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Abstract

In this paper, we explore a novel solution of constructing a heterogeneous graph for each in-
stance by leveraging aspect-focused and inter-aspect contextual dependencies for the specific
aspect. Based on it, we propose a novel graph-aware model with Interactive Graph Convolu-
tional Networks (InterGCN) for aspect sentiment analysis. Specifically, an ordinary dependency
graph is first constructed for each sentence over the dependency tree. Then we refine the graph by
considering the syntactical dependencies between contextual words and aspect-specific words to
derive the aspect-focused graph. Subsequently, the aspect-focused graph and the corresponding
embedding matrix are fed into the aspect-focused GCN to capture the key aspect and contextual
words. Besides, to interactively extract the dependencies between the aspect words and other
aspects, an inter-aspect GCN is adopted to model the representations learned by aspect-focused
GCN based on the inter-aspect graph. Hence, the model can be aware of the significant con-
textual and aspect words when interactively learning the sentiment features for a specific aspect.
Experimental results on four benchmark datasets illustrate that our proposed model outperforms
state-of-the-art methods and substantially boosts the performance in comparison with BERT.

1 Introduction

Aspect sentiment analysis is a fine-grained sentiment analysis task, which aims to identify the sentiment
polarity (e.g. positive, negative, or neutral) towards a given aspect (term) in a sentence. For example,
given the aspects: food and service, and a sentence of review: great food but the service is dreadful, the
sentiment polarity of aspect food is positive, while for the aspect service is negative. That is, in the task
of aspect sentiment analysis, we need to discriminate sentiment polarities according to different aspects.
The main challenge is that some aspects may contain no explicit sentiment expression.

To vividly illustrate the challenge, we give examples shown in Figure 1, where the key contextual
words and corresponding aspects are highlighted in the instances paired with their polarity labels. In
Figure 1(a), there is a multiple words aspect (i.e. “soup for the udon”). We could readily resolve that
the aspect word “soup” is the key aspect word of this aspect. Thus, syntactical dependencies between
this aspect word and the contextual words need to be attended for predicting aspect-specific sentiment.
In Figure 1(b), aspect “toppings” and “place” are mentioned simultaneously in the sentence. There is a
sufficiently clear positive sentiment word (“great”) for aspect “toppings”, while for aspect “place”, which
contains no sentiment expression, the sentiment polarity can also be identified thanks to the inter-aspect
relations between aspect “toppings” and “place”. Hence, both aspect-focused and inter-aspect contextual
relations should be considered for improving the performance of aspect sentiment analysis.

Recently, with the development of deep learning technique, many neural network-based methods
achieve promising performance in aspect sentiment analysis (Wang et al., 2016a; Tang et al., 2016a;
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The soup for the udon was soy sauce and water

positive negative(a) Example of aspect-focused relations

Great toppings definitely a place you need to check out

(b) Example of inter-aspect relations

Figure 1: Examples of the contextual relations of different aspect words within an aspect and the sentiment relations of different
aspects in a sentence.

Chen et al., 2017; Wang et al., 2018; Zheng et al., 2020). Subsequently, attention-based neural models
are widely used in this task, which can enforce the model to focus on the given aspect (Wang et al.,
2016b; Tang et al., 2016b; He et al., 2019). In most previous methods, however, they generally embed
aspect information into the sentence representation to learn the pertinent sentiment features for the spe-
cific aspect, which leads to a lack of capturing the inter-aspect sentiment relations for a specific aspect.
Analogously, most existing graph network-based model merely consider the syntactical dependencies
between the specific aspect and the context (Zhang et al., 2019; Huang and Carley, 2019; Sun et al.,
2019), which is insufficient to focus on which contextual dependencies along with aspect-specific words
are essential for the specific aspect and also largely ignore the sentiment relations between different as-
pects in the sentence. Since intuitively, the role of distinct aspect word is different in deriving aspect
expression. Besides, there are intricate sentiment relations among different aspects in many instances.

In this paper, we explore a novel solution to construct heterogeneous graphs of sentences via enrich-
ing the contextual syntactical dependency representations of the key aspect words and leveraging the
mutual sentiment relations between different aspects in the context. Based on it, an Interactive Graph
Convolutional Networks (InterGCN) model is proposed to leverage the sentiment dependencies of the
context. Here, the syntactical information from neighbors of each node is aggregated to derive the graph
embeddings, so as to extract both aspect-focused and inter-aspect sentiment information for predicting
aspect-specific sentiment polarity. The main contributions of our work can be summarized as follows:

• We explore a novel solution to construct the graph for each instance, in which both aspect-focused
and inter-aspect syntactical dependencies are introduced.

• An Interactive Graph Convolutional Networks model is proposed to derive aspect-specific sentiment
features by interactively extracting the sentiment relations within aspect words and across different
aspects in the context.

• Experimental results on four benchmark datasets show that the proposed model achieves the state-
of-the-art performance in aspect sentiment analysis.

2 Related Work

Some early works mostly use machine learning algorithms to capture the sentiment polarity based on rich
features about content and syntactic structures in aspect sentiment analysis (Pang et al., 2008; Jiang et al.,
2011; Kiritchenko et al., 2014). Recently, deep learning models have achieved promising performance in
aspect sentiment analysis (Tang et al., 2016a; Wang et al., 2016b; Tang et al., 2016b; Chen et al., 2017;
Ma et al., 2017; Xue and Li, 2018; Li et al., 2019; Liang et al., 2019). The majority of current approaches
attempt to pay more attention to the specific aspect based on attention mechanism. (Wang et al., 2016b)
exploited attention mechanism to capture the contextual representations via paying attention to the key
parts of the sentence according to the given aspect. (Tang et al., 2016b) proposed an attention-based
memory network to store contextual words and conducted multi-hop attention to derive the sentiment
representation for the aspect. (Chen et al., 2017) utilized a weighted-memory mechanism to produce a
tailor-made memory for different opinion aspects based on memory network. In addition, (Xue and Li,
2018) utilized a gated CNN to selectively model the sentiment features according to the given aspect. (Du
et al., 2019) adopted a capsule network to construct vector-based feature representation and cluster fea-
tures by an EM routing algorithm. (Majumder et al., 2018) considered the neighboring aspect-related
information for the aspect-specific sentiment analysis with memory networks.
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Figure 2: The architecture of the proposed Interactive Graph Convolutional Networks.

Graph convolutional network (GCN) has achieved promising performance in many NLP tasks (Kipf
and Welling, 2017; Zhang et al., 2018; Huang et al., 2019; Yao et al., 2019). In aspect sentiment anal-
ysis, (Zhang et al., 2019) exploited GCN to capture syntactical information and word dependencies for
the specific aspect over the dependency tree of a sentence. (Sun et al., 2019) proposed a GCN model
over the dependency tree of the sentence to enhance the feature representations of aspects learned by a
Bi-directional LSTM (Bi-LSTM). In addition, to develop the merit of BERT (Devlin et al., 2019), a GCN
model based on selective attention was proposed to extract and aggregate the most important contextual
features for the aspect representation (Hou et al., 2019). The above GCN-based models, however, nei-
ther considered the specific aspect when constructing the graph of the sentence nor extracted inter-aspect
sentiment relations for the specific aspect. To this end, based on the merit of GCN in aspect sentiment
analysis, we explore a novel solution of constructing syntactical dependency graph for a sentence accord-
ing to the specific aspect and propose an Interactive Graph Convolutional Networks (InterGCN) model
to extract both aspect-focused and inter-aspect sentiment features for the specific aspect.

3 Proposed Approach

As demonstrated in Figure 2, the architecture of the proposed InterGCN model mainly contains two
components: 1) aspect-focused graph convolutional networks, which aims to extract the aspect-specific
sentiment features based on our novel syntactical dependency graph of the sentence, and 2) inter-aspect
graph convolutional networks, which is designed to derive the sentiment relations between different
aspects. The feature representations captured from these two components are interactively combined
to produce the sentiment features for the specific aspect. We first assume that there is a sentence with
n words and two aspects, i.e. s = {w1, w2, · · · , a11, a12, · · · , a1p, · · · , a21, a22, · · · , a2q, · · · , wn},
where wi represents the i-th contextual word and aij represents the j-th word of aspect i. Each instance
contains a sentence and one or more aspects corresponding to different sentiment polarities (Positive,
Negative, or Neutral), and each aspect may consist of single or multiple words. The aim of aspect
sentiment analysis is to predict the sentiment polarity over a given aspect in a sentence.

3.1 Embedding Module
In our InterGCN model, each word embedding is a distributed representation of a word in the sentence,
which is retrieved from the embedding lookup table V ∈ Rm×|N | according to the word index, where |N |
is the vocabulary size. And thus, for a sentence with n words, we can get the corresponding embedding
matrix x = [x1,x2, · · · ,xn], where xi ∈ Rm is the word embedding of wi, m is the dimension of word
vectors. We exploit the pre-trained word embeddings GloVe (Pennington et al., 2014) and BERT (Devlin
et al., 2019) to initialize word vectors, and fine-tune them during the training process.
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3.2 Producing Ordinary Graphs over Dependency Tree

Inspired by the previous GCN-based works (Zhang et al., 2019; Sun et al., 2019), we first produce an
ordinary dependency graph for each input sentence over the dependency tree1:

Di,j =

{
1 if i = j or wi, wj in the dependency tree of the sentence
0 otherwise

(1)

After that, an adjacency matrix D ∈ Rn×n is derived via the dependency tree of the input sentence.

3.3 Refining Graphs for Specific Aspect

To highlight the specific aspect from the contextual words and capture aspect-focused enhanced depen-
dency graph for the sentence, we refine the graph via computing a relative position weight for each
element of the adjacency matrix according to the specific aspect:

WF
i,j =


1 if wi ∈ {asi} and wj ∈ {asi}
1/(|j − ps|+ 1) if wi ∈ {asi}
1/(|i− ps|+ 1) if wj ∈ {asi}
0 otherwise

(2)

where |·| is an absolute value function, ps is the beginning position of the specific aspect, {asi} is the
word set of the specific aspect. And thus, we can capture the relative dependencies between words of the
specific aspect and other contextual words.

To augment the syntactical dependencies of contextual words and produce the relations between aspect
and contextual words, here, we integrate the aspect-focused weights and the ordinary dependency graph
to derive an aspect-focused syntactical dependency adjacency matrix:

Gi,j =

{
Di,j +Di,j ∗WF

i,j if Di,j = 1

WF
i,j otherwise

(3)

Intuitively, as mentioned above, some aspects might not signal distinct sentiment expression in the con-
text. That is, the aspect-focused syntactical dependencies derived by the aspect might be insufficient for
identifying the accurate sentiment relations, since the sentiment dependency derivation of those aspects
should be provided with the help of other aspects. Thus to leverage the connections of multiple aspects
in the sentence, we further refine the aspect-focused graph via incorporating relative graphs from other
aspects into the aspect-focused adjacency matrix:

AF = G +
1

l

∑
a∈{aoi }

(α ∗Ga) (4)

α = 1/(|po − ps|+ 1) (5)

where {aoi } is the word set of length l of other aspects, and the po for each a ∈ {aoi } denotes the beginning
position of the other aspect. The procedure of generating the adjacency matrix for each sentence via fo-
cusing on the specific aspect is depicted in Algorithm 1. Here, to enrich the information of dependencies
for the input sentence, we construct the adjacency matrix in un-directional, i.e. AFi,j = AFj,i.

3.4 Constructing Inter-Aspect Graphs

According to Figure 1, sentiment polarities of some aspects require to be predicted through the sentiment
relations between others in the sentence. Hence, we screen the aspects from the sentence and construct

1In this work, we use spaCy toolkit for producing the dependency tree of the input sentence: https://spacy.io/.
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Algorithm 1: The procedure of constructing the aspect-focused adjacency matrix for a sentence
Input: a sequence of words s = {w1, w2, · · · , wn}; a set of aspect-specific words as = {as1, as2, · · · , asp}; a set of

other aspects words ao = {ao1, ao2, · · · , aoq}; the dependency tree of the sentence dependency(s)
1 for i = 1→ n; j = 1→ n do
2 . Producing the ordinary graph over dependency tree
3 if dependency(wi, wj) ∈ dependency(s) or i = j then
4 Di,j ← 1

5 else
6 Di,j ← 0

7 . Refining the adjacency matrix of the graph for the specific aspect
8 if wi ∈ as and wj ∈ as then
9 WF

i,j ← 1

10 else if wi ∈ as then
11 WF

i,j ← 1/(|j − ps|+ 1)

12 else if wj ∈ as then
13 WF

i,j ← 1/(|i− ps|+ 1)

14 else
15 WF

i,j ← 0

16 if Di,j = 1 then
17 Gi,j ← Di,j +Di,j ∗WF

i,j

18 else
19 Gi,j ←WF

i,j

20 . Leveraging the relations between multiple aspects corresponding to the specific aspect
21 for a ∈ ao do
22 AF ← G+ 1

q

∑
a∈ao([1/(|po − ps|+ 1)] ∗Ga)

23 for i = 1→ n; j = 1→ n do
24 AF

i,j ← AF
j,i

an inter-aspect adjacency matrix for these aspects to derive the contextual sentiment dependencies of
these aspects:

AInteri,j =


1 + 1/(|j − ps|+ 1) if wi ∈ {asi} and wj ∈ {aoi }
1 + 1/(|i− ps|+ 1) if wj ∈ {asi} and wi ∈ {aoi }
0 otherwise

(6)

Analogously, to capture the interactive dependencies between multiple aspects in the sentence, we also
construct the inter-aspect graph of the sentence in un-directional: AInteri,j = AInterj,i .

3.5 Interactive Graph Convolutional Network
In InterGCN, aspect-focused GCN takes each aspect-focused graph and corresponding word embedding
matrix as input, and the inter-aspect GCN receives the inter-aspect graph and hidden representations
learned by aspect-focused GCN layers to produce interactive sentiment features for the specific aspect.
Each node in the l-th GCN layer is updated according to the hidden representations of its neighborhoods:

hli = ReLU(ÃF
i g

l−1
i Wl + bl) (7)

where gl−1i = F(hl−1i ) is the hidden representation evolved from the preceding GCN layer. F(·) is a
position-aware transformation function, which is utilized in a previous GCN-based work (Zhang et al.,
2019). ÃF is a normalized symmetric of an aspect-focused adjacency matrix:

ÃF
i = AF

i /(D
F
i + 1) (8)

where DF
i =

∑n
j=1A

F
i,j is the degree of AF

i . The original nodes of the aspect-focused GCN layers are
derived from the hidden representations of Bi-LSTM layers, which takes word embeddings as input:

Hc = {hc1,hc2, · · · ,hcn} = Bi-LSTM(x) (9)
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Interactively, original nodes of the inter-aspect GCN layers are generated by the aspect-focused GCN
layers. After that, we can successively capture the final representations of the aspect-focused and inter-
aspect GCN layers, i.e. hF and hInter. And thus, we combine these two final representations to extract
the interactive relations between aspect-focused features and inter-aspect features:

h̃ = hF + γhInter (10)

where γ is the coefficient of inter-aspect features. To highlight the significant features of as-
pect words, we exploit aspect-specific masking to mask the non-aspect representations: H̃mask =
{0, · · · , h̃τ , · · · , h̃τ+k−1, · · · ,0}, where h̃t is the representation of the t-th word learned by InterGCN,
τ is the beginning index of the specific aspect, and k is the length of the aspect. Then inspired by (Zhang
et al., 2019), we adopt a retrieval-based attention mechanism to capture significant sentiment features
from the context representations for the specific aspect:

βt =

n∑
i=1

hct
>h̃i =

τ+k−1∑
i=τ

hct
>h̃i (11)

αt =
exp(βt)∑n
i=1 exp(βi)

(12)

Hence, the final representation of the input with respect to the specific aspect is formulated as:

y = softmax(Wor + bo) (13)

r =
n∑
i=1

αih
c
i (14)

where softmax(·) is the softmax function to obtain the output distribution of the classifier.

3.6 Model Training
The objective to train the classifiers is defined as minimizing the cross-entropy loss between predicted
and ground-truth distribution:

L = −
S∑
i=1

C∑
j=1

ŷji · log(yji ) + λ||Θ||2 (15)

Where S is the number of training samples, C is the number of classes. ŷ is the ground-truth distribution
of sentiment. λ is the weight of the L2 regularization term. Θ denotes all trainable parameters.

Dataset Positive Neural Negative
Train Test Train Test Train Test

REST14 2164 728 637 196 807 196
LAP14 994 341 464 169 870 128

REST15 1178 439 50 35 382 328
REST16 1620 597 88 38 709 190

Table 1: Statistics of the experimental datasets.

4 Experiments

4.1 Dataset and Experiment Setting
We conduct experiments on four benchmark datasets from SemEval 2014 (Pontiki et al., 2014) (Restau-
rant14, Laptop14), SemEval 2015 (Pontiki et al., 2015) (Restaurant15), and SemEval 2016 (Pontiki et al.,
2016) (Restaurant16). Each sample consists of the review sentences, aspects (single or multiple words),
and the sentiment polarity towards to the aspects. The statistics of the datasets are shown in Table 1.
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In our experiments, we use GloVe vectors (Pennington et al., 2014) to initialize each word into 300-
dimensional word embedding for all non-BERT models. The dimensionality of hidden vector represen-
tations is set to 300. The number of GCN layers is set to 2, which is the optimal depth in pilot studies.
The coefficient γ is set to 0.2, and the coefficient λ of L2 regularization item is set to 10−5. Adam is
utilized as the optimizer with a learning rate of 10−3 to train the model, and the mini-batch size is 16.
We randomly initialize all the W and b with uniform distribution2.

4.2 Comparison Models

We compared the proposed model (InterGCN) with the following methods:
SVM (Kiritchenko et al., 2014) trains a SVM classifier based on conventional feature extraction methods.
TD-LSTM (Tang et al., 2016a) models bidirectional contextual features for a given aspect with LSTMs.
ATAE-LSTM (Wang et al., 2016b) explores aspect-specific attention mechanism based on LSTM.
MemNet (Tang et al., 2016b) exploits word and position attention to focus on specific aspect by a multi-
hop memory network.
IAN (Ma et al., 2017) learns the interactive relationships for aspect and context representations by an
interactive attention network.
RAM (Chen et al., 2017) proposes a recurrent attention memory network for aspect sentiment analysis.
GCAE (Xue and Li, 2018) explores a gated CNN to control the flow of features for a given aspect.
MGAN (Fan et al., 2018) exploits fine-grained and coarse-grained attention mechanisms to capture the
word-level interaction between aspect and context.
AOA (Huang et al., 2018) utilizes an attention-over-attention model to learn the interaction between
aspect words and contextual words.
TNet-LF (Li et al., 2018) exploits a target-specific transformation component to better integrate target
information into the word representations.
IARM (Majumder et al., 2018) extracts the influence of the neighboring aspects related information for
the aspect sentiment analysis.
TransCap (Chen and Qian, 2019) utilizes a transfer capsule network model for aspect sentiment analysis.
IACapsNet (Du et al., 2019) adopts a capsule network to model vector-based feature representation and
cluster features by an EM routing algorithm for a specific aspect.
AEN (Song et al., 2019) explores an attention encoder network to extract contextual sentiment interac-
tions for the aspect.
TD-GAT (Huang and Carley, 2019) exploits a target-dependent graph attention network over dependency
tree for aspect sentiment analysis.
ASGCN-DT and ASGCN-DG (Zhang et al., 2019) extracts syntactical information and word dependen-
cies with directional and un-directional graph respectively over the dependency tree based on GCN.
BERT (Devlin et al., 2019) is the vanilla BERT model, which adopts “[CLS] sentence [SEP] aspect
[SEP]” as input3.
AEN+BERT (Song et al., 2019) is the AEN model based on pre-trained BERT.
SA-GCN+BERT (Hou et al., 2019) is a GCN-based model with dependency tree and BERT, which
employs the selective attention find important words to derive the representations of aspects.
InterGCN is our complete proposed model.
AFGCN is identical to our proposed InterGCN model, but only utilize the aspect-focused component.
InterGCN+BERT integrates our proposed InterGCN model with pre-trained BERT.
AFGCN+BERT integrates our proposed AFGCN model with pre-trained BERT.

4.3 Main Results

Table 2 shows the comparison results on four benchmark datasets, which demonstrate that the proposed
InterGCN consistently outperforms all comparison models. This verifies the effectiveness of our pro-
posed InterGCN in aspect sentiment analysis. We can note that the proposed InterGCN+BERT achieves

2The source code of this work is released at https://github.com/BinLiang-NLP/InterGCN-ABSA
3Here, we use the pre-trained uncased BERT-base model for all BERT-based models.
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Model REST14 LAP14 REST15 REST16
Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%)

SVM\ (Kiritchenko et al., 2014) 80.16 - 70.49 - - - - -
TD-LSTM (Tang et al., 2016a) 78.00 66.73 71.83 68.43 76.39 58.70 82.16 54.21
ATAE-LSTM (Wang et al., 2016b) 78.60 67.02 68.88 63.93 78.48 60.53 83.77 61.71
MemNet\ (Tang et al., 2016b) 79.61 69.64 70.64 65.17 77.31 58.28 85.44 65.99
IAN\ (Ma et al., 2017) 79.26 70.09 72.05 67.38 78.54 52.65 84.74 55.21
RAM (Chen et al., 2017) 80.23 70.80 74.49 71.35 79.98 60.57 83.88 62.14
GCAE (Xue and Li, 2018) 75.74 62.45 71.98 68.71 77.56 56.03 83.70 62.69
MGAN (Fan et al., 2018) 81.25 71.94 75.39 72.47 79.36 57.26 87.06 62.29
AOA\ (Huang et al., 2018) 79.97 70.42 72.62 67.52 78.17 57.02 87.50 66.21
TNet-LF\ (Li et al., 2018) 80.42 71.03 74.61 70.14 78.47 59.47 89.07 70.43
IARM (Majumder et al., 2018) 80.00 - 73.80 - - - - -
TransCap (Chen and Qian, 2019) 79.29 70.85 73.87 70.10 - - - -
IACapsNet (Du et al., 2019) 81.79 73.40 76.80 73.29 - - - -
AEN (Song et al., 2019) 80.98 72.14 73.51 69.04 - - - -
TD-GAT (Huang and Carley, 2019) 81.10 - 73.70 - - - - -
ASGCN-DT\ (Zhang et al., 2019) 80.86 72.19 74.14 69.24 79.34 60.78 88.69 66.64
ASGCN-DG\ (Zhang et al., 2019) 80.77 72.02 75.55 71.05 79.89 61.89 88.99 67.48

AFGCN (ours) 81.79 73.42 76.96 73.29 81.55 65.08 89.12 70.60
InterGCN (ours) 82.23 74.01 77.86 74.32 81.76 65.67 89.77 73.05

BERT (Devlin et al., 2019) 84.11 76.68 77.59 73.28 83.48 66.18 90.10 74.16
AEN+BERT (Song et al., 2019) 83.12 73.76 79.93 76.31 - - - -
SA-GCN+BERT (Hou et al., 2019) 85.80 79.70 81.70 78.80 - - - -
AFGCN+BERT (ours) 86.57 80.36 82.53 79.10 85.02 70.89 90.76 76.88
InterGCN+BERT (ours) 87.12 81.02 82.87 79.32 85.42 71.05 91.27 78.32

Table 2: Main experimental results. Acc. represents accuracy, F1 represents Macro-F1 score. Best scores are in bold. The
results with \ are retrieved from (Zhang et al., 2019).

Model REST14 LAP14 REST15 REST16
Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%)

InterGCN w/o dependency tree 82.03 73.82 76.70 72.63 81.56 65.12 89.43 72.67
InterGCN w/o aspect-focused 81.32 72.57 75.89 71.45 80.06 62.73 89.05 68.36
InterGCN w/o aspect relations 81.80 73.61 76.38 72.21 81.34 64.57 89.21 71.89
InterGCN w/o inter-aspect (AFGCN) 81.79 73.42 76.96 73.29 81.55 65.08 89.12 70.60
InterGCN 82.23 74.01 77.86 74.32 81.76 65.67 89.77 73.05

Table 3: Experimental results of the ablation study.

significant improvement on all datasets compared to the other BERT-based models, which indicates that
InterGCN can be easily integrated with pre-trained BERT and improve the performance of aspect sen-
timent analysis. It is also noteworthy that both AFGCN and InterGCN perform significantly better than
the previous GCN-based models (for both non-BERT and BERT), which fundamentally verifies the ef-
fectiveness of the novel solution of constructing graphs exploited in this work. Compared with AFGCN,
which only utilizes aspect-focused GCN layers, the complete InterGCN achieves better performance on
all datasets. This denotes that exploiting the interaction of the features extracted from aspect-focused
and inter-aspect GCN layers can further improve the performance of aspect sentiment analysis.

4.4 Ablation Study

We conduct an ablation study to further analyze the impact of different components of InterGCN. The
results are shown in Table 3. We can observe that removal of “dependency tree” degrades the per-
formance slightly, which indicates that the dependency tree based graph construction can improve the
quality of dependency representations but it is not an essential part of InterGCN. We can also notice that
model without “aspect-focused” performs most unsatisfactorily on all datasets, verifying that incorporat-
ing aspect-focused information into the model is the most important improvement for aspect sentiment
analysis. In addition, both removal of “aspect relations” and “inter-aspect” lead to performance drops ev-
idently, which further indicates that extracting sentiment relations between different aspects can largely
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Figure 3: The impact of the number of GCN layers. Accuracy based on different numbers of GCN layers is reported.

Figure 4: The impact of the coefficient of Inter-Aspect. Accuracy based on different values of γ is reported.

improve the performance of aspect sentiment analysis.

4.5 Impact of GCN Layers

We investigate the impact of the layer number on the performance of our proposed InterGCN. We vary
the layer number from 1 to 8 and report the results in Figure 3. Overall, 2-layer GCN achieves better
performance on all datasets, and thus we set the number of GCN layers as 2 in our experiments. Com-
paratively, 1-layer InterGCN performs unsatisfactorily, which indicates that 1-layer GCN is insufficient
to derive precise syntactical dependencies of the context towards the specific aspect. Additionally, the
performance of InterGCN fluctuates with the increasing number of GCN layers and essentially tends to
decline when the model depth is greater than 4. This implies that roughly increasing the depth of GCN
is vulnerable to slash the learning ability of the model due to the sharp increase of model parameters.

4.6 Impact of the Coefficient of Inter-Aspect

To further analyze the effect of extracting inter-aspect relations in InterGCN, we conduct experiments
based on different values of γ and demonstrate the results in Figure 4. We can observe that as the value
of γ increases from 0 to 0.2 the performance improves steadily, which implies that appropriately incor-
porating the interactive features extracted from inter-aspect GCN layers can assist the aspect-focused
component to learn precise aspect-specific sentiment features and improve the performance of aspect
sentiment analysis. However, the curve quite fluctuates when the value of γ is greater than 0.2 and con-
siderably tends to decline when γ is greater than 0.5. This indicates that excessively consider extracting
inter-aspect relations of the sentence may hamper the learning of aspect-specific sentiment features.

4.7 Analysis of Multiple Aspects

To further analyze the improvement of the performance brought by multiple aspects sentences with the
proposed InterGCN, we separate the training instances into different groups according to the number
of aspects in the sentences and report the training accuracy for different data groups in comparison
with a precious GCN-based model (ASGCN-DG) on REST14 and LAP14 dataset4. The comparison
results are demonstrated in Figure 5. We can observe that the fitting results of the proposed InterGCN
are superior in comparison with ASGCN-DG on all numbers of aspects. In addition, InterGCN achieves
remarkable fitting results on all vary of aspect numbers, however, the performance of fitting is insufficient
with ASGCN-DG when the number of aspects is either particular small or great. This implies that
InterGCN can capture significant sentiment features for a specific aspect with aspect-focused GCN when
the number of aspects is small in the sentence. Concurrently, InterGCN can commendably discriminate
the sentiment features of multiple aspects sentences with the help of inter-aspect relations.

4Following (Zhang et al., 2019), we ignore the instances whose aspect numbers are more than 7 since the count of these
instances is too small for any meaningful comparison.



159

Figure 5: Comparison results of different aspect numbers.

(a) Example of multiple words aspect

(b) Example of multiple aspects sentence

Figure 6: The attention visualizations of typical samples.

4.8 Visualization

To qualitatively demonstrate how the proposed InterGCN improves the performance of aspect sentiment
analysis, we visualize the attention weights by showing two typical examples, which are cited in Figure
1. The results of attention weight visualization are demonstrated in Figure 6. According to Figure 6(a),
the proposed InterGCN can pay more attention to the key aspect word for extracting aspect-specific
sentiment. In addition, the multiple-aspects example shown in Figure 6(b) denotes that InterGCN can
connect the related aspect when dealing with an aspect without intuitive sentiment expression. This
verifies that interactively learning the aspect-focused and inter-aspect sentiment relations can derive more
precise aspect-specific sentiment features and improve the performance of aspect sentiment analysis.

5 Conclusion

In this paper, we explore a novel solution of constructing aspect-focused and inter-aspect dependency
graphs for aspect sentiment analysis. Based on it, an Interactive Graph Convolutional Networks (In-
terGCN) model is proposed to extract the aspect-specific sentiment features from the aspect-focused and
inter-aspect perspective. To this end, the proposed InterGCN model can pay significant attention to the
key aspect words when dealing with multiple words aspect, and connect the valuable sentiment features
of related aspects when considering an aspect without distinct sentiment expression. Experimental results
on four benchmark datasets show that the proposed InterGCN can outperform state-of-the-art methods
including remarkable GCN-based models and BERT-based models.
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