
Proceedings of the 28th International Conference on Computational Linguistics: Industry Track, pages 190–201
Barcelona, Spain (Online), December 12, 2020

190

Learning Domain Terms - Empirical Methods to Enhance Enterprise Text
Analytics Performance

Gargi Roy, Lipika Dey, Mohammad Shakir, Tirthankar Dasgupta
TCS Research and Innovation, India

{roy.gargi,lipika.dey,m.shakir,dasgupta.tirthankar}@tcs.com

Abstract

Performance of standard text analytics algorithms are known to be substantially degraded on
consumer generated data, which are often very noisy. These algorithms also do not work well on
enterprise data which has a very different nature from News repositories, storybooks or Wikipedia
data. Text cleaning is a mandatory step which aims at noise removal and correction to improve
performance. However, enterprise data need special cleaning methods since it contains many
domain terms which appear to be noise against a standard dictionary, but in reality are not so.
In this work we present detailed analysis of characteristics of enterprise data and suggest un-
supervised methods for cleaning these repositories after domain terms have been automatically
segregated from true noise terms. Noise terms are thereafter corrected in a contextual fashion.
The effectiveness of the method is established through careful manual evaluation of error correc-
tions over several standard data sets, including those available for hate speech detection, where
there is deliberate distortion to avoid detection. We also share results to show enhancement in
classification accuracy after noise correction.

1 Introduction

A large part of enterprise data such as customer complaints, project management documents, client com-
munications, risk reports, emails etc. can yield rich insights and actionable intelligence for improving
enterprise processes. Text analytics solutions built with machine learning methods are employed for the
purpose. There is also an increasing emphasis on robotic process automation (RPA) where the focus is
on automating enterprise tasks. Tasks that do not involve active or deep cognitive abilities can be easily
automated. However, if the task involves reading and interpretation of natural language content, there is
a need to ensure that the machine interpretation of the content is correct before it is sent for automated
downstream processing. Given the volumes of such communication that is generated for any organiza-
tion in the digital world, automated processing of these content is beneficial to ensure timely response to
customers, timely resolution and also generate predictive insights.

It is well known that the quality of analytical results are largely dependent on the quality of input text.
Thus, all text analytics solutions are preceded by pre-processing and cleaning steps to help yield better
results. Though there exists standard dictionaries to aid the cleaning process, these dictionaries are not
enough to deal with enterprise text, due to their inherent nature. Internal enterprise communication like
emails, messages etc. contains words, abbreviations and terms that are very domain specific and not
available in general purpose thesaurus. This includes terms representing names of services, products or
groups etc. They also contain lots of acronyms that are not always standardized but get created along the
way and are well understood within a community. Consumer generated content like customer complaints,
call logs etc. additionally contain spelling distortions of products and services. The real problem posed
by enterprise text is that there is no demarcation between domain words that “appear to be noisy” since
they are not part of a dictionary and words that are “true noise” because it is wrongly spelt or misused.
For any cleaning to be done for enterprise text, it has to be first resolved whether the unrecognizable term

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

191

is an enterprise term or a true noise term and then correct it appropriately. Without this, even word or
phrase frequencies cannot be generated properly.

Interestingly we found a resonance of the problem while dealing with social media text. There are not
only spelling mistakes and typos - but deliberate distortion of traditional words and phrases while writing
them down. Some of these are conventional short-hands and some are done to avoid online detection.
This is one of the problems faced by online hate speech detectors. Hence detecting and replacing these
words with the correct word is an important problem in that scenario also.

Let us illustrate the different types of errors and their significance through the following examples.

• Let us assume a certain repository refers often to the name “Flipkart.” This is a non-dictionary term,
but may be recognized as a Named Entity if written correctly in a text. However, the more crucial
issue is detecting distortions of it in consumer generated text. While analyzing a set of customer
communications involving the organization, we found the following mentions - “fipkart”, “flipcart”,
“flipcardt” etc. which are easily recognizable as erroneous mentions of the name by a human, but
not by a computer. The performance of many downstream text analytics solutions are affected by
this since the frequency computation of the term is affected by these errors.

• The second example will show that not all errors are with respect to named entities only. Analysis of
a text repository for a bank yields the following different references to the term “account” - accont,
acnt, act etc. While the last two are abbreviated references, the first one is a typo. A standard
spell-correction algorithm employing shortest edit-distance based correction corrects “accont” as
“accost”, which is obviously wrong. Such situations need context-based correction.

• In a third example, we take the case of a specific issue where there is no error, but only “apparent
error” introduced by enterprise terms. In a particular repository, a term called “gess” appears very
often. This is a company internal term for the organization, referring to a particular service. There
are multiple references to this term in the company’s internal text repository. A standard spell
checker would tend to correct this term to “guess” - which would once again be incorrect.

• Social media abounds in such examples. The terms such as “ebloa”, “snapchatt” which are mis-
spellings of non-dictionary yet important, non-noise terms - “ebola” and “snapchat” respectively,
where the first one is a virus name that caused epidemic and the second one is a multimedia messag-
ing application. Where as, “presidrnt” is a misspelling of the dictionary term “president”. In hate
speech data, we found lots of spelling distortions of an Internet slang - “lmao”, such as “lmfao”,
“lmaoooooo”, “lmmfao”, “lmfaooo”, and our method was able to capture them.

The above examples illustrate that text cleaning, especially while dealing with enterprise text, involves
segregation of non-dictionary domain terms from true noise words. Since terminologies differ within
groups in an enterprise, and also evolve over time, one time dictionary creation is not a solution. As
products, processes and tasks evolve over time, the terminologies also change. Hence, there is a need for
designing methods that can ingest a given enterprise or social media repository and clean it correctly in
an efficient fashion before embarking on a text analytics journey.

In this work, we propose novel unsupervised method that can analyze any enterprise document repos-
itory and clean it effectively. Initially, all words in the repository are segregated into two categories -
dictionary and non-dictionary words. Any standard linguistic dictionary can be used for the purpose.
The key idea is to segregate the domain words from true noise words and then correct the noise words
accordingly. The domain words, when recognized, get included in the dictionary. The remaining noise
words are corrected incrementally. The whole act is achieved via an iterative method using the following
two steps of Analyze and Infer.

Analyze - This step analyzes the word distributions of the dictionary and non-dictionary words and
classifies them into different frequency groups.

Infer - This step facilitates the movement of non-dictionary words to the dictionary and finally correct
the noise words, based on word structures, their frequency groups and contextual similarities. Similarities

192

between words are established using multiple distance functions that combine traditional edit-distance
based measures, phoneme based similarity as well as contextual similarities computed using word em-
beddings that are created for each repository. The word2vec skip-gram model (Mikolov et al., 2013)
is used for creating the word embeddings. The vector dimensions are adjusted to take care of small
repositories.

The above steps are applied in an iterative fashion till no movement of word is possible. The validity
and effectiveness of the method are established through multiple experiments. We also provide perfor-
mance analysis of the proposed algorithms to show that the proposed method is highly efficient. Thus
it can be used to clean any new repository before applying text analytics algorithms to achieve the best
results.

2 Related Work

Most of the noise detection and correction work for text center around spellchecking and spelling correc-
tion (Subramaniam et al., 2009). A standard way to do so is to use edit distance based methods (Ristad
and Yianilos, 1998) with respect to a standard dictionary. Other methods include noisy channel model
for detecting misspellings (Brill and Moore, 2000; Lai et al., 2015), linguistic and statistical approach
(Schierle et al., 2008) and graph based approach to correct spelling errors in domain-centric search for
emails (Bao et al., 2011). Neural word embeddings for context sensitive spelling correction have also
been considered in (Gong et al., 2019; Fivez et al., 2017; Flor, 2012). The work by (Flor et al., 2019) also
uses orthographic and phonetic similarity and contextual information for automatic spelling correction.
However, none of the above works consider segregation of non-dictionary domain words from noise.
Hence, most of these methods are not applicable for enterprise text which deserves special attention. In
(Li et al., 2018), methods have been specified for acronym disambiguation in enterprise text. However
other errors are not addressed in this. In (Lu et al., 2019), methods are presented for correcting errors
contextually, based on neighboring words and edit distance measures. However, these also do not take
care of enterprise domain words and consider them as errors. Although, (Shakir et al., 2019) has at-
tempted to identify domain terms over true error terms based on the assumption that domain and correct
terms are more uniformly distributed across documents, this assumption does not work always. It is often
found that some spelling mistakes also occur uniformly and with high frequency. Thus there is a need
to work on unsupervised, robust and repeatable methods for detecting true noise terms in enterprise text
and correct them. This work addresses that need.

3 Enterprise text cleaning - a prelude to analytics

Consumer generated text is inherently noisy. Hence all text analytics tasks start with mandatory pre-
processing and cleaning steps as follows. These texts are found to be fraught with random use of upper
cases, spaces and punctuation marks. Social media has also given rise to a set of new terms that represent
phrases, and may be expressed by a non-traditional combination of characters. For example, the term 4u
represents “for you”. Certain errors are also introduced due to the underlying digital platforms. Incorrect
conversion of characters to symbols or icons fall under this category. Rule based pre-processors are
implemented to remove the above noises. After the removal of unwanted elements, the text is tokenized
using the modified twitter tokenizer (Dey and Roy, 2015). The modification is done in such a manner that
it suits the semi-formal enterprise text tokenization. Afterwards, stop words are removed and words are
normalised to lower case letters. The next step is to perform noise correction, which involves recognition
of noisy terms and restoring them to their correct forms. The next section explains the proposed steps to
do this for enterprise text.

4 Correcting Noisy terms in Enterprise Text

In this section we present the details of the proposed noise correction algorithm. To begin with, all
tokens in the text repository are segregated into two groups, dictionary and non-dictionary, depending on
whether they belong to a standard language dictionary or not. Each token is tagged with their category.
Further, the frequency of each token is computed and ranked.

193

For a token w, its frequency is given by the number of occurrence of w in the corpus and is denoted by
wf . The rank ofw, denoted bywr, is determined by ordering the words in descending order of frequency.
The word with highest frequency gets rank one, second highest will have rank two and so on.

Let the set of tokens that are detected as dictionary words be indicated by V, and the set of non-
dictionary tokens be denoted by N. The task now is to reduce the cardinality of N by identifying tokens
that can be moved from it to V. This happens iteratively through the following actions.

Analyze - This step analyzes the relative frequencies and ranks of tokens and classifies them into
different frequency groups.

Infer - This step checks the similarities among tokens in terms of their structures, frequency groups
and contextual presence in text. The final movement is inferred based on a weighted similarity computed
using multiple distance functions that combine traditional edit-distance based measures, phoneme based
similarity as well as contextual similarities computed using word embeddings that are created for each
repository.

The next two subsections describe the above steps in detail.

4.1 Analyzing word frequencies in Repository

Zipf’s law (Zipf, 1932; Manning et al., 1999) states that the log-log plot of the rank versus frequency
of words in a corpus usually follows a linear pattern. This distribution is computed from all words in
the corpus. Usually, the noise words occur less frequently, hence their individual frequencies are very
low. Consequently, it is assumed that their ranks are very high and are concentrated at the tail of the
distribution. Though the Zipf’s law has been found to represent word distributions from different kinds
of repositories like News, story books etc. quite well, we observed that it fails to represent enterprise
text correctly. The distributions shown in top row of Figure 1 shows this. The distortion is noticeable
towards the side of high-frequency or top ranked words. Delving deeper, we found that the dictionary
and non-dictionary words show two different trends. While the relative occurrence of high-frequency
dictionary words in the repository is less than expected, the relative occurrence of high-frequency non-
dictionary words is much higher than expected. The log-log plot of Zipf’s distribution for dictionary and
non-dictionary words plotted separately in middle and lower bands of Figure 1 illustrate this. The reason
obviously lies in the fact that enterprise content, especially parts of it, are far more repetitive in nature
and hence the pattern breaks. Intuition therefore suggests that, analyzing the repository to find the tokens
that cause the deviation from linearity should be a good idea to spot domain words.

Figure 1: Log-log plot of rank versus frequency of all, dictionary (Dic) and
non-dictionary (NonD) terms in four different enterprise content.

Given that the reposi-
tory is already segregated
into two sets of tokens
V and N, this is accom-
plished as follows:

(a). For each set V and
N, the zipf’s distribution
is plotted using log-log
scale of rank wr versus
frequency wf of the to-
kens belonging to the set.
A linear regression mini-
mizing the standard error,
is then applied, to deter-
mine the best fitting line
to both the distributions
independently. The stan-
dard error is defined by
the absolute value of the difference between predicted and actual values.

The next task was to find natural groups of words in each set, such that all words in a group are likely to

194

belong to the same error category, indicating that these words would have similar kind of distribution and
hence similar roles to play in the repository. The natural breaks are determined using Jenks optimization
method (Jenks, 1977) on the standard error between the regression line and the original frequency curve.
The optimal number of natural breaks are determined by applying Jenks optimization method. Jenks
optimization method, which is also called goodness of variance fit (GVF), divides a set of values into
groups or classes such that intra-class variance is minimized while maximizing inter-class variance. The
value of GVF ranges from 0 to 1 where 0 signifies “No Fit” and 1 signifies “Perfect Fit”. The value of
GVF, denoted by η, is a parameter fed to the process which helps the process terminate with an optimal
number of classes within an acceptable error limit. The method starts with class number equal to 2, and
then iteratively increases the number of classes till the error limit crosses η. In our implementations, we
have used 0.85 as the value of η. Function 2 depicts this.

Jenks natural breaks, also called classes play a very useful role in determining the role of words within
a repository. Each class in each set is assigned a unique identity. In this work, the class associated to
the highest-frequency side of the regression line is assigned the identity 1 in both the cases. Thus, for
both the sets V and N, it can be stated that a word belonging to Jenk’s class i in that set appears with
higher frequency in the repository than a word belonging to class i+ 1 in the same set. Each token w in
each set can now be associated to a class identity, based on the class it belongs to. For token w, its class
is denoted by wS

i , where the superscript S takes value V or N, depending on the parent set of w and i
denotes the class number.

The class identity of a token w is utilized by the inference process to decide whether the token should
be retained as a domain term or be declared a noise and hence corrected.

4.2 Inferring nature of words - segregating true noise terms from domain terms

As stated in the earlier section, the objective of the inference mechanism is to determine whether a non-
dictionary token is a wrongly spelt dictionary word or a domain word, that should be retained as it is.
The decision is taken based on the Jenk’s class of the noise word and also it’s similarity to other words
in the repository.

Traditional noise detection and correction methods have assumed all wrongly spelt words in a text to
be errors and attempt to correct them using similarity measures with known words. Some commonly
used similarity measures used in literature are Jaro-Winkler distance (Jaro, 1989; Winkler, 1990), Fuzzy
distance, Levenshtein distance (Levenshtein, 1966), orthographic similarity (Weber, 1970; Van Orden,
1987) etc. Table 1 shows comparative results for these measures. It is seen that Jaro-Winkler distance is
the most effective measure.

A second type of similarity that can be used to determine the likelihood of two tokens being same
is based on phonetic similarity. Phonetic similarity plays a very important role in enterprise text which
contains many non-familiar words. These words are often spelt wrong, but have a spelling which “sounds
similar” to the original word. This is the reason why we see many occurrences of “Flipcart” for the term
is “Flipkart”. There are standard ways of deriving the phonetic representation of any word and thereafter
compute pair-wise phonetic similarity of words. For phonetic representation (denoted by ph(w)), we
have used Double Metaphone algorithm (Philips, 2000) that has a large code length and we used up to
25, which we have found to be sufficient for encoding the words.

However none of the above measures can capture contextual similarity or dissimilarity of words. So
we propose to use word vectors to capture context of words. Since enterprise text has non-standard
vocabulary, no existing model serves the purpose and word vectors have to be built for every reposi-
tory. Unlike, other embedding generation models, our focus is on building word vectors from small
repositories rather than large ones.

To obtain the word vectors for all words in a repository, we start with a pre-processed tokenized corpus
from which stop words are removed. The word2vec (Mikolov et al., 2013) algorithm which uses the skip-
gram model is utilized to generate the word vectors. The word vector for token w is denoted by wv. The
skip-gram model is specifically chosen since it has shown to work well for small data and can represent
rare terms also. We have used window size of five and vector dimension of 20, as the vocabulary sizes

195

for each repository is not very large. The dimension can be varied.
While word embeddings can encapsulate context, character embeddings for words have been found

to help in recognizing new words in a vocabulary that have partial overlaps with known words. They
play an important role in recognizing different lemmatizations of the same form, different entities of the
same type by recognizing a particular suffix or prefix and so on. To generate the character embedding
vectors (denoted by wc), we have used a standard Chars2vec library (Engineering, 2019) that comes
with a pre-trained model with different vector dimensions. We have used 50 as the dimension since the
vocabularies are small.

For a word wi, its vector embedding is denoted by wv
i and it’s character vector is denoted by wc

i . We
have used cosine similarity as a measure to compute similarity between two vectors.

4.3 Recognizing domain terms and correcting Noise terms

Noise Correction JW FD LD OS
acccessible accessible 0.98 26 1 0.97
calculte calculate 0.98 16 1 0.88
accont account 0.97 10 1 0.87
acconut account 0.97 11 2 0.83
accout account 0.97 13 1 0.87
balnce balance 0.97 7 1 0.85
adjustmentrs adjustment 0.97 28 2 0.77
hoildays holidays 0.97 5 2 0.85
cahnged changed 0.96 2 2 0.57
ccorrect correct 0.96 17 1 0.7
deatils details 0.96 5 2 0.83
calim claim 0.94 2 2 0.49
ddeduction deduction 0.94 23 1 0.72
excempeted exempted 0.91 18 2 0.82
apalgamation amalgamation 0.9 5 1 0.72
kundly kindly 0.9 1 1 0.55
aalowance allowance 0.86 2 1 0.66

Table 1: Different spelling similarities be-
tween a pair of words. JW: Jaro-Winkler dis-
tance, FD: Fuzzy distance, LD: Levenshtein
Distance, OS: Orthographic Similarity

We now present an approach that can detect domain
terms in a completely unsupervised way and further as-
sist in cleaning the repository text by correcting noise.
It may be noted that, domain terms need not be only
non-dictionary, terms like “account” or “banks” are do-
main terms for financial content.

In order to achieve this, the first step is to charac-
terize the words as belonging to one of the following
four categories, which are maintained as different sets
- i) Dictionary domain term - denoted by D′, ii) Non–
dictionary domain term denoted by D′′, iii) A noise
word which is a distortion of a dictionary term E′ and
iv) A noise term which is a distortion of a non-dic-
tionary term E′′.

The movement of words from one set to another set
occurs throughout the process until no more movement
is possible. As edit distance based spelling similarity is computationally expensive, we have designed our
algorithm in a way that it reduces time and computational complexity and does not compute similarity
measures for all possible pair of words which takes O(n2), instead efficiently we choose to compute
through hierarchically relaxing constraints.

Step 1 - All terms in Jenk’s class 1 of V are declared as dictionary domain terms and are added to
D′. Terms like account, bank, appraisal, mobile, customer etc. come under this category, depending on
which dataset is being analyzed.

Step 2 - Target now is to detect domain words from the set of non-dictionary terms N. For each wi ∈
N, it’s phonetic representation ph(wi) is compared with phonetic representation of the dictionary words
belonging to the set V. Let Vm ⊆ V such that each word wj ∈ Vm satisfy all the following properties
(a) wj and wi have exactly similar phonetic representation (b) JW (wi, wj) > α1 and Sim(wc

i , w
c
j) >

α2, where α1 and α2 are user controlled parameters, that are kept high.
Now we pick up the word wj in Vm which has highest frequency as the candidate correction term. If

the frequency of wj is higher than frequency of wi, then wi is assumed to be a wrongly spelt occurrence
of wj . Hence wi is added to E′ with wj marked as a correction for wi.

However, if wj has lower frequency than wi, then there is a chance that wi may be a domain word
and not a wrongly spelt occurrence of wj . However this has to be verified. The frequencies and Jenk’s
class numbers of wi and wj are considered for the purpose. Contextual similarities of the words are also
checked.

Since frequencies and class numbers have different orders of magnitude, so an analysis is done (given
in Function 3) on the relative difference (Törnqvist et al., 1985) of class numbers and frequencies as
given in Equation 1 and Equation 2 The corresponding functions are given in Function 5 and Func-
tion 4 respectively. These equations have been designed using the sigmoid function, so that both the

196

values remain within 0 to 1. Where, wS
i and wf

i denote the class number and the frequency of word
wi. max{x, y} and min{x, y} return the maximum and minimum of {x, y} respectively. In Equation 2,
logarithm to the base 10 is used to represent the large range of values in a compact way and also to
capture the multiplicity of the large number i.e. “how large the number is in multiple”, with respect to
the small number.

ds = σ(ln(
max{wS

i , w
S
j } −min{wS

i , w
S
j }

min{wS
i , w

S
j }

)), where σ(x) =
ex

ex + 1
(1)

dl = σ(log10(max{wf
i , w

f
j })− log10(min{w

f
i , w

f
j })), where σ(x) =

ex

ex + 1
(2)

The higher the values of dl and ds, lower the possibility of them to be the same word. If dl is higher
than a user defined threshold, say θ1, then we don’t go for any further analysis and declare wi to be a
domain word which needs no correction. Hence, wi is moved from N to D′′.

An example of this is a term GESS which is very close phonetically to guess but is actually a domain
term. Hence it has a much higher frequency and rank than the dictionary word guess. Hence a correction
would not be appropriate in this case. Rather the word should be retained as it is.

If the difference in relative frequencies between wj and wi are low, then we further check the value of
ds along with the cosine similarity between their word vector representations, Sim(wv

i , w
v
j). If ds>θ2

and Sim(wv
i , w

v
j) ≤ θ3, then we infer that wi is a domain term. The class number of a word captures

its relative significance in a repository, independent of the actual frequency values. This value is used to
control the identification of unknown words in a cautious fashion by imposing the following restriction -
an unknown or error word which has a higher class in N is not allowed to be identified as a misspelling
of a word belonging to a lower class in V indiscriminately. This is the key feature of the proposed work
that enables detection of domain words correctly. The cosine similarity of word vectors further establish
the contextual similarity, since the neighbours of a word are taken into consideration while constructing
the embeddings. Occurrences of terms like STURCTURE which is a very common typos for the intended
term STRUCTURE are corrected at this stage since both the terms have same phonetic representation
and also a substantial overlap in their context.

Figure 2: A part of N as
phoneme wise sorted, bal-
anced binary search tree

Step 3 - Now, we concentrate on the words in N which do not have an
exact but approximately phonetically similar counterpart in V. Some of
these words may also be domain words while others may be errors. N is
alphabetically sorted based on the phonetic representation strings by rep-
resenting it as a Red-Black tree which is self-balancing binary search tree
and sorted based on the natural ordering of the keys (here, phonetic repre-
sentation string of the words are the key). All words that have matching
phonemes in first two positions are grouped together through obtaining the
sub tree (in-order traversal) whose key ranges are specified by the above
condition i.e. matching of first two characters. Function 6 depicts this
where ξ is the approximation constraint and set to two in this work (as we
are matching first two characters of the phonetic representations).

Thus N gets divided into several smaller subsets. Figure 2 shows a
portion of the above mentioned tree and the smaller subsets obtained are
shown in curly brackets along with their matched phonemes in first two po-
sitions. For each subset Ni ∈ N, we now compute pair-wise Jaro-wrinkler
distance between the words as well as between their phonetic representations, the cosine-similarities of
their character and word vector representations. These measures are then used to construct tightly con-
nected graphical components over the text representation space, such that each node in this graph may
be considered as altered representations of each other. Thus, from the three subsets in Figure 2, the fol-
lowing three updated subsets are obtained. {screenhot, screenshot, screeenshot, screenshots, scrrenshot,
screesnhot, screeshot}, {structue, sturcture, struture}, {timesheet, timesheetr, timeshhets, tiemsheets}.
If any of these nodes now represent a word which has already been identified as a noisy representation of
a dictionary word, i.e. ∈ E′, then all words in this component are also moved to E′. This is repeated for
all subsets containing phonetically similar words. These words are removed from their corresponding

197

subsets in N. For example, from the above mentioned subsets consider the second subset, sturcture has
been identified earlier and structure is suggested as correction. So, now both struture, structue are iden-
tified as errors with structure as suggested correction. Thus, the terms whose phonetic representations
are not exactly same as that of any dictionary word but are typos, are corrected appropriately now.

Algorithm 1: IdentifyCorrect
Input : Corpus tokens, C
Output: D′,D′′,E′,E′′

1 {N,V} ← segregate words in C
2 for w ∈ C do
3 {wf , wr, w

v, wc, ph(w)} ← compute features(w)

4 WN ← PlotFitBreak(N)

5 WV ← PlotFitBreak(V)

6 for w ∈ N and w′ ∈ V do
7 Efficient phonetic match s.t. ph(w) = ph(w′)

8 if JW (w,w′)>α1 and Sim(wc, w′c)>α2 then
9 if (wf>w

′
f) then

10 wN
i ← get class number of w from WN

11 w′Vi ← get class number of w′ from WV

12 wtype ← AnalyseRelativeDifference(w,w′, wN
i , w

′V
i ,

13 wf , w
′
f , Sim(wv, w′v))

14 if wtype is domain then
15 D′′ ← w
16 else
17 E′ ← w and w′ is correction for w

18 Represent N as phonetic representation-wise sorted balanced binary search
tree

19 for w ∈ N do
20 A← GetApproxPhonemeMatch(w,N, ξ)
21 for w′ ∈ A do
22 if JW (w,w′)>β1 and Sim(wc, w′c)>β2 and

23 Sim(wv, w′v)>β3 and JW (ph(w), ph(w′))>β4 then
24 Y ← {w,w′}
25 Compute set X containing all such set Y which contains spelling wise,

phonetically and contextually consistent non-dictionary terms
26 for Z ∈ X do
27 if ∃w ∈ Z s.t. w ∈ E′ then
28 Move all other words of Z to E′ with correction equal to

correction of w and remove Z from X
29 for Z ∈ X do
30 w is the word with maximum frequency wf in Z
31 if |Z| ≥ 3 then
32 if wf is sufficiently large than frequencies of other words in Z

using Grubbs’ test then
33 D′′ ← w and E′′ ← (Z− {w})
34 if |z| = 2 then
35 if RelDiffLargeRange(wf , w

′
f))>γ where w,w′ ∈ z then

36 D′′ ← w and E′′ ← w′

37 for w ∈ E′ ∪ E′′ do
38 Replace w with its correction w′ and update frequency of w′

39 N′ ← update N

40 V′ ← update V

41 WN′ ← PlotFitBreak(N′)

42 WV′ ← PlotFitBreak(V′)

43 D′ ← get words from first two classes from WV′

44 D′′ ← D′′ ∪ get words from first two classes from WN′

For the remaining non-empty subsets that
have cardinality greater than two, the frequency
distribution of the words within the subset is
generated and tested for anomaly detection us-
ing Grubbs’ test (Grubbs and others, 1950). If
Grubb’s test detects the highest frequency word
as an anomaly, then the word is considered as
a domain term and is moved to D′′ while the
others are considered as erroneous representa-
tions of it and moved to E′′. For subsets with
two elements we apply Equation 2 which com-
putes relative difference between the frequencies
with threshold γ which is set to be 0.75 in this
work, and apply the same logic as earlier to de-
cide whether a term is a domain term and move
it accordingly to D′′. Otherwise we keep it as
it is in N since no correction can be suggested
for it. Continuing from the earlier example,
thus, screenshot and timesheet are now recog-
nised as non-dictionary domain term (which are
very common in many enterprise repositories)
respectively from the first and third sub set and
the other words are identified as misspelling of
the recognised domain term and suggested cor-
rection accordingly.

Step 4 - Finally, the identified erroneous terms
in E′ and E′′ are replaced by their candidate
corrections in the corpus. The entire corpus
is again segregated into dictionary and non-
dictionary terms (say V′, N′ respectively) and
Jenk’s classes are once again generated as ear-
lier. Finally, the words belonging to the two
highest ranked classes of V′ are considered as
domain dictionary terms and maintained as D′

while the corresponding terms from N′ are in-
ferred as non-dictionary domain terms and moved to D′′. The execution of the algorithm is presented in
Algorithm 1.

4.4 Time complexity analysis:

The algorithm is designed and implemented efficiently. At every step, we have reduced comparisons by
applying the different similarity checking functions in a hierarchical fashion as discussed in Steps 1 – 4
earlier. By grouping the dictionary words according to their phonetic representation and keeping them
in an hash table with the phonetic representation code as key, the search for phonetically similar words
is accomplished in O(1) time. The hash sets are typically small. Application of the conditions based
on high Jaro-wrinkler and character vector similarities, reduces the set of possible terms for candidate
matches for an error term even further. The cosine similarity computation to check for contextual simi-
larity is therefore conducted between very few pairs of words only. For efficient computation of line 19,

198

the non-dictionary words and their phonetic code are stored in a sorted tree map, where the sub map is
retrieved based on the approximation constraint for each non-dictionary word, which takes O(log(m′′))
time assuming that the sub map contains m′′ number of non-dictionary terms where m′′ � m, assuming
m to be the cardinality of N, hence the total time is (m ∗ log(m′′)).

Algorithm 2: PlotFitBreak
Input : Set of words: W
Output: Set containing every word from W with its class number

1 Plot rank versus frequency in log-log scale within W
2 Apply linear regression on the plot
3 Compute standard error of the regression
4 Compute Jenks natural breaks on the standard error iteratively (starting

from 2) until the goodness of variance fit reaches to η
5 Mark the class number of the words in W according to the natural

breaks

Algorithm 3: AnalyseRelativeDifference
Input : Non-dictionary word: w, dictionary word: w′, class number of the

words: wN
i , w

′V
i , frequency of the words: wf , w

′
f , cosine

similarity between the word vectors of w,w′: Sim(ww, w′w)
Output: Type of a word - domain or not

1 if RelDiffLargeRange(wf , w
′
f) ≥ θ1 then

2 w is a domain word
3 else if RelDiffSmallRange(wN

i , w
′V
i) ≥ θ2 and Sim(ww, w′w) ≤ θ3

then
4 w is a domain word

Algorithm 4: RelDiffLarg-
eRange

Input : Frequencies of words: wf , w
′
f

Output: Relative difference between wf , w
′
f : d

1 max← getMaximum(wf , w
′
f)

2 min← getMinimum(wf , w
′
f)

3 d← σ(log10(max)− log10(min)),
σ(x) = ex

ex+1

Algorithm 5: RelDiffSmall-
Range

Input : Class number of words: wN
i , w

′V
i

Output: Relative difference between
wN

i , w
′V
i : d

1 max← getMaximum(wN
i , w

′V
i)

2 min← getMinimum(wN
i , w

′V
i)

3 d← σ(ln(max−min
min)), σ(x) = ex

ex+1

Algorithm 6: GetApprox-
PhonemeMatch

Input : A word: w, sorted, balanced binary
search tree: W, approximation
constraint: ξ

Output: Set of words: W′

1 W′ ← Return the sub tree from W whose
key ranges from first letter of ph(w) to the
number of letters specified in ξ

2 W′ ←W′ ∪ w

5 Results

This section presents the results and evaluation of our techniques. We have done manual evaluation
for error correction as well as performed experiments to show that noise cleaning indeed enhances the
performance of classification. We have done all of these for 7 sets of enterprise data. We also applied
our method on 3 hate speech data sets to detect distortions of slang words. For these sets also we report
enhancement in classification performance after correction of errors.

Data set description: Dataset 1 to dataset 7 are internal enterprise data sets pertaining to different do-
main such as, risk, contigency, finance, banking and HR. These data sets contain internal organizational
mails, communications, customer complaints, customer requests. The other five data sets are as follows.
i) Dataset 8: This data set (Weissenbacher et al., 2018) contains tweets mentioning different drug names,
their side effects. ii) Dataset 9: This data set contains customer complaints with multi-label annotation
in telecom domain (Dasgupta et al., 2016). The complaints has been generated within India. Dataset
10: This Offensive Language Identification Dataset (OLID) (Zampieri et al., 2019) contains annotated
offensive social media content. iii) Dataset 11: This data set (Davidson et al., 2017) contains tweets with
racist, sexist, homophobic and offensive content. Although this dataset contains annotations, we did not
consider the annotations. iv) Dataset 12: This dataset (de Gibert et al., 2018) contains posts extracted
from Stormfront, a white supremacist forum. This data set is annotated, however, we have used those
texts which are annotated as hate speech. One of the evaluation criteria was downstream task of classi-
fication to show that the noise cleaning actually enhances the classification performance. Of the above,
data sets 5, 6, 7, 9 and 10 are labeled. For these we present results for classification before and after
cleaning. Classification has been done using Gradient Boosting classifier. Dataset 9 is multi-labeled,
hence has been classified using Multilabel k Nearest Neighbours classifier. Classification results are
presented using accuracy, precision, recall and F1-Scores.

Performance evaluation: All these experiments were run on a standard machine with Intel R© CoreTM

i7-4600U CPU @ 2.10GHz 4 with 15.6 GiB memory having 64-bit ubuntu 18.04 LTS operating system.
Error correction results were manually evaluated for subsets of words for all the 12 data sets and the
performance is presented in Table 2. The evaluation was done against annotated set with given ground
truths. The table shows that the precision of correction is very high at around 90%. Analysis shows
that most of the unresolved error words are names of people and places, land marks and house/building
names etc. sometimes as a part of main text or signature in case of emails. These usually have very low

199

Da
ta
Set

Domain
of
docu-
ments

Corpus
Tokens

Unique
Non-
Dictionary
Terms

Domain
Dictionary

Terms

Error Terms

Reso-
lved

Domain Terms Misspelling of
Dictionary Terms

Misspelling of
NonDictionary Terms

Detected Correct(%) Detected Correct(%) Detected Correct(%) Detected Correct(%)
1 Risk 9942 7211 3022 27 27(100%) 1457 565 546(97%) 760 636(84%) 132 124(94%)
2 Contigency 9942 6640 2525 142 139(98%) 1067 505 495(98%) 481 438(91%) 81 74(91%)
3 Risk 9387 5251 1934 100 100(100%) 746 317 303(96%) 387 367(95%) 42 32(76%)
4 Contigency 9387 5448 1965 165 165(100%) 626 240 233(97%) 353 325(92%) 33 29(88%)
5 Finance 2147 5865 3967 29 29(100%) 1092 447 430(96%) 427 316(74%) 218 158(73%)
6 Banking 2360 6843 4122 41 41(100%) 766 137 131(96%) 431 356(83%) 198 135(68%)
7 HR 16357 12201 7309 67 67(100%) 3272 381 369(97%) 2261 1884(84%) 630 339(62%)
8 Twitter 5383 10766 5192 1157 1130(98%) 370 150 143(95%) 220 170(77%) - -
9 Telecom 5394 17263 10009 130 129(99%) 4102 255 236(93%) 3105 2403(77%) 772 567(73%)
10 Offensive 13241 17784 5973 225 225(100%) 619 287 266(93%) 243 217(89%) 89 75(84%)
11 Hate tweet 24783 32552 21228 505 498(99%) 5701 2208 1933(88%) 2718 236(91%) 775 719(93%)
12 Hate post 958 3382 588 598 597(100%) 179 144 135(94%) 35 29(83%) - -

Table 2: Manual evaluation of domain and error term detection and correction for the error terms

Perfor-
mance

Multi Class Multi-label
Dataset5
(Finance)

Dataset6
(Banking)

Dataset7
(HR)

Dataset10
(Offensive)

Dataset9
(Telecom)

raw clean raw clean raw clean raw clean raw clean
Pre-
cision 0.924 0.96 0.425 0.5 0.878 0.89 0.79 0.8 0.54 0.58

Recall 0.922 0.96 0.418 0.47 0.849 0.87 0.63 0.66 0.32 0.38
F1-
Score 0.923 0.96 0.421 0.48 0.863 0.88 0.7 0.72 0.409 0.46

Acc-
uracy 0.927 0.96 0.444 0.48 0.855 0.89 0.75 0.77 0.44 0.46

Table 3: Classification performance of the data sets with and without cleaning

frequencies and high variance. Table 3 present the classification performance (before and after cleaning)
showing that performance is enhanced (around 3-13%) after cleaning.

Non-dict-
ionary term

Phonetic
code JW(t,t’) Sim (tv, t′v) Sim(tc, t′c)

motherfuckin M0RFKN 1 1 1
motherfuckas M0RFKS 0.93 0.75 0.88
mufuckin MFKN 0.84 0.97 0.74
muthafucka M0FK 0.78 0.96 0.83
mothafucka M0FK 0.89 0.94 0.9
muthafuckin M0FKN 0.87 0.97 0.89
mothafuckin M0FKN 0.95 0.92 0.97
muthafukin M0FKN 0.84 0.94 0.9
muhfuckin MFKN 0.87 0.86 0.85
muthaufckin M0FKN 0.84 0.76 0.89
muhhfuckin MFKN 0.84 0.96 0.88

Table 4: Non-dictionary slang (in bold and de-
noted as t’) along with its different distorted ver-
sions (denoted as t) are detected from a hate
speech data set (Dataset11)

Table 4 presents a slang term in row 1 and it’s
distortions encountered very often in hate speech
data (dataset 11). It is purposefully distorted to
avoid automatic detection by word-based filters.
Columns 2 - 5 in this table show that no single dis-
tance measure would be able to capture these, since
they vary a lot from the original term. Our multi-
pronged approach are able to detect these types of
distortions also very well. Hence this approach can
be more effective in detecting such terms from so-
cial media.

6 Conclusion

This work presents an efficient method for iden-
tifying domain terms over true noise terms from
enterprise text and thereafter clean the text appropriately to enhance performance of text analytics pro-
grams. The methods, though empirical, have been derived after careful analysis of many large enterprise
repositories. Experimental evaluation shows that the method proposed is highly accurate in determining
domain terms and also correct errors. The effectiveness of the approach is also established through im-
provement in classification accuracy after correction. Though designed for enterprise text, it was found
that the method can be very fruitfully engaged in detecting errors in hate speech data originating in so-
cial media. Since these words are deliberately distorted, the errors in this case do not follow any specific
pattern and are more difficult to determine. We have shown that our combined approach performs very
well in such scenarios also. We are now working on formalizing the error detection and correction in
enterprise text as an optimization problem. We are also working on an interactive system such that the
method can receive rewards for a correct action and penalized for a wrong one. This can be effectively
used for designing better systems which can utilize reinforcement learning for cleaning enterprise text.
Detecting and removing names and other low frequency errors is also on the agenda.

200

References
Zhuowei Bao, Benny Kimelfeld, and Yunyao Li. 2011. A graph approach to spelling correction in domain-centric

search. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 905–914.

Eric Brill and Robert C Moore. 2000. An improved error model for noisy channel spelling correction. In Pro-
ceedings of the 38th annual meeting of the association for computational linguistics, pages 286–293.

Tirthankar Dasgupta, Lipika Dey, and Ishan Verma. 2016. Fuzzy multi-label classification of customer complaint
logs under noisy environment. In International Joint Conference on Rough Sets, pages 376–385. Springer.

Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017. Automated hate speech detection
and the problem of offensive language. In Proceedings of the 11th International AAAI Conference on Web and
Social Media, ICWSM ’17, pages 512–515.

Ona de Gibert, Naiara Perez, Aitor Garcı́a-Pablos, and Montse Cuadros. 2018. Hate Speech Dataset from a White
Supremacy Forum. In Proceedings of the 2nd Workshop on Abusive Language Online (ALW2), pages 11–20,
Brussels, Belgium, October. Association for Computational Linguistics.

Lipika Dey and Gargi Roy. 2015. Auto-correction of consumer generated text in semi-formal environment. In 7th
Language and Technology Conference: Human Language Technologies as a Challenge for Computer Science
and Linguistics. Fundacja Uniwersytetu im. Adama Mickiewicza w Poznaniu, pages 203–207.

Intuition Engineering. 2019. Chars2vec: Character-based language model for handling real world texts with
spelling errors and human slang.

Pieter Fivez, Simon Suster, and Walter Daelemans. 2017. Unsupervised context-sensitive spelling correction of
clinical free-text with word and character n-gram embeddings. In BioNLP 2017, pages 143–148.

Michael Flor, Michael Fried, and Alla Rozovskaya. 2019. A benchmark corpus of English misspellings and a
minimally-supervised model for spelling correction. In Proceedings of the Fourteenth Workshop on Innova-
tive Use of NLP for Building Educational Applications, pages 76–86, Florence, Italy, August. Association for
Computational Linguistics.

Michael Flor. 2012. Four types of context for automatic spelling correction. TAL, 53(3):61–99.

Hongyu Gong, Yuchen Li, Suma Bhat, and Pramod Viswanath. 2019. Context-sensitive malicious spelling error
correction. In The World Wide Web Conference, pages 2771–2777.

Frank E Grubbs et al. 1950. Sample criteria for testing outlying observations. The Annals of Mathematical
Statistics, 21(1):27–58.

Matthew A Jaro. 1989. Advances in record-linkage methodology as applied to matching the 1985 census of tampa,
florida. Journal of the American Statistical Association, 84(406):414–420.

G.F. Jenks. 1977. Optimal data classification for choropleth maps: George F. Jenks. Occasional paper. University
of Kansas. Department of Geography.

Kenneth H Lai, Maxim Topaz, Foster R Goss, and Li Zhou. 2015. Automated misspelling detection and correction
in clinical free-text records. Journal of biomedical informatics, 55:188–195.

Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet
physics doklady, volume 10, pages 707–710.

Yang Li, Bo Zhao, Ariel Fuxman, and Fangbo Tao. 2018. Guess me if you can: Acronym disambiguation
for enterprises. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1308–1317.

Chris J Lu, Alan R Aronson, Sonya E Shooshan, and Dina Demner-Fushman. 2019. Spell checker for consumer
language (cspell). Journal of the American Medical Informatics Association, 26(3):211–218.

Christopher D Manning, Christopher D Manning, and Hinrich Schütze. 1999. Foundations of statistical natural
language processing. MIT press.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781.

201

Lawrence Philips. 2000. The double metaphone search algorithm. C/C++ users journal, 18(6):38–43.

Eric Sven Ristad and Peter N Yianilos. 1998. Learning string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5):522–532.

Martin Schierle, Sascha Schulz, and Markus Ackermann, 2008. From Spelling Correction to Text Cleaning –
Using Context Information, pages 397–404. 01.

Mohammad Shakir, Gargi Roy, Aninda Sukla, Tirthankar Dasgupta, Geetika Sharma, and Lipika Dey. 2019.
Framework for analyzing and improving quality of available data for enterprise automation tasks. In DCCL
workshop at ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

L Venkata Subramaniam, Shourya Roy, Tanveer A Faruquie, and Sumit Negi. 2009. A survey of types of text noise
and techniques to handle noisy text. In Proceedings of The Third Workshop on Analytics for Noisy Unstructured
Text Data, pages 115–122.

Leo Törnqvist, Pentti Vartia, and Yrjö O Vartia. 1985. How should relative changes be measured? The American
Statistician, 39(1):43–46.

Guy C Van Orden. 1987. A rows is a rose: Spelling, sound, and reading. Memory & cognition, 15(3):181–198.

Rose-Marie Weber. 1970. A linguistic analysis of first-grade reading errors. Reading Research Quarterly, pages
427–451.

Davy Weissenbacher, Abeed Sarker, Michael Paul, and Graciela Gonzalez. 2018. Overview of the third social
media mining for health (smm4h) shared tasks at emnlp 2018. In Proceedings of the 2018 EMNLP Workshop
SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task, pages 13–16.

William E Winkler. 1990. String comparator metrics and enhanced decision rules in the fellegi-sunter model of
record linkage.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh Kumar. 2019. Pre-
dicting the Type and Target of Offensive Posts in Social Media. In Proceedings of NAACL.

George Kingsley Zipf. 1932. Selected studies of the principle of relative frequency in language.

