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Abstract

Temporal sentence localization in videos aims to ground the best matched segment in an
untrimmed video according to a given sentence query. Previous works in this field mainly rely on
single-step attentional frameworks to align the temporal boundaries by a soft selection. Although
they focus on the visual content relevant to the query, these attention strategies are insufficient
to model complex video contents and restrict the higher-level reasoning demand for temporal
relation. In this paper, we propose a novel deep rectification-modulation network (RMN), trans-
forming this task into a multi-step reasoning process by repeating rectification and modulation. In
each rectification-modulation layer, unlike existing methods directly conducting the cross-modal
interaction, we first devise a rectification module to correct implicit attention misalignment which
focuses on wrong position during the interaction process. Then, a modulation module is devel-
oped to model the frame-to-frame relation with the help of specific sentence information for bet-
ter correlating and composing the video contents over time. With multiple such layers cascaded
in depth, our RMN progressively refines video and query interactions, thus enabling a further
precise localization. Experimental evaluations on three public datasets show that the proposed
method achieves state-of-the-art performance.

1 Introduction

Localizing activities in videos (Regneri et al., 2013; Yuan et al., 2016; Gavrilyuk et al., 2018; Feng et al.,
2018; Feng et al., 2019) is an important topic in information retrieval systems. As most videos contain
activities of interest with complicated background contents, these videos cannot be directly indicated
by a pre-defined list of action classes. Recently, a new task called temporal sentence localization in
videos (Gao et al., 2017; Anne Hendricks et al., 2017) is proposed to tackle this problem, attracting
great interests from both vision and language communities (Liu et al., 2020; Qu et al., 2020). Given an
untrimmed video, this task aims to infer the start and end timestamps of a target video segment which
contains the interested activity according to a given sentence query.

Traditional methods (Gao et al., 2017; Liu et al., 2018; Ge et al., 2019; Chen and Jiang, 2019;
Anne Hendricks et al., 2017) are based on sliding windows, which first sample candidate video segments
and then compare the sentence with each video segment separately to calculate the matching relation-
ships. These methods cannot achieve precise alignment between video and sentence, thus leading to
inaccurate temporal boundaries. Recently, some works (Chen et al., 2018; Chen et al., 2019; Zhang et
al., 2019b; Zhang et al., 2019a) try to avoid this problem by designing end-to-end models. They first
integrate the features of the whole video with sentence information and then utilize LSTM or CNN layer
to compose such integrated video features for further segment localization. Although these methods
achieve promising results, there are still some problems need to be concerned.

First, previous works formally adopt single-step attention for multi-modal feature interaction, which
limits the modeling power for two reasons: 1) It can not mine sufficient relationship between modalities;
2) Once the cross-modal relation focuses on the wrong position without further calibration, it can heavily
jeopardize the localization performance. For example, as shown in Figure 1 (left), the video expresses
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Figure 1: Illustration of rectification and modulation modules for precisely localization. Left: The recti-
fication module helps correct the attention to focus on the best matched position. Right: The modulation
module correlates the video contents with different weights referring to different sentence semantics.

the activity “the girl in the blue dress hops for a second time”. All frames contain the similar visual
appearance with “girl” and “blue dress”, and single-step reasoning may guide the model focus on the
action word “hops”. It is hard to lead the model directly pay more attention on the adjective “second”.
Therefore, a multi-steps reasoning framework needs to be developed for not only rectifying the attention
errors from the previous reasoning step, but also helping model gradually focus on the most matched
words or frames. Second, previous works mainly focus on aligning the sentence information with video
clips. Although it is crucial to capture such cross-modal relation between two modalities for highlighting
the matched words or frames, the self-relation among video frames is also important for correlating and
composing the sentence related video contents over time. To effectively model temporal activities, such
self-relations need modulation by the information from other modality, namely the relations between
visual frames should be weighted differently according to different sentence queries. As shown in Fig-
ure 1 (right), the video contains multiple segment-sentence annotation pairs, the third frame should be
correlated with the second one when querying sentence S2 but this correlation should not be established
when given the sentence S1. Therefore, how to modulate the temporal relation among video frames
conditioned on the matched words from the whole sentence is vital for this task.

In this paper, we propose a novel rectification-modulation network (RMN), which modulates condi-
tioned temporal relation with multiple reasoning steps for temporal sentence localization in videos. In the
rectification module, to avoid the error accumulation of the wrong relation from previous reasoning step,
we adopt the initial modal feature as a global information flow to correct the attention errors. In the mod-
ulation module, we modulate the temporal relation among frames according to the sentence semantics for
better correlating sentence-related video contents over time. With multiple such rectification-modulation
layers cascaded in depth, our model can reasoning higher-order multi-modal interaction step-by-step,
providing more accurate video segment boundaries.

In summary, this paper makes following contributions:
• We propose a novel rectification-modulation network (RMN), which adopts a multi-step reasoning

framework to gradually capturing higher-order multi-modal interaction.
• The rectification module utilizes initial multi-modal features as the global information to help our

model rectify the attention which focuses on the wrong position from the previous reasoning step.
• The modulation module considers the self-modal relation between video frames conditioned on

the sentence semantics. In this way, each frame can be associated with most matched words for
correlating the interested video contents.
• We conduct experiments on three public datasets, and verify the effectiveness of our proposed RMN

with the superiority over the state-of-the-art methods.

2 Related Work

Temporal sentence localization in videos is a new task introduced recently (Gao et al., 2017; Anne Hen-
dricks et al., 2017), which aims to localize the most relevant video segment from a video with text
descriptions. Traditional methods (Liu et al., 2018; Gao et al., 2017) adopt a two-stage multi-modal
matching strategy which firstly sample candidate segments from a video, and subsequently integrate
query with segment representations via a matrix operation. However, these methods lack a compre-
hensively structure for effective multi-modal features interaction. Based on such multi-modal matching
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Figure 2: An overview of our proposed rectification-modulation network (RMN). We first embed
both visual and language representations by the multi-modal encoders. Then, multi-step rectification-
modulation layers are developed to correlate and compose the video contents referring to the sentence-
related information. At last, we integrate the multi-modal features for moment localization.

framework, some works (Xu et al., 2019; Chen and Jiang, 2019; Ge et al., 2019) integrate the sentence
representation with those video segments individually, and then evaluated their matching relationships
through the integrated features. For instance, Xu (Xu et al., 2019) introduce a multi-level model to inte-
grate visual and textual features and further re-generate queries as an auxiliary task. Ge (Ge et al., 2019)
and Chen (Chen et al., 2018) capture the evolving fine-grained frame-by-word interactions between video
and query to enhance the video representation understanding.

Recently, other works (Chen et al., 2018; Wang et al., 2020; Zhang et al., 2019b; Zhang et al., 2019a;
Yuan et al., 2019a; Mithun et al., 2019) propose to directly integrate sentence information with each fine-
grained video clip unit, and predict the temporal boundary of the target segment by gradually merging
the fusion feature sequence over time. Wang (Wang et al., 2020) aggregate contextual information by
explicitly modeling the relationship between the current element and its neighbors. Zhang (Zhang et
al., 2019a) model relations among candidate segments with the guidance of the query information. To
modulate temporal convolution operations, Yuan (Yuan et al., 2019a) and Mithun (Mithun et al., 2019)
introduce the sentence information as a critical prior to compose and correlate video contents.

Although existing methods perform well in this task, all of them adopt a single-step model and only
consider aligning the sentence information with video clips, ignoring to associate the video frames con-
ditioned on the sentence features for more precisely moment localization. In this paper, we develop a
modulation module to modulate the conditioned temporal relation for contents correlating and compos-
ing. Moreover, we repeat the rectification-modulation layer multiple times for deeper reasoning.

3 The Proposed RMN Model

Given an untrimmed video V and a sentence query Q, the task aims to determine the start and end
timestamps (s, e) of a specific video segment, which corresponds to the activity of the given sentence
query. Formally, we represent the video as V = {vt}Tt=1 frame-by-frame, and denote the given sentence
query as Q = {qn}Nn=1 word-by-word. With the training set {V ,Q, (s, e)}, in this paper, we propose
a deep rectification-modulation network (RMN) to learn to predict the most relevant video segment
boundary (ŝ, ê). As shown in Figure 2, our method contains four parts: multi-modal encoding, multi-
step rectification-modulation layers, multi-modal integration, and moment localization.

3.1 Video and Query Encoding
For video encoding, we first extract the frame-wise features by a pre-trained C3D network (Tran et al.,
2015), and then employ a self-attention (Vaswani et al., 2017) module to learn the semantic dependen-
cies in the long video context. Considering the sequential characteristic in video, a bi-directional GRU
(Chung et al., 2014) is further utilized to incorporate the contextual information. For query information
encoding, we first extract the word embeddings by Glove (Pennington et al., 2014), and then feed them
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into another bi-directional GRU to integrate the sequential information. We denote the embedddings of
video and query as V = {vt}Tt=1 ∈ RT×d and Q = {qn}Nn=1 ∈ RN×d, respectively.

3.2 Multi-Step Rectification-Modulation Layers
In the task of temporal sentence localization in videos, besides understanding the video clip contents,
how to capture their temporal correlations plays an even more important role. Luckily, the query sen-
tence presents rich semantic indications on such important correlations, providing crucial information to
temporally associate and compose the consecutive video contents over time. Based on the above con-
siderations, we propose a modulation module, which modulates the temporal frame-to-frame relation
conditioned on the sentence semantic information for better composing the video contents. To avoid
error interaction focused on the wrong position, we additionally develop a rectification module to correct
the attention error from previous reasoning step. We conduct rectification and modulation on both video
and query to enhance the information flows. With multiple such layers cascaded in depth, our model can
reasoning higher-order multi-modal interaction for more precise video segment localization.
Notations. At l-th rectification-modulation layer, we define the multi-modal representation inputs and
outputs as V̂ l−1, Q̂l−1 and V̂ l, Q̂l, respectively. We also denote the multi-modal hidden states from
previous reasoning layer as H l−1

V ,H l−1
Q , which are utilized as constraints for cross-modal interaction

and conditions for self-modal interaction. Specifically, we initialize V̂ 0, Q̂0 = V + PE(V ),Q+ PE(Q)
with positional encoding (Vaswani et al., 2017) which takes additional positional knowledge to enhance
the semantic information, and we set the initial hidden states as H0

V ,H
0
Q = V̂ 0, Q̂0, respectively.

Rectification Module. Given the multi-modal representations and hidden states from the previous layer,
we first aim to rectify the attention error if the learned relation from previous reasoning step is focused
on the wrong position. Specifically, we utilize the initial modal features V ,Q as global information to
regularize and re-correct the the multi-modal flow V̂ l−1, Q̂l−1 by an update gate:

Z l
V = σ(WZV̂

l−1 + WvV ), Z l
Q = σ(WzQ̂

l−1 + WqQ), (1)

Ṽ l−1 = (1−Z l
V )� V + Z l

V � V̂ l−1, Q̃l−1 = (1−Z l
Q)�Q + Z l

Q � Q̂l−1, (2)

where σ is sigmoid function, WZ ,Wz,Wv,Wq are the parameters of linear layers. � denotes the
element-wise multiplication. With such rectified representations of two modalities, we further utilize
cross information flow from other modality to enhance the current modal representation for each modal-
ity. Instead of directly computing the cross-relation between representations (Ṽ l−1, Q̃l−1), we consider
more detailed latent clues from the hidden states (H l−1

Q ,H l−1
V ) from previous reasoning step which can

provide more discriminative information for each modality. Following the co-attention mechanism (Lu
et al., 2016), we calculate the correlation matrix of cross-modal instances as follows:

M l
V = (WV Ṽ

l−1)(WHH l−1
Q )T , M l

Q = (WQQ̃
l−1)(WhH

l−1
V )T , (3)

where WV ,WQ,WH ,Wh are the learnable parameters. Each row of M l
V denotes the similarity of all

word features to a specific frame feature, and each row of M l
Q represents the similarity of all frame

features to a specific word feature. The value of each similarity will be high if the word-frame pair is
relevant or it will be low. To aggregate cross-modal information I l

V , I
l
Q for Ṽ l−1, Q̃l−1, we utilize a

weighted summation strategy based on the correlation matrix M l
V ,M

l
Q as follows:

I l
V = Softmax(M l

V )(WHH l−1
Q ), I l

Q = Softmax(M l
Q)(WhH

l−1
V ). (4)

Therefore, we can get the enhanced rectified video features Sl
V and enhanced rectified sentence features

Sl
Q by a simple addition function like (Fukui et al., 2016) on two information flows by:

Sl
V = tanh(I l

V + WV Ṽ
l−1), Sl

Q = tanh(I l
Q + WQQ̃

l−1). (5)

Modulation Module. After obtaining the enhanced rectified video and sentence features, it is also
important to capture their temporal correlations among each modality. Like the cross-modal attention
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mechanism, we can directly calculate the frame-to-frame or word-to-word relations and compute the
normalized weights A for each instance in each modality by:

Al
V = Softmax((WSS

l
V )(WSS

l
V )T ), Al

Q = Softmax((WsS
l
Q)(WsS

l
Q)T ), (6)

where WS ,Ws are the parameters of linear layers. Although such naive self-attention matrix A es-
timates the frame-to-frame and word-to-word importance, the relations which can only be identified
conditioned on information from the other modality can not be captured. For example, if the video con-
tains multiple moment-sentence annotation pairs, the relations between different visual frames should be
weighted differently according to different given sentence query. As the given sentence query presents
rich semantic indications on such important correlations for better correlating and composing the con-
secutive video contents over time, we tend to modulate the temporal frame-to-frame relations referring
to the sentence semantics for improving the self-relation matrix A in Eq. (6) by:

C l
V = σ(MeanPool(H l−1

Q ))⊗ eT , C l
Q = σ(MeanPool(H l−1

V ))⊗ eN , (7)

Ŝl
V = σ(W1(W2S

l
V �W3C

l
V ))� Sl

V , Ŝl
Q = σ(W4(W5S

l
Q �W6C

l
Q))� Sl

Q, (8)

Al
V = Softmax((WSŜ

l
V )(WSŜ

l
V )T ), Al

Q = Softmax((WsŜ
l
Q)(WsŜ

l
Q)T ), (9)

where (· ⊗ eT ) is the outer product to produce a matrix by repeating the vector on the left for T times,
W{1,2,3,4,5,6} are the parameters of linear layers. By expanding the sentence/video features after mean
pooling, the conditional information C from other modalities can be acquired. Channels of feature S
would be further activated or deactivated by such channel-wise gates condition C, which shares the sim-
ilar spirit with Squeeze and Excitation Network (Hu et al., 2018) and the Gated Convolution (Gehring et
al., 2017). Therefore each temporal feature map can absorb the sentence semantic information, and fur-
ther activate the self-correlation matrix for better associating and composing the sentence-related video
contents. Words can also enhance its contextual meaning in the same way. We apply matrix multiplica-
tion on self-relation weights and multi-modal features to generate self-interacted information by:

H l
V = Al

V (WSS
l
V ), H l

Q = Al
Q(WsS

l
Q), (10)

where we denote such self-interacted information as the hidden states H l
V ,H

l
Q for the input of next

reasoning layer. We concatenate the self-interacted information with the enhanced rectified features as
the final output of current rectification-modulation layer:

V̂ l = Concat([Sl
V ,H

l
V ]), Q̂l = Concat([Sl

Q,H
l
Q]). (11)

3.3 Multi-modal Integration
After multiple rectification-modulation layers, we utilize two linear layers on the two-modal outputs and
then get the final video/sentence representations V̂ and Q̂. We additionally utilize a cosine similarity
function (Mithun et al., 2019) to transfer the dimension of Q̂ as the same as V̂ . To further emphasize
crucial contents and weaken inessential parts among each modality, we design a gate function as follow:

gV = σ(WGV̂ + bG), gQ = σ(WgQ̂ + bg), (12)

where WG,Wg and bG, bg are learnable parameters. We then integrate the multi-modal features by:

f = Concat([gV � V̂ , gQ � Q̂]), f = {f1,f2, ...,fT }. (13)

3.4 Moment Localization
With the integrated representation f , we further apply a bi-directional GRU network to absorb more
contextual evidences in temporal domain. To predict the target video segment, we first pre-define a set
of candidate moments Φt = {(ŝt,i, êt,i)}NΦ

i=1 with multi-scale windows (Yuan et al., 2019a) at each time
t, where NΦ is the number of moments at current time-step. Then, we adopt a Conv1d layer to score
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these candidate moments and predict corresponding offsets δ̂t = {(δ̂st,i, δ̂et,i)}
NΦ
i=1 of them relative to the

ground-truth. The confidence scores cst = {cst,i}NΦ
i=1 for these moments can be formulated as follows:

cst,i = σ(Conv1d(ft)) ∈ (0, 1), (14)

where σ(·) is the sigmoid function to normalize the confidence scores. Also, the temporal offsets of each
candidate moment i at time t can be predicted by another Conv1d layer:

(δ̂st,i, δ̂
e
t,i) = Conv1d(ft). (15)

Therefore, the final predicted moment i of time t can be presented as (ŝt,i + δ̂st,i, êt,i + δ̂et,i).
Training. To learn the confidence scoring rule for candidate moments, we compute the IoU (Intersection
over Union) score IoUt,i between each candidate moment (ŝt,i, êt,i) with the ground truth (st, et). We
adopt the alignment loss function to train the scoring rule as follows:

Lalign = − 1

TNΦ

T∑
t=1

NΦ∑
i=1

IoUt,ilog(cst,i) + (1− IoUt,i)log(1− cst,i). (16)

Since parts of the pre-defined candidates are coarse in boundaries, to learning to offsets prediction,
we only need to fine-tune the localization offsets of positive moment samples. We treat the candidate
moment as a positive sample if its IoUt,i is larger than an IoU threshold τ . The moment boundary loss
for offsets prediction can be formulated as:

Lb =
1

Npos

Npos∑
j

R1(δ̂sj − δsj ) +R1(δ̂ej − δej ), (17)

where Npos denotes the number of positive moments, andR1 is the smooth L1 loss. Both two losses are
jointly considered for training with the balanced hyper-parameter α as:

L = Lalign + αLb. (18)

Inference. We first rank all candidate moments according to their predicted confidence scores, and then
adopt a non-maximum suppression (NMS) to select “Top n” moments as the prediction.

4 Experiments

4.1 Datasets and Evaluation
Activity Caption (Krishna et al., 2017): It contains 20k untrimmed videos with 100k descriptions from
more complicated human activities in daily life. Since the test split is withheld for competition, following
public split, we 37,417, 17,505, and 17,031 query-segment pairs for training, validaiton and testing.
Charades-STA (Sigurdsson et al., 2016): It focuses on indoor activities where the videos are 30 seconds
on average. There are 12408 and 3720 moment-query pairs in the training and testing sets respectively.
TACoS (Regneri et al., 2013): This dataset is collected from cooking scenarios which contains 127
videos. We use the same split as (Gao et al., 2017), which includes 10146, 4589, 4083 query-segment
pairs for training, validation and testing.
Evaluation Metrics. Following previous works (Gao et al., 2017; Yuan et al., 2019a), we adopt “R@n,
IoU=m” as our evaluation metrics. The “R@n, IoU=m” is defined as the percentage of at least one of
top-n selected moments having IoU larger than m.

4.2 Implementation Details
We utilize the 112 × 112 pixels shape of every frame of videos as input, and apply C3D (Tran et al.,
2015) for ActivityNet Caption and TACoS, I3D (Carreira and Zisserman, 2017) for Charades-STA to
encode the videos. We set the length of video feature sequences to 200 for Activity Caption and TACoS,
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Method
Activity Caption Charades-STA

R@1, R@1, R@1, R@5, R@5, R@5, R@1, R@1, R@5, R@5,
IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

MCN 39.35 21.36 6.43 68.12 53.23 29.70 17.46 8.01 48.22 26.73
TGN 45.51 28.47 - 57.32 43.33 - - - - -

CTRL 47.43 29.01 10.34 75.32 59.17 37.54 23.63 8.89 58.92 29.57
ACRN 49.70 31.67 11.25 76.50 60.34 38.57 20.26 7.64 71.99 27.79
QSPN 52.13 33.26 13.43 77.72 62.39 40.78 35.60 15.80 79.40 45.40
CBP 54.30 35.76 17.80 77.63 65.89 46.20 36.80 18.87 70.94 50.19

SCDM 54.80 36.75 19.86 77.29 64.99 41.53 54.44 33.43 74.43 58.08
ABLR 55.67 36.79 - - - - - - - -
GDP 56.17 39.27 - - - - 39.47 18.49 - -

CMIN 63.61 43.40 23.88 80.54 67.95 50.73 - - - -
Ours 67.01 47.41 27.21 87.03 75.64 56.76 59.13 36.98 87.51 61.02

Table 1: Performance comparisons on the Activity Caption and Charades-STA dataset.

Method R@1,IoU=0.1 R@1,IoU=0.3 R@1,IoU=0.5 R@5,IoU=0.1 R@5,IoU=0.3 R@5,IoU=0.5
MCN 3.11 1.64 1.25 3.11 2.03 1.25
CTRL 24.32 18.32 13.30 48.73 36.69 25.42
ABLR 34.70 19.50 9.40 - - -
ACRN 24.22 19.52 14.62 47.42 34.97 24.88
QSPN 25.31 20.15 15.23 53.21 36.72 25.30
TGN 41.87 21.77 18.90 53.40 39.06 31.02
GDP 39.68 24.14 13.50 - - -

CMIN 32.48 24.64 18.05 62.13 38.46 27.02
SCDM - 26.11 21.17 - 40.16 32.18
CBP - 27.31 24.79 - 43.64 37.40
Ours 42.17 32.21 25.61 68.75 54.20 40.58

Table 2: Performance comparisons on the TACoS dataset.

64 for Charades-STA. As for sentence encoding, we utilize Glove word2vec (Pennington et al., 2014)
to embed each word to 300 dimension features. The hidden state dimension of BiGRU networks is set
to 512. During moment localization, we adopt convolution kernel size of [16, 32, 64, 96, 128, 160,
192] for Activity Caption, [8, 16, 32, 64] for TACoS, and [16, 24, 32, 40] for Charades-STA. We set
the stride of them as 0.5, 0.125, 0.125. We then set the high-score threshold τ to 0.45, and the balance
hyper-parameter α to 0.001 for Activity Caption, 0.005 for TACoS and Charades-STA. We adopt 5
rectification-modulation layers for all datasets. We train our model with an Adam optimizer with leaning
rate 8× 10−4, 3× 10−4, 4× 10−4 for Activity Caption, TACoS, and Charades-STA respectively.

4.3 Compared Methods
We compare our proposed model with the state-of-the-art baseline methods, which can be divided into
two classes: 1) Sliding window based methods: MCN (Anne Hendricks et al., 2017), CTRL (Gao et al.,
2017), and ACRN (Liu et al., 2018). 2) Cross-modal interaction based single-step methods: TGN (Chen
et al., 2018), QSPN (Xu et al., 2019), CBP (Wang et al., 2020), SCDM (Yuan et al., 2019a), ABLR
(Yuan et al., 2019b), GDP (Chen et al., 2020), and CMIN (Zhang et al., 2019b).

4.4 Performance Comparison
The performance comparisons of existing state-of-the-art methods on three datasets are shown in Table 1
and Table 2. We can observe that the our RMN achieves a new state-of-the-art performance under all
evaluation metrics and benchmarks, demonstrating the superiority of our proposed model. For localizing
complex human activities in Activity Caption and Charades-STA datasets, our model surpasses others
with clear margin on both R@1 and R@5 metrics. Specifically, our method brings 3.33% and 3.55%
absolute improvements in the strict metrics “R@1, IoU=0.7”, and brings 6.03% and 2.94% absolute
improvements in the strict metrics “R@5, IoU=0.7” on two datasets, respectively. For TACoS where the
cooking activities take place in the same kitchen scene with some slightly varied cooking objects, it is
hard to localize such fine-grained activities. However, our model still achieve the best performance on
both R@1 and R@5 metrics with a clear margin.

The main reasons for our proposed RMN outperforming the state-of-the-art methods lies in two folds.
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Components Setting R@1,IoU=0.1 R@1,IoU=0.3 R@1,IoU=0.5 R@5,IoU=0.1 R@5,IoU=0.3 R@5,IoU=0.5
Baseline 1 layer 38.95 28.73 22.39 65.60 52.19 36.78

Interaction
Layers

w/o R&M 34.31 25.19 18.92 60.85 47.83 32.27
w/o REC 36.34 27.42 20.43 64.01 50.68 35.47
w/o MOD 36.26 26.70 20.37 63.81 50.91 34.55

Number of
Interaction

Layers

3 layers 41.09 30.53 24.07 67.74 53.05 38.13
5 layers 42.17 32.21 25.61 68.75 54.20 40.58
7 layers 41.78 32.59 25.44 68.51 54.16 40.86

Table 3: Ablation study of the rectification-modulation interaction layer on TACoS dataset.

Components Setting R@1,IoU=0.1 R@1,IoU=0.3 R@1,IoU=0.5 R@5,IoU=0.1 R@5,IoU=0.3 R@5,IoU=0.5

Rectification
Module

w/ ADD 42.17 32.21 25.61 68.75 54.20 40.58
w/o ADD 39.13 29.47 23.62 66.98 52.25 37.87
w/ CONC 40.87 31.08 24.35 67.94 53.43 39.17
w/ MEM 40.48 30.30 24.12 67.51 51.87 39.11

Modulation
Module

w/ FMUL 42.17 32.21 25.61 68.75 54.20 40.58
w/o FMUL 40.01 30.19 22.68 66.47 52.33 38.16

w/ MUL 40.76 30.90 23.36 67.15 52.29 38.89
w/ FC 40.93 30.83 24.11 67.64 52.62 38.91

w/ CROG 41.44 32.03 24.80 68.24 53.41 39.56

Table 4: Ablation studies of the rectification module and modulation module on the TACoS dataset.

First, instead of only capturing the cross-modal relations (eg. SCDM, GDP), we additionally modulate
the temporal relations among frames referring to sentence-related semantic information. Such modu-
lation module helps model better correlate and compose the most relevant video contents according to
the sentence over time. Second, compared to single-step interaction methods (eg. CMIN, TGN), our
multi-step reasoning process can gradually focus on the most contributed frames and words for better
interaction. Also, rectification module is able to correct the attention error from previous reasoning step.

4.5 Ablation Study
How does rectification-modulation interaction layer help? The proposed rectification-modulation
interaction layer is the key to our method to reason more higher-level interaction between two modalities.
As shown in Table 3, we set the number of such interaction layer to 1 as our baseline model. Here, we
first investigate the ablation study on such interaction layer with three variants of models: w/o R&M
(without using both rectification and modulation), w/o REC (only without using rectification) and w/o
MOD (only without using modulation). We can find that w/o R&M achieves the worst performance as
it lacks of efficient interaction. Both w/o REC and w/o MOD achieve relatively higher results but still
lower than the result of the default setting, which indicates that both rectification and modulation are
crucial for this task. Moreover, we also investigate the influence of the number of stacked interaction
layers. As shown in Table 3, we find that more layers can improve the performance thanks to our
rectification module, and our model achieves the best result with 5 layers.
How does rectification module help? The rectification module integrates the previous reasoning output
with a global information flow from initial modal features. We conduct the ablation study on the usage
of such global flow with different settings: we denote w/ ADD as the addition operation illustrated in Eq.
(1); we remove the global flow as w/o ADD; we replace the addition operation with concatenation (w/
CONC); and we utilize all previous layer features (Nam et al., 2017) including the initial feature as the
global flow (w/ MEM). As shown in Table 4, the w/o ADD achieves the worst performance as it lacks
of attention rectification. The w/ ADD outperforms than the other two models, it denotes that the initial
modal features are more effective than all previous layers features for rectifying the attention error.
How does modulation module help? To evaluate the contribution of our conditional modulation mod-
ule, we conduct an ablation study on different condition methods. w/ FMUL: our proposed channel-wise
condition method in Eq. (8); w/o FMUL: we capture self-relation without conditional information in Eq.
(6); w/ MUL: we replace the FMUL with directly element-wise multiplication on C and S; w/ FC: we
replace the FMUL by using FC layer to fuse each temporal feature unit with each sentence representa-
tion; w/ CROG: In stead of using FMUL, we utilize a cross-gate (Feng et al., 2018) as condition. As
shown in Table 4, we can find that w/ FMUL performs the best.
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Figure 3: Visualization on the frame-to-word and frame-to-frame relations of different reasoning steps.
Sentence Query: A bull knocks a man down onto the ground.

Ground Truth | |61.61s 71.45s
CMIN | |66.79s 73.11s
Ours | |61.03s 71.98s

Sentence Query: The person puts down the bag.

Ground Truth | |4.40s 9.20s
CMIN | |2.27s 9.25s
Ours | |4.51s 9.18s

Sentence Query: The person puts down the bag.

Ground Truth | |4.40s 9.20s
CMIN | |2.27s 9.25s
Ours | |4.51s 9.18s

Sentence Query: The woman then adds ginger ale, and shakes the drink in a tumbler.

Ground Truth | |27.22s 52.92s
CMIN | |24.63s 51.54s
Ours | |26.99s 53.20s

Sentence Query: He washes the cucumber in the sink and puts it on the plate.

Ground Truth | |56.63s 58.54s
CMIN | |56.93s 57.75s
Ours | |56.44s 58.97s

Figure 4: Qualitative results sampled from Activity Caption (top), Charades-STA (down left) and TACoS
(down right) datasets, respectively.

4.6 Qualitative Results

To investigate how our rectification and modulation modules work step-by-step, we show one visual-
ization example on Activity Caption dataset in Figure 3. As shown in the left part, we first visualize
the frame-to-word relation learned from the rectification module in different reasoning steps. At the
first step, 2-5th frames have similar word-related attention which focus on the same words “tapes” and
“tape”. Although the 2th frame has the similar visual appearance like the 3-5th frames, the people tapes
the red tape, not the mentioned “white” tape. With the step goes on, the rectification module adjusts the
attention of previous step from “tape” to “white”, leading to distinguish the 2th frame from the 3-5th.
At step 5, the frame-to-word relations are more distinguishable and the attention on the target frames is
focused more on the word “white”. It demonstrates that our rectification helps model rectify the attention
weights for better grounding the segment boundaries. In the right part, we visualize the attention weights
on frame-to-frame relation utilizing softmax function. Similar to the frame-to-word relation, in the first
step, the 2th frame is taken as a noisy frame which disturbs the frame-wise correlating. Thanks to the
rectification module, with the reasoning step goes on, the weight of noisy frame is getting smaller and
our modulation module can better capture the temporal relation referring to the matched words. To qual-
itatively validate the effectiveness of our method, we also show some qualitative examples from three
datasets in Figure 4, where our model provides more precisely video segment boundaries.

5 Conclusion

In this paper, we propose a deep multi-step rectification-modulation network (RMN) for temporal sen-
tence localization in videos. Different from previous single-step methods, we utilize the initial multi-
modal features as global information flows to correct the attention errors from previous reasoning step
in the rectification module. In the modulation module, we modulate the temporal relation among video
frames referring to sentence semantics for better associating and composing sentence-related video con-
tents over time. With multiple such rectification-modulation layers cascaded in depth, our model can
reasoning the matched video segment according to the selected words from the given sentence query
step-by-step. Extensive experiments on three real-world datasets validate the effectiveness of our method.
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