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Abstract

CommonsenseQA is a task in which a correct answer is predicted through commonsense reason-
ing with pre-defined knowledge. Most previous works have aimed to improve the performance
with distributed representation without considering the process of predicting the answer from the
semantic representation of the question. To shed light upon the semantic interpretation of the
question, we propose an AMR-ConceptNet-Pruned (ACP) graph. The ACP graph is pruned from
a full integrated graph encompassing Abstract Meaning Representation (AMR) graph generated
from input questions and an external commonsense knowledge graph, ConceptNet (CN). Then
the ACP graph is exploited to interpret the reasoning path as well as to predict the correct an-
swer on the CommonsenseQA task. This paper presents the manner in which the commonsense
reasoning process can be interpreted with the relations and concepts provided by the ACP graph.
Moreover, ACP-based models are shown to outperform the baselines.

1 Introduction

Commonsense is the knowledge shared by the majority of people in society and acquired naturally in
everyday life. Commonsense reasoning is the process of logical inference by using commonsense infor-
mation. Commonsense to answer the questions that is “Blowfish requires what specific
thing to live?” in Figure 1 is depicted as: “Blowfish is fish”, “Fish lives in the
water”, and “Water includes seas and rivers.” An enormous amount of pre-defined com-
monsense knowledge is available and people can make inferences using this commonsense such as in the
following example: “Blowfish is fish.” → “Fish lives in the water.” → “Water
includes seas and rivers.” ⇒ “Blowfish lives in the sea.” This chain of com-
monsense reasoning is naturally deduced by humans without substantial difficulty. Whereas people
acquire commonsense in their lives, machines cannot learn this knowledge without any assistance. A
large amount of external knowledge and several reasoning steps are required for machines to learn com-
monsense. In recent years, various datasets (Zellers et al., 2018; Sap et al., 2019; Zellers et al., 2019)
have been constructed to enable machines to reason commonsense.
CommonsenseQA (Talmor et al., 2019) is one of the most widely researched datasets and is presented

in Figure 1 (a). The studies of commonsense reasoning based on this dataset can be categorized into two
mainstream approaches. The first approach uses pre-trained language models with distributed represen-
tations, which exhibit high performances on most Natural Language Processing (NLP) tasks. However,
despite their high performance, these models must be trained with an excessive number of parameters
and cannot explain the process of commonsense reasoning. The second approach is reasoning with a
commonsense knowledge graph. The generally used commonsense knowledge graph is ConceptNet 5.5
(Speer et al., 2017), which includes parsed representation from Open Mind Commonsense (OMCS) and
other different language sources such as WordNet (Bond and Foster, 2013) or DBPedia (Auer et al.,
2007). In this approach, the subgraph of ConceptNet corresponding to the questions are transformed into
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Q. Blowfish requires what specific thing to live?

A. sea water
B. hatred
C. fish market
D. body of water
E. jungle

(a) Example of CommonsenseQA
dataset

blowfish

require-01

purposeARG0 mode

live-01

ARG0 ARG1

thing

interrogative

(b) Example of AMR graph of question

blowfish AtLocation restaurant

fish market

RelatedTo fish

sea

(c) Example of ConceptNet subgraph
of question

Figure 1: Example of AMR and ConceptNet graphs of question.

node embeddings by the graph encoder. The candidate with the highest attention score is selected as an
answer that is computed between the node embeddings and the word vectors from the language models.
To learn the commonsense knowledge that is not observed or understood by the language models, rela-
tions from ConceptNet serve as a critical role in this method. The performance is improved by utilizing
the relations that are not represented in the text; however, the interpretation of the question is still not
enough.

Unlike CommonsenseQA, the most commonly used method of solving this problem is Knowledge-
Based Question-Answering (KBQA) (Berant et al., 2013; Yih et al., 2014; Yih et al., 2015) employing
semantic representations. As this method infers the answer with the logical structure of the question
using the knowledge base, the question-answering process can be explained in a logical form. In our
work, Abstract Meaning Representation (AMR) (Banarescu et al., 2013), which is one of the logical
structure, is used to understand the overall reasoning process, from the question to the answer. AMR is
a graph for meaning representation that symbolizes the meaning of sentences. AMR illustrates “who is
doing what to whom” that is implied in a sentence with a graph. The components of these graphs are not
the words, but rather the concepts and their relations. Each concept denotes an event or an entity, and
each relation represents the semantic role of the concepts.

In this paper, we enable the language models to exploit the AMR graph to understand the logical
structure of sentences. However, it is difficult to infer commonsense information with only an AMR
graph, owing to its deficiency of commonsense knowledge of the given sentence. For example, in Figure
1 (b), the AMR graph indicates the path of the logical structure of the sentence “What the blowfish
requires to live?” (require-01 → purpose → live-01 → ARG0 → blowfish); in
other words, these paths from the single AMR graph lack the proficient information to predict the right
answer. Therefore, for commonsense reasoning, dynamic interactions between the AMR graph and
ConceptNet are inevitable to reach the correct answer.

Thus, we propose a new compact AMR graph expanded with the ConceptNet’s commonsense relations
with pruning, and it is called ACP graph. The proposed method can interpret the path from the question
to the answer by performing commonsense reasoning within the connected graph, such as “Blowfish
needs the sea to live.” (require-01→ purpose→ live-01→ ARG0→ blowfish
→ AtLocation→ sea).

The contributions of our study are as follows.

• We introduce a new graph structure the ACP graph, which is pruned from a full integrated graph
encompassing Abstract Meaning Representation (AMR) graph generated from input questions and
an external commonsense knowledge graph, ConceptNet (CN) for commonsense reasoning. This
structure is represented in a Levi graph (Gross et al., 2013) form to enable relation interpretations.

• We propose a graph-path reasoning framework, using which it is possible to explain the path from
the question to the answer in a logical manner based on commonsense reasoning.

• Our path reasoning method exhibits a performance improvement over previous models.
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Figure 2: Overview of proposed method.

The remainder of this paper is organized as follows. In Section 2, we present the entire process of
our method in detail. The experimental setup and results are explained in Section 3. A discussion of the
proposed model is provided in Section 4, and Section 5 presents the conclusions. Appendix A provides
related works including ConceptNet, previous works on commonsense reasoning, and AMR.

2 Proposed Method

We propose a commonsense reasoning framework that uses a commonsense knowledge base on the basis
of the AMR logic structure. Our framework consists of the AMR graph integrating and pruning module,
language model encoder, and graph path learning module§. As illustrated in Figure 2, we first generate
the AMR graph from every question in the CommonsenseQA dataset and integrate all the nodes of
AMR with ConceptNet graphs.

As this AMR-ConceptNet full graph also includes some irrelevant relations to the question, interpret-
ing questions can be guided in the wrong way. For this reason, we suggest a new method, the ACP graph,
pruned according to the relation type. Thereafter, the graph path learning module takes the pruned graph
as an input and computes the attention score of each path by using the Graph Transformer (Cai and
Lam, 2019) which results in the whole graph vector. The graph vector is finally fed into the Transformer
(Vaswani et al., 2017) to model the interactions between the AMR and ConceptNet graph and transforms
to the final graph representation. Meanwhile, the question and candidate answer from the dataset are
passed through the language model encoder, producing the language vector. The concatenation of the
language and graph vectors turns out to the final representation that is used to predict the correct answer.

In contrast to other models mentioned in Talmor (2019), which cannot provide interpretable reasons
for predicting the correct answer from the question, our proposed method produces the reasoning paths
that make the model transparent and interpretable. That is, the reasoning paths that have high attention
weights from the graph encoder possess potentially accurate information for reasoning. These reasoning
paths are depicted in Figure 5.

§Code available at https://github.com/dlawjddn803
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Figure 3: Two methods of integrating AMR graph with ConceptNet graph. Method (a) incorporates
all of the nodes from the AMR graph with the ConceptNet graph. In contrast, method (b) removes
the ConceptNet nodes that is not connected to the AMR nodes which have ARG0 and ARG1 rela-
tions. For instance, we generate an AMR graph from the sentence “What home entertainment
equipment requires cable?”, and we find every ConceptNet relation that includes all the AMR
nodes such as (cable-HasContext-telegraphy), (require01-RelatedTo-need), and
(home-UsedFor-living). Then remove the ConceptNet nodes that are not connected to the AMR
nodes which have ARG0 or ARG1 relations. In this example, the deleted nodes are living, house,
and game. In addition, as the require-01 is frame node which does not need to expand, need is also
removed from the graph.

2.1 Graph Integrating and Pruning

As each word plays a certain role as a predicate or an argument in a sentence, the concepts of the
AMR graph also carry semantic meanings in the graph structure. Hence, the AMR graph is capable of
interpreting the questions as paths, semantically . Owing to these advantages of the graph structure and
preserved semantic interpretation, we use the AMR graph for extracting commonsense knowledge graph.
To generate an AMR graph from the raw text, we use the pre-trained model of Zhang (2019), which is
an attention-based model that treats AMR parsing as sequence-to-graph transduction. Though most of
the AMR graphs generated from the model properly, they might have some inevitable errors in the type
of relations or concept.

We suggest effective AMR expansion and pruning rules for commonsense reasoning. We expand the
AMR graph on all nodes with the ConceptNet as illustrated in Figure 3 (a), and prune the nodes that have
edges known as ARG0 and ARG1 with ConceptNet. Considering that ARG0 and ARG1 are the top two
frequent relations among any other relations as shown in Table 1, we prune the full AMR-CN graph into
a more compact graph that only contains ARG0 and ARG1 relations, which is called ACP graph. This

Relation Ntrain Ndev Ntest

ARG0 17300 (22.70%) 2547 (22.73%) 2477 (23.09%)
ARG1 24673 (32.38%) 3566 (31.83%) 3521 (32.82%)
ARG2 6001 (7.88%) 864 (7.71%) 829 (7.73%)
ARG3 286 (0.38%) 37 (0.33%) 51 (0.48%)
ARG4 587 (0.77%) 92 (0.82%) 59 (0.55%)

Total relations 76203 11204 10727

Table 1: Statistics of core roles in CommonsenseQA AMR graph. We split the given training set into
the new training and test sets randomly to conduct diverse experiments with efficiency. The new training,
development, and test sets included 8,500, 1,221, and 1,241 examples, respectively.
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procedure prevents the graph from discovering a tremendous number of paths iteratively. As described
in Appendix A, since the frame node is defined as a central point in the AMR graph like require-01
in Figure 3, combining other ConceptNet relations with the root node may distract the process of path
reasoning. Also, the frame node’s specific meaning additionally annotated by the number like “-01”
at the end of the word is different from the meaning in ConceptNet’s node even though it has identical
letters. For example, the specific meaning of the frame node “play-11” is “play/perform music”
defined in Propbank frameset while ConceptNet’s node “play” includes more diverse meanings such as
“engage in an activity like game”or “bet or wager”. Therefore, we remove the ConceptNet relations and
nodes connected to the frame node. The proposed method is depicted in Figure 3 (b).

The graph G = (V, E) expresses fixed set of nodes V, and relation edges E. Following this notation, the
ACP graph is defined as follows:

GACP = ({Vamr ∪ Vamrarg

cn }, {Eamr ∪ Eamrarg

cn }) (1)

The ACP graph expressed in equation (1) is the union set of the AMR and the subgraph of ConceptNet
that contains AMR concepts that are connected to ARG0 and ARG1, respectively. The AMR graph is
denoted as GAMR = {Vamr, Eamr}. The subgraph of ConceptNet matched with the concepts that are
connected to ARG0 and ARG1 is defined as GAMRarg

CN = {Vamrarg
cn , Eamrarg

cn }

2.2 Language Encoder and Graph Path Learning Module

The proposed method performs commonsense reasoning over the ACP graph and predicts the correct
answer with the corresponding inference. Our model receives two types of inputs, which are text and
graph, and converts semantic representation to distributed representation. To encode the text input into
the distributed representation, the language encoder which is the pre-trained language model with a mas-
sive amount of corpus takes an input that is formalized as “[CLS]+Question+[SEP]+candidate
answer.” Given the ACP graph from the graph integrating and pruning module, the graph path learning
module initializes the concept node vectors as the sum of the concept embedding using GloVe (Penning-
ton et al., 2014) and absolute position embedding. Inspired by the works of Cai (2019), we modify the
graph transformer to make the model reason over the relation paths of the ACP graph. To let the model
recognize the explicit graph paths, we first encode the relation between two concepts into a distributed
representation using the relation encoder. The relation encoder identifies the shortest path between two
concepts and represents the sequence as a relation vector by employing recurrent neural networks with a
Gated Recurrent Unit (GRU) (Cho et al., 2014). The equation for the represented relation is expressed
as follows:

−→pt = GRUf (
−−→pt−1, spt),←−pt = GRUg(

←−−pt+1, spt) (2)

where spt indicates the shortest path of the relation between two nodes. The final relation encoding rij
between concepts i and j is the concatenation of the final hidden states from the forward and backward
GRU networks, which are presented in the equation (3).

rij = [−→pn;←−p0] (3)

To inject this relation information into the concept representation, we follow the idea of relative po-
sition embedding (Shaw et al., 2018; Salton et al., 2017), which introduces the attention score method
based on both the concept representations and their relation representation. To compute the attention
score, we split the relation vector rij passed from the linear layer into forward relation encoding ri→j

and backward relation encoding rj→i, as follows:

[ri→j ; rj→i] = Wrrij (4)

where Wr is the parameter matrix. This split renders the model consider bidirectionality of the path.
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Thereafter, we compute the attention score considering the concepts and their relations. Note that ci
and cj are the concept embedding. The equation is presented below:

sij = f(ci, cj , rij)

= (ci + ri→j)W
>
q Wk(cj + rj→i)

= ciW
>
q Wkcj + ciW

>
q Wkrj→i

+ ri→jW
>
q Wkcj + ri→jW

>
q Wkrj→i

(5)

The first term in the last line of equation (5) is the original term in the vanilla attention mechanism,
which includes the pure contents of the concept. The second and third terms capture the relation bias with
respect to the source and target, respectively. The final term represents the universal relation bias. As a
result, the computed attention score updates the concept embedding while maintaining fully-connected
communication (Cai and Lam, 2019). Therefore, concept–relation interactions can be injected into the
concept node vector. The resulted concept representations are summed into the whole graph vector
and fed into the Transformer Layers to model the interaction between AMR and ConceptNet concept
representation. The major advantage of this relation-enhanced attention mechanism is that it provides
a fully connected view of input graphs by making use of the relation multi-head attention mechanisms.
Since we integrate two different concept types from the AMR graph and ConceptNet into a single graph,
the model globally recognizes which path has high relevance to the question during the interpretation.
After obtaining the language and graph vectors, the model concatenates the two vectors, feed these into
the Softmax layer, and selects the correct answer.

3 Experiments

To show the effectiveness of representing a question using the proposed ACP graph in commonsense
reasoning, we conduct four different experiments. We first compare the ACP with the ACF graph, which
is expanded on all the concepts of the AMR graph, and with the graph that only utilizes the ConceptNet.
In addition, we apply our model to three language models that have different encoder structures, showing
performance enhancement as shown in Table 4. Moreover, we investigate the efficacy of the proposed
method on the extended versions of the BERT-base model such as the BERT-large-cased or post-trained
BERT model with OMCS data. Finally, we show the performance of our model with official test set.

3.1 Data and Experimental Setup

The CommonsenseQA dataset consists of 12,102 (v1.11) natural language questions and each question
has five candidate answers provided by Talmor et al (2019). As the prediction on the official test set
can be evaluated only through the organizers by two weeks, we divide the official training set for the
experiment efficiency. We split the given training set into the new training and test sets. The new
training, development, and test sets included 8,500, 1,221, and 1,241 examples, respectively. We use
RTX8000 for training our model. The parameters for the graph path learning model are identical to the
work in Cai (2019)’s model.

3.2 Experimental Results

Commonsense reasoning. To demonstrate that our ACP graph is more effective than other graph fea-
tures, we conduct experiments on diverse graph features that include not only the ACP graph but also the
ACF graph. The ACF graph is an integrated graph, with the AMR graph and the ConceptNet matched
with all concepts from the AMR graph. Furthermore, we run experiments only using ConceptNet (CN)
in two manners. The one is a method that uses the ConceptNet graph that corresponds to all the question
tokens separated by the spaces of the sentence as depicted in Figure 4 (a). As the tokens from the ques-
tion are not connected initially, it may prevent our graph path learning module from reasoning over the
CN graph due to the disconnection between the concept nodes. Therefore, we connect all of the tokens
from the question to the root node to let our model perform effectively on commonsense reasoning.
The other is a method that employed the pruned ConceptNet graph using the the logic of AMR graph
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Figure 4: Two methods of ConceptNet expansion matched with tokens. The token nodes are all the
words in the question

as decribed in Figure 4 (b). The pruned ConceptNet graph includes the subgraph of the ConceptNet
matched with tokens that are connected to ARG0 and ARG1 of the AMR. For example, as the concept
nodes require, equipment, and cable in Figure 3 (a) are connected with the relation of ARG0 and
ARG1, only those concept nodes have the ConceptNet relations. Similar to the first method, the tokens
from the question are linked with token relation to the root node. Note that these two methods do not
explicitly make use of the AMR graph concepts.

ACF graph is depicted in Figure 3 (a) and is expressed as follows.

GACF = ({Vamr ∪ Vamr
cn }, {Eamr ∪ Eamr

cn }) (6)

Note that the AMR graph is denoted as GAMR = {Vamr, Eamr} and the subgraph of ConceptNet
matched with the ACF graph is denoted as GAMR

CN = {Vamr
cn , Eamr

cn }.
The (1) CN full graph (CF) and (2) CN pruned graph (CP) are illustrated in Figure 4 and defined as

follows, respectively:

GCF = ({Vtoken ∪ Vtokencn } ∪ {root}}, {E tokencn ∪ {token}}) (7)

GCP = ({Vtoken ∪ Vamrarg

cn } ∪ {root}}, {Eamrarg

cn ∪ {token}}) (8)

The ConceptNet graph is denoted as GCN = {Vcn, Ecn} and the subgraph of ConceptNet matched
with the question token is denoted as GtokenCN = {Vtokencn , E tokencn }. For the CN pruned graph, the notation
is as follows: the subgraph of ConceptNet matched with the tokens connected to ARG0 and ARG1 is
defined as GAMRarg

CN = {Vamrarg
cn , Eamrarg

cn }. In addition, Vtoken denotes the token of the sentence that is
separated by a space.

As indicated in Table 2, whereas the BERT fine-tuning only score 51.59% in terms of accuracy, the
models with the AMR graph or ConceptNet exceed this result, scoring over 52%. Interestingly, the
ACP graph achieves the best score among all other graph types. These results demonstrate that the ACF
graph and other CF, CP graphs consider all possible paths which are unnecessary and obtain insufficient
performance. In other words, the ACP graph enables the Graph Path Learning Module to find reasonable
paths efficiently by ignoring the irrelevant paths. Since the ACP graph provides the best results, other
experiments are conducted with the ACP graph feature.
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Language Encoder Graph type Ndev-Acc.(%) Ntest-Acc.(%)

BERT-base-cased

- 51.81 51.59

AMR - original 52.82 52.78

CN – full (CF) 53.80 53.10
CN – pruned (CP) 52.61 52.53

AMR-CN – full (ACF) 52.98 52.94
AMR-CN – pruned (ACP) 53.97 53.58

Table 2: Experiments on diverse graph types.

Extensions of BERT. We also demonstrate the effects of the proposed method on improved BERT
models that are post-trained BERT-base-cased with OMCS and BERT-large. Previous studies mostly
addressed the CommonsenseQA utilizing a post-training approach with OMCS data, which is a freely
available crowd-sourced knowledge base of natural language statements regarding the world. Because
of the high performance on the ACP graph feature in Table 2, we illustrate the effect on the performance
of the ACP graph with respect to the different version of BERT. As indicated in Table 3, our method
combined with the post-trained BERT on OMCS achieved 54.31% in the new test set. Moreover, the
BERT-large model with our method outperformed the BERT-large fine-tuning model, obtained 58.98%
in the new test set.

Language model Ndev-Acc.(%) Ntest-Acc.(%)

BERT post-trained w/ OMCS 52.13 52.08
BERT-large-cased 57.16 56.24

BERT post-trained w/ OMCS & AMR-CN – pruned(ACP) 54.79 54.31
BERT-large-cased w/ AMR-CN – pruned(ACP) 59.37 58.98

Table 3: Experiments on other BERT models.

Comparison on different language models. Table 4 presents the results of the comparison
experiments on different language models with varying transformer encoder structures. Input of the
language model is formalized as “[CLS]+Question+[SEP]+candidate answer.” All of the
language models that use our method outperformed their own fine-tuned score, achieving 53.58% with
BERT-base, 60.35% with XLNet-base (Yang et al., 2019), 51.08% with ALBERT-base (Lan et al.,
2019), and 70.91% with ELECTRA-base (Clark et al., 2020) on our new test set. This implies that the
concept representations obtained from the our ACP graph had significant effects and stable generality
on CommonsenseQA, regardless of the language model encoder types.

Language Encoder Ndev-Acc.(%) Ntest-Acc.(%)

BERT-base-cased 51.81 51.59
XLNet-base-cased 57.98 57.05
ALBERT-base 50.12 49.22
ELECTRA-base 71.25 70.19

BERT-base-cased w/ AMR-CN – pruned (ACP) 53.97 53.58
XLNet-base-cased w/ AMR-CN – pruned (ACP) 61.01 60.35
ALBERT-base w/ AMR-CN – pruned (ACP) 51.51 51.08
ELECTRA-base w/ AMR-CN – pruned (ACP) 71.99 70.91

Table 4: Experiments on different language models.
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Figure 5: Case study of the question “What home entertainment equipment requires
cable?” and candidate answers (a)radio shack, (b)substation, (c)cabinet,
(d)television, (e)desk. Figure 5 (a) presents the entire AMR-CN graph marked with the red
color for high attention weight paths in BERT-base-cased w/ AMR-CN–pruned graph (ACP). Figure 5
(b) displays the heatmap of the attention weights with respect to the source and target tokens in the path.
The details of the paths are also provided.

Experiment on official test set As the ELECTRA-base model with the ACP graph shows the highest
performance on the new test set, we conduct the experiments on the official test set (1140 examples)
with the official training set utilizing ELECTRA-large. For official test set, our model achieve 75.43%
accuracy.

Models Odev-Acc.(%) Otest-Acc.(%)

KagNet (Lin et al., 2019)† 64.46 58.90
HyKAS (Ma et al., 2019)† 80.10 73.20
XLNet + Graph Reasoning (Lv et al., 2019)† 79.30 75.30
ELECTRA-large w/ AMR-CN – pruned (ACP) 82.15 75.43

Table 5: Experiment with ELECTRA with full training set on the official test set. † denotes the results
of the models that use ConceptNet, taken from the official commonsenseQA leaderboard in April 2020.

4 Discussion

4.1 Error Analysis

In some cases of failure, our model exhibits two problems as follows:

• Difficulty in discriminating hard distractors: All candidate answers from the CommonsenseQA
possess a hard distractor, which shares the same relation with the question. When the hard distractor
exists in the ACP graph in the path learning module, it also uses the paths of the distractor, instead
of the those of correct answer. This may make the model confused as it considers the distractor as
the correct answer.
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• AMR graph generation error: Since the AMR graph is generated from the pre-trained model,
our model is at risk of using an incorrect AMR graph. An incorrectly produced AMR graph may
lead the model to incorrect interpretation and distortion in the wrong direction during the path
reasoning process. For example, the AMR graph generated from the question “What can help
you with an illness?” is described below.

(vv1 / possible
:ARG1 (vv2 / help-01

:ARG0 (vv3 / amr-unknown)))

As the concept node illness disappeared while generating the graph, our model may not have
enough information for extracting the subgraph from ConceptNet.

4.2 Case Study

The red edges in Figure 5 present the paths that have high attention weight for the question “What home
entertainment equipment requires cable?” In Figure 5 (b), the top four paths with high
attention weights are described. As opposed to predicting the answers simply with the ConceptNet graph
connected to the question, we allow our model to learn relevant paths inherent in the ACP graph. That
is, our graph path learning module with ACP graph is capable of commonsense reasoning exploring the
paths.

5 Conclusions and Future Works

We introduce a new commonsense reasoning method, using the proposed ACP graph. This method out-
performed the model that simply learns the ConceptNet graph. Furthermore, our method can explain
the answer-inference process by interpreting the logical structure of the sentences within commonsense
reasoning process. Models that applied our method exhibit higher performance compared to the previous
models. However, certain problems still remain. Though the relations ARG0 and ARG1 occupy most of
the core roles in the AMR graph, it is still arguable that the other choice of relations may lead to better
results. Therefore, we will show the experimental results according to the different pruning rules on the
CommonsenseQA task in the future. Also, we plan to develop an end-to-end learning model that incor-
porates the AMR generation model and the question-answering model to reduce the error propagation
from the AMR generation.
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Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives. 2007. Dbpe-

dia: A nucleus for a web of open data. In The semantic web, pages 722–735. Springer.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight, Philipp
Koehn, Martha Palmer, and Nathan Schneider. 2013. Abstract meaning representation for sembanking. In
Proceedings of the 7th linguistic annotation workshop and interoperability with discourse, pages 178–186.



2469

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on freebase from question-
answer pairs. In Proceedings of the 2013 conference on empirical methods in natural language processing,
pages 1533–1544.

Francis Bond and Ryan Foster. 2013. Linking and extending an open multilingual wordnet. In Proceedings
of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1352–1362.

Claire Bonial, Jena Hwang, Julia Bonn, Kathryn Conger, Olga Babko-Malaya, and Martha Palmer. 2012. En-
glish propbank annotation guidelines. Center for Computational Language and Education Research Institute of
Cognitive Science University of Colorado at Boulder, 48.

Claire Bonial, Lucia Donatelli, Stephanie Lukin, Stephen Tratz, Ron Artstein, David Traum, and Clare Voss.
2019. Augmenting abstract meaning representation for human-robot dialogue. In Proceedings of the First
International Workshop on Designing Meaning Representations, pages 199–210.

Deng Cai and Wai Lam. 2019. Graph transformer for graph-to-sequence learning. arXiv preprint
arXiv:1911.07470.
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Appendix A. Related Works

We briefly describe the structures and properties of ConceptNet, which consists of commonsense
relations. Furthermore, we review previous studies and AMR, which is an essential part of our model.
ConceptNet. In ConceptNet (Speer et al., 2017), real-world assertions are represented as two nodes
and directed edges, which denote certain concepts and their relations, respectively. The nodes represent
words or phrases from natural language sentences. The edges represent the relations between nodes, and
they contain lexical as well as commonsense relation information. As ConceptNet is created by collect-
ing data from various types of knowledge bases, nodes of different types also exist. Each node represents
a slightly different meaning considering its role in the sentence. For example, the word “person” can
be found in the concept of “person/n,” which is analyzed as a noun with a POS tagger, and with
more detailed semantic information, it can be identified as “person/n/wn/body.” This information
makes possible the detailed extraction of knowledge that considers the purpose of each sentence. Mean-
while, one or more edges may be defined between two nodes. For example, the edge between the nodes
“person” and “eat” can be defined independently as “CapableOf” and “Desires.” Various con-
cepts and their relations are defined as nodes and edges in ConceptNet, considering the ambiguity in the
sentences.

Commonsense reasoning. Commonsense reasoning is the process of logical inference by using com-
monsense information. In CommonsenseQA* task, the fine-tuning approach with pre-trained language
representations makes use of external commonsense knowledge. There are two means of exploiting ex-
ternal knowledge. The first** is the method that post-trained with some commonsense sentence corpus.
It then performs fine-tuning with evidence derived from questions and answers. The second method
(Lv et al., 2019; Lin et al., 2019) is to encode commonsense knowledge graphs and train with language
models. The language models that have exhibited high performance in this method are BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019), which use bidirectional transformer encoders. They also in-
clude XLNet (Yang et al., 2019), which is based on autoregressive language modeling, ALBERT (Lan et
al., 2019), which adopts cross-layer parameter sharing and factorized embedding parameterization and
ELECTRA (Clark et al., 2020) that is pre-trained with Replaced Token Detection (RTD) task.

AMR. AMR (Banarescu et al., 2013) represents the relations between concept nodes using the Prop-
Bank frameset and vocabularies from the sentences. The edges between two or more concept nodes or the
argument nodes are relations. AMR represents semantic roles such as core and numbered roles, and uses
more than 100 semantic relations, including negation, conjunction, command, and wikification. In Prop-
Bank (Bonial et al., 2012), the semantic roles are labeled in the form of ARG0∼4 and ARGM. In general,
ARG0 denotes the agent of the verb, ARG1 is the patient, ARG2 means the instrument, benefactive, or at-
tribute, ARG3 is interpreted as the starting point, benefactive, or attribute, and ARG4 represents the ending
point. The root node serves as the central point of the representation and is called frame node. Thereafter,
other concept nodes are sequentially combined according to the semantic relations. AMR consists of con-
cept nodes in a single graph that is traversable to all nodes, similar to a parse tree. However, unlike the
parse tree, which represents the explicit structure of sentences, AMR aims to describe the conceptual and
semantic structure. That is, if the semantic meanings of explicitly different sentences are the same, they
can be represented by the same AMR graph. For example, the two sentences “The boy is a hard
worker” and “The boy works hard” are represented by the same PENMAN graph, namely (w /
work-01 :ARG0 (b / boy) :manner (h / hard)). The data constructed to generate and
evaluate these representations are AMR 2.0 (LDC2017T10) and AMR 1.0 (LDC2014T12). The model
with the highest performance on these data was presented by Zhang et al. (2019), using BERT. Various
NLP fields have exploited AMR, such as sentence generation (Cai and Lam, 2019; Guo et al., 2019),
summarization (Vlachos and others, 2018; Liao et al., 2018), question and answering (Mitra and Baral,
2016), dialogue systems (Bonial et al., 2019), paraphrase detection (Issa et al., 2018), and biomedical
text mining (Wang et al., 2017; Garg et al., 2016).

*https://www.tau-nlp.org/csqa-leaderboard
**ttps://drive.google.com/file/d/1sGJBV38aG706EAR75F7LYwCqci9ocG9i/view,

https://gist.github.com/commonsensepretraining/507aefddcd00f891c83ebf6936df15e8


