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Abstract

Online advertising is one of the most widespread ways to reach and increase a target audience for
those selling products. Usually having a form of a banner, advertising engages users into visiting
a corresponding webpage. Professional generation of banners requires creative and writing skills
and a basic understanding of target products. The great variety of goods presented in the online
market enforce professionals to spend more and more time creating new advertisements different
from existing ones. In this paper, we propose a neural network-based approach for the automatic
generation of online advertising using texts from given webpages as sources. The important
part of the approach is training on open data available online, which allows avoiding costly
procedures of manual labeling. Collected open data consist of multiple subdomains with high
data heterogeneity. The subdomains belong to different topics and vary in used vocabularies,
phrases, styles that lead to reduced quality in adverts generation. We try to solve the problem
of identifying existed subdomains and proposing a new ensemble approach based on exploiting
multiple instances of a seq2seq model. Our experimental study on a dataset in the Russian
language shows that our approach can significantly improve the quality of adverts generation.

1 Introduction

The task of abstractive summarization assumes getting short but still a semantically relevant represen-
tation of some text. The summarization helps advertisement to catch user attention, get him or her
interested, and finally to engage in the full text reading. This is especially true for online advertising
when it flashes in front of eyes on most website in the Internet.

Crafting such short texts for online advertising requires a level of mastering and some degree of subject
understanding. Humans doing this job have to read at least the base text, which describes products or
services and then to spend additional time thinking of suitable describing phrase. That may be very
time-consuming and thus a good option for automation.

Modern natural language processing methods and techniques allow solving the task up to some degree
of quality while still leaving space for improvement. The most advanced methods are based on neu-
ral network seq2seq models (Gehrmann et al., 2018) and consume large manually labeled datasets for
supervised learning.

Due to being so popular and widespread, online advertising gives us an opportunity to obtain labeled
data (in this particular case, a pair of the source text and banner text) using only data crawling techniques
significantly decreasing human efforts needed to build a sufficient dataset for the task.

At the same time, ollected open data may consist of multiple subdomains with high data heterogeneity.
Moreover, what data will come from the crawling depends on advertising providers and their strategies
adopted to the end-user. The subdomains belong to different topics and may vary substantially in used
vocabularies, phrases, text styles. This heterogeneity may be amplified by overrepresentation of some
domains while underrepresentation of others. As it will be demonstrated in our experimental study, all
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mentioned above may negatively affect the quality of adverts generation especially for text belonging to
some topics leading semantic inconsistencies or wrong endings.

In this work, we try to smooth the consequences of such peculiarities in data by addressing arising
issues with direct topic identification in texts and extracting groups of semantically similar texts in the
dataset. It allows multiple models ensemble to be built with fine-tuned specifics to extract topic-driven
groups. Eventually, this approach demonstrates improvement in the overall quality of generation.

Contributions of the paper are as follows: (1) a case study of online advertising generation as an ab-
stractive summarization problem; (2) a new topic-driven ensemble approach; (3) an experimental study
on Russian dataset of the new approach performed on online advertising generation task that demon-
strates improved quality of the approach.

2 Related work

There are multiple efforts in scientific community directed to automate building of advertising and pre-
senting it in a right way (Rosenkrans, 2010; Liu et al., 2018; Kim and Moon, 2020; Aguilar and Garcia,
2018). Some works analyze impact of banners’ visual appearance to user behavior and psychologi-
cal reactions (Rosenkrans, 2010; Liu et al., 2018) thus answering what banner should contain. Others
try to automate time-consuming job of banners generation (Kim and Moon, 2020; Aguilar and Garcia,
2018) including smart banners concept that creates personalized banners. These works assume different
approaches such as constructing a banner using already prepared parts or generating several banners by
substituting words in a template or initial banner with synonyms. Our approach is different in two things:
first, it works directly with the text from product page instead of altering some base banner or template
text and thus it doesn’t require additional efforts to prepare these materials; second, we use banner gen-
eration methods that differ from the ones from existing works – based on a modern neural architecture
called Transformer.

In the field of natural language generation, one can find several major approaches based on encoder-
decoder architectures: LSTM-based solutions with or without attention layers (Nema et al., 2017; Song et
al., 2019), pointer-generator model (See et al., 2017) and transformer-based solutions gained significant
popularity recently (Gehrmann et al., 2018; Gatt and Krahmer, 2018; Gavrilov et al., 2019). While
pointer-generator specifically oriented on solving problems with the tendency of recurrent models to
reproduce details incorrectly, caused by an unbalanced dictionary (a rare word is replaced by a more
common one), Transformer may give better quality and easily parallelize. Work (Gavrilov et al., 2019)
is dedicated specifically for generating short news headlines from articles and has similar conditions of
text generating and methods being applied. However, online advertising, in contrary to news headlines,
has a different style (related to getting the user to be engaged to sell him/her something) that should be
reflected in the generated text. Moreover, our approach goes further dealing with heterogeneity in data
and utilize ensemble technique.

Concerning approaches working with dataset peculiarities and exploiting its structure, several direc-
tions may be found. Transfer learning methods (usually in the form of pretraining and fine-tuning mod-
els) show promising results in many applications. However, they deal with various differences in data
for datasets in various domains and not in the same dataset (Pan and Yang, 2009; Ramachandran et al.,
2016; Peters et al., 2018; Devlin et al., 2019). Within the dataset a hard negative mining (Felzenszwalb
et al., 2009; Zhang et al., 2016; Jin et al., 2018) tries to identify the most informative negative samples
and to reduce the amount of other (”easy”) negative samples in training data to bring more focus on hard
ones. In (Braden Hancock and Ré, 2019 accessed May 25 2020) authors discuss data slicing approach,
which assumes the presence of subsets in data that have something in common, and that may influence
the performance of the model. They train encoder using different heads (e.g. top layers that solve classi-
fication task) with only a corresponding subset of data. Our approach is different in two points: we use
topic modelling to identify semantically related subsets of data, we use pretraining/fine-tuning routine,
which is more widespread in domain adaptation tasks.

To the best of our knowledge, there is no neural network-based generation method proposed for the
problem of online advertising (banners) creation using natural language at the present moment. More-
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over, no method considers dataset heterogeneity for this task.

3 The topic-driven ensemble approach

We will start by describing the collected dataset of online advertising followed by its cleaning procedure
and will end with the proposed transformer-based approach.

3.1 Banner-page dataset

To obtain the required data for our research, we used a crawler software described in (Butakov et al.,
2018). Initially, we collected the dataset consisting of banner texts and URL references to their respective
product web-pages. To collect the dataset we used HTML tags selectors from several popular adblocks
to obtain text and references of banners. The data was collected from several popular websites (to name
a few: avito.ru, auto.ru, youla.ru). Then we collected the content of web-pages referenced by banners.
Most sites are dynamic and use a lot of AJAX requests to get content and further apply JavaScript to
render it. Therefore, we developed an extension of the crawler with Puppeteer1 which allows controlling
Google Chrome browser and multiple asynchronous requests that alongside need JavaScript code.

The following steps were taken for cleaning in the crawling phase: excluding pages with 404 er-
rors; removing headers and footers; filtering classes by content (removing tags like ”home”, ”delivery”,
”to cart”, ”log in”); filtering invisible elements (checks for visibility were performed); recursive DOM
traversal and text extraction.

We left only pairs unique by text in the dataset as well as removed all pairs from the dataset with length
less then 15 words. Finally, we got a dataset of 363596 records, containing textual 〈banner, page〉 pairs.

3.2 Abstractive summarization for online advertising generation

Online advertising generation as an abstractive summarization problem can be formulated as follows:
having set of page-banner pairsD = {(x, y)|x ∈ X, y ∈ Y }N one needs to build a model that estimates a
conditional probability P (yt|{y1, ..., yt−1}, x, θ) , where: N – size of the dataset; X – a set of webpages;
Y – a set of online advertising (banners); x = x1, ..., xm – a text of webpage consisting of tokens that
belong to some vocabulary (m – length of a source text in tokens); y = y1, ..., yk – a text of a banner (k
– length of a banner in tokens belonging to the same vocabulary); t – token index in a banner’s text; θ
– a set of model parameters being used for modelling this conditional probability. Thus finding the best
parameters is formalized as:

θMLE = argmaxθ

N∑
i=1

logP (yt|{y1, ..., yt−1}, xi, θ) (1)

where i iterates through the training dataset, xi is a web-page text from the dataset.
The task assumes construction of a language model conditioned on text that can generate banners in a

token-by-token autoregressive manner. This approach is also known as sequence-to-sequence modeling
and has gained great popularity in recent time.

However, the performance of this approach can decrease due to high data heterogeneity which appears
in the diversity of the analyzed texts related to different products and different topics written by using
dissimilar words and phrases. On the other hand, using synonyms and various stylistic techniques to
describe the same products or services leads to the same effect. These differential peculiarities in the
source web-pages either lexical or semantic may influence advertising texts by itself.

Hereafter, we will call sets of banner-page pairs having similar topics as subdomains. Thus subdo-
mains should have similarity in their page or banner texts, while data heterogeneity in the datasets may
be expressed as the presence of several subdomains with different marginal distributions of text fea-
tures. In this case, X may consist of several subdomains, e.g. X = {X1, X2, ..., Xm|Xi 6= Xj} and
P (Xi) 6= P (Xj), where Xi - samples from the dataset belonging to i-th subdomain, P (Xi) - marginal
distribution of i-th subdomain. In other words, different texts that discuss different topics may also affect

1https://github.com/puppeteer/puppeteer
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how generated banners advertise their products and what style they use. Furthermore, the presence of
such subdomains in data may add contributions to data sparsity by reducing co-occurences of words and
phrases.

The differences in distributions of the features require a generator model to implicitly identify a sub-
domain and make appropriate adjustments to the generated advertising. Additional information (in the
form of features or objectives) may help to do it more efficiently and thus improve quality of generation.

The situation may get worse from the imbalance of subdomains’ sizes. It may lead to a higher degree
of data sparsity and may negatively affect the performance comparing to the case with equal size of
subdomains.

To provide such information, we propose an approach that takes into account peculiarities of different
subdomains in the initial data. The approach consists of 3 main steps: (1) topic modelling to characterize
each data sample by the topic mixture representing semantics (will be discussed in topic modelling
subsection); (2) extraction of semantically-related groups of samples that may be viewed as subdomains
and building of a simple classification routine for new samples; (3) training an ensemble of seq2seq
models to handle online advertising with improved quality.

3.2.1 Topic modelling.
In the first step, we use all available data to build a topic model using unsupervised training. As it was
mentioned above, we do not have labels to classify the dataset into subdomains, but we can use topic
modelling to build semantically meaningful vectors in some k-dimensional space consisted of latent
variables. Value of each variable represents the relevance of a text to a topic corresponding. These
vectors are mixture of topics.

For topic modelling we use additive regularization approach (Vorontsov et al., 2015) (or ARTM) as one
of the most advanced tools at the current moment. It is based on PLSA-oriented (Hofmann, 1999) matrix
factorization and produces two matrices that approximate latent distribution over topics for documents
p(t|d) (matrix φwt) and distribution over words for topics p(w|t) (matrix θtd):

p(w|d) =
∑
t∈T

p(w|t)p(t|d) =
∑
t∈T

φwtθtd, d ∈ Dt,w ∈W (2)

where Dt is a collection of documents, W is a finite set of vocabulary words and T is a set of topics.
The main idea of additive regularization is based on the maximization of the log-likelihood with the

addition of weighted sum of regularizers to produce a unique solution for matrix factorization task. These
regularizers allow achieving fine-grained control over the process of topic model creation (for instance,
types of distributions for individual topics) which eventually leads to improved quality in comparison to
other methods.

Such an approach allows bypassing costly manual labeling though it requires choosing a suitable
set of parameters to obtain meaningful topics and topic mixtures for texts. Because there is still no
reliable metric well-correlated with human assessment of quality (Khodorchenko and Butakov, 2018),
topic modelling requires human intervention, albeit significantly reduced.

3.2.2 Subdomains identification
Acquired text embeddings (in the form of topics mixture for individual text) can be used further for
the identification of subdomains in the dataset. To extract semantically related groups, we perform the
following steps: (1) leave only top components containing most of the probability mass in a topic mixture
while zeroing the rest components for each text; (2) perform k-Means clustering to assign a specific label
to a subset of data in the dataset thus forming subdomains (which are clusters in terms of K-means
clustering).

Step (1) allows discarding low probability tails which don’t carry useful information about texts and
act like noise letting clustering model to have better perplexity on a multitude of very small subdomains.
Human assessment on these subdomains shows that some can be joined thus resulting in fewer number
of bigger subdomains. Discarding tails give us a chance to obtain bigger subdomains (documents in them
still semantically relevant) which is better for fine-tuning in the ensemble described later in this section.
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Mixture components to be left are determined by a threshold (a component should be higher than the
threshold) identified empirically.

The classification of new incoming text happens by simply finding the closest subdomain by measuring
cosine similarity between centroids and the topics mixture of the text (using only top components).

3.2.3 Seq2seq ensemble for online advertising generation
Having extracted subdomain groups, we can now build an ensemble of subdomain fine-tuned models to
improve the quality of generation.

Our ensemble approach assumes the following steps: (1) all data in train split are used to train a base
seq2seq model; (2) for each extracted subdomain we create a separate model by fine-tuning the base
seq2seq model for few epochs using only data from this subdomain group; (3) for each subdomain we
assess quality of the fine-tuned and the base models on validation data, if a fine-tuned model has better
metrics it is included into the ensemble otherwise we leave the base model for the subdomain; (4) we
combine steps of topic mixture evaluating, classification into subdomain and the ensemble of fine-tuned
and base models into a single inference pipeline for advertising text generation.

Step (1) can be implemented with any seq2seq model. In Section 4 we compare several state-of-the-
art models and choose the best one to be used in the ensemble. Initially using all the data for training
helps to achieve better performance than training on subdomains from the very beginning. On step (2)
we perform fine-tuning using now only a subset of data respective for a subdomain. Thus, trying to
better adapt the model to this particular subdomain and improve the quality of generation using this
”specialized” model. On step (3) we verify the quality of the resulting fine-tuned models and may decide
which one (fine-tuned or base model) to use for the subdomain. It allows us to ensure that the resulting
quality is better or at least equal to the base model.

The scheme of the overall approach is presented in Fig 1. It depicts training and inference pipelines.
The first 3 steps are implemented in the training pipeline while the 4-th represents the whole inference
pipeline.

Figure 1: The scheme of the proposed ensemble approach: training pipeline (top) and inference pipeline
(bottom) for online advertising generation.

It should be noted that while multiple fine-tuned models require additional time for their learning
(though, performing a few more epoch with reduced dataset is not a full-scale learning), it still uses only
one model instance for generation and has no other significant overheads.
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4 Experimental study

In this section, we present the results of our experimental investigation for the proposed ensemble ap-
proach. We start by describing the results of topic modeling and subdomains extraction than proceeding
to the comparison of the performance of the proposed ensemble method with existing alternatives. We
end with discussing of the ensemble method performance for individual subdomains and its impact on
overall performance. For our experiments including topic modeling, we used a random sample of data
(roughly half of it) to significant reduce training time. The final size of the dataset used for training and
testing was 181798 pairs.

4.1 Topic modeling and subdomains
There were multiple variants of topic models with different parameters, most notably with different
variants of dictionary and count of main and background topics. Though the texts are initially in Russian,
some words from other languages, mainly English, also appear from time to time. Thus, we experimented
with the full dictionary variant and only Russian variant when all non-Russian words were removed. The
regularization was done in accordance with strategies provided in (Nikolenko et al., 2017). As a result,
we prepared the following models for human assessment: 1 – model with 200 topics (180 main and 20
background) with Russian vocabulary; 2 – model with 200 topics (180 main and 20 background) with
full vocabulary; 3 – model with 300 topics (280 main and 20 background) with Russian vocabulary; 4 –
model with 400 topics (360 main and 40 background) with full vocabulary; 5 – model with 400 topics
(350 main and 50 background) with Russian vocabulary.

In order to select the best topic model, we randomly sampled 100 texts and inferred topics with a
probability higher than 0.1 threshold, where each topic is a list of 20 most probable words. Each of the 8
assessors were given several examples where each text was supplied with topics from one of the models
(the names of the models were hidden). The quality categories are the following: Good – all topics are
related to the text, the main subject is clearly identified along with accompanying topics; Interpretable
– some topics do not describe the content or there is no subject topic; Non-interpretable – there are
no topics above the 0.1 threshold; Bad – all the found topics have no relation to the document. The
threshold’s value was identified empirically by the assessors based on matching between mixtures and
semantic of the texts. This value was used for subdomain identification step.

Figure 2: Scoring of different variants of topic models by human judgment. The numbers correspond to
models described in the section. Percentage is a part of topics belonging to a category.

The results of comparison in Figure 2 clearly indicate that model 5 performed the best. Using this
model we identified several semantically related subdomains in data that we used in further experi-
ments. We give them semantically-related abbreviations and report their sizes in round squares: Goods
(38059); Medicine (15362); Realty (15703); Business (21184); Work (11044); Travelling (8532); Ser-
vices (11494); Sales (4435); Hi-tech (4891); Different (72538).

4.2 Comparative study of generators
To show the improvement that gives our model, we compare modern seq2seq methods (Pointer-network
generator, Transformer and BERT-based abstract summarization model) on the task of online advertising
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generation with our approach. Almost 80% of the dataset was used for training and the rest for testing.
The subdomains mentioned above were extracted for train and test. The resulting sentences were ob-
tained with a greedy decoding approach that is widely used in the field of natural language generation
(Gatt and Krahmer, 2018) and finds the most probable token at each step.

To estimate the quality of the generated banners we use classical metrics in the field of abstractive
summarization: rouge-1, rouge-2, and rouge-L (hereafter, R-1, R-2, R-L, correspondingly) (Lin, 2004).
There are also repeated methods designated with ’macro’. In this case, we applied a different strategy
that is named macro-averaging to calculate quality metrics: we calculate the average of individual subdo-
mains’ averages. Macro-averaging is often used for multi-class classification. This macro metric allows
us to compare the performance of methods taking care of subdomains independently of their sizes. We
do that only for Transformer-based and BERT-based methods as their performance is the best among
alternatives. We chose the following parameters for Transformer: 6 encoder layers, 6 decoder layers,
embedding size 512. This setting was similar to (Vaswani et al., 2017) and demonstrated good results in
a number of applications. Our dataset contains almost 300 000 unique words most of which with only a
few occurrences leading to issues with data sparsity and slowing down calculations. Thus, words from
pages and banners were converted to tokens using byte-pair-encoding (Gavrilov et al., 2019). Tokens are
frequently occurring words or parts of words such as roots, prefixes, suffixes and even letters in some
cases. Such preprocessing allows reducing the size of the dictionary to 70 000 tokens for pages and
banners. It solves mentioned above issues and allows us to save words almost entirely including their
prefixes and endings. Pointer-generator network was used with the following settings: 256-dimensional
hidden states and 128-dimensional word embeddings. We use one of the best models for abstractive
summarization proposed in (Liu and Lapata, 2019): pre-trained Bert model as an encoder and 6 layers
of seq2seq decoder (standard transformer decoder) with randomly initialized weights. The authors of
this work demonstrate the ability of the Bert-based model to achieve high values of Rouge metrics and
to generate more novel n-gram (hereafter we will refer to this model as the BERT model). Because of
BERT, this model has many more parameters in comparison with other Transformer-based models we
try.

To train the models, we used the following parameters: batch size was 96 for all models, for Pointer-
generator, Transformer, Transformer-balanced 30 epochs was used for training; for topic-driven ensem-
ble 20 epochs were used to train the base model and 10 epochs were used for fine-tuning. For training we
used 2 Nvidia Tesla V100 32gb. For Transformers, the epochs number was fixed at 30, because the error
function reached a plateau and practically stopped decreasing. For Pointer-generator we chose 30 epochs
as this number is similar to one found in the original paper (See et al., 2017). For the BERT model, we
trained it for 30 epoch. At this point, the score was not getting any better with subsequent iterations. We
then trained BERT-based subdomains models for up to 5 epoch more.

For all resulting tables, we use the best found metrics values of all iterations. We conducted a series
of experiments using methods mentioned above including the approach we propose (named as topic-
driven ensemble) and a separate transformer instance with balanced by subdomains sizes training dataset.
For the topic-driven ensemble, we state the metrics number which includes the whole pipeline. To
train balanced instance of Transformer 10000 banner-page pairs were sampled from each subdomain.
If a subdomain contained less than 10000 we took all available observations. The resulting training
dataset consisted of 90945. The test set was the same as for other methods. According to results of
our experiments (Table 1), Transformer showed itself as a better model to be served as a base model for
our approach. Thus topic-driven ensemble method is also Transformer-based.We also included a simple
heuristic based on selecting a title from the page as the text for banners. The comparative study results
are in Table 1. The results with more details for individual subdomains are provided in subsection 4.3.
It can be seen from Table 1, that Transformer method performs better than other base alternatives and
topic-driven ensemble shows the best performance among all methods outperforming even transformer
for 2 – 2.3%. And if we compare these methods using macro-averaging taking into account the found
subdomains, we may see that the performance gains are even higher up to 5%. The variant with the
balanced training dataset (Transformer-balaned) showed itself worse than both topic-driven ensemble
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and transformer. Despite the balancing, the model has fewer examples to train on that significantly
influences its performance. The BERT-based model which has many more layers shows better results
than based on a plain transformer. Still, even for the BERT-based model application of the topic-driven
ensemble allows gaining an additional increase in quality metrics for 1 - 2% for both macro and micro
averaging. For both types of models, there are significant improvements in individual subdomains.

Model ROUGE-1 ROUGE-2 ROUGE-L

Titles 9.30 2.13 6.55
Pointer-generator 17.93 4.70 14.09
Transformer 37.21 23.38 34.59
Transformer (macro) 37.11 23.26 34.43
Transformer-balanced 28.61 13.57 26.18
Transformer-balanced (macro) 28.27 13.30 25.89
topic-driven ensemble 37.97 23.94 35.33
topic-driven ensemble (macro) 39.00 24.66 36.27
BERT 41.58 26.95 40.70
BERT + topic-driven ensemble 42.21 27.50 41.27
BERT (macro) 41.42 27.07 40.54
BERT + topic-driven ensemble (macro) 41.98 27.59 41.08

Table 1: ROUGE scores for different generator models (bold values are the best for macro and micro
strategy of assessment)

4.3 Results for individual subdomains
In Table 2 we provide metrics for individual subdomains obtained by the ensemble of fine-tuned
Transformer-based generators and base Transformer model. As it is shown in Table 2, fine-tuning boosts
the results for different subdomains for 1%–7% on ROUGE-1, for 2%–10% on ROUGE-2 and for 2%–
7% on ROUGE-L. Table 3 presents the results of the same kind for the BERT model and its ensemble-
based modification. For individual domains the ensemble shows the boost for 1%–10% on ROUGE-L
and ROUGE-1 while for ROUGE-2 the boost is up to 15%.

.

Subdomain Topic-driven ensemble Transformer Size

R-1 R-2 R-L R-1 R-2 R-L
Medicine 34.87 21.40 32.31 33.60 20.37 31.18 2048
Different 32.77 19.81 30.45 35.76 22.50 33.22 9216
Services 38.92 24.40 36.27 36.10 22.40 33.57 1280
Hi-Tech 37.95 24.43 35.34 36.54 23.58 33.99 512
Travelling 38.17 24.76 36.01 37.63 24.28 35.25 1280
Goods 34.06 20.06 31.73 37.94 23.58 35.29 5120
Business 40.25 25.37 37.38 38.41 22.84 35.35 2560
Sales 40.44 24.24 36.85 38.72 22.85 35.35 256
Work 41.41 27.50 38.89 39.96 29.57 37.44 1280
Realty 44.26 28.39 41.18 42.18 27.06 39.29 2304

Table 2: ROUGE scores of base Transformer model and the proposed topic-driven ensemble (Size is a
size of a subdomain in the test split). The better values for each subdomain are in bold.

For some subdomains, mainly the ones which have less samples (and thus weaker representation) in
the dataset, there is a significant rise of metrics, while for big subdomains the situation is different. Con-
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Subdomain BERT + topic-driven ensemble BERT Size

R-1 R-2 R-L R-1 R-2 R-L
Medicine 39.4 25.8 38.4 40.3 26.0 39.5 2048
Different 45.4 30.4 44.5 44.9 29.5 43.9 9216
Services 39.9 25.3 38.9 40.4 25.7 39.4 1280
Hi-Tech 51.3 37.3 50.3 50.3 36.2 49.5 512
Travelling 39.0 24.6 38.2 39.1 24.7 38.3 1280
Goods 49.2 35.6 48.7 48.5 34.7 48.0 5120
Business 36.5 20.2 35.4 33 18.1 32.5 2560
Sales 33.1 19.8 32.1 32.0 18.6 31.1 256
Work 46.8 31.7 45.2 42.4 27.3 40.6 1280
Realty 47.3 31.8 46.5 49.0 32.9 47.7 2304

Table 3: ROUGE scores of the BERT model and BERT + topic-driven ensemble (Size is a size of a
subdomain in the test split). The better values for each subdomain are in bold.

structing the ensemble from specialized fine-tuned models and the general (base) one allows achieving
better performance. We should also note that training the base model and then fine-tuning on specific
subsets represented by subdomains is a better option than either training with a balanced dataset or train-
ing separate models for each subdomain from the very beginning. In Table 4 we present examples of
original and generated banners

Original Banner Generated text

eco slim will help you with this losing weight without exhausting
have time to buy at a reduced price diets and stress read more

free blood and health analysis at the have time to check the state of the
international hematology clinic in body with a free blood test without
Moscow queues

Table 4: Examples of generated advertising (intentionally translated in English)

4.4 Experimental study on MS MARCO dataset
To verify the proposed approach, we have conducted an experimental study on a different dataset called
MS MARCO (Nguyen et al., 2016). This dataset is the biggest of its kind and was compiled for the task
of question answering over text (QAT for short). This task assumes a question and a text (which may
contain information useful for answering) as input into the model and an answer for the input question
as an output. While the task of the dataset is different, applied for solving seq2seq neural architectures
are not. Used by us in previous experiments BERT-based model may be applied without changes (except
for concatenating of question and text into a single input text). We applied our approach to the BERT
model trained on this dataset for QAT task and compare it with the base BERT model. For the base
BERT model, we used the following parameters: training for 4 epochs (There was not any improvement
in quality metrics on the test part of the dataset after 4 epochs. The dataset itself is huge.), Adam
optimizer with b1 = 0.9 and b2 = 0.999, the learning rate of the encoder 0.002 and warmup steps 20000,
the learning rate of decoder 0.2 and warmup steps 10000. We trained subdomains models for up to 20
epochs. To apply the approach we built a topic model and divided the dataset (in train and test parts) into
8 subdomains according to the model.

The results are presented in Table 5. In comparison with the base BERT model, the ensemble was
able to improve results up to 3.5% and for 1.5% for macro- and micro- averaging. MS MARCO has
much more data for training and thus all found subdomains have better representation in the dataset what
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reduces the effect from the proposed approach. Nevertheless, there is still an opportunity to obtain at
least minor improvements for large datasets and more of them on small and medium datasets with the
proposed approach.

Subdomain BERT + topic-driven ensemble BERT Size

R-1 R-2 R-L R-1 R-2 R-L
Health Diseases 62.82 51.61 63.96 60.78 51.56 61.94 1000
Biographies 57.89 43.72 58.39 56.78 44.01 57.23 1000
Cooking 42.79 24.29 45.12 42.22 24.39 44.36 1000
Chemical Staff 56.38 43.97 57.34 55.89 43.72 56.84 1000
Social Services 62.21 52.07 63.46 61.81 53.59 63.03 1000
Weather 52.39 40.99 54.66 52.41 40.86 54.65 1000
Cities Info 59.44 44.72 59.98 59.59 45.01 60.22 1000
Salary and jobs 44.68 34.21 45.49 45.03 34.46 45.83 1000

Table 5: ROUGE scores of the BERT model and BERT + topic-driven ensemble (Size is a size of a
subdomain in the test split). The better values for each subdomain are in bold.

5 Conclusion and Future Work

In this work, we presented an approach to generate banners for online advertising from texts of web
pages. A high degree of data heterogeneity that may be found in a dataset and represented by various
topic-based subdomains reduces the quality of generation. The proposed topic-driven ensemble approach
helps to solve this issue and shows an increase in efficiency for up to 2% – 5% on average for all
subdomains and up to 10% – 15% for individual subdomains. Probably, the approach may be further
improved by introducing a topic mixture directly into the generator model. In this case, it would play a
role of extended context and thus provide additional features the generator can rely on. Such an extension
may improve quality even further due to eliminating of intermediate subdomains classifier and prevent
errors that can happen on this level. Also, there is a potential to integrate knowledge about user profiles
into the generator to obtain varying banners according to user behavior to better reach the target audience.
Further efforts should be directed to the investigation of how different topic models and other schemes
of a dataset dividing into separate domains influence the overall quality of generators.
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