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Abstract

We formulate the problem of hypernym prediction as a sequence generation task, where the se-
quences are taxonomy paths in WordNet. Our experiments with encoder-decoder models show
that training to generate taxonomy paths can improve the performance of direct hypernym pre-
diction. As a simple but powerful model, the hypo2path model achieves state-of-the-art perfor-
mance, outperforming the best benchmark by 4.11 points in hit-at-one (H@1).

1 Introduction

Hypernymy, or the IS-A relation, is one of the most important lexical relations. It is used to create tax-
onomies of terms and it is the main organizational criterion of nouns and verbs in WordNet (Fellbaum,
1998). Learning hypernymy is also important in practice, as knowing a word’s hypernyms gives an ap-
proximation of its meaning, and enables inferences in downstream tasks such as question answering and
reading comprehension. Predicting hypernymy is still a challenging task for word embeddings (Pinter
and Eisenstein, 2018; Bernier-Colborne and Barriere, 2018; Nickel and Kiela, 2018) and previous stud-
ies have shown that it is more difficult to predict hypernymy than other lexical relations (Balažević et al.,
2019; Allen et al., 2019).

Hypernymy prediction is often evaluated against a given taxonomy, typically WordNet (Fellbaum,
1998). The main hypothesis that we pursue in this paper is that knowledge of this taxonomy, in particular
of taxonomy paths, will be helpful for hypernymy prediction. So we introduce two simple encoder-
decoder based models for hypernym prediction that make use of information in the full taxonomy paths.

There has been much recent work on modeling lexical relations based on distributed representations
(Pinter and Eisenstein, 2018; Bernier-Colborne and Barriere, 2018; Nickel and Kiela, 2018). However,
the task formulations and evaluation datasets have differed widely, making it hard to compare different
approaches. We focus on evaluating on hypernymy, rather than jointly on many relations, which can mask
strong performance differences across relations. We evaluate our encoder-decoder models against several
previous models that have not been evaluated in the same setting before. Like many other approaches,
we use WordNet as the basis for our experiments. We formulate the task as the task of finding the
correct point to attach a new node (synset) to the WordNet taxonomy. We build on the existing WN18RR
dataset (Dettmers et al., 2018), but filter its hypernymy pairs to produce WN18RR-hp, a subset that is
leak-free with respect to approaches that use taxonomy paths during training, as we do.

We find that one of our new models, hyper2path, achieves state-of-the-art performance on hypernym
prediction on WN18RR-hp, exceeding the best performance of benchmark models by 4.11 points in
accuracy of the highest-ranked prediction (hit-at-one, H@1). In particular, we observe the greatest per-
formance gain in noun hypernym prediction, where it improves over the best benchmark by 5.17 H@1
points.

∗* Equal contribution.
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creativecommons.org/licenses/by/4.0/.
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Hyponym Generated hypernym path Gold hypernym
3 pizza.n.01 dish.n.02 � nutriment.n.01 � food.n.01 � . . . � entity.n.01 dish.n.02
3 alps.n.01 range.n.04 � geological formation.n.01 � . . . � entity.n.01 range.n.04
3 whisper.v.01 talk.v.02 � communicate.v.02 � interact.v.01 � act.v.01 talk.v.02
7 proletarian.n.01 *worker.n.01 � person.n.01 � causal agent.n.01 � . . . � entity.n.01 commoner.n.01
7 austerity.n.01 *punishment.n.01 � social control.n.01 � . . . � entity.n.01 self-discipline.n.01
7 compulsive.n.01 *sick person.n.01 � unfortunate.n.01 � person.n.01 � . . . � entity.n.01 person.n.01

Table 1: We frame hypernym prediction as a sequence generation problem. Given a query hyponym (e.g., pizza.n.01), the
hypo2path rev model generates its taxonomy path, from its direct hypernym (dish.n.02) to the root node (entity.n.01). 3 and
7 indicate a correct and an incorrect prediction, respectively. In each example, an underlined synset corresponds to what the
model predicted as a direct hypernym.

2 Hypernym Prediction

Several tasks related to hypernymy have been proposed under different names: extracting is-a relations
from text (hypernym discovery) (Hearst, 1992; Snow et al., 2005; Camacho-Collados et al., 2018), binary
classification of whether two given words are in a hypernym relation (hypernym detection) (Weeds et al.,
2014; Shwartz et al., 2016; Roller et al., 2018), and constructing or extending a taxonomy (taxonomy
induction) (Snow et al., 2006; Jurgens and Pilehvar, 2016). Another recently introduced task is hierarchi-
cal path completion (Alsuhaibani et al., 2019), where, given a hypernym path of length 4 from WordNet,
the task is to predict the correct hyponym(s).

While hypernymy has long been studied in computational lexical semantics, another thread of recent
research on hypernymy comes from the literature on knowledge base completion (Bordes et al., 2013;
Nickel and Kiela, 2017; Pinter and Eisenstein, 2018; Dettmers et al., 2018). Here, hypernymy is consid-
ered as one of multiple different semantic relations between two nodes in a graph. Extending from this
line of research, we also consider the relation prediction task in a semantic graph, but only focus on one
relation of interest, hypernymy.

Like previous work in knowledge base completion (Bordes et al., 2013; Nickel and Kiela, 2017; Pinter
and Eisenstein, 2018; Balažević et al., 2019), we take WordNet as our experimental space, so we learn
hypernymy between synsets rather than raw lemmas. A synset is a basic lexical unit in WordNet, defined
as a set of lemmas that are synonymous to each other. A synset thus also functions as one of the senses for
each of the lemmas in the set. For example, the synset mark.n.01 (a number or letter indicating quality)
consists of the three lemmas mark, grade, and score. Given a new synset, which we call the source
node, our task is to predict its direct hypernym or target node from among the synsets in WordNet. For
example, for the source node woolly daisy.n.01, the model should identify wildflower.n.01 as the target
node in the graph.

While some previous approaches have predicted indirect hypernyms using the transitive closure of
WordNet (Vendrov et al., 2016; Li et al., 2019), we focus on predicting direct hypernyms. Datasets for
indirect hypernymy often include hypernyms that are too generic and not informative enough, where
some semantically distant concepts are trivially mapped to the root node (entity.n.01) or a high-level
hypernym near the root. We also restrict ourselves to modeling hypernym relations specifically, unlike
much work on WN18RR which learns hypernymy as one of 11 lexical relations (Bordes et al., 2013; Pin-
ter and Eisenstein, 2018; Balažević et al., 2019). As we discuss in Section 5, we observe that hypernymy
is more effectively learned when trained on its own.

3 Models

In this section we introduce our two new path-based models, hypo2path and Path Encoder1, along with
the four benchmark models.

3.1 Path Generators: hypo2path and hypo2hyper
In our first model, we treat hypernym prediction as a sequence generation task: given a hyponym, the goal
is to generate the entire path in the WordNet taxonomy starting from the root node (entity.n.01 for nouns)

1Code and data are available at https://github.com/scarletcho/hypernym-path-generation.
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and ending with the direct hypernym. For example, flock.n.02 should be mapped to its hypernym path by
generating entity.n.01 � abstraction.n.06 � group.n.01 � biological group.n.01 � animal group.n.01.
So the model is tasked to translate source synsets to target synset sequences. We denote this model as
hypo2path. Our intuition behind this model is that training with a more difficult objective (i.e., entire
hypernym path prediction rather than direct hypernym prediction) may result in a stronger model.

We use a standard LSTM-based sequence-to-sequence model (Sutskever et al., 2014) with Luong-style
attention (Luong et al., 2015). This encodes a synset embedding of a hyponym into a hidden state, which
is taken as the initial state of the LSTM decoder. The decoder generates synsets sequentially, conditioned
on previously generated synsets. While the attention mechanism assigns weights to the source tokens,
here we only have a single source token (i.e., a query hyponym). In our task, the attention mechanism
serves as a way to avoid “forgetting” the source hyponym while decoding long paths2.

Reversing the order of the source or target sequences can the improve performance of encoder-decoder
models, since the encoded hidden state is closer to the first target token (Sutskever et al., 2014; Gillick
et al., 2016). Motivated by this, we experiment with a model variant called hypo2path rev in which we
reverse the target path to generate a sequence of hypernyms starting from the direct hypernym of the
source. This frames every generation step as direct hypernym prediction, which the decoder may more
easily learn. Examples of generated reversed paths are shown in Table 1.

In order to determine whether generating an entire hypernym path as an auxiliary task helps to accu-
rately predict a synset’s direct hypernym, or whether generating only the direct hypernym is enough, we
also perform experiments with hypo2hyper, a variant of hypo2path. Here the encoder-decoder model is
trained to only generate a direct hypernym (i.e., both the source and target sequences are of length 1).3

3.2 Path Encoder

We also examine the reverse approach: training an LSTM encoder that learns vector representations of
hypernym paths. Given a query hyponym, we construct an embedding of a hypernym path (from the root
node down), and the model is tasked to distinguish the gold path (which ends at its direct hypernym)
from distractor paths. We construct path embeddings using a bidirectional LSTM followed by a fully-
connected layer. The output corresponding to the last hidden state is the encoded path vector. We denote
this model as Path Encoder.

Given the training set S consisting of pairs (x, p) of a hyponym and a path,4 we train the model by
minimizing the Euclidean distance of encoded path vectors Vp and the embedding vectors of the hyponym
Vx. In addition, the model is trained to maximize the distance of Vp and Vx′ from the negative examples
{(p, x′)|(∗, x′) ∈ S} which are generated by randomly pairing a hyponym with a random path. The
model is optimized with the following ranking loss function:

L = max{0, ‖Vp − Vx‖2 − ‖Vp − Vx′‖2 + γ}

where γ is a positive margin hyperparameter.
During prediction, the model first encodes all hypernym paths {p|(p, ∗) ∈ S}. Then for each query

hyponym x the path that minimizes ‖Vp − Vx‖2 is returned as the predicted hypernym path. From this
path, we take the predicted direct hypernym of x for evaluation, just as we do for hypo2path.5

3.3 Benchmark Models

TransE In the TransE model (Bordes et al., 2013), a semantic relationship is interpreted as a vector
translation in embedding space. Given a triplet (s, r, t) of a source node s, a relation r, and a target node
t, the model learns embeddings for the nodes and relation such that the target vector t is near s+ r.

2Attention improved the performance of hypo2path on nouns by about 3 points in H@1 (averaged over 5 runs).
3We also experimented with settings in-between hypo2path and hypo2hyper, where the model is trained to predict only

truncated hypernym paths of maximum length 2 (for verbs) or 5 (for nouns and instance nouns). We do not report these results,
since performance was similar to training with the full path.

4When multiple paths for a given hyponym exist in the graph, each of these paths is paired with its hyponym x.
5As with the hypo2path experiments, we also tried encoding truncated paths of length 2 and 5. We omit these results, since

they were similar to encoding the full path.
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M3GM Max-Margin Markov Graph Models (M3GM) (Pinter and Eisenstein, 2018) exploit graph mo-
tif properties in WordNet (e.g., number of cycles of length 2 or 3) to predict different semantic relations.
As a global feature model, M3GM reranks the top N candidates predicted by a local distributional feature
model such as TransE (Bordes et al., 2013).

CRIM Bernier-Colborne and Barriere (2018) proposed a hybrid system which exploits both unsuper-
vised pattern-based hypernym discovery and supervised projection learning (Ustalov et al., 2017). The
core idea of the supervised algorithm is to learn multiple projection matrices which map a query em-
bedding to a target hypernym. Their system ranked first on the three subtasks in SemEval-2018 Task 9
(Camacho-Collados et al., 2018).

Text2edges The approach most similar to ours is (Prokhorov et al., 2019), which represents each hy-
ponym using its textual definition from WordNet and maps it to its taxonomy path from the root to its
parent node. Given the definition of a query hyponym, a bidirectional LSTM encoder-decoder with at-
tention is used to generate the taxonomic path starting from the root node. For example, the definition of
swift (“a small bird that resembles a swallow and is noted for its rapid flight”) is mapped to the sequence
‘animal, chordate, vertebrate, bird, apodiform bird’. Their best system, text2edges with pre-trained Con-
ceptNet numberbatch embeddings (Speer et al., 2017), uses a reduced set of artificial edge label symbols
rather than the original node labels.

Similar to our approach, text2edges uses a sequence-to-sequence model with an attention mechanism.
However, there are several important differences. First, it encodes the definition of an input hyponym,
while our prediction conditions only on the vector representation of the synsets themselves without look-
ing at their definitions. Obtaining a definition of an unknown word is not always feasible, especially for
domain-specific jargon and neologisms that are frequently used but seldom defined in dictionaries. On
the other hand, computing their embeddings is a less challenging task when using approaches such as
fastText (Bojanowski et al., 2017), which also works for words seen only once because it interpolates
from embeddings of each word piece.6 Another key difference is that it can only apply to rooted tree
graphs with a single root. For this reason, it cannot be trained on the verb taxonomy in WordNet, which
has more than one root.

3.4 Other Path Encoding Approaches

We next discuss some related path encoding approaches which we do not compare in our experiments.
First, Das et al. (2017) proposed a model for link prediction that is similar to Path Encoder. Given a multi-
relational knowledge base, their task is to assign the correct relation to those entity pairs linked by an
entity-relation path but without a direct relation between them. Here, sequences of entities and relations
are encoded with an LSTM and the relation whose vector is closest to the encoded path is returned. In
our task, however, concepts are linked by only one relation (hypernymy or instance hypernymy). This
prevents us from drawing additional information from other relation paths between synsets.

Alsuhaibani et al. (2019) also use a path-based model, but predict hyponyms rather than hypernyms
in WordNet. Their model learns hierarchical embeddings over the taxonomy, where each leaf node is
represented as the sum of the embeddings of its first four hypernyms (i.e., one direct and three indirect
hypernyms in the taxonomy path). The model predicts the hyponym of a given path by maximizing
the distance between the sum of the hypernym vectors and candidate hyponym vectors. However, this
approach cannot be used for hyponyms that never appear in the taxonomy.

4 Experimental Setup

4.1 Dataset: WN18RR-hp

WN18RR (Dettmers et al., 2018) is a filtered version of the WN18 dataset (Bordes et al., 2014), a subset
of WordNet 3.0 which only contains synsets with at least fifteen connections to other synsets. WN18RR

6The obtained embedding of an undefined word can be trivially identified as a synset embedding with a single lemma (i.e.,
without any other synonyms), obviously because there are no other known synonyms. Single-lemma synsets are commonly
observed in WordNet (33.6% of nouns, 32.6% of instance nouns, and 41.7% of verbs in our dataset (WN18RR-hp)).
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removed seven inverse relations (such as hyponymy) from WN18 that caused a test leakage problem.
For this work, we only use two relations in WN18RR: hypernymy and instance hypernymy. Instance

hypernymy can be thought of as a special type of hypernymy; it only holds between an instance that is
a terminal node (e.g., specific persons, countries, and geographic entities) and its hypernym (common
noun). Also, we evaluate verb and noun hypernymy separately because verb hypernymy (troponymy) in
WordNet is conceptually distinct from noun hypernymy, as it expresses a manner relation rather than an
IS-A relation (Fellbaum, 2002).

To avoid giving an unfair advantage to the path-based models, we filtered both validation and test sets
to only include hyponym queries that are unseen anywhere in the full taxonomy paths of the training
data. By eliminating the queries observed during path training, we made sure that all evaluated queries
are equally new to both path-based models (e.g., hypo2path) and non-path models (e.g., hypo2hyper).
We also exclude hyponyms from the test and validation sets which appear as hyponyms in the training
set7 to prevent the models from merely copying. We denote this subset as WN18RR-hp.

In sum, we use three different types of hypernym relation sets (noun, instance noun, verb) in our
experiments. The number of examples in WN18RR-hp is shown in Table 2.

Number of pairs Train Valid Test
Noun 27946 647 676
Instance noun 2921 76 79
Verb 6849 187 206

Table 2: Data statistics of hyponym-hypernym pairs in WN18RR-hp.

The WordNet taxonomy is a directed acyclic graph where many hypernyms have multiple paths to
the root. When training path models (i.e., hypo2path, Path Encoder, and text2edges), we included every
existing path to a query’s parent as individual target instance(s).

4.2 Evaluation Metrics

We use two different measures that represent the accuracy of model predictions: a hard accuracy measure
(hit at one, H@1) and a “ballpark match” (soft accuracy) measure (WuP).

H@1 score As one of the most commonly used evaluation metrics for the relation prediction task, the
hits-at-k (H@k) is the proportion of correct predictions (hits) within the top k ranked predictions. As
the most intuitive and practical measure of each model’s performance, we only consider the top first
prediction accuracy (H@1), and not others with larger k (e.g., H@10).

Wu & Palmer similarity (WuP) The Wu and Palmer score (Wu and Palmer, 1994) is a similarity
measure between two nodes in a taxonomy that ranges between 0 and 1. To quantify how close they are,
it considers how deep the two nodes and their closest common ancestor are in a taxonomy. For instance,
the WuP score for orange.n.01 and lemon.n.01 is 0.75, while it is only 0.35 for orange.n.01 and car.n.01.
To assess how close a prediction is to the gold hypernym, we compute the WuP score between them
using NLTK’s implementation.8 We report an averaged WuP score of each system.

4.3 Synset Embeddings

Averaged Lemma Vectors Following Pinter and Eisenstein (2018)9, we computed an embedding for
each synset by averaging the pretrained fastText embeddings (Bojanowski et al., 2017)10 of its synonyms

7These cases exist because some queries have multiple hypernyms. WN18RR allows such queries with multiple gold targets
to appear in train and evaluation sets.

8When two nodes are identical, NLTK’s implementation of WuP score does not necessarily return 1.0. We added an ad-hoc
check to make sure we get 1.0 WuP score in such cases.

9We used embed from words.py released by the first author at https://github.com/yuvalpinter/m3gm
10https://fasttext.cc/docs/en/pretrained-vectors.html
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(lemmas). If a synset contained any multi-word lemma, the words within the lemma were averaged. We
used these synset embeddings for all our reported experiments.11

4.4 Model Details

Baselines We include two simple baselines, closest vector and closest co-hyponym, in order to gauge
reasonable lower bounds for our metrics. The closest vector baseline is obtained by predicting the hy-
pernym whose vector is closest (using the Euclidean norm) to the given synset, choosing from among all
the hypernyms in the training set. On the other hand, closest co-hyponym is obtained by predicting the
hypernym of the closest hyponym in the training set, i.e., under the assumption that nearby vectors are
co-hyponyms.

TransE, M3GM, CRIM, and text2edges Our replications of the benchmark models are based on the
original source code12 keeping the default hyperparameters except for a few things: For TransE and
CRIM, we tuned for the best number of training epochs. We increased the early stopping threshold to
five epochs for TransE, as the model stopped too early with the default setting. Also, we only trained the
supervised part of CRIM, since the unsupervised part of CRIM requires an external corpus for training.
All models except text2edges used fastText embeddings to compute synset embeddings. For text2edges,
we replicated their best system which takes the pretrained ConceptNet numberbatch embeddings to rep-
resent words in node definitions.

For all models except M3GM, we trained a separate model for each relation of WN18RR-hp (noun,
instance noun, verb). On the other hand, we trained all three relations in a single M3GM model, as it
employs graph motif features of different relations. We trained this multi-relational M3GM model as a
re-ranker of TransE that was also trained on all three relations.13 We did not run a post-hoc tuning for
graph score weights in M3GM.

Path Generators: hypo2path and hypo2hyper We implemented a sequence-to-sequence model with
Luong attention in Keras, which we used for the hypo2path and hypo2hyper experiments. We used a
single-layer unidirectional LSTM with 256 hidden units and a dropout rate of 0.3 for both the encoder
and the decoder. We trained the network with teacher forcing and used the Adam optimizer with a
learning rate of 0.001 and batch size of 256. The embedding layer was frozen during training. Synsets
without pretrained embeddings were assigned random vectors with elements sampled uniformly from
[−.25, .25]. Greedy decoding was used to generate sequences.14 We did not perform any hyperparameter
tuning for these models.

Path Encoder The Path Encoder model was implemented in PyTorch, using a single-layer bidirec-
tional LSTM to encode the path and a fully-connected layer to map the output to the target embedding
space. The dimension of the LSTM cell was 1024 for nouns and instance nouns and 512 for verbs.

The learning rates in {0.01, 0.001} and margins in {0.1, 0.3, 0.5, 0.7} were tuned differently for noun,
instance noun, and verb experiments. We used the same dropout rate, batch size and choice of optimizer
as in the hypo2path experiments.

5 Results and Discussion

Results Overall, hypo2path rev shows the highest aggregate (micro-averaged) H@1 (dev: 24.43, test:
25.59) across the three hypernymy relations (nouns, instance nouns, and verbs), while CRIM has the best
aggregate ballpark correctness (WuP) scores that are closely followed by hypo2path rev (Table 6).

11We also trained hypo2path with randomly initialized embeddings (trained with the rest of the network), and observed a
large drop in H@1. This suggests there is information in the embeddings which cannot be learned solely from the hypernym
generation task, in line with observations of Pinter and Eisenstein (2018).

12TransE and M3GM: https://github.com/yuvalpinter/m3gm/
CRIM: https://github.com/gbcolborne/hypernym_discovery/
text2edges: https://github.com/VictorProkhorov/Text2Path/

13This multi-relational TransE model is different from the single-relational TransE models reported in the results section.
14Preliminary experiments on nouns showed no improvement when using beam search (with beam widths up to 6).
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Validation Test
H@1 WuP H@1 WuP

Closest vector 9.74 54.36 10.50 54.65
Closest co-hyponym 17.62 60.34 18.64 59.92
TransE 13.91 61.50 11.69 61.36
M3GM 18.24 61.66 18.20 61.73
CRIM 22.41 65.32 19.53 65.29
text2edges 17.31 67.67 16.42 66.41
Path Encoder 20.56 63.84 22.63 63.59
hypo2hyper 22.87 64.55 23.82 64.47
hypo2path 22.26 65.79 23.82 66.53
hypo2path rev 23.65 65.32 24.70 65.98

Table 3: Scores for nouns.

Validation Test
H@1 WuP H@1 WuP

Closest vector 29.87 57.70 20.25 59.25
Closest co-hyponym 50.00 74.41 49.37 77.47
TransE 54.55 81.02 54.43 83.34
M3GM 48.05 78.42 58.23 81.09
CRIM 66.23 86.12 67.09 86.67
text2edges 69.74 88.05 72.15 88.53
Path Encoder 62.34 82.88 49.37 75.96
hypo2hyper 70.13 86.78 73.42 87.75
hypo2path 66.23 85.00 72.15 86.24
hypo2path rev 70.13 87.23 73.42 87.18

Table 4: Scores for instance nouns.

Validation Test
H@1 WuP H@1 WuP

Closest vector 3.21 34.79 1.94 30.58
Closest co-hyponym 8.02 39.21 5.34 36.24
TransE 3.21 35.71 3.40 35.65
M3GM 3.21 31.95 2.43 30.47
CRIM 12.30 46.25 9.71 43.66
Path Encoder 6.42 36.45 5.34 35.60
hypo2hyper 10.16 41.65 7.28 39.23
hypo2path 7.49 37.82 8.25 39.07
hypo2path rev 8.56 41.01 9.22 39.66

Table 5: Scores for verbs.

Validation Test
H@1 WuP H@1 WuP

Closest vector 10.08 50.62 9.56 50.09
Closest co-hyponym 18.35 57.17 18.47 56.52
TransE 15.11 57.83 13.56 57.91
M3GM 17.64 56.95 18.3 56.92
CRIM 23.99 63.14 21.48 62.63
Path Encoder 21.14 59.80 21.31 58.87
hypo2hyper 24.21 61.7 24.56 61.23
hypo2path 22.9 61.65 24.66 62.53
hypo2path rev 24.43 62.15 25.59 62.34

Table 6: Aggregated scores across all three groups.

For both nouns (Table 3) and instance nouns (Table 4), hypo2path rev15 is a clear winner in terms of
H@1. Despite being a simple model, it achieves the best H@1 with notable improvements over more
complex benchmarks. We observe large gains (5.17 points) on nouns over CRIM and some gains (1.27
points) on instance nouns over text2edges. With respect to the ballpark accuracy (WuP), hypo2path
shows similar performance to CRIM and text2edges on nouns, while text2edges does slightly better on
instance nouns.

For nouns, the reversed hypo2path model (‘hypo2path rev’) achieved the best performance on H@1,
while the non-reversed and reversed versions performed similarly in terms of WuP scores. Without
reversing the path, the model’s H@1 slightly degraded, and is closer to hypo2hyper’s results. The per-
formances of Path Encoder followed closely after the proposed three encoder-decoder models.

On instance nouns, performances of different models are overall much higher than on nouns. The best
results are observed from the hypo2hyper, hypo2path rev, and text2edges models. That hypo2hyper and
hypo2path rev perform similarly is not surprising: instance hypernymy is less likely to be learned from
path generation, as it is a special type of hypernymy that only holds between a leaf and its parent node.

On the other hand, none of the models16 does well on verb hypernymy (Table 5). CRIM achieved
the highest scores overall for verbs. Consistent with the experiments on nouns and instance nouns,
hypo2path rev had relatively strong performance, with 9.22 H@1 on the test set, which is comparable
to the best H@1 (9.71). However, the best H@1 is still below 10% and the best WuP score is not much
higher than the closest co-hyponym baseline.

Discussion Despite being trained with about ten times less data, scores for instance hypernymy are
generally much higher than for noun hypernymy. Our finding that it is easier to predict hypernyms
for individual entities than for common nouns is consistent with previous work (Boleda et al., 2017;
Camacho-Collados et al., 2018; Balažević et al., 2019; Nguyen et al., 2019).

On the other hand, scores for hypernymy amongst verbs are very low, despite having about twice
as much training data as instance hypernyms. This could be due both to the fact that verbs have more

15We ran experiments across five different random seeds for hypo2path rev and found the standard deviation to be very low
(noun: [0.82dev, 0.97test], instance noun: [2.52dev, 2.08test], verb: [0.29dev, 1.17test]) indicating that the model is quite stable.

16text2edges is not included since it cannot run on the verb data.
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ExamplesError type Query hyponym Gold hypernym Prediction Confounding hyponym %

Indirect hypernym chant.n.01 religious song.n.01 music.n.01 14.4
folk singer.n.01 singer.n.01 musician.n.01

Co-hyponym tart.n.03 pastry.n.02 pie.n.01 3.6
knitwear.n.01 clothing.n.01 apparel.n.01

Polysemy nut.n.03 [nut] block.n.01 seed.n.01 nut.n.01 [nut] 17.4
(Shared lemmas) chest.n.02 [chest] box.n.01 external body part.n.01 breast.n.01 [breast, chest]
Multi-word lemmas night porter.n.01 doorkeeper.n.03 evening.n.01 guest night.n.01 15.4
with shared words [night porter] [guest night]

carpet beater.n.01 beater.n.02 cleaning implement.n.01 carpet sweeper.n.01
[carpet beater, rug beater] [carpet sweeper, sweeper]

Table 7: Four typical error patterns and examples observed from hypo2path rev evaluated on nouns
(validation set). Altogether, they account for 50.8% of the total errors. Words within square brackets
after a synset are the set of lemmas of the synset. The boldfaced are the shared lemmas/words.

complex semantics than nouns and to the structure of the WordNet verb hierarchy; while the noun sub-
graph is a single tree rooted at entity.n.01, the verb subgraph consists of 599 shallow trees. The WordNet
verb hierarchy also has a number of annotation errors described in Richens (2008). In addition, verbs
are more polysemous than nouns (Fellbaum, 1990), and the hypernym relation for verbs (troponymy)
encompasses a diverse set of heterogeneous subsumption relations (Fellbaum, 2002; Richens, 2008).

Our results also suggest that it may be more effective to learn hypernymy separately from other lexical
relations, rather than in a multi-relational setup. For example, M3GM trained with all 11 relations of
WN18RR achieved a high aggregate validation H@1 of 39.88 in our replication , but a much lower H@1
for hypernymy (1.19) and instance hypernymy (3.74). These were evaluated on the original WN18RR,
following Pinter and Eisenstein (2018), so these scores are not comparable to Tables 3, 4, 5, 6. Unlike
Pinter and Eisenstein (2018), we evaluated M3GM in one direction (i.e., only hypernym prediction, rather
than both hyponym and hypernym prediction).17 These results are in line with the H@10 scores reported
by Nguyen et al. (2019) and Balažević et al. (2019), which are substantially lower for hypernymy than
for the other lexical relations in WN18RR.

6 Error Analysis

Here we examine the predictions of the best performing model, hypo2path rev, on the validation set for
nouns in WN18RR-hp (647 synsets).

Path Validity Regardless of whether the predicted direct hypernym was correct or not, we observe that
every generated path, from each predicted hypernym to the root, is actually a valid path in WordNet.
This is not surprising, since all such paths appear in the training data. While the model always correctly
generated valid paths in the graph, they did not necessarily start at the correct node (i.e., failing to predict
the gold direct hypernym).

Nearby Nodes For noun hypernymy, 14.4% of the errors are due to predicting an indirect hypernym
(Table 7). The remaining incorrect predictions are not on the path from the hyponym to the root: these
include co-hyponyms (“siblings”, or nodes that share the same parent), and “cousins” (nodes that share
the same non-parent ancestor). 3.6% of incorrect predictions are co-hyponyms (also in Table 7). About
half of all predicted cousins had a common ancestor with the query hyponym that was within four steps.

Similar Synset Embeddings Some synsets were similar enough to mislead the model: polysemous
lemmas were shared across different synsets (17.4% of the total errors) and some multi-word lemmas
had shared words (15.4%) (Table 7). In these cases, the model incorrectly returned a hypernym of a
“confounding hyponym” that has a similar representation to the query. This type of error is attributable

17When evaluated on the both directions, we obtained 42.95 aggregate validation H@1, which is close to their reported
performance, 43.26. Interestingly, their hyponym prediction validation H@1s are overall much higher (hypernymy: 16.18,
instance hypernymy: 41.12) than those of hypernym prediction.
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to the way synset embeddings are computed (i.e., averaging lemma vectors) which we adopted from
Pinter & Eisenstein (2018).

Lemma Overlap and Polysemy Although none of the queries (synsets) are shared between the train-
ing and evaluation (validation/test) sets, some lemma-level overlaps exist (5.4% of training set overlaps
with the validation set). We checked whether our model is taking advantage of any lemma overlap by
computing the correlation between prediction correctness and lemma overlap rate (i.e., how many lem-
mas of a query hyponym synset are already seen anywhere in the training set) of each predicted pair in
the validation set. If the correlation is positive, this indicates that the the model did get some hints from
lemmas seen from training set.

However, we observed a significant negative correlation (-0.228; p-value<0.001). This is related to
the point on polysemy discussed above. In nearly half of the validation instances where a query had
a lemma overlap with the training set, the model incorrectly predicted the hypernym of a confounding
hypernym.

Rare Synsets Is hypernym prediction more difficult for infrequent synsets (i.e., synsets whose lemmas
rarely appear in the corpus from which the word vectors were derived)? We define a synset’s frequency
as the average of the frequencies of its lemmas.18

We find that the 164 synsets with frequency under 2,000 have an H@1 score of 15.2 (an 8.4 point drop).
To further quantify the effect of synset frequency on performance, we ranked and binned every predic-
tion by synset frequency (Figure 1). There is a clear upward trend, suggesting that methods designed
to learn better embeddings with sparse data (Herbelot and Baroni, 2017) could improve performance
substantially.

Figure 1: H@1 for hyponyms of different frequency within equal-sized bins of size 108.

7 Conclusion and Future Work

In this paper we have considered the hypernym prediction task, the task of identifying the correct direct
hypernym in a taxonomy of a synset given its embedding. In terms of evaluation, we have focused on
both “exact match” (H@1) and “ballpark match” (WuP) metrics, and we have for the first time provided
a comparison of existing models that had not previously been evaluated with the same metrics or on the
same datasets.

We have introduced two simple encoder-decoder based models for hypernym prediction that make use
of information in the full taxonomy paths, finding that in particular hypo2path rev shows state-of-the-art
performance on the WN18RR-hp dataset. For nouns, it achieves improvements of 5.17 test H@1 over
the best benchmark model. For verbs, we find that no model achieves a high performance. Instance

18We extracted the frequency statistics of the English Wikipedia (wiki.en.bin) fastText word vectors using function
get words from https://github.com/facebookresearch/fastText (v. 0.9.1).
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nouns, on the other hand, are the easiest to predict. Encouragingly, we find that “ballpark match” (WuP)
for instance nouns is at over 87 points.

There are several directions for future work. Encoding lemmas separately and with attention, rather
than with a single embedding, could allow the attention mechanism to assign lower weights to less
informative, misleading, or polysemous lemma names (which were related to over a third of all errors).
One potential way to handle polysemy could involve encoding both synsets and glosses, using either
classical word embeddings or contextualized word embeddings. Another extension of this work is to
use multi-task learning with multiple decoders and different tasks, similar to Luong et al. (2016). For
example, in addition to learning to decode a path of hypernyms leading to a given synset, a model could
also generate the synset’s co-hyponyms or its hypernym’s lexname19.

Our results suggest that hypernym prediction is challenging for words which occur less frequently in
the corpus used to compute embeddings. Methods are needed which can learn more effectively from
low-frequency data, where the “unknown word” does not appear very often (Herbelot and Baroni, 2017;
Kabbach et al., 2019).
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