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Abstract

Most existing work on event extraction (EE) either follows a pipelined manner or uses a joint
structure but is pipelined in essence. As a result, these efforts fail to utilize information inter-
actions among event triggers, event arguments, and argument roles, which causes information
redundancy. In view of this, we propose to exploit the role information of the arguments in an
event and devise a Hierarchical Policy Network (HPNet) to perform joint EE. The whole EE pro-
cess is fulfilled through a two-level hierarchical structure consisting of two policy networks for
event detection and argument detection. The deep information interactions among the subtasks
are realized, and it is more natural to deal with multiple events issue. Extensive experiments on
ACE2005 and TAC2015 demonstrate the superiority of HPNet, leading to state-of-the-art perfor-
mance and is more powerful for sentences with multiple events.

1 Introduction

Event extraction (EE) plays an important role in various real-life applications, such as information re-
trieval and news summarization (Glavas and Snajder, 2014; Daniel et al., 2003). It aims to discover
events with triggers and their corresponding arguments. Typically, EE contains several subtasks: trigger
identification, trigger classification, event argument identification, and argument role classification.

Some researchers handle these subtasks in a pipelined manner, i.e., perform trigger prediction and
then identify arguments in separate stages, assuming that gold standard entities are provided (McClosky
et al., 2011; Chen et al., 2015; Nguyen and Grishman, 2018; Yang et al., 2019). However, this staged
manner has no strategy to take advantage of the deeper information interactions among these subtasks,
so the upstream and the downstream subtasks cannot interfere with each other to improve their decisions.
Although there have been joint approaches which aim to build a joint extractor (Yang and Mitchell, 2016;
Nguyen and Nguyen, 2019; Zhang et al., 2019), they still follow a pipelined framework by first jointly
predicting entities and triggers, and then scanning every entity-event pair for arguments and argument
roles. One of the same limitations they share is that they produce redundant entity-event pairs informa-
tion, thus bringing in possible errors. Another is the mismatch between arguments and triggers when the
sentence contains multiple events. For example, consider the following sentence:

In Baghdad, a cameraman died when an American tank fired on the Palestine hotel.

In this sentence, “cameraman” is not only a Victim argument of event Die (trigger “died”), but also a
Target argument of event Attack (trigger “fired”). However, as “cameraman” is far away from the trigger
“fired” in the sentence, the extractor may fail to identify “cameraman” as one argument for event Attack.

In view of this, we propose a Hierarchical Policy Network (HPNet) to jointly solve the subtasks of
EE, where 1) trigger identification and trigger classification are solved together, and 2) event argument
identification and argument role classification are solved together by a hierarchy of an event-level policy
network (PN) and an argument-level PN. This two-level hierarchical structure works as follows. During
the scanning from the beginning to the end of a sentence, the event-level PN first detects the trigger
and classifies its event type at each word. Once a certain event is detected, an argument-level PN is
triggered to detect participating arguments and classify the roles they play in the current event. When the
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argument-level process under this event is finished, the event-level PN continues its scan to search for
other events in the sentence until it scans to the end. The learning of the EE subtasks is formulated as a
sequential decision problem, which can be addressed by policy gradient method (Sutton et al., 1999).

HPNet realizes deep information interactions among the subtasks by passing state representations
and rewards in the two-level hierarchical structure: the event-level PN passes fine-grained semantic
information to the argument-level PN through state representations when triggering it, and the argument-
level PN passes rewards back to the event-level PN to convey how well it is completed. Besides, the
event scheme information from the event-level decision also benefits the argument-level decision. As
HPNet uses a hierarchical structure to detect the event first and then identify its participating arguments,
redundant information and the mismatch issues can be potentially avoided.

To sum up, our main contribution is at least three-fold: (1) To our knowledge, this is the first work
applying policy network, a deep reinforcement learning method, to extract event. (2) We utilize a two-
level hierarchical structure to realize joint EE. With well-designed state representations, rewards, and
an event scheme retrieval table, this structure fully explores the deep information interactions among
EE subtasks and addresses the multiple events and mismatch issues. (3) We design comprehensive
experiments on the widely used ACE2005 and TAC2015 datasets. The experimental results show that
our method HPNet significantly outperforms other state-of-the-art methods, especially in dealing with
multiple events.

This paper proceeds as follows. First, we discuss the work that is related to pipelined EE, joint EE, and
policy network (§2). Next, we present HPNet, a two-level policy network-based structure that contains a
hierarchy of an event-level PN and an argument-level PN, followed with their hierarchical training details
(§3). Then we describe the experiments on two benchmark datasets ACE2005 and TAC2015, followed
by the results and discussions (§4). We finish with a conclusion of the paper (§5).

2 Related Work

Pipelined Event Extraction The early work on EE has focused on the pipelined approach, which
performs the subtasks of EE in separate stages (McClosky et al., 2011; Chen et al., 2015; Nguyen and
Grishman, 2018). They either rely on manually designed features or use convolutional neural networks
(CNNs) to construct completely separate classifiers for trigger labeling and argument role classification,
regarding entities as being provided by external annotators.

Recently, some methods extract entities and events to utilize the dependency of these two subtasks.
Above work exploits different structured prediction methods, including Markov Logic Networks (Poon
and Vanderwende, 2010), dual decomposition (Riedel and McCallum, 2011), structured perceptron (Li
et al., 2013) and attention-based graph CNN (Liu et al., 2018). Some other methods develop inference
models for events and argument roles, including structured predictions with Markov Logic (Riedel et al.,
2009) and parameter sharing (Sha et al., 2018). However, the above studies are limited to modeling only
two subtasks, either assuming the golden annotations for other subtasks or simply ignoring them.

Joint Event Extraction There have been efforts towards joint modeling of event triggers, event types,
arguments, and argument roles. Yang and Mitchell (2016) consider information interactions among these
subtasks through a two-stage framework, in which the k-best outputs of triggers and entities are first
selected, and re-ranking is then used for joint inference. Nguyen and Nguyen (2019) propose to share
common encoding layers to enable the information sharing, and decode the event triggers, arguments,
and roles separately. Zhang et al. (2019) use transition systems for the dependency parsing of the input
sentence and decode the labels for subtasks with score ranking. However, as mentioned in Section 1,
these methods follow a pipelined decoding order, which makes them face the information redundancy
and the mismatch problem. Moreover, they all strongly rely on the annotations of training data.

Policy Network Policy network is one of the most important deep reinforcement learning methods,
which has been frequently witnessed in recent information extraction work. Zhang et al. (2018) employs
PN for structure discovery in sentence representations prepared for the downstream text classification.
Qin et al. (2018) propose a policy network-based distant supervision relation extraction method in which
they use PN to define a policy for redistribution of false positives. Feng et al. (2018) use PN to con-
struct an instance selector to obtain a weak supervision signal for relation classification from noisy data.
Takanobu et al. (2019) propose to apply hierarchical reinforcement learning to relation extraction task,
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Figure 1: An example of EE process by HPNet on a sentence containing two events (Die and Attack).
The straight arrow indicates the event-level and the argument-level process. The curved arrow marks
a transition between the event-level and the argument-level process. O3 indicates the event-level op-
tion (Die) for word “died” at time step 3, while A5 is the argument-level action (B-Victim) for word
“cameraman” at time step 5 under the event-level option O3.

which gives highly competitive results. To the best of our knowledge, we are the first to incorporate a
hierarchical policy network for event extraction task.

3 Hierarchical Policy Network
3.1 Overview
We introduce a reward-driven, policy-based method HPNet to hierarchically detect events and their par-
ticipating arguments. As shown in Figure 1, given a sentence, HPNet realizes the entire extraction
process as follows. As the agent scans this sentence sequentially, the event-level PN keeps following a
policy to sample an option (indicating a non-trigger word or a trigger with a specific event type) at each
time step. Once a certain event is detected, the agent transfers to the argument-level PN and follows a
policy to select an action (assigning an exact argument tag). When the agent finishes its scanning for
participating arguments under the current event, it scans the rest of the sentence for other events. Since
a reward can be computed once the option/action is sampled, the process can be naturally addressed by
policy gradient method (Sutton et al., 1999). By detecting an event first and then detecting participating
arguments for that event, our method can achieve effective EE even when multiple events exist.

3.2 Event-level Policy Network
Given the input sentence S = w1, w2, ..., wL, the event-level PN aims to detect the event type that the
trigger word wi triggers. Specifically, at the current word/step t, the policy network adopts a stochastic
policy µ over options and uses rewards to guide the policy learning. It samples an option with the
probability at the current state whose representation is history-dependent. We briefly introduce option,
state, policy, and reward as follows:

Option The event-level option oet is sampled from an option setOe = {NE}∪E , whereNE indicates
non-trigger word and E is the event type set, which is predefined in the dataset, indicating which type the
current trigger is triggering.

State The state st
e ∈ Se of the event-level process is history-dependent, encoding the previous envi-

ronment as well as the current input. ste is the concatenation of 1) the state st−1 from the last time step
(where st−1 = st−1

e if the agent launches an event-level PN at time step t−1, otherwise st−1 = st−1
r),

2) the event type vector vt
e which is learned from the latest option oe

t′
that satisfies oe

t′
∈ E and 3) the

hidden state vector ht over the current input word embedding wt, represented by:

st
e = st−1 ⊕ vt

e ⊕ ht, (1)

We obtain the hidden state vector ht through a sequential word-level Bi-LSTM:

ht =
−→
ht ⊕

←−
ht,

−→
ht =

−−−−→
LSTM(

−−→
ht−1,wt),

←−
ht =

←−−−−
LSTM(

←−−
ht+1,wt).

(2)

Finally, we use MLP to represent the state as a continuous real-valued vector F e(ste).
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Event Types Event Argument Roles

Attack Attacker, Target, Instrument, Place, Time-*
Die Agent, Victim, Instrument, Place, Time-*
Phone-Write Entity, Place, Time-*
Sue Adjudicator, Crime, Defendant, Plaintiff, Prosecutor, Place, Time-*

Table 1: Event scheme table which specifies the possible argument roles for each event type. Take 4 event
types as examples. Time-* means argument roles related to time, such as Time-Within, Time-Before.

Policy The stochastic policy for event detection over the possible options µ : Se → Oe samples an
option oet ∈ Oe according to a probability distribution:

µ(oet |ste) = softmax(WeF e(st
e) + be), (3)

where We and be are the parameters, F e(ste) is the state feature vector. During training, the option is
sampled according to the probability in Eq 3. During test, the option with the maximal probability will
be chosen (i.e.,oet∗ = arg maxoe µ(oe|ste)).

Reward An intuition of rewards is that the event-level PN ultimately aims to recognize and categorize
events, viewing triggers as intermediate results. Once an event-level option oet is sampled, the agent will
receive an instant reward which estimates the short-term return under option oet . The instant reward is
computed by consulting the gold-standard event type annotations Set of sentence S:

ret = sgn(oet = Set ) · I(NE) + α · sgn(oet = Set ) · (1− I(NE)), (4)

where sgn(·) is the sign function, I(NE) is a switching function which distinguishes the reward of the
trigger and the non-trigger word:

I(NE) =

{
1 if oet 6= NE
0 if oet = NE,

(5)

and α is a bias weight. The smaller α (α < 1) is, the less reward on non-trigger words, which will
prevent the model from learning a trivial policy to predict all words as NE (non-trigger words).

The transition of the event-level PN depends upon option oet . If oet = NE at a time step, the agent will
continue at a new event-level PN state. Otherwise, a specific event is detected, and the agent will launch a
new subtask and transfer to the argument-level PN to detect participating arguments of this event. Hence,
the agent starts the argument-level options with an event-initialized state. It will not transfer to the event-
level PN until all the argument-level options under the current event oet are finished. The event-level
options are sampled until the option of the last word in S. When the agent finishes all the event-level
options, it receives a terminal reward reter. The sentence-level event detection performance defines this
delayed reward at the terminal state:

reter = F1(S), (6)

where F1(·) represents F1 scores which is the harmonic mean of sentence-level precision and recall of
event detection results.

3.3 Argument-level Policy Network

Once a specific event is detected at a time step t
′

(i.e., oe
t′
∈ E), the agent transfers to the argument-level

PN to predict the role that each argument plays under the event oe
t′

. Specifically, at each word/step t,
the argument-level PN adopts a stochastic policy π over actions and uses rewards to guide the learning
for participating arguments as well as their roles under the current event. To pass more fine-grained
event information for the argument decision, the option oe

t′
as well as the state representation st′

e from
the event-level process are taken as additional inputs throughout the whole argument-level process. We
introduce action, state, policy and reward as follows:
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  A    cameraman    died    when    an    American    tank    fired    on    the    Palestine    Hotel  .

B_Victim NR NR NR NR B_Place I_Placetags for event Die      NR NR O O NR

B_Target NRNRtags for event Attack NR NR B_Instrument I_Instrument NR NR NR B_Place I_Place

Figure 2: Examples of argument tags under different moments for the sentence in Section 1. “camera-
man” and “Palestine hotel” are both participating arguments in event Die and Attack, while “cameraman”
has different roles under distinct events. Also, “American tank” is a participating argument of event At-
tack but is irrelevant with event Die. As a result, both “cameraman” and “American tank” have different
tags under different moments.

Action The argument-level action art is to assign an argument tag to the current word. art is selected
from an action space Ar = ({B, I} × R) ∪ {O,NR}, where B/I represents the position information
(Begin, Inside) of a word in an argument, O tags arguments unrelated to the current event,R is a prede-
fined argument role set in the dataset and NR tags non-argument words. Note that, the same argument
may be assigned with different tags depending on distinct event types concerned at the moment. In this
way, multiple events and mismatch issues can be naturally solved. We use Figure 2 to illuminate.

Then we take advantage of the event scheme information, which specifies each event type’s possible
argument type to filter the action space. Event schema describes the specific argument roles for each
event type, as shown in Table 1. Ding et al. (2018) uses an event scheme to build a mask matrix to filter
out irrelevant argument roles. Inspired by their work, we devise a predefined event scheme retrieval table
R|E|∗|R| to narrow down the argument role set R. Finally, the filtered action space Ar = ({B, I} ×
R[oe

t′
]) ∪ {O,NR}. A motivation for this event scheme retrieval table is that the implicit argument

information from the event-level decision can be fully utilized. Besides, by this retrieval table, the action
space is narrowed down, enabling a more efficient agent.

State The state str ∈ Sr of the argument-level process is also history-dependent, encoding the previous
environment, the initial event environment and the current input. str is represented by the concatenation
of 1) the state st−1 from previous time step (where st−1 may be a state either from the event-level PN
or the argument-level PN), 2) the argument tag vector vt

r which is a learnable embedding of the action
art−1, 3) the event state representation Ge(st′

e) and 4) the hidden vector ht obtained from the similar
Bi-LSTM in Eq. 2, as follows:

st
r = st−1 ⊕ vt

r ⊕Ge(st′
e)⊕ ht, (7)

The state is then represented as a real-valued vector F r(str) with MLP.

Policy With event type oe
t′

as an additional input, the stochastic policy for argument detection over
actions π : Sr → Ar selects an action art according to a probability distribution:

π(art |str; oet′ )=softmax(ot′
eWrF r(st

r) + br), (8)

ot′
e = Wµ[oe

t′
], (9)

where Wr and br are the parameters, F r(str) is the argument-level state feature vector, ot′
e is the

representation of the event oe
t′

and Wµ is an array of |E| matrices. During training and test, the actions
will be sampled in the similar way as the options of event-level PN.

Reward Once an argument-level action art is selected, the agent will receive an instant reward rrt ,
provided by consulting the gold argument annotation Srt (oe

t′
) conditioned on the predicted event type

oe
t′

1. The reward is computed as below:

rrt = sgn(art = Srt (oe
t
′ )) · I(NR) + β · sgn(art = Srt (oe

t′
)) · (1− I(NR)), (10)

1There we assume that the event oe
t
′ is correctly predicted. Otherwise, all the argument-level rewards will be set to 0.
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Dataset ACE2005 TAC2015

Event types 33 38
Role types 28 -
Training documents 529 132
Development documents 30 26
Test documents 40 202

Table 2: Statistics of the datasets.

where I(NR) is a switching function which distinguishes the reward of argument and non-argument
word:

I(NR) =

{
1 if art 6= NR
0 if art = NR,

(11)

and β is a bias weight. The smaller β (β < 1) means the less reward on the non-argument word,
preventing the agent from learning a trivial policy to select all the actions as NR.

The actions are selected until the action of the last word. When the agent finishes all the argument-level
actions under the current event oe

t′
, it receives a terminal reward rrter:

rrter =

{
1 if art = Srt (oe

t′
), ∀t under oe

t′

−1 else.
(12)

3.4 Hierarchical Training
To optimize the event-level PN and the argument-level PN, we aim to maximize the expected cumulative
discounted rewards from the option and action that the agent samples following the event-level policy
µ(∗) and the argument-level policy π(∗|ot′ ) at each time step t, which can be computed as follows:

J(Θe) = Ese,oe,re∼µ(oe|se)[Σ
T e

k=tγ
k−trek],

J(Θr;oe
t′

) = Esr,ar,rr∼π(an|sn;oe
t
′ )
[ΣT r

k=tγ
k−trnk ],

(13)

where γ ∈ [0, 1] is a discount rate, T e is the total time steps that the event-level process takes before it
terminates and T r is the ended time step of the argument-level process.

We then decompose the cumulative rewards as:

Re(st
e,oet ) = E[γNRe(st+N

e, oet+N )+ΣN−1
j=0 γ

jret+j |ste,oet ],
Rr(st

r, art ; o
e
t′

) = E[γRr(st+1
r, art+1; oe

t′
) + rrt |str, art ],

(14)

where N is the time steps that the argument-level process continues under option oet , so the next option
of the agent is ot+N . If oet = NE, then N = 1.

The optimization is achieved by using policy gradient method (Sutton et al., 1999) and the REIN-
FORCE algorithm (Williams, 1992), which updates parameters with the following stochastic gradients:

∇ΘeJ(Θe) = Ese,oe,re∼µ(oe|se)[R
e(st

e, oet )∇Θe logµ(oe|se)],
∇ΘrJ(Θr; oe

t′
) = Esr,ar,rr∼π(ar|sr;oe

t
′ )

[Rr(st
r, art ; o

e
t′

)∇Θr log π(ar|sr; oe
t′

)].
(15)

We describe the entire training process of HPNet in Appendix A.

4 Experiments

4.1 Experimental Setup
Datasets and Evaluations We perform evaluation on two standard datasets: Automatic Content Ex-
traction program of 2005 (ACE2005) and Event Nugget data of TAC 2015 (TAC2015) (Mitamura et al.,
2015). They contain text documents from a variety of sources, such as newswire reports and discussion
forums. While ACE2005 provides annotations for all subtasks involved (event triggers and event argu-
ments), TAC2015 provides only annotations for event triggers. For ACE2005, we use the same setup as
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Model

ACE2005 TAC2015

Event Trigger
Identification (%)

Event Trigger
Classification (%)

Event Argument
Identification (%)

Argument Role
Classification (%)

Event Trigger
Identification (%)

Event Trigger
Classification (%)

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

StagedMaxent 73.1 65.4 69.0 70.1 63.3 66.5 75.0 20.3 31.9 71.0 19.3 30.3 69.7 46.8 56.0 65.4 44.5 53.0
TwoStageBeam 74.8 60.7 67.0 72.8 53.7 61.8 73.9 27.1 39.7 66.9 25.5 36.9 72.1 43.8 54.5 66.0 41.6 51.0
DMCNN 79.6 67.2 72.9 74.3 62.9 68.1 69.1 51.8 59.2 62.8 45.0 52.4 77.4 48.7 59.8 71.3 45.8 55.8

dbRNN? - - - - - 69.6 - - 57.2 - - 50.1 - - - - - -
JMEE-NP 78.5 71.3 74.7 74.1 69.1 71.5 62.3 53.5 57.6 58.9 47.3 52.5 74.3 51.4 60.8 69.7 47.0 56.1
JointTransition 76.2 75.7 75.9 74.0 73.7 73.8 59.6 56.3 57.9 54.3 51.8 53.0 73.8 56.4 63.9 68.3 53.0 59.7

TAC2015Best? - - - - - - - - - - - - 82.0 52.0 63.7 75.2 47.7 58.4

HPNet 81.3 77.2 79.2 80.1 75.7 77.8 70.2 53.8 60.9 64.6 50.7 56.8 78.2 55.6 65.0 70.9 54.8 61.8

Table 3: Main results on the ACE2005 and TAC2015. The comparison between HPNet and JointTransi-
tion is significant with p < 0.05. ? indicates the results adapted from the original paper. For TAC2015,
“Event Trigger Identification” corresponds to the “Span” metric and “Event Trigger Classification” cor-
responds to the “Type” metric reported in official evaluation (cf. Section 4.2 for detailed analysis).

Liu et al. (2018). For TAC2015, we use the official training and test sets, and manually reserve some
documents in the training set for development. Descriptive statistics of two datasets are provided in detail
in Table 2. We utilize the Stanford CoreNLP toolkit 2 to do the preprocessing for the sentences (i.e., POS
tagging, chunking, and dependency parsing).

We follow standard evaluation criteria for events and arguments (Ji and Grishman, 2008). A trigger is
correct if its span and event type match a reference trigger. An argument is correct if its span, event type
and role type match a reference argument. Our evaluations report the identification and classification of
event triggers and arguments. An event trigger or argument is correctly identified if its offsets match a
reference trigger or argument, and correctly classified if there is an additional match in event type or role.
We report micro-averaged Precision (P), Recall (R) and F1 score (F1) in all evaluations.

Parameters and Training Details All hyper-parameters are tuned on the development set. The word
embeddings are pre-trained by Glove algorithm (Pennington et al., 2014). The vectors of event type and
argument tag are initialized randomly. The bias weight α = 0.05 in Eq. 4, β = 0.1 in Eq. 10 and the
discount rate γ = 0.9.

Baselines We compare our method with several state-of-the-art methods, which can be divided into
two categories: the pipelined methods and the jointly learning methods. For the pipelined methods, the
entity candidates are obtained through a CRF entity extractor (Yang and Mitchell, 2016). These methods
include: (1) StagedMaxent is a typical feature-based two-stage approach that first detects event triggers
and then event arguments (Yang and Mitchell, 2016). (2) TwoStageBeam is a pipelined model with struc-
ture perception and global features (Li et al., 2013). (3) DMCNN is the most successful pipelined model
for EE, which uses dynamic multi-pooling convolutional neural networks (Chen et al., 2015). The joint
methods include: (4) dbRNN adds dependency bridges over Bi-LSTM for joint EE. It uses Stanford con-
stituency parser 3 to parse every sentence and takes predicted NP nodes as candidate arguments (Sha et
al., 2018). (5) JMEE-NP is our reimplementation of JMEE (Liu et al., 2018) method, which also takes
NP nodes from Stanford constituency parser as candidate arguments. (6) JointTransition performs joint
decoding for the subtasks using a neural transition-based method (Zhang et al., 2019). This method cur-
rently has the state-of-the-art performance on the ACE2005 dataset. We also include: (7) TAC2015Best
corresponds to reported results for Hong et al. (2015) including semi-supervised learning, achieving the
best performance in TAC2015 Evaluation.

4.2 Main Results
Table 3 shows the results on ACE2005 and TAC2015. From the table, we observe that: (1) HPNet
steadily outperforms all the baselines significantly. Compared with them, HPNet gains at least 4.0%
absolute F1 score improvement in triggers, 3.8% in arguments on ACE2005, and at least 2.1 % absolute

2http://stanfordnlp.github.io/CoreNLP
3https://nlp.stanford.edu/software/lex-parser.shtml

http://stanfordnlp.github.io/CoreNLP
https://nlp.stanford.edu/software/lex-parser.shtml


2660

Model 1/1(%) 1/N(%) all(%)
Embedding+T 68.1 25.5 59.8
CNN 72.5 43.1 66.3
DMCNN 74.3 50.9 68.1
JMEE 75.2 72.7 73.7
HPNet-Argument 85.8 43.8 72.0
HPNet 83.7 73.6 77.8

Table 4: Event detection results on single event
sentences (1/1) and multiple event sentences
(1/N) (cf. Section 4.3 for detailed analysis).

Stage Model A(%) B(%) all(%)

Event
Traditional 68.8 14.3 61.2
Reduced DMCNN 70.7 33.1 64.9
HPNet 87.7 69.9 77.8

Argument
Traditional 58.5 22.2 34.6
Reduced DMCNN 59.5 30.7 40.2
HPNet 66.5 50.4 56.8

Table 5: Event detection and argument detection
results on clear sample (A) and new sample (B)
(cf. Section 4.4 for detailed analysis).

F1 score improvement in triggers on TAC2015, respectively. (2) Regarding argument detection, the joint
system with predicted entity mentions (i.e., dbRNN with 57.2% and 50.1% for arguments and argument
roles respectively) performs worse than that with perfect entity mentions (i.e., 67.7% and 58.7% for
arguments and argument roles respectively in Sha et al. (2018)). This is consistent with the significant
performance drop of JMEE-NP compared to JMEE (Liu et al., 2018) with gold entity mentions. Such
evidence reveals that they rely heavily on entity annotations from external tools. However, our HPNet
is significantly better than both methods with respect to all the F1 scores in Table 3, with no need for
gold entity tagging. (3) In general, the joint systems outperform the pipelined systems on both datasets
for all the subtasks, proving the advancement of joint modeling to some extend. (4) Compared with the
current state-of-the-art method JointTransition, our HPNet gives a lower Recall in argument detection.
The reason may be that the event type information from the event-level process limits arguments decision
to some extent, especially with the event scheme retrieval table. Nevertheless, our HPNet can balance the
Precision and Recall, and gains the highest F1 score with the hierarchical structure and policy network.

4.3 Effect of Hierarchical Structure

In this section, we prove our two-level hierarchical structure’s effectiveness for building the deep inter-
actions between events and arguments. We design a variant of HPNet, HPNet-Argument which removes
the argument-level PN and only keeps the event-level PN. We investigate event detection performance
and report the results of event trigger classification from the event-level PN. Moreover, to prove that
HPNet could alleviate multiple events issue through hierarchical structure, we divide the test data (all)
of ACE2005 into two parts (1/1 and 1/N) following the previous work (Chen et al., 2015), where 1/1
means that only one event or one argument plays a role in one sentence, and 1/N contains all other cases.
We perform evaluations on two test sets separately. Statistically, 27.3% of the sentences have multiple
events, and 23.2% of arguments attend multiple events within one sentence in the test set.

Table 4 shows the performance (F1 score) of HPNet, the variant, DMCNN and two baseline systems
Embedding+T and CNN (Chen et al., 2015). Embedding+T uses word embeddings and the traditional
sentence-level features (Li et al., 2013), while CNN is similar to DMCNN, except that it applies the
standard pooling mechanism instead of the dynamic multi-pooling method. For comparison, we also
include JMEE with gold entity mentions, which is the state-of-the-art system dealing with multiple events
issue. From Table 4, we can see that our method achieves the best performance on both 1/N dataset and
all. There is a significant performance drop (2.1%) of HPNet compared with HPNet-Argument on 1/1.
The reason may be that, in 1/1 test set, the interactions between two policy networks have almost no
influence on event detection as 1/1 has only sentences containing one event. However, comparing to
the variant HPNet-Argument, our HPNet yields at least 29.8% improvement on 1/N, indicating that our
two-level structure captures the interactions among the subtasks and event-level PN also benefits from
the argument-level process. Moreover, our HPNet yields a substantial improvement over all baselines
and the variant on 1/N dataset, implying that our structure can better capture the event type information
and is more powerful in extracting multiple events. Therefore, our two-level hierarchical structure indeed
enhances the information interactions among the subtasks and alleviates the multiple events issue.

4.4 Effect of Policy Network

In this section, we prove the policy network’s effectiveness for improving the generalization ability of
HPNet. We divide the triggers and arguments in the test data (all) of ACE2005 into two parts (A and B)
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Figure 3: Top eight event type for trigger identification errors (cf. Section 4.5 for detailed analysis).

following the previous work (Chen et al., 2015), where situation A represents the triggers or arguments
appearing in both the training set and the test set, and situation B denotes all other cases. Statistically,
34.9% of the triggers and 83.1% of the test set’s arguments never appear to be the same event type in the
training set. We perform evaluations and report the results in event detection and argument detection.

Table 5 gives the results (F1 score) of HPNet, two baselines Traditional and Reduced DMCNN. Tradi-
tional is described in previous work (Li et al., 2013) as the traditional method, and Reduced DMCNN is
simplified DMCNN which only uses word embedding as lexical feature (Chen et al., 2015). In Table 5,
our HPNet makes significant improvements compared with the above methods in the classification of
both events and arguments under all situations. Noticeably, there is a significant performance gap be-
tween situation A and situation B. All the methods suffer from data sparsity and could not adequately
handle a situation where a trigger or an argument does not appear in the training data. However, sig-
nificant improvements (at least 36.8% for events and 19.7% for arguments) of HPNet can be observed
on situation B. This occurs because the policy network adaptively communicates with the environments
(also new environments) to obtain the knowledge and uses rewards to guide the learning for the subtasks.
As a result, it is more powerful in dealing with generalized data and improving the generalization ability
of HPNet.

4.5 Error Analysis

To analyze our method’s operation on event detection, we notice from Table 3 that the event trigger
classification performance is quite close to that of the trigger identification, suggesting that the main
errors lie in the event trigger identification. So we examine the predicted results of the event to determine
each event type’s contributions to the trigger identification errors. There are two types of errors (MISSED
and INCORRECT) where MISSED denotes that a trigger is missed during evaluation and INCORRECT
indicates that a trigger is incorrectly detected. We report the top eight event types which appear in the
errors and their proportion over the total numbers of errors in Figure 3. These top eight event types
account for more than 90% of all errors.

As we can see from the Figure 3, the majority of errors relate to missing triggers. The rest of IN-
CORRECT errors involve spurious triggers (e.g., a non-trigger word is classified to a specific event type)
and misclassified triggers (e.g., a trigger of event End-Position is mistaken for event Attack). Attack
and Transport are the event types that account for a large percentage of both errors. A closer look at the
errors reveals that the MISSED errors are mainly due to lexical sparsity. For example, in the following
sentence:

Vivendi earlier this week ... that it planned to shed its entertainment assets ...
Our model fails to decide the “shed” as an event Transfer-Ownership as it never saw “shed” with

this sense during training and rarely saw that in testing. Although using a policy network can improve
the generalization ability and alleviate the data sparsity issue to some extend, some instances are also
necessary for the policy network to guide policy learning. The INCORRECT errors mainly result from
ambiguous context. For example, in the following sentence:

... Davies is scheduled to leave, to become the chairman of the London.
The word “leave” (event End-Position) can be easily misinterpreted as an event Movement due to

its ambiguous context words “scheduled” and “London”. The ambiguity of contexts requires better



2662

modeling of the input sentence. Other reasons for both types of event detection errors include complex
languages such as metaphor, idioms, and sarcasm, which require lavish background knowledge and
deeper reasoning.

For argument detection, we notice from Table 3 that the performance of event argument identification
(60.9%) is better than that of argument role classification (56.8%). This suggests that a large number of
correctly identified arguments cannot be classified properly. Among the misclassified arguments, many
errors (87.3%) come from incorrect roles (e.g., an argument with role Target is misclassified as that with
role Agent). The remaining errors (12.7%) are associated with incorrect event type (i.e., an argument role
is correctly classified but is assigned to an incorrect event type). A closer look at the errors shows that
the majority of incorrect roles belongs to co-occurring antonymous roles, such as the argument “Hassan”
(with role Target) in the following sentence:

British officials say they believe Hassan was a blindfolded woman seen being shot in the head ...
The model wrongly detects that “Hassan” refers to the Attacker who conducted the “shot” while

“woman” was the Target of the “shot”. This is mainly due to the complex context between the
words “Hassan” and “shot”. Similar confusable roles include Attacker/Victim, Origin/Destination, as-
signer/receiver and so on.

5 Conclusion

This paper presents a novel model HPNet, which approaches event extraction via a hierarchical policy
network. In HPNet, the extraction process follows a two-level hierarchical structure: an event-level PN
for events and an argument-level PN for participating arguments. Thanks to the hierarchical structure,
HPNet is good at modeling deep information interactions among the subtasks, and particularly better
in dealing with the multiple events issue. Comprehensive experiments demonstrate that our HPNet out-
performs the state-of-the-art methods. As future work, this HPNet will be applied in cross-event or
cross-document EE.
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Appendix A. Training Process of HPNet

Algorithm 1: OVERALL TRAINING PROCEDURE
Input: the word embedding wt for each word in the sentence

1 Calculate ht for each input word embedding with Bi-LSTM;
2 Initiate state s0

e = 0 and time step t = 0;
3 for i = 1 to L do
4 t = t+ 1;
5 Calculate st

e through Eq. 1;
6 Sample oet from st

e through Eq. 3;
7 Obtain instant reward ret through Eq. 4;
8 if oet ∈ E then
9 for j = 1 to L do

10 t=t+1;
11 Calculate st

r through Eq. 7;
12 Select art from st

r through Eq. 8;
13 Obtain instant reward rrt through Eq. 10;

14 Obtain the argument-level terminal reward rrter through Eq. 12;

15 Obtain the event-level terminal reward reter through Eq. 6;
16 Optimize the HPNet with Eq. 15;
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