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Abstract

Paraphrase generation aims to generate semantically consistent sentences with different syntac-
tic realizations. Most of the recent studies rely on the typical encoder-decoder framework where
the generation process is deterministic. However, in practice, the ability to generate multiple
syntactically different paraphrases is important. Recent work proposed to cooperate variational
inference on a target-related latent variable to introduce the diversity. But the latent variable may
be contaminated by the semantic information of other unrelated sentences, and in turn, change
the conveyed meaning of generated paraphrases. In this paper, we propose a semantically consis-
tent and syntactically variational encoder-decoder framework, which uses adversarial learning to
ensure the syntactic latent variable be semantic-free. Moreover, we adopt another discriminator
to improve the word-level and sentence-level semantic consistency. So the proposed framework
can generate multiple semantically consistent and syntactically different paraphrases. The exper-
iments show that our model outperforms the baseline models on the metrics based on both n-gram
matching and semantic similarity, and our model can generate multiple different paraphrases by
assembling different syntactic variables.

1 Introduction

Paraphrase generation is a longstanding problem in Natural Language Processing (NLP) (McKeown,
1983), which aims to generate semantically consistent sentences for a given sentence with different
syntactic realizations. The task is not only an important building block for many text generation systems
such as question answering (Buck et al., 2018; Dong et al., 2017), machine translation (Cho et al., 2014),
but also beneficial to some NLP tasks such as semantic parsing (Su and Yan, 2017), sentence-level
representation learning (Patro et al., 2018), data augmentation (Kumar et al., 2019).

Neural network-based methods (Prakash et al., 2016; Gupta et al., 2018; Li et al., 2018; Fu et al.,
2019) have shown great progress on paraphrase generation. The models mainly rely on the sequence-to-
sequence (seq2seq) learning framework (Sutskever et al., 2014) with typical encoder-decoders, which are
relatively deterministic during the testing stage. Generally, the models will select the best result through
the beam search but are not able to produce multiple paraphrases in a principled way (Gupta et al., 2018).
Due to the nature of beam-search, the quality of k-th variant will be worse than the first variant.

In practice, the ability to generate multiple high-quality and diverse paraphrases is an important char-
acteristic of text generation systems. A target-oriented seq2seq model is applaudable to achieve this
goal. For example, Gupta et al. (2018) applied variational inference (Kingma and Welling, 2014) on a
target-related latent variable z. During testing, the model can sample multiple latent variables z from a
prior distribution to generate multiple different paraphrases. But the remained problem is that z may be
contaminated by the semantic information of other unrelated sentences in the training set, leading to an
unexpected semantic change of the generated sentences.

In this paper, we propose to constrain the target-related latent variable z to contain merely the syntactic
information. To achieve this goal, we introduce a syntactic encoder to extract zsyn from the target y, and
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develop a discriminator with adversarial learning to ensure zsyn is semantic-free. The idea is inspired by
(Bao et al., 2019), which disentangled the latent space of variational autoencoder (VAE) into semantic
and syntactic spaces. But they considered the bag of words (BOWs) as the semantic information for
adversarial training. This is not optimal because human-generated paraphrases can use quite different
words but still express the same meaning. Instead, our model is data-driven. We do not constrain the
semantic variables to be syntax-free, as the syntactic information entangled in the semantic variables will
be overwritten by the target-oriented syntactic variables.

Types Sentences Word Distance Semantic Distance

Gold Reference Sr: It is an excellent film! - -

More Penalized Sa: It is an easy way! 2 D
Less Penalized Sb: It is an awesome movie! 2 <D

Table 1: Illustration of the problem of MLE. The sentence Sr is the reference, and the rest sentences are
two generated samples. Sa and Sb have the same word distance to Sr, but Sb is semantically similar to Sr.
MLE will equally penalize the phrases "easy way" and "awesome movie" because they are non-target.

When considering semantic consistency, there exists another problem in many text generation models
that maximum likelihood estimation (MLE) which is implemented by the cross-entropy function will
penalize all the non-target words. An example is shown in Table 1. The cross-entropy function will
equally penalize the two generated sentences Sa and Sb because both of them have two words not match
the gold ones. But the semantics of them are quite different. It means that MLE captures the word
distance well but does not precisely reflect the semantic distance. Our proposition is that sentences with
larger semantic distance should be more penalized. We develop another discriminator, which determines
whether the generated sentences are semantically consistent with the references. Unlike the discriminator
for the latent variable zsyn, this discriminator needs to have access to the sampled tokens, which will
cause the non-differentiable problem. We adopt Gumbel-softmax (Jang et al., 2017; Maddison et al.,
2017) to make the model end-to-end differentiable. And we introduce two losses to measure both word-
level and sentence-level semantic consistency.

The experiments on two datasets show that our model yields competitive results over other baseline
models, and can generate multiple syntactically different and semantically consistent paraphrases. The
main contributions of this work are as follows:

• We propose a target-oriented seq2seq framework that involves different syntactic variables to gen-
erate multiple different paraphrases.

• Our method not only increases the syntactic diversity with variational inference but also improves
the word-level and sentence-level semantic consistency for the generated paraphrases.

• The experiments use metrics based on both n-gram matching and semantic similarity, and demon-
strate the effectiveness of our model.

2 Related Work

Recently, many neural network-based models are proposed for paraphrase generation and can be cate-
gorized into three groups: reconstruction-based learning, typical seq2seq learning, and target-oriented
seq2seq learning.

Reconstruction-based Learning. The first category of studies mainly deals with paraphrase genera-
tion in an unsupervised manner, which adds constraints on language models (LMs) including RNN-LM
(Mikolov et al., 2010) or VAE (Bowman et al., 2016). Kovaleva et al. (2018) introduced a similarity-
based reconstruction loss to VAE which considered similarities between words in the embedding space.
Miao et al. (2019) introduces three kinds of constraints on RNN-LM including keywords matching,
word embedding similarity, and skip-thoughts similarity. However, the similarity-based losses could not
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guarantee the semantic consistency between two words. For example, the words "good", "great" and
"bad" are all close in the embedding space because they appear in similar contexts. Recently, an intuitive
approach was proposed which disentangled the latent space of VAE into syntactic and semantic spaces
(Bao et al., 2019). In their model, the constituency parse tree was used to supervise the syntactic latent
variable, and the BOWs were used to supervise the semantic latent variable. Although the proposal of
disentanglement is promising, supervision with BOWs is not optimal because paraphrases are possible
to use quite different words and still convey the same meaning.

Typical Seq2seq Learning. The second category of studies considered paraphrase generation as a
typical seq2seq task with parallel data. Prakash et al. (2016) proposed to use a seq2seq model for
paraphrase generation with residual stack LSTM, and still performs as a strong baseline (Fu et al., 2019).
Recent studies improved seq2seq models by involving some efficient mechanisms such as copy and
constrained decoding (Cao et al., 2017), inverse reinforcement learning (Li et al., 2018), decomposition
of phrase-level and sentence-level patterns (Li et al., 2019), and content planning with latent bag of
words (Fu et al., 2019). When a sentence has multiple paraphrases in training data, these models will
convert them into multiple pairwise sentences. From the perspective of probability modeling, these
studies maximize the log conditional probability

∑k
i=1 log p(y

i|x) where x denotes the original sentence
and yi is the i-th sentence among k paraphrases.

Target-oriented Seq2seq Learning. Compared with the second category of studies, the third included
the target information which substantially maximized the log probability

∑k
i=1 log p(y

i|x, zyi
) where

zyi
conveyed the information of target yi. Apparently, there was a train-test discrepancy because zyi

was not available during testing. Gupta et al. (2018) tackled the issue by a combination of the seq2seq
architecture with VAE which allowed zyi

to sample from a prior distribution. The remained problem
is that zyi

may contain semantic information of other unrelated sentences, which is possible to mislead
the model. Ideally, for paraphrase generation, zyi

is expected to only convey the syntactic information.
Kumar et al. (2020) implicitly tackled this problem by focusing on a slightly different task, the syntactic-
guided controlled paraphrase generation, which inputted an exemplar to tell the syntactic information.
As a result, the train-test discrepancy does not exist in the controlled task. However, for the traditional
paraphrase generation task, constraining zyi

is still a problem.

3 Background

3.1 Variational Autoencoder
Before introducing our models, we briefly review the architecture of VAE (Kingma and Welling, 2014),
a generative model which allows to generate high-dimensional samples from a continuous space. In the
probability model framework, the probability of data x can be computed by:

p(x) =

∫
p(x, z)dz =

∫
p(z)p(x|z)dz (1)

Since this integral is unavailable in closed form or requires exponential time to compute (Blei et al.,
2016), it is approximated by maximizing the evidence lower bound (ELBO):

log pθ(x) ≥ ELBO = E
z∼qϕ(z|x)

[log pθ(x|z)]−KL(qϕ(z|x)∥p(z)) (2)

where pθ(x|z) denotes the generator with parameters θ and qϕ(z|x) is obtained by an encoder with
parameters ϕ, and p(z) is a prior distribution, for example, a Gaussian distribution. And KL(·||·) de-
notes the Kullback-Leibler (KL) Divergence between the two distributions. Moreover, a previous work
proposed β-VAE (Higgins et al., 2017) to use a weight β for the KL divergence. This approach was
considered as a baseline for paraphrase generation (Fu et al., 2019).

3.2 Continuous Approximation
When a text generation model involves the process of sampling words and expecting a reward from a
discriminator or an evaluator, it will suffer from the non-differentiable problem due to the discrete nature
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of texts. Recently, many studies use reinforcement learning (RL) (Yu et al., 2017; Lin et al., 2017; Guo
et al., 2018; Li et al., 2018) or Gumbel-softmax (Jang et al., 2017; Maddison et al., 2017; Yang et al.,
2018; Nie et al., 2019) to overcome the problem. In our model, we use Gumbel-softmax because it
makes models end-to-end differentiable, improving the stability and speed of training over RL (Chen et
al., 2018).

Assuming that the model outputs a logit value ot when generating a sentence at tth timestep. A
softmax function is used to produce probability pt over the vocabulary set:

pt = softmax(ot) (3)

Traditionally, a token wt will be sampled from pt with multinomial function or the argmax operation,
both of which are non-differentiable. Gumbel-softmax uses a re-parameter trick by:

p̃t = softmax((ot + g)/τ) = Gumbel-softmax(pt; τ) (4)

where g samples from Gumbel(0, 1) and τ is the temperature. When τ → 0, p̃t is approximated to
the one-hot representation of the sampled token wt. This process is a continuous approximation to the
multinomial sampling, and we denote it by Gumbel-softmax(·) in the following sections.
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Figure 1: The architecture of the proposed model. The key idea is to generate multiple different para-
phrases by involving different syntactic variables to the decoder.

4 Methodology

4.1 Semantically Consistent and Syntactically Variational Encoder-Decoder
Our method belongs to the category of target-oriented seq2seq learning, and aims to generate diverse
paraphrases by involving the target-oriented syntactic information. We assume that each paraphrase
should convey the same semantic with the original sentence, and multiple paraphrases have different
syntaxes from each other. The architecture of our model is shown in Figure 1. The model contains a
semantic encoder, a syntactic encoder, and a decoder with parameters ϕ, φ, and θ respectively. Given the
sentence x and one of its paraphrases y, the generation process can be defined as:

Zsem = SemEncoder(x;ϕ) (5)

zsyn = SynEncoder(y;φ) (6)

y = Decoder(Zsem, zsyn; θ) (7)

where Zsem and zsyn denote the semantic and syntactic latent variables respectively. The variables Zsem

are a sequence of hidden states and zsyn is a vector representation. And our model can cooperate with
the attention mechanism (Bahdanau et al., 2015). At each timestep, the decoder will produce a variable
by the weighted sum of hidden states in Zsem and then concatenate it with zsyn to decode each token.
This process is modeling the probability p (y|x, zsyn) instead of p (y|x).
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The key problem is how to constrain the syntactic variable zsyn, as y is not available during testing.
Similar to VAE, we apply variational inference on the variable zsyn, which can be shown from the
modeling of the likelihood p(y,x) and p(y|x):

p(y,x) =

∫
p(y,x, zsyn)dzsyn =

∫
p(y|x, zsyn)p(x|zsyn)p(zsyn)dzsyn

=

∫
p(y|x, zsyn)p(x)p(zsyn)dzsyn, (if zsyn ⊥ x)

(8)

where zsyn ⊥ x means that zsyn is independent from x. Since p(x) can be moved outside of the integral,
we divide both sides of Equation 8 by p(x) to obtain the conditional probability:

p(y|x) =
∫
p(y|x, zsyn)p(zsyn)dzsyn (9)

log p(y|x) ≥ ELBO = E
zsyn∼qφ(zsyn|y)

[log pθ,ϕ (y|x, zsyn)]−KL (qφ(zsyn|y)∥p(zsyn))

= −Ltos2s(ϕ; θ)− LKL(φ)
(10)

where maximizing the log likelihood log p(y|x) is approximated to maximize the ELBO. And
pθ,ϕ (y|x, zsyn) can be modeled by Equation 5 and 7, and the posterior qφ(zsyn|y) is modeled by Equa-
tion 6. Then the first term of Equation 10 is a considered as the target-oriented seq2seq loss denoted by
Ltos2s(ϕ; θ). The second term is the KL loss denoted by LKL(φ).

4.2 Adversarial Learning for Syntactic Variables
There are two important assumptions to make Equation 8 − 10 true: 1) zsyn is independent from x; 2)
zsyn contains merely the syntactic information of y. Since zsyn is extracted from y by Equation 6, the
first assumption is met if zsyn does not contain the information shared by x and y, which is typically
the semantic information. The second assumption also requires that zsyn does not contain the semantic
information. Therefore, we use adversarial learning to derive semantic-free information for zsyn.

Given zxsyn ∼ qφ(z
x
syn|x) and zysyn ∼ qφ(z

y
syn|y) corresponding to the syntactic variables of the

original sentence x and the paraphrase y respectively, we employ a discriminator with trainable weight
Wsyn ∈ R4dsyn×c where dsyn denotes the dimension of the syntactic variables and c = 2 means that
it is a binary classification process. The probability of whether zxsyn and zysyn contain same semantic
information can be computed by:

p̃x,y = softmax
(
Wsyn

[
zxsyn, z

y
syn, |zxsyn − zysyn|, zxsyn ⊙ zysyn

])
(11)

where | · | means taking the absolute value, ⊙ denotes the element-wise multiplication, and [, ] denotes
the concatenation operation. Moreover, we construct negative samples by randomly sampling a sentence
x ̸= x in the dataset. The predicted probability is denoted by p̃x,y. Then the loss of the discriminator is
computed by:

Ld
syn(χ) = −ppos log p̃x,y − pneg log p̃x,y (12)

where ppos = [1, 0] and pneg = [0, 1] representing the labels for the positive pair (x,y) and the negative
pair (x,y) respectively. And χ denotes the parameters (Wsyn) of the discriminator. Equation 12 means
that the discriminator is trying to recognize the semantic information shared between x and y. Then the
syntactic encoder is considered as the generator to fool the discriminator by minimizing the loss:

Lg
syn(φ) = −pneg log p̃x,y (13)

And the generator and discriminator play an adversarial game by minimizing Lg
syn(φ) and Ld

syn(χ) al-
ternatively. When combining the other losses, the objective of our model is:

min
θ,ϕ,φ

[Ltos2s(ϕ; θ) + LKL(φ) + Lg
syn(φ)] + min

χ
[Ld

syn(χ)] (14)

where the first term is the total loss for the generator and the second term is the loss for the discriminator.
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4.3 Ensuring Semantic Consistency

There remains a train-test discrepancy where zsyn ∼ qφ(zsyn|y) during training while zsyn ∼ p(zsyn)
during testing. Minimizing the KL divergence between qφ(zsyn|y) and p(zsyn) can help reduce the dis-
crepancy, but does not provide end-to-end guarantee for the semantic consistency. Therefore, we further
employ another discriminator Dψ with parameters ψ, which consists of a sentence encoder, and a fully-
connected neural network followed with the softmax function. For arbitrary two sentences represented
by the sequences of one-hot vectors u ∈ RT×V and v ∈ RT×V , the discriminator predicts the probability
p̃u,v ∈ R2 of whether two sentences are semantically consistent:

p̃u,v = Dψ(u,v) (15)

where T and V represent the maximum length of the sentences and the vocabulary size respectively.
Traditionally, when zsyn ∼ qφ(zsyn|y), the model minimizes Ltos2s(ϕ; θ) with MLE:

max
zsyn∼qφ(zsyn|y)

T∑
t=1

log pθ,ϕ (ỹt = yt|y<t,x, zsyn) (16)

where ỹt and yt denote the predicted and referenced tokens respectively at t-th timestep, and y<t denotes
the sequence of tokens preceding yt. However, when zsyn ∼ p(zsyn), the syntactic information is
different from that of zsyn ∼ qφ(zsyn|y), and the predicted tokens is therefore not required to match
all the tokens of y. Instead, we assume that there is a set of semantically consistent words Wc(yt) with
respect to yt, using which will not change the conveyed meaning.

max
zsyn∼p(zsyn)

T∑
t=1

log pθ,ϕ (ỹt ∈Wc(yt)|y<t,x, zsyn) (17)

where the objective is to ensure the word-level semantic consistency (WSC). We construct a sequence
of tokens represented by one-hot vectors ŷ = (ŷ1, ŷ2, ..., ŷT ). The sentence is obtained by replac-
ing a certain ratio (η) of tokens in y with predicted tokens ỹt sampled from the predicted probability
distribution p̃t ∈ RV . The process can be described by:

p̃t = pθ,ϕ (ỹt|y<t,x, zsyn) , zsyn ∼ p(zsyn) (18)

ŷt =

{
Gumbel-softmax(p̃t; τ), rand() < η
one-hot(yt), otherwise

(19)

where rand() is a random function to sample numbers between 0 and 1 following the uniform distribu-
tion. Then the loss for word-level semantically consistency is computed by:

Lwsc = −ppos logDψ(ŷ,x) (20)

Moreover, we further reduce the train-test discrepancy by reducing the exposure bias problem (Ranzato
et al., 2016). We let each token in the sentence s̃ be generated conditioning on previously generated
tokens instead of gold ones, and get a sentence-level feedback from the discriminator:

max
zsyn∼p(zsyn)

log pθ,ϕ (ỹ ∈ Sc(y)|x, zsyn) (21)

ỹt = Gumbel-softmax (p(ỹt|ỹ<t,x, zsyn); τ) (22)

Lssc = −ppos logDψ(ỹ,x) (23)

where the objective is to ensure sentence-level semantic consistency (SSC). Sc(y) denotes the set of
semantically consistent sentences, and ỹ = (ỹ1, ỹ2, ..., ỹT ) denotes the sequence of generated tokens
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with one-hot representations. The discriminator will also include positive samples (x,y) and negative
samples (x,y) to learn to predict whether two sentences are semantically consistent:

Lsc(θ, ϕ, φ, ψ) = Lwsc + Lssc − ppos logDψ(x,y)− pneg logDψ(x,y) (24)

Then, the final objective can be computed by:

min
θ,ϕ,φ,ψ

[Ltos2s(ϕ; θ) + λKLLKL(φ) + λgsynLg
syn(φ) + λscLsc(θ, ϕ, φ, ψ)] + λdsynmin

χ
[Ld

syn(χ)] (25)

where λKL, λgsyn, λsc, and λdsyn are the hyperparameters to balance the losses in overall objective.

Dataset Train Valid Test Npara Lavg L95 Vocab.

Quora 116,263 3,000 30,000 2 11.2 20 30,997
MSCOCO 78,733 4,050 40,504 5 11.3 16 27,801

Table 2: Statistics of two datasets. Npara represents the number of paraphrases in one sample. Lavg and
L95 denote the average length of all sentences and the maximum length of 95% of sentences respectively.

5 Experiments

5.1 Datasets
Following previous work on paraphrase generation, we experiment on two datasets: Quora (Lin et al.,
2014) 1 and MSCOCO2. The Quora dataset is originally developed for duplicated question detection
which contains about 140k pairs of paraphrase and 260k pairs of non-paraphrase sentence pairs. We
only use the paraphrase sentences and hold out 3k and 30k validation and test sets respectively. We set
the maximum decoding length to be 20 which equals the maximum length of 95% of sentences. The
MSCOCO dataset is originally developed for image captioning and each image has 5 captions. In our
experiments, we randomly choose 1 of the 5 captions as the source and use the rest 4 captions as the
targets. The original dataset contains about 80k and 40k samples in the train and test sets respectively.
We randomly hold out about 4k samples from the train set as the validation set. The detailed statistics of
the two datasets are shown in Table 2.

5.2 Evaluation and Settings
The evaluation of paraphrase generation remains an open issue. Most of previous studies (Prakash et
al., 2016; Gupta et al., 2018; Li et al., 2018; Bao et al., 2019; Fu et al., 2019) adopt metrics based on
n-gram matching, such as BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004). To compare our model
with them, we also report the n-gram metrics (1-4 grams in BLEU, 1-2 gram in ROUGE). However, we
observe that they are not always sufficient to evaluate the semantic consistency because human-generated
paraphrases have lower BLEU or ROUGE scores than machine-generated on the MSCOCO dataset (will
be discussed in Section 5.3). Therefore, we further employ a metric BERTCS (Reimers and Gurevych,
2019) which computes the cosine similarity of sentence-level embeddings of fine-tuned BERT (Devlin
et al., 2019). We choose the BERT-base model fine-tuned on SNLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2018) datasets with mean-tokens pooling3. Moreover, since simply copying the source
sentence is not an interesting model but definitely yields semantically consistent outputs, we evaluate the
syntactic difference from the source sentence based on BLEU-ori (up to 4 grams) which were recently
used to evaluate the reconstruction-based models (Miao et al., 2019; Bao et al., 2019).

Compared Models. We compare our models with three categories of existing methods introduced
in Section 2. The reconstruction-based models for comparison include β-VAE (Higgins et al., 2017)
with β = 1e−3 and β = 1e−4, and DSS-VAE (Bao et al., 2019). The typical seq2seq models include

1https://www.kaggle.com/c/quora-question-pairs/data
2http://cocodataset.org/
3https://github.com/UKPLab/sentence-transformers
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vanilla seq2seq LSTM with (or without) the attention mechanism (Bahdanau et al., 2015), and LBOW-
Topk which is the state-of-the-art (SOTA) model (Fu et al., 2019). The compared target-oriented seq2seq
model is the variational encoder-decoder (VAE-SVG-eq) (Gupta et al., 2018). Since variational models
can generate multiple paraphrases for a source sentence by sampling multiple latent variables, we can se-
lect the best one with highest BERTCS scores computed with the source sentence (not with the reference
sentences because they not available in practice). This searching mechanism is also used in (Gupta et al.,
2018) and is denoted by VarSearch in the following sections. We search 5 times for both VAE-SVG-eq
and our model.

Hyperparameters. Word embeddings are 300-dimensional and initialized with GloVe (Pennington
et al., 2014). The dimension of the encoders and the decoder are based on two-layer LSTM with 500
state size. The latent space dimension is also set to 500. We set a fixed temperature of τ = 0.01 for
Gumbel-softmax during training. The weights for different losses are λKL = 0.2 (with the annealing
trick), λgsyn = 0.5, λsc = 0.5, and λdsyn = 0.5 respectively. The replacement ratio η for word-level
semantic consistency is set to 0.5. The learning rate of all models is set to 5 × 10−4. The batch size is
set to 32. All models are trained for 15 epochs. We report the averaged metrics after the training process
is repeated 3 times.

B-1 B-2 B-3 B-4 R-1 R-2 R-L BertCS BLEU-ori (↓)

Copying (Positive) 62.56 48.23 38.80 31.17 63.64 37.53 60.94 85.00 100.00
Sampling (Negative) 17.69 4.96 2.40 1.13 18.09 1.50 17.73 31.70 -

β-VAE (β = 10−3) 44.93 30.38 22.32 16.94 47.27 21.47 46.78 66.18 49.97
β-VAE (β = 10−4) 48.90 34.09 25.32 19.29 51.46 25.09 50.72 72.11 59.49
DSS-VAE † - - - 20.54 - - - - 52.77

Seq2Seq 50.02 36.81 28.67 22.94 55.96 30.30 55.69 77.07 26.93
Seq2Seq-Att 51.77 38.42 30.01 24.02 57.56 31.47 57.16 78.88 30.87
LBOW-Topk † 55.79 42.03 32.71 26.17 58.79 34.57 56.43 - -
VAE-SVG-eq (+ VarSearch) 50.33 36.89 28.74 23.06 56.44 30.12 56.02 77.82 26.76

SCSVED (ours) 54.02 40.67 32.29 26.04 58.76 33.77 58.93 81.01 33.59
SCSVED (+ VarSearch) (ours) 54.26 41.56 33.36 27.37 60.28 35.26 59.83 81.60 33.97

Table 3: The results on Quora. B-i and R-j stand for BLEU and ROUGE scores respectively. Larger
values are better except that BLEU-ori prefers lower values. The symbol † means the cited results.

B-1 B-2 B-3 B-4 R-1 R-2 R-L BertCS BLEU-ori (↓)

Copying (Positive) 65.74 44.56 29.78 19.85 37.32 12.08 33.01 72.27 100.00
Sampling (Negative) 34.39 11.75 4.38 1.81 17.38 1.45 14.30 20.02 -

β-VAE (β = 10−3) 65.09 44.02 29.35 19.52 36.92 11.89 32.69 71.45 90.80
β-VAE (β = 10−4) 65.29 44.19 29.48 19.63 37.02 11.93 32.77 71.69 92.30

Seq2Seq 71.68 51.50 36.08 25.21 39.75 14.64 36.00 70.53 15.00
Seq2Seq-Att 71.84 51.51 36.17 25.32 39.83 14.65 36.06 70.75 15.01
LBOW-Topk † 72.60 51.14 35.66 25.27 42.08 16.13 38.16 - -
VAE-SVG-eq (+ VarSearch) 72.89 52.42 36.93 25.99 40.10 15.18 36.13 70.98 15.23

SCSVED (ours) 73.75 53.66 38.32 27.33 40.65 15.39 37.03 71.80 16.27
SCSVED (+ VarSearch) (ours) 74.11 54.35 39.19 28.24 40.90 15.70 37.33 71.94 16.44

Table 4: The results on MSCOCO. B-i and R-j stand for BLEU and ROUGE scores respectively. Larger
values are better except that BLEU-ori prefers lower values. The symbol † means the cited results.

5.3 Main Results
Table 3 and 4 show the overall performance of different models. To understand what is an applaudable
score on each metric, we do a preliminary experiment by designing a copying and a randomly sampling
model, which can be considered as the upper and lower bound for metrics. Higher B-i, R-j, and BertCS
scores represent better consistency with reference sentences. Lower BLEU-ori scores represent better
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syntactic differences from source sentences. The interesting finding on the MSCOCO dataset is that the
source sentences, which are human-generated paraphrases with regard to reference sentences, have lower
B-i and R-j scores than the machine-generated. The possible reason may be that humans will use diverse
n-grams and still express the same meaning while machines prefer to use high-frequency n-grams. And
BertCS scores confirm the high semantic consistency of human-generated paraphrases.

Generally, our model with variational search achieves competitive B-i, R-j scores, and the best BertCS
scores on the Quora and MSCOCO datasets. Compared with the previous SOTA model LBOW-Topk,
our model improves B-4 by 1.20 and 2.97 points on Quora and MSCOCO respectively. Compared with
Seq2Seq-Att, our model improves B-4 and BertCS by 3.35 and 2.72 points respectively on Quora, and
2.92 and 1.19 points respectively on MSCOCO. When compared with variational models including β-
VAE and VAE-SVG-eq, our model also outperforms them with a large margin. The reason may be
that the sampled variational latent variables in their models contain semantic information, and lead to a
change of the conveyed meaning. DSS-VAE which disentangles the semantic and syntactic representa-
tions outperforms β-VAE with an increase of B-4 and a decrease of BLEU-ori scores on Quora but does
not outperform seq2seq models. It means that the disentanglement of the latent spaces is not sufficient
to guarantee the decoder of VAE to generate semantically consistent sentences.

Quora MSCOCO
B-2 B-4 R-2 R-L BertCS B-2 B-4 R-2 R-L BertCS

SCSVED 40.67 26.04 33.77 58.93 81.01 53.66 27.33 15.39 37.03 71.80
SCSVED - SSC 40.12 25.49 33.20 58.47 80.57 52.99 26.19 15.09 36.72 71.43
SCSVED - SSC - WSC 39.51 25.02 32.90 58.30 80.19 52.54 25.99 15.03 36.43 71.15
SCSVED - SSC - WSC - SynAdv 36.31 22.28 29.79 55.78 77.52 51.18 24.76 13.87 35.23 69.86

Seq2Seq-Att 38.42 24.02 31.47 57.16 78.88 51.51 25.32 14.65 36.06 70.75

Table 5: Results of the ablation study.

5.4 Ablation Study

To analyze which mechanisms are driving the improvements, we present an ablation study in Table 5. We
eliminate sentence-level and word-level semantic consistency (SSC and WSC), syntactically adversarial
learning (SynAdv) one by one, which results in three ablated models. Further eliminating the variational
inference of syntactic variables yields the Seq2Seq-Att model. Generally, the three mechanisms are all
influential. For example, eliminating the two semantic consistent losses leads to a total drop of BertCS
by 0.82 and 0.65 points on Quora and MSCOCO respectively. When further eliminating SynAdv, the
model has worse performance than Seq2Seq-Att. It demonstrates the importance of guaranteeing the
syntactic variable to be semantic-free.

Models & Settings Sentences BertCS

Source The male skateboarder does a stunt on the brown ramp. -

References
A person skateboarding on a skate board ramp. -
A skateboarder is attempting to skate down a piece of metal. -

Seq2Seq-Att
Top 1 of Beam-10 A man riding a skateboard up the side of a ramp. 77.12
Top 2 of Beam-10 A man riding a skateboard on a ramp. 76.76
Top 3 of Beam-10 A man riding a skateboard down a ramp. 76.32

SCSVED
zisyn ∼ p(zsyn) A man on a skateboard doing a trick on a ramp. 82.77
zjsyn ∼ p(zsyn) A man doing a trick on a skateboard. 78.69
zksyn ∼ p(zsyn) A man riding a skateboard on a ramp. 76.76

Table 6: An example of the generated sentences of the models on MSCOCO dataset.
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5.5 Case Study
To help understand our model, we present a case study in Table 6. For the MSCOCO dataset, each image
has multiple diverse captions. We show the source and two gold references for an image. After training,
Seq2Seq-Att and our model both produce three paraphrases for the given source, and BertCS scores are
presented to measure their semantic consistency with respect to the source sentence. Following tradi-
tional seq2seq models, we choose the top 3 results through the beam search for Seq2Seq-Att. The results
show that the three generated sentences lack diversity. Different from Seq2Seq-Att, our model generates
3 paraphrases by sampling 3 different latent variables zisyn, z

j
syn, zksyn, which produces high-quality and

diverse paraphrases. However, it is worth noting that the variable zsyn is data-driven, which means that
the information in zsyn may not perfectly match human-defined syntaxes. Moreover, the references may
contain additional information than the source, which is not statistically easy to learn. This phenomenon
can explain why the BLEU and ROUGE scores of the references are lower than machine-generated
sentences in Table 5. However, the key information is preserved.

6 Conclusion

In this paper, we propose a semantically consistent and syntactically variational encoder-decoder frame-
work for paraphrase generation, which enables the model to generate different paraphrases according
to different syntactic variables. We first introduce an adversarial learning method to ensure the varia-
tional syntactic variable not be contaminated by semantic information, and further develop word-level
and sentence-level objectives to ensure the generated sentences be semantic consistent. The experiments
show that our model yields competitive results and can generate high-quality and diverse paraphrases.
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