). Hellrich and Hahn (2016) show that when investigating neighboring
words in the embedding space, there is low reliability in which words are surrounding a particular token
across multiple runs. In fact, stability is only present when word vectors are trained on a small corpus
with a limited vocabulary (Hellrich and Hahn, 2016). Generally, even the smallest change in the training
corpus causes high variation in the nearest neighbor distances. Furthermore, these variations are not
only subject to low frequency words, instability is found to be present in vocabulary words that occur
relatively frequently (Hellrich and Hahn, 2016). Instability has been shown in multiple algorithms (e.g.,
Skip-Gram (Hellrich and Hahn, 2016) and SVD (Hellrich et al., 2019)), as well as in different training
corpora (e.g., historical text (Hellrich and Hahn, 2016) and social media (Antoniak and Mimno, 2018)).

Instability and the Downstream Impact of Word Embeddings. Rogers et al. (2018) explored mor-
phological, semantic, and distributional factors that are correlated with downstream performance. Their
work pointed to ways of improving the downstream performance of neural architectures by modifying
word embeddings. Yet, while understanding what results in better performing embeddings are important,
the instability of machine learning methods after small changes to features, word embeddings, and train-
ing data on the the downstream performance of certain tasks is troubling (May et al., 2019; Leszczynski
et al., 2020). If the data distribution changes rapidly, then the machine learning models need to be re-
trained frequently, or at least, the word embeddings need to be retrained to handle out-of-vocabulary
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words and their respective meanings. Burdick et al. (2018) study which factors correlate with word em-
bedding stability. A few of their findings include, GLOVE (Pennington et al., 2014) is one of the most
stable methods, and part-of-speech is one of the biggest factors of instability. Fard et al. (2016) analyze
the instability of machine learning models. They provide a metric of model instability, called prediction
churn, and provide a markov chain monte carlo techinques to reduce churn, i.e., to reduce predictions
changing dramatically. May et al. (2019) provides insight into correlationsbetween downstream perfor-
mance and the compression abilities of word embeddings. Leszczynski et al. (2020) provide the first
metric for downstream instability of word embeddings, and they show that increasing the embedding
dimensions can reduce embedding instability. This paper builds on the work of Leszczynski et al. (2020)
by providing insight into practical downstream instability issues of word embeddings.

3 Methodology

In this paper, we use two definitions of reliability: cross-dataset reliability (CDR) and cross-model re-
liability (CMR). These definitions differ from the definition of word embedding stability defined by
Leszczynski et al. (2020) (as shown in Equation 1). Formally, let Z = {zi}Ni=1 and Z̄ = {z̄i}N̄i=1 repre-
sent two independent datasets. f(Z,m) ∈ Rq is a vector of evaluation metrics (e.g., AUC, F1, accuracy,
etc.) for model m (e.g., CNN) on dataset Z . The scores in f(Z,m) are the result of training model m
using q different pre-trained word embeddings. Therefore, f(Z,m)k is the result (e.g., AUC) of model
m trained on dataset Z with pre-trained embeddings k. Thus, we define CDR as

CDRm(Z, Z̄) = C(f(Z,m), f(Z̄,m)), (2)

where C() represents the Spearman rho correlation between vectors f(Z,m) and f(Z̄,m). Intuitively,
a high correlation means that the word embeddings which result in the best and worst performance for
model m are similar for dataset Z and dataset Z̄ . Next, CMR is defined as

CMRZ(m, m̄) = C(f(Z,m), f(Z, m̄)), (3)

where m̄ andm are two different models such as an LSTM and CNN, respectively. Contrary to CDR, the
intuition behind CMR is that a high correlation value means that the embeddings which result in the best
and worst performance on datasets Z for model m are similar to the results of model m̄ on dataset Z .
To improve the robustness of our measurements, each result f(Z,m)k is the average of training model
m on dataset Z ten times using the k-th set of embeddings with different random seeds.

3.1 Datasets

We use three English offensive language datasets in this paper: a sexist dataset (Sexist), an abusive
dataset (Abusive), and a general offensive language dataset (OLID). Essentially, each dataset contains
offensive language. Sexist language is a subset of abusive language (Waseem and Hovy, 2016), and
abusive language is a subset of offensive language (Zampieri et al., 2019). Therefore, classifiers trained
to detect general offensive language should detect both abusive and sexist tweets. The datasets were
chosen because they differ slightly, but, their over-arching theme is the same. This similarity is discussed
for the Sexist and Abusive datasets in Park et al. (2018). Moreover, for each dataset, we use 60%
for training, 20% for validation, and 20% for testing. Each dataset’s test split is used to calculate the
reliability metrics defined in Equations 2 and 3, as Z and Z̄ . We briefly describe each dataset below:

Sexist Tweets Dataset (Sexist). The Sexist dataset is a collection of tweets that was annotated as
‘Sexist’, ‘Racist’, or ‘Neither’. It was originally collected and used in Waseem and Hovy (2016) and
Waseem (2016). It was then used to evaluate the fairness of offensive language classifiers in Park et al.
(2018). The tweets were collected by searching for words related to sexism, then, using criteria from
critical race theory, the tweets were manually annotated by experts. Following Park et al. (2018), we
focus on ‘Sexist’ tweets by removing ‘Racist’ tweets from the dataset. The dataset contains 14,937 total
tweets, of which 3,378 are annotated with the ‘Sexist’ class.
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Abusive Language Dataset (Abusive). The Abusive dataset contains crowdsourced tweets labeled
with one of four classes: ‘None’, ‘Spam’, ‘Abusive’, and ‘Hateful’. Following Park et al. (2018), we
combine ‘None’/‘Spam’ together, and ‘Abusive’/‘Hateful’ together. This combination results in 99,800
total tweets, of which 31,985 are categorized as ‘Abusive’.

Offensive Language Dataset (OLID). The OLID dataset (Zampieri et al., 2019) contains 14,100
tweets labeled using a hierarchical annotation scheme where the top level (task A) differentiates ‘Of-
fensive’ and ‘Not Offensive’ tweets. The bottom level (task C) categorizes insults/threats as targeting
an individual, group, or other. For the purposes of this paper, we only use the first level, task A, of the
hierarchy. The first level contains two classes: ‘Offensive’ and ‘Not Offensive’. This results in a total of
4,640 tweets categorized as ‘Offensive’.

3.2 Word Embeddings and Imputation Strategies
We test 17 publicly available sets of embeddings that vary in terms of the source embedding algorithm,
training data, and dimension. The embeddings include GLOVE (Pennington et al., 2014), FastText (Bo-
janowski et al., 2017), and SkipGram (Mikolov et al., 2013b) variations. The complete listing of the
embeddings used in our experiments can be found in the Supplementary Material.

When using pre-trained word embeddings, there are implementation-level details that can affect down-
stream stability and reliability. For example, how should out-of-vocabulary words (i.e, words in the
training dataset, but not in the pre-trained embeddings) be handled? Should unknown words be ignored,
or should the unknown words be initialized randomly? The choice between fine-tuning the embeddings
or keeping them static can also impact downstream performance and reliability. Moreover, if static em-
beddings can achieve similar performance while also being more reliable, then the cost of training neural
networks can be slightly reduced.

Overall, we make use of three imputation strategies in our experiments: “Impute”, “No Impute”, and
“Static”. For “Impute”, we initialize the embeddings of words missing in the pretrained embedding set,
but that appear in the training dataset, with a random embedding using a uniform distribution in the
range from -.1 to .1. The embeddings learned using the “Impute ” strategy are fine-tuned during training.
For the “No Impute” strategy, out-of-vocabulary words are ignored, but the embeddings are still fine-
tuned during training. Finally, the “Static” strategy ignores out-of-vocabulary words, and the pre-trained
embeddings are static during training, i.e., the embeddings are not fine-tuned.

3.3 Text Classification Models
In our experiments, we explore four neural network architectures: Convolutional Neural Networks
(CNN), Neural Bag-of-Words (NBoW), Long Short-Term Memory Networks (LSTM), and Gated Re-
current Units (GRU). Every model uses standard word embeddings as their input (i.e., contextual em-
beddings are not tested).

Covolutional Neural Networks (CNN). We use the model proposed by Kim (2014). Essentially, the
model is a shallow CNN with max-over-time pooling, followed by a sigmoid output layer. Let xi ∈ Rd

represent a d-dimensional embedding of the i-th word in a document. The CNN learns to extract ngrams
from text that are predictive of the downstream task. Formally, each span of s words are concatenated,
[xi−s+1; . . . ; xi], into a contextual vector cj ∈ Rs(d+2e). Next, using a rectified linear unit (Nair and
Hinton, 2010) f(), the covolution operation is applied to each vector,

ĉj = f(Wcj + b),

where b ∈ Rq. Next, given the convolved context vectors [ĉ1, ĉ2, . . . , ĉn+s−1], the CNN map them into
a fixed sized vector using max-over-time pooling

g = [ĉ1
max, ĉ

2
max, . . . , ĉ

q
max], where ĉjmax = max(ĉj1, ĉ

j
2, . . . , ĉ

j
n+s−1),

such that ĉjmax represents the max value across the j-th feature map. Finally, g is passed to a sigmoid
output layer. We train the CNN with filter sizes that span three, four, and five words. Furthermore, we
use a total of 300 filters for each size, and the Adam optimizer (Kingma and Ba, 2014).
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Neural Bag-of-Words (NBoW). Unlike the CNN, which learns to extract predictive ngrams from text,
the NBoW model only processes unigrams. Specifically, NBoW sums the word embeddings

h =

Q∑
i=1

xi

where Q is the total number of words in an instance (e.g., a tweet). The summed vector 1 h is passed to
a sigmoid output layer. We train the NBoW model with the Adam optimizer (Kingma and Ba, 2014).

Long Short-Term Memory Networks (LSTM). While CNNs only extract informative n-grams from
text, recurrent neural networks (RNNs) are able to capture long term dependencies between words. For
our RNN method, we use long-short-term-memory (LSTM) (Hochreiter and Schmidhuber, 1997), specif-
ically we use a variant introduced by Graves (2012),

ii = σ(xiWi + bi + hi−1Ui)

fi = σ(xiWf + bf + hi−1Uf ),

oi = σ(xiWo + bo + hi−1Uo),

pi = tanh(xiWc + bc + hi−1Uc),

mi = fi ∗mi−1 + ii ∗ pi,

hi = oi ∗ tanh(mi),

where ii, fi, oi represent the input, forget, and output gates. The hidden state vector hQ of the final word
in each sentence is passed to a sigmoid output layer. The LSTM model is trained with hidden state size
of 512 using the Adam optimizer (Kingma and Ba, 2014).

Gated Recurrent Units (GRU). We also explore a variant of the LSTM architecture, GRUs (Cho et
al., 2014). GRUs are similar to LSTMs, but they have fewer parameters and do not have an output gate.
The GRU we use is defined as

zi = σ(xiWz + bz + hi−1Uz)

fi = σ(xiWf + bf + hi−1Uf ),

ĥi = tanh(xiWh + bh + (hi−1 � fi)Uh),

hi = (1− zi)� hi−1 + zi � ĥi,

where hi, ĥi, zi, and fi are the output, candidate activation, update gate, and forget gate vectors, respec-
tively. � denotes the Hadamard product, i.e., element-wise multiplication. Like the LSTM, the final
output vector hQ is passed to a full-connected sigmoid output layer. We train the GRU model with a
hidden state size of 512 using the Adam optimizer (Kingma and Ba, 2014).

4 Experiments

In this section, we describe the evaluation metrics used in our experiments, and relate the overall perfor-
mance of the models and imputation strategies to reliability.

4.1 Evaluation Metrics
We use four evaluation metrics in our experiments: AUC, GAUC, FPED, and FNED. AUC is the stan-
dard area under the receiver operating characteristic curve (ROC). This metric is used to evaluate the
performance of the model on a held-out test set. GAUC is also the area under the ROC curve. However,
instead of evaluating on the held-out test set, the AUC is calculated on the gender bias template (Gen-
Temp) dataset, which we describe below. The FPED and FNED scores are also computed on GenTemp.

1We experimented with averaging the embeddings to account for differences in document length. But, summing performed
slightly better overall.
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Sexist Abusive OLID

AUC ↑ GAUC ↑ FPED ↓ FNED ↓ AUC ↑ GAUC ↑ FPED ↓ FNED ↓ AUC ↑ GAUC ↑ FPED ↓ FNED ↓

Impute Embedding Strategy

CNN .917 ±.01 .556 ±.03 .099 ±.06 .158 ±.06 .885 ±.01 .880 ±.04 .014 ±.01 .017±.01 .830 ±.01 .897 ±.04 .011 ±.01 .032 ±.03
NBoW .916 ±.02 .552 ±.02 .108 ±.09 .214 ±.09 .882 ±.00 .764 ±.03 .012 ±.01 .016 ±.01 .803 ±.03 .708 ±.10 .007 ±.02 .055 ±.04
LSTM .934 ±.01 .552 ±.03 .129 ±.09 .203 ±.09 .890 ±.01 .834 ±.06 .012 ±.01 .022 ±.02 .859 ±.01 .918 ±.04 .015 ±.02 .032 ±.03
GRU .934 ±.01 .545 ±.02 .075 ±.06 .150 ±.08 .891 ±.01 .789 ±.05 .009 ±.01 .028 ±.02 .861 ±.01 .922 ±.03 .015 ±.02 .019 ±.02

AVG .925 .551 .103 .181 .887 .816 .012 .021 .838 .861 .087 .124

No Impute Embedding Strategy

CNN .873 ±.01 .566 ±.03 .203 ±.08 .220 ±.06 .875 ±.01 .572 ±.03 .210 ±.08 .221 ±.06 .832 ±.02 .893 ±.05 .011 ±.01 .034 ±.03
NBoW .874 ±.02 .551 ±.03 .132 ±.10 .231 ±.11 .880 ±.01 .737 ±.04 .013 ±.01 .015 ±.01 .804 ±.03 .698 ±.11 .007 ±.01 .052 ±.04
LSTM .889 ±.01 .571 ±.03 .333 ±.09 .300 ±.07 .894 ±.01 .816 ±.07 .011 ±.01 .017 ±.02 .859 ±.02 .911 ±.05 .013 ±.01 .035 ±.04
GRU .889 ±.01 .573 ±.03 .275 ±.08 .266 ±.08 .894 ±.01 .796 ±.07 .010 ±.02 .017 ±.01 .862 ±.02 .913 ±.05 .014 ±.01 .027 ±.03

AVG .881 .565 .236 .254 .886 .730 .061 .067 .839 .854 .015 .037

Static Embedding Strategy

CNN .841 ±.02 .524 ±.03 .078 ±.08 .104 ±.09 .845 ±.01 .522 ±.03 .083 ±.08 .097 ±.09 .796 ±.05 .853 ±.09 .010 ±.02 .024 ±.02
NBoW .792 ±.03 .577 ±.06 .151 ±.15 .158 ±.13 .803 ±.03 .687 ±.12 .025 ±.03 .030 ±.03 .759 ±.04 .682 ±.16 .015 ±.03 .062 ±.06
LSTM .862 ±.03 .539 ±.04 .172 ±.13 .198 ±.14 .887 ±.02 .834 ±.09 .022 ±.03 .021 ±.02 .829 ±.05 .853 ±.10 .009 ±.01 .025 ±.03
GRU .863 ±.03 .530 ±.03 .136 ±.10 .153 ±.11 .887 ±.02 .808 ±.11 .020 ±.03 .022 ±.02 .833 ±.04 .870 ±.09 .009 ±.01 .025 ±.03

AVG .840 .542 .135 .153 .856 .713 .037 .043 .804 .815 .012 .034

Table 1: Overall Performance of each model (CNN, BoW, LSTM, and GRU) on all three datasets (Sexist,
Abusive, and OLID) averaged over all pre-trained word embeddings. ↑ and ↓ mark whether the perfor-
mance is better with a higher (↑) or lower (↓) score. Scores are reported on a held-out split of each dataset
(AUC) as well as the synthetic gender dataset (GAUC, FPED, and FNED).

Overall, each metric is used to evaluate reliability as part of Equations 2 and 3 (i.e., they are the output
of f(Z,m)).

While many metrics have been proposed to evaluate fairness (Zliobaite, 2015; Hardt et al., 2016;
Dixon et al., 2018a; Borkan et al., 2019; Beutel et al., 2019; Mitchell et al., 2019), unfortunately, most
methodologies require ground-truth or inferred demographic annotations (Badjatiya et al., 2019; Garg
et al., 2019). In the absence of annotated demographic data, (Dixon et al., 2018a) propose fuzzing
methods—a method of testing fairness with simulated data to analyze how predictions change if the
topic of the tweet stays the same, but the text in pre-defined templates (e.g. I am {adjective}) is slightly
altered. For example, fuzzing techniques will randomly change demographic words (e.g., “he”, “she”,
“husband”, and “wife”) in a tweet without changing its meaning.

In this paper we use the code released by Dixon et al. (2018b),2. Specifically, we generated 1,424
samples (712 pairs) by filling the templates with common gender identity pairs (e.g., male/female,
man/woman, etc.). We call this set of filled templates GenTemp. The created templates contain neu-
tral and offensive nouns and adjectives inside the vocabulary to retain balance in ‘Not Offensive’ and
‘Offensive’ samples. See the Supplementary Material for a complete listing of the nouns and adjectives.

Following the experimental setup of Park et al. (2018), to measure the fairness of the different models,
we use the AUC metric on GenTemp (GAUC), and compare the absolute differences between the false
positive rate and false negative rate calculated independently for each gender. False-positive (FPR) and
false-negative rates (FNR) are defined as

FPR =
FP

FP + TN
and FNR =

FN

FN + TP

where TP, FP, FN, and TN represent the number of true positives, false positives, false negatives, and
true negatives, respectively. Moreover, we use the False Positive Equality Difference (FPED) and False
Negative Equality Difference (FNED) (Dixon et al., 2018a). FPED and FNED are defined as

FPED =
∑
t∈T
|FPR− FPRt| and FNED =

∑
t∈T
|FNR− FNRt|,

2https://github.com/conversationai/unintended-ml-bias-analysis
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respectively, where T = {Male,Female}. FPR and FNR represent the overall false positive and false
negative rates, respectively. FPRt and FNRt represent the group-specific (i.e., Male or Female) false
positive and false negative rates.

4.2 Overall Performance

We report the overall performance of each model on the three offensive language datasets in Table 1.
While the goal of this paper is not to develop the best offensive language classifiers, it is important to
understand each model’s performance when analyzing reliability. Each model’s performance in Table 1
is averaged over all 17 embeddings and the ten repeated runs of each model. Furthermore, the AVG rows
mark the average performance of an embedding strategy across all four models. Concerning the AUC on
each dataset’s held-out test set, we find that the “Impute” and “No Impute” embedding strategies result
in the best performance on average. For instance, The AVG AUC on the Sexist dataset is 0.925, which
is more than 4% higher than the “No Impute” strategy (0.881 AUC) and 8% higher than the “Static”
AVG (0.840). Thus, static embeddings generally result in sub-optimal performance on average. We
find a similar pattern for GAUC—the AUC results on the gender bias template dataset. The GAUC for
the Abusive dataset (0.816 GAUC) is nearly 9% better than the use of the “No Impute” strategy (0.730
GAUC). We also find that the LSTM and GRU models generally result in the best AUC and GAUC, e.g.,
on the Sexist dataset, the LSTM’s AUC (0.934) is nearly 2% better than the CNN and BoW models.

Based on the FPED and FNED metrics, the fairest model and imputation strategies vary depending
on the dataset. For instance, the “Static” embedding imputation strategy obtains the best scores for
FPED (0.012) and FNED (0.034) on the OLID dataset, which is considerably better than the “Impute”
strategy (FPED 0.087; FNED 0.124). Contrary to the OLID results, the “Impute” strategy on the Abusive
dataset results in the best FPED (0.012) and FNED (0.021) scores, which is nearly 5% better than the
“No Impute” Strategies FPED (0.061) and FNED (0.067). Overall, while the best model and imputation
strategies vary for FPED and FNED, the bias is small in the Abusive and OLID datasets.
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Figure 1: This plot reports the best (max) and worst
(min) AUC scores across all embeddings for each
model on the OLID dataset. The exact range (Min-
Max) is shown above each bar.

While we report the average and standard
deviations in Table 1, it is also important to
measure the difference between the best and
worst performing embeddings for each model.
If all embeddings result in the same perfor-
mance, then reliability is irrelevant. More-
over, if the “Static” embedding imputation
strategy is more sensitive to pre-trained em-
bedding choice, but it can still match the per-
formance of the “Impute” strategy for some
embeddings, then it is important to know that.
Thus, in Figure 1 we report the best and worst
scores on the OLID dataset. The results are
obtained by training a model repeatedly (ten
times) for each set of embeddings. The runs
are averaged to report the average score ob-
tained by each model-embedding pair. Figure 1 displays the maximum (max) and minimum (min)
scores. For each set of pretrained embeddings, we average the AUC of each model’s ten runs. Hence, the
max represents the largest pre-trained embedding’s average AUC score. Interestingly, we find that the
best embeddings for each model result in approximately the same AUC across all imputation strategies.
For instance, the best AUC for the LSTM model is 0.87 for every imputation strategy. However, the
choice of imputation strategy substantially impacts the worst AUC scores, i.e., the worst embeddings for
each model impact each model’s overall average. This implies that the “Static” embedding strategy is
more sensitive to the selected pre-trained embeddings than the “Impute” strategy. Nonetheless, there is
still a 3–7% absolute difference between the best and worst scores for each model using the “Impute”
strategy—suggesting that pre-trained embedding choice is important. But, embedding choice has a larger
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Sexist⇔ Abusive Sexist⇔ OLID Abusive⇔ OLID

AUC ↑ GAUC ↑ FPED ↑ FNED ↑ AUC ↑ GAUC ↑ FPED ↑ FNED ↑ AUC ↑ GAUC ↑ FPED ↑ FNED ↑

Impute Embedding Strategy

CNN -.085 .388 .368 -.050 .300 .756 .553 -.182 .700 .529 .746 .032
NBoW .247 -.550 -.541 -.003 .650 .788 .362 .159 .653 -.685 -.503 -.162
LSTM .741 .476 -.329 .147 .694 .365 .271 -.056 .741 .612 .200 .456
GRU .759 .594 .194 -.500 .447 .341 .274 -.168 .685 .562 .329 .426

AVG .415 .227 -.077 -.101 .523 .563 .365 -.062 .695 .254 .193 .188

No Impute Embedding Strategy

CNN .885 .899 .791 .565 .626 .496 .174 -.538 .591 .591 .162 -.412
NBoW .645 .056 -.302 -.153 .765 .835 .097 .132 .449 -.162 -.071 .000
LSTM .897 .679 -.418 .129 .853 .668 -.197 -.416 .938 .724 .374 .188
GRU .938 .503 -.709 -.365 .821 .644 -.179 -.424 .894 .588 .376 .300

AVG .841 .534 -.159 .044 .766 .661 -.026 -.311 .718 .435 .210 .019

Static Embedding Strategy

CNN .938 .894 .971 .903 .909 .835 -.524 .609 .885 .882 -.500 -.559
NBoW .779 .741 -.132 .362 .779 .685 .271 .529 .929 .876 .165 .374
LSTM .897 .612 -.500 -.003 .876 .879 -.488 -.759 .982 .691 .708 -.097
GRU .897 .785 -.662 .188 .859 .894 -.541 -.888 .947 .821 .509 -.185

AVG .878 .758 -.081 .363 .856 .824 -.321 -.127 .936 .818 .220 -.117

Table 2: Cross-dataset reliability (CDR) results measured by the Spearman rho correlation between the
performance scores (AUC, GAUC, FPED, and FNED) of the same model trained on different datasets.
The correlation measures whether the word embeddings that result in the best (worst) performance for a
given model are the same on different, but similar, datasets. Higher (↑) scores marks more correlation.

impact when the “Static” strategy is used. Please see the Supplementary Material for a complete listing
of the max, min, and median of each model’s AUC and GAUC scores on every dataset. In summary, for
all datasets, we found that pretrained embedding choice has a smaller impact on the AUC of the models
using the “Impute” strategy than the “No Impute” and “Static” strategies. Yet, the GAUC performance
is substantially impacted by the choice of pre-trained embeddings for all imputation methods. For in-
stance, the BoW method has a 29% absolute difference between the min and max GAUC scores using
the “Impute” strategy on the OLID dataset. Thus, the general importance of the reliability scores will
depend on imputation strategy and evaluation metric.

4.3 Cross-Dataset Reliability Analysis

The CDR results are shown in Table 2. We find that the use of static embeddings results in stable cross-
dataset AUC and GAUC performance. For instance, the correlation between the AVG Impute model and
Static models, on the Sexist and Abusive datasets, jumps from 0.415 to 0.878. Intuitively, this means
if the word embeddings are static, then the embeddings that result in the best performance for a certain
model (e.g., CNN) on the Sexist dataset will likely result in the best performance on the Abusive dataset.
We find similar correlation improvements between Sexist ⇔ OLID (0.523 to 0.586) and Abusive ⇔
OLID (0.695 to 0.936). Additionally, in the static embedding setting, we see high correlation between
datasets that differ substantially in size (e.g., Sexist⇔ Abusive). This result suggests that small datasets
could potentially be used to find which pre-trained embeddings work the best for a given problem, then
the same embeddings will generalize to a larger dataset.

While the AUC and GAUC CDR correlations improve using static embeddings, the CDR scores for
the FPED and FNED fairness metrics do not have any noticeable correlation improvements. For instance,
with static embeddings, the AVG CDR FPED score between the Sexist and OLID datasets is -0.321, i.e.,
on average, the embeddings that result in the fairer models in the Sexist dataset are inversely related to
the embeddings in OLID. We find similar patterns in the FPED results for Sexist ⇔ Abusive (-0.081)
and FNED results on Abusive⇔ OLID (-0.117) with static embeddings. The pattern continues for the
“Impute” and “No Impute’’ embedding strategies.



3379

Impute No Impute Static

Im
pu

te
N

o 
Im

pu
te

S
ta

tic

(a) Sexist CMR AUC Results

Impute No Impute Static

Im
pu

te
N

o 
Im

pu
te

S
ta

tic

(b) Abusive CMR AUC Results

Impute No Impute Static

Im
pu

te
N

o 
Im

pu
te

S
ta

tic

(c) OLID CMR AUC Results
Impute No Impute Static

Im
pu

te
N

o 
Im

pu
te

S
ta

tic
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(e) Abusive CMR GAUC Results

Impute No Impute Static

Im
pu

te
N

o 
Im

pu
te

S
ta

tic

(f) OLID CMR GAUC Results

Figure 2: Cross-Model Reliability (CMR) correlation heatmap measured by the Spearman rho correla-
tion between the performance scores (AUC and GAUC) of different models trained on the same dataset.
The correlation measures whether the word embeddings that result in the best (worst) performance for a
given model are the same for different models.

4.4 Cross-Model Reliability Analysis

In Figure 4, we report correlation heatmaps of the CMR study on each dataset. Note that all the results
are in the diagonal blocks to report cross-model correlation on the same dataset. We analyze two of the
evaluation metrics: AUC and GAUC. Overall, similar to the CDR results, we find that static embeddings
result in more downstream reliability. For example, in Figure 4a, we see a steady improvement in CMR
from the “Impute” strategy—where some models are negatively correlated with each other (e.g., the CNN
and LSTM)—to the “Static” embedding imputation strategy. We find similar results for the abusive and
OLID datasets shown in Figures 4b and 4c, respectively. In addition, the CMR correlation between the
GRU and LSTM models is consistently higher than other pairs of models. This result suggests that the
more similarities between two neural network architectures, the more likely the embeddings that perform
well for one, will perform well for the other.
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Figure 3: Abusive Cross-Model Reli-
ability (CMR) FPED Results.

In Figure 3, we show the FPED CMR results on the Abu-
sive dataset. Similar to the CDR findings, we find that there is
little downstream fairness reliability of the word embeddings.
Specifically, we find nearly zero correlation between the FPED
results of the CNN and the LSTM models with the “Impute”
strategy. Furthermore, with the “Static” embedding strategy,
many of the CMR results have negative correlations. The re-
sults imply that while the static embeddings resulting in the
best AUC and GAUC performance are similar across models,
there is no guarantee about FPED and FNED performance. We
have similar results for the FPED and FNED results for all three
datasets. However, because of space limitations, the rest of
the Cross-Model FPED and FNED Figures can be found in the
Supplementary Material.
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5 Discussion

We have two major findings in this paper. First, if we fine-tune word embeddings, then the down-
stream performance will be erratic between models and datasets. While the difference between
a model trained on different embeddings may be smaller with the “Impute” strategy for some met-
rics/datasets, there are still meaningful differences. Moreover, the finding that static embeddings are
reliable and can match the “Impute” strategy scores with certain pre-trained embeddings implies that
we may be able to save computation by not fine-tuning the embeddings. Also, we may be able to save
computation by not evaluating all embeddings on future training iterations with the model. Thus, if com-
putational efficiency is essential, and an NLP engineer wants to train a model on recently collected data,
they only need to evaluate the best embeddings from their previous study. Likewise, if an NLP engineer
wants to efficiently test a new model with static embeddings, based on the CMR results, the engineer
only needs to evaluate the new model on the embeddings that initially resulted in the best performance.

Our second major finding for the FPED and FNED fairness metrics is that the reliability of the down-
stream fairness of word embeddings is erratic across models, datasets, and embedding imputation
strategies. So, if the FPED and FNED fairness metrics are essential for the downstream task, it is crucial
to test every embedding-model combination. However, many industries (e.g., health, government, etc.)
that have applications where fairness is mission-critical may not have the resources for large-scale exper-
imentation. Therefore, even if these industries rely on human-NLP collaboration, finding efficient and
reliable methods of fairness estimation may be helpful, even if the accuracy does not necessarily achieve
state-of-the-art performance. While there has been research about reducing the social cost of testing the
fairness of text classification models (Rios, 2020), all embedding-model combinations still need to be
tested in their framework. It is our opinion, that reducing the social and computational cost of testing the
fairness of NLP methodologies is an important avenue of future research.

One of the major limitations of this study is that we treat gender as a binary concept while evaluating
fairness. Gender is difficult (impossible) to detect automatically because gender is not a binary classifi-
cation task. People may identify as binary trans people, non-binary people, or as gender non-conforming
people. In this work we do not classify users into gender categories, but we do use a synthetic dataset to
estimate binary gender fairness. As future work, we believe it is best to perform controlled experiments
where we ask users how they identify, rather than grouping them automatically or using toy synthetic
test sets. This approach—of asking rather than predicting—is also suggested for studies about gender
in Scheuerman et al. (2019).

Finally, it is important to note the similarities and differences of our reliability metrics (CDR and
CMR) to domain adaptation. Generally, domain adaptation methods attempt to improve the performance
of machine learning models on data for a task that does not match the original data distribution (Ramponi
and Plank, 2020). In this paper, we explore the downstream reliability of word embeddings when applied
to datasets that do not match the original data distribution. Yet, the downstream performance of word
embeddings may be reliable, but not generalize well in terms of overall performance. Ideally, future
work should explore methods that generalize well and are reliable.

6 Conclusion

In this paper, we develop metrics of downstream reliability of pre-trained word embeddings. Specifically,
we measure the downstream reliability of word embeddings across datasets and models. Our findings
conclude that the performance of word embeddings are reliable when they are static, i.e., when they are
not fine-tuned. This implies, without fine-tuning, that every publicly available set of word embeddings
does not need to be evaluated if an NLP engineer trains on an updated dataset, or tests a different neural
network architecture.
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Supplementary Material
A Word Embeddings

In Table 3, we link to the publicly available word embeddings we use in our experiments. We test three
models: SkipGram, GLOVE, and FastText. We also explore different embeddings sizes, ranging for 25
dimensions to 300.

B GenTemp Dataset Details

In this section, we list the nouns and adjectives used in our experiments. These lists can be combined
with the code released by Dixon et al.3 to recreate our GenTemp dataset.

B.1 Gender Adjectives
[male, female, man, woman, men, women, his, hers, him, her, boy, girl, he, she, boys, girls]

B.2 Negative Adjectives
[disgusting, filthy, nasty, rude, rotten, horrible, terrible, awful, repulsive, vile, worst, idiotic, stupid,
moronic, dumb, ugly, shitty, fucked, bitchy, asshole, spiteful, mean, cruel, hateful]

B.3 Positive Adjectives
[great, fun, nice, neat, happy, good, best, fantastic, wonderful, lovely, excellent, incredible, friendly,
gracious, kind, caring, hi, chartiable, thoughtful, selfless]

B.4 Negative Verbs
[kill, murder, hate, destroy]

B.5 Positive Verbs
[hug, congrats, like, love, respect]

C Expanded Overall Results

For each neural network model, we report the maximum, median, and minimum AUC and GAUC scores
trained on different sets of embeddings in Tables 4, 5, and 6. The results are obtained by training a model
repeatedly (ten times) for each set of embeddings. The runs are averaged to report the average score
obtained by a model-embedding pair. The numbers in the tables are used to generate Figure 1.

D Cross-Model Reliability FPED and FNED Results

In Figure 4, we report correlation heatmaps of the CMR study on each dataset. Note that all the results
are in the diagonal blocks to report cross-model correlation on the same dataset. We analyze two of the
evaluation metrics: FPED and FNED. This expands on the analysis in the main paper. Here, we find
that the CMR scores for the FPED and FNED metrics can vary depending on the dataset and neural
network architecture. For instance, while the results get words from Impute to Static in Figure 4b, we
see the opposite pattern in Figure 4a. The only pattern that holds across datasets and metrics is that the
word embeddings which result in the most fair model in the GRU and LSTM architectures are highly
correlated.

3https://github.com/conversationai/unintended-ml-bias-analysis
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(f) OLID CMR FNED Results

Figure 4: Cross-Model Reliability (CMR) correlation heatmap measured by the Spearman rho correla-
tion between the performance scores (FPED and FNED) of different models trained on the same dataset.
The correlation measures whether the word embeddings that result in the best (worst) performance for a
given model are the same for different models.
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Model Data Source Dimension Link

SkipGram Google News 300 https://docs.google.com/file/d/
0B7XkCwpI5KDYaDBDQm1tZGNDRHc/edit?
usp=sharing

SkipGram PubMed 200 http://evexdb.org/pmresources/
vec-space-models/PubMed-w2v.bin

SkipGram PubMed Central 200 http://evexdb.org/pmresources/
vec-space-models/PMC-w2v.bin

SkipGram PubMed and PubMed Central 200 http://evexdb.org/
pmresources/vec-space-models/
PubMed-and-PMC-w2v.bin

SkipGram Wikipedia, PubMed, and PubMed Central 200 http://evexdb.org/
pmresources/vec-space-models/
wikipedia-pubmed-and-PMC-w2v.bin

GLOVE Twitter 25 http://nlp.stanford.edu/data/
glove.twitter.27B.zip

GLOVE Twitter 50 http://nlp.stanford.edu/data/
glove.twitter.27B.zip

GLOVE Twitter 100 http://nlp.stanford.edu/data/
glove.twitter.27B.zip

GLOVE Twitter 200 http://nlp.stanford.edu/data/
glove.twitter.27B.zip

GLOVE Wikipedia 2014 and Gigaword 5 50 http://nlp.stanford.edu/data/
glove.6B.zip

GLOVE Wikipedia 2014 and Gigaword 5 100 http://nlp.stanford.edu/data/
glove.6B.zip

GLOVE Wikipedia 2014 and Gigaword 5 200 http://nlp.stanford.edu/data/
glove.6B.zip

GLOVE Wikipedia 2014 and Gigaword 5 300 http://nlp.stanford.edu/data/
glove.6B.zip

GLOVE Common Crawl V1 300 http://nlp.stanford.edu/data/
glove.42B.300d.zip

GLOVE Common Crawl V2 300 http://nlp.stanford.edu/data/
glove.840B.300d.zip

FastText Wikipedia 2017, UMBC webbase corpus, and statmt.org news dataset 300 https://dl.fbaipublicfiles.
com/fasttext/vectors-english/
wiki-news-300d-1M.vec.zip

FastText Common Crawl 300 https://dl.fbaipublicfiles.
com/fasttext/vectors-english/
crawl-300d-2M.vec.zip

Table 3: List of word embeddings we use in our experiments.
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AUC GAUC

Max Median Min Max Median Min

Impute Embedding Strategy

CNN 0.928 0.916 0.910 0.585 0.557 0.531
BoW 0.924 0.923 0.855 0.572 0.558 0.503
LSTM 0.942 0.934 0.925 0.580 0.552 0.516
GRU 0.939 0.935 0.925 0.574 0.550 0.523

No Impute Embedding Strategy

CNN 0.882 0.874 0.856 0.601 0.571 0.523
BoW 0.887 0.879 0.829 0.586 0.556 0.507
LSTM 0.903 0.894 0.864 0.636 0.573 0.528
GRU 0.901 0.891 0.869 0.629 0.571 0.524

Static Embedding Strategy

CNN 0.864 0.843 0.822 0.569 0.517 0.493
BoW 0.840 0.794 0.736 0.637 0.593 0.509
LSTM 0.899 0.868 0.796 0.614 0.538 0.486
GRU 0.895 0.867 0.804 0.593 0.526 0.491

Table 4: This table reports the maximum, median, and minimum AUC and GAUC scores across all
embeddings for each model on the Sexist dataset.

AUC GAUC

Max Median Min Max Median Min

Impute Embedding Strategy

CNN 0.890 0.884 0.880 0.915 0.902 0.794
BoW 0.885 0.881 0.880 0.807 0.761 0.739
LSTM 0.898 0.890 0.882 0.892 0.843 0.714
GRU 0.901 0.891 0.885 0.888 0.807 0.709

No Impute Embedding Strategy

CNN 0.883 0.876 0.863 0.604 0.578 0.523
BoW 0.885 0.883 0.842 0.792 0.737 0.634
LSTM 0.902 0.898 0.854 0.878 0.826 0.584
GRU 0.902 0.898 0.855 0.863 0.813 0.621

Static Embedding Strategy

CNN 0.864 0.848 0.827 0.568 0.512 0.495
BoW 0.844 0.796 0.747 0.860 0.703 0.499
LSTM 0.903 0.893 0.839 0.902 0.867 0.586
GRU 0.904 0.892 0.837 0.899 0.854 0.518

Table 5: This table reports the maximum, median, and minimum AUC and GAUC scores across all
embeddings for each model on the Abusive dataset.
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AUC GAUC

Max Median Min Max Median Min

Impute Embedding Strategy

CNN 0.842 0.834 0.805 0.943 0.896 0.845
BoW 0.824 0.805 0.754 0.798 0.723 0.506
LSTM 0.874 0.862 0.839 0.958 0.931 0.861
GRU 0.876 0.865 0.845 0.955 0.935 0.870

No Impute Embedding Strategy

CNN 0.848 0.839 0.774 0.946 0.902 0.795
BoW 0.836 0.807 0.736 0.798 0.723 0.542
LSTM 0.875 0.866 0.813 0.957 0.932 0.821
GRU 0.875 0.867 0.820 0.956 0.935 0.823

Static Embedding Strategy

CNN 0.840 0.809 0.666 0.944 0.862 0.632
BoW 0.825 0.757 0.673 0.930 0.659 0.504
LSTM 0.871 0.850 0.706 0.960 0.887 0.626
GRU 0.870 0.851 0.727 0.967 0.902 0.662

Table 6: This table reports the maximum, median, and minimum AUC and GAUC scores across all
embeddings for each model on the OLID dataset.


