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Abstract

In coreference resolution, span representations
play a key role to predict coreference links ac-
curately. We present a thorough examination
of the span representation derived by applying
BERT on coreference resolution (Joshi et al.,
2019) using a probing model. Our results show
that the span representation is able to encode a
significant amount of coreference information.
In addition, we find that the head-finding atten-
tion mechanism involved in creating the spans
is crucial in encoding coreference knowledge.
Last, our analysis shows that the span represen-
tation cannot capture non-local coreference as
efficiently as local coreference.

1 Introduction

Coreference resolution, the task of grouping all
referring expressions that point to the same entity
into a cluster, plays a key role for various higher
level NLP tasks that involve natural language un-
derstanding such as information extraction, ques-
tion answering, machine translation, text summari-
sation, and textual entailment. Referring expres-
sions or mentions can be common nouns, proper
nouns, or pronouns, which refer to a real-world
entity known as the referent.

With the breakthrough of end-to-end neural sys-
tems (Lee et al., 2017), current coreference reso-
lution systems are for the most part neural based.
Contrary to previous architectures which identified
mentions and then took coreferential decisions in
two separate steps, these systems jointly learn the
two. A typical system requires different levels of
semantic representation of the input sentences, usu-
ally done by computing representations at the span
level given the word embeddings.

In another area, a wave of recent work has tried
to inspect neural NLP models by associating neural
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network components with distinct linguistic phe-
nomena by means of probing tasks (Shi et al., 2016;
Liu et al., 2019a; Tenney et al., 2019).

Targeting the coreference task, in this paper, we
build a probing model (Tenney et al., 2019; Liu
et al., 2019a) to find out what degree of coref-
erence information is encoded in the span repre-
sentations as first proposed by Lee et al. (2017).
Specifically, we generate mention-span represen-
tations with BERT embeddings fine-tuned on the
OntoNotes dataset (Pradhan et al., 2012) and train a
probing model to predict coreference arcs between
two mentions from the mention-span representa-
tions alone. Moreover, we explore how fine-tuning
BERT (Devlin et al., 2019) on coreference resolu-
tion affects the linguistic knowledge learned by the
span representations. Given the well-documented
difficulty in modelling long-distance coreference
relations, we also measure the robustness of the
span representations at different distance ranges
between mentions.

Our probing models consistently achieve > 90%
accuracy and F1, suggesting that span representa-
tions encode a significant amount of coreference
information. Besides, they show that fine-tuning a
BERT model greatly helps with encoding corefer-
ence relations. By ablating components of the span
representation, we also find that the head-finding
attention mechanism plays a crucial part in encod-
ing important coreference information. Finally, we
show that despite using a fine-tuned BERT, the span
representations cannot capture non-local corefer-
ence relation efficiently. Our implementation is
publicly available1.

1https://github.com/pkhdipraja/
exploring-span-representations

https://github.com/pkhdipraja/exploring-span-representations
https://github.com/pkhdipraja/exploring-span-representations
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2 Related Work

2.1 Span-Ranking Architecture
In this paper we focus on the span representation
used in span-ranking models (Lee et al., 2017,
2018; Joshi et al., 2019) and examine their capa-
bility to encode the necessary information to make
coreference decisions.

Lee et al. (2017) proposed an end-to-end corefer-
ence resolution model that learns to jointly model
mention detection and coreference prediction using
span-ranking. However, the model only computes
scores between pairs of entity mentions. In an at-
tempt to improve the weakness of this approach,
Lee et al. (2018) proposed a model that captures
higher-order interactions between mention spans in
predicted coreference clusters. The model refines
existing span representations iteratively with the
antecedent distribution as an attention mechanism.
We further refer to this model as c2f-coref.

Joshi et al. (2019) proposed to replace the bidi-
rectional LSTM encoder in c2f-coref with BERT
transformers and fine-tune it for coreference resolu-
tion. Although BERT improves the state-of-the-art
results in other NLP tasks significantly (Devlin
et al., 2019), coreference resolution still proves to
be a challenging task, as the BERT encoder offers a
marginal performance increase only. Furthermore,
the model still struggles in modelling pronouns
and resolving cases where mention paraphrasing is
required. We further refer to this model as BERT-
coref.

2.2 Probing Tasks
The most common method to explore linguistic
properties in neural network components is by
using the hidden state activations to predict the
property of interest, also known as “probing tasks”
(Conneau et al., 2018) or “auxiliary prediction
tasks” (Adi et al., 2016). Shi et al. (2016) use the in-
ternal representations of an LSTM encoder as input
to train a logistic regression classifier that predicts
various syntactic properties. Conneau et al. (2018)
study the linguistic properties of fixed-length sen-
tence encoders with a bidirectional LSTM and
gated convolutional networks.

Liu et al. (2019a) explore representations pro-
duced by pre-trained contextualisers and demon-
strate that frozen contextual representations fed
into linear models can show similar levels of per-
formance as state-of-the-art task-specific models
on many NLP tasks. They also used the corefer-

ence arc prediction task, whereby linear models
are used to predict whether two mentions corefer.
The coreference arc prediction was already used
by Soon et al. (2001) as a part of the mention-pair
model, where it is used with heuristic procedures
to merge coreference chains.

Tenney et al. (2019), on their part, introduced
the edge probing framework, which focuses on
linguistic analysis on sub-sentence level. Their ap-
proach relies on a FFNN model with a projection
layer and an attention mechanism on top of frozen
contextual vectors to predict linguistic properties.
Clark et al. (2019) further extended the probing-
based approach by proposing attention-based prob-
ing classifiers and show that the attention heads in
BERT correspond to linguistic notions of syntax
and coreference.

Our approach is most similar to Liu et al. (2019a)
and Tenney et al. (2019), but we use the span rep-
resentation learned from Lee et al.’s 2017 coref-
erence resolution model and focus on examining
coreference phenomena. Note that we use the coref-
erence arc prediction task as a tool to understand
the span representation better, we do not do coref-
erence resolution. Compared to Liu et al. (2019a)
who consider single-token mentions only, we use
mention-spans to predict coreference arcs. We also
compare the span representation against a baseline
span representation obtained from pre-trained con-
textual word embeddings (Tenney et al., 2019).

3 Probing Mention-Span
Representations

3.1 Span Representations

Span representations are key in span-ranking mod-
els since they are used to compute a distribution
over candidate antecedent spans. In order to pre-
dict coreference relations accurately, a span rep-
resentation should also capture information about
the span’s internal structure and its surrounding
context. For our experiments, we construct span
representations as proposed by Lee et al. (2017),
but with BERT embeddings (Devlin et al., 2019)
instead of an LSTM-based encoder to encode the
lexical information of a span and its context, fol-
lowing Joshi et al. (2019). A span representation
is a vector embedding which consists of context-
dependent boundary representations with an atten-
tional representation of the head words over the
span. The boundary representations are composed
of the first and last wordpieces of the span itself.
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The head words are automatically learned using ad-
ditive attention (Bahdanau et al., 2015) over each
wordpiece in a span:

αt = wwwα · FFNNα(xxx
∗
t )

ai,t =
exp(αt)

end(i)∑
k=start(i)

exp(αk)

x̂xxi =

end(i)∑
t=start(i)

ai,t · xxxt

where x̂xxi is a weighted vector representation of
wordpieces for span i. This representation is aug-
mented by a Rd feature vector which encodes the
size of span i with d = 20. The final representation
gggi for span i is formulated as follows:

gggi = [xxx∗start(i),xxx
∗
end(i), x̂xxi, φi]

where xxx∗start(i) and xxx∗end(i) are first and last word-
pieces of a span, and φi is the span width embed-
ding.

3.2 Coreference Arc Prediction
We focus on the coreference arc prediction task,
which is a part of the probing tasks suite for con-
textual word embeddings. In this task, a probing
model is trained to determine whether two men-
tions refer to the same entity. We produce nega-
tive samples following the approach by Liu et al.
(2019a). For every pair of gold mentions (wi, wj),
where they belong to the same gold coreference
cluster and wi is an antecedent of wj , we generate
a negative example (wrandom, wj) where wrandom
is randomly sampled from a different coreference
cluster.

This method ensures a balanced ratio between
positive and negative examples. The negative ex-
amples do not contain any singleton mentions, as
in OntoNotes only coreferential mentions are anno-
tated. We also follow the approach of Tenney et al.
(2019) by using spans of wordpieces for mentions,
as Liu et al.’s approach is limited to single-token
mentions and therefore unable to fully exploit avail-
able information in a mention-span.

3.3 The Probing Model
Our probing model is a simple feed-forward neural
network (FFNN), which is designed with a limited
capacity to focus on the information that can be ex-
tracted from the span representations. As input to

the model, we take a span representation for a pair
of mention-spans ggg1 = [xxx∗start(1),xxx

∗
end(1), x̂xx1, φ1]

and ggg2 = [xxx∗start(2),xxx
∗
end(2), x̂xx2, φ2], where both ggg1

and ggg2 are concatenated and passed to the FFNN.
The FFNN consists of a single hidden layer fol-
lowed by a sigmoid output layer. The model is
trained to minimise binary cross-entropy with re-
spect to the gold label Y ∈ {0, 1}. The probing
architecture is depicted in Figure 1.

We obtained the mention-span representations
from BERT, a language representation model based
on the Transformer architecture (Vaswani et al.,
2017), trained jointly with a masked language
model and next sentence prediction objective. It
enables significant improvement in many down-
stream tasks with relatively minimal task-specific
fine-tuning. To study the quality of mention-span
representations, we extract mention-span embed-
dings from BERT-base (12-layer Transformers,
768-hidden) and BERT-large (24-layer Transform-
ers, 1024-hidden) pre-trained models. Furthermore,
we compare these original BERT models with fine-
tuned variants, with the purpose to assess any fine-
tuning effect on the quality of the span representa-
tions.

4 Experiments

4.1 Dataset

We use the coreference resolution annotation
from the CoNLL-2012 shared task based on the
OntoNotes dataset (Pradhan et al., 2012). The
dataset is split into 2,802 training documents, 343
validation documents, and 348 test documents. On
average, the training documents contain 454 words.
The largest document contains a maximum of 4,009
words. Since OntoNotes only provides annotations
for positive examples, we generate our own nega-
tive examples (§3.2).

4.2 Implementation Details and
Hyperparameters

We extend the original Tensorflow implementation
of BERT-coref 2 in order to build our probing model
with Keras frontend (Chollet et al., 2015). Our
probing model is trained for 50 epochs, using early
stopping with patience of 3 and batch size of 512.
For optimisation, we use Adam (Kingma and Ba,
2015) with a learning rate of 0.001. The weights

2https://github.com/mandarjoshi90/
coref

https://github.com/mandarjoshi90/coref
https://github.com/mandarjoshi90/coref
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I voted for President Obama because he cares
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Figure 1: The probing architecture for span representations. The feed-forward neural network is trained to extract
information from span representations ggg1 and ggg2, while all the parameters inside the dashed line are frozen. The
example depicts a mention-pair, where ggg1 corresponds to span representation of ”President Obama”, while ggg2
corresponds to ”he”. We predict Ŷ as positive for this example.

of the probing model are initialised with Kaim-
ing initialisation (He et al., 2015) and the size of
the hidden layer is d = 1024 with rectified lin-
ear units (Nair and Hinton, 2010). As mentioned
previously, we use both a pre-trained BERT (origi-
nal) model without fine-tuning the encoder weights
and a BERT model that has been fine-tuned on the
coreference resolution task (i.e., on OntoNotes an-
notations). For the fine-tuned BERT model, we
take the models that yield the best performance
for Joshi et al. (2019), which were trained using
128 wordpieces for BERT-base and 384 wordpieces
for BERT-large. The fine-tuned model is trained
using split OntoNotes documents where each seg-
ment non-overlaps and is fed as a separate instance.
This is done as BERT can only accept sequences of
at most 512 wordpieces and typically OntoNotes
documents require multiple segments to be read
entirely. In all of our experiments, we use the cased
English BERT models. We will further refer to
the base and large variants as BERT-base c2f and
BERT-large c2f respectively.

4.3 Baseline

As our baseline, we use the span representation
introduced in the edge probing framework (Ten-
ney et al., 2019). First of all, we take concate-
nated contextual embeddings for a pair of mention-
spans e(1) = [x

(1)
1 , x

(1)
2 , x

(1)
3 , ..., x

(1)
n ] and e(2) =

[x
(2)
1 , x

(2)
2 , x

(2)
3 , ..., x

(2)
n ] as inputs. We then project

the concatenated contextual embeddings e(1) and
e(2) to improve performance following Tenney et al.
(2019):

e(i) = Ae(i) + b

where i = (1, 2), A and b are weights of the projec-
tion layer. Afterwards, we apply the self-attentional
pooling operator in §3.1 over the projected repre-
sentations to yield fixed-length span representa-
tions.

This helps to model head words for each
mention-span. These mention-span representations
are then concatenated and passed to the probing
model to predict whether they corefer or not. We
use shared weights for both projection and self-
attentional layer so that the model can learn the sim-
ilarity between representations of mention-spans.
It is important to note that the self-attention pooling
is computed only using tokens within the bound-
ary of the span. As a result, the model can only
access information about the context surrounding
the mention-span through the contextual embed-
dings. We take the contextual embeddings from
activations of the original pre-trained BERT final
layer, while freezing the encoder.

We compare the span representation used in the
span-ranking model against the baseline, as it mea-
sures the performance that the probing model can
achieve with representations that are constructed
from lexical priors alone, without any access to
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the local context within the mention-spans. The
resulting baseline span representation have a di-
mension of d = 768 for BERT-base and d = 1024
for BERT-large.

4.4 Long-range Coreference

In order to investigate whether the span represen-
tation is able to capture long-range coreference
relations, we extend our baseline by introducing a
convolutional layer to incorporate surrounding con-
text and improve the baseline span representation,
following Tenney et al. (2019).

We replace the projection layer in our probing
architecture with a fully-connected 1D CNN layer
with a kernel width of 3 and 5, stride of 1 and
same padding to properly include contextual em-
beddings at the beginning and at the end of each
mention-span. This is equivalent to seeing ±1 and
±3 tokens around the centre word respectively. We
also initialise the weights of the CNN layer with
Kaiming initialisation (He et al., 2015). Using this
extended probing architecture with a CNN layer as
another baseline, which we will refer to as CNN-
baseline, enables us to examine the contribution of
local and non-local context to the performance of
the probing model.

We then test our probing model with various dis-
tances between mention-spans. We separate pairs
of mention-spans that appear in the OntoNotes test
set into several buckets, based on the distance be-
tween the last token of the mention-span wi and
the first token of the mention-span wj , where wj
occurs after wi. Each bucket contains at least 50
examples of pairs of mention-spans.

4.5 Control Tasks

To ensure that our probing model is robust, we com-
pare its performance with a control task (Hewitt
and Liang, 2019). For every pair of mention-spans
(ggg1, ggg2), we replace one of the span representations
gggi with another ggg′i randomly sampled from the data
set. Note that in this control task, some informa-
tion of the original mention-pairs is still preserved
as the other span representation in the pair is not
replaced.

5 Results and Discussion

5.1 Comparison of Probing Models

Table 1 compares the performance of the probing
model using span representations fine-tuned on the

OntoNotes dataset against baseline span representa-
tions and a CNN-baseline that utilises the original
pre-trained BERT encoder. The results of the con-
trol task are reported in the bottom two lines.

The probing model suggests that span representa-
tions in BERT-coref encode a significant amount of
coreference information, as we are able to train the
model to predict whether a pair of mention-spans
corefer based on their span representations alone.
Both BERT-base c2f and BERT-large c2f consis-
tently score above 90% (accuracy and F1 score) on
the OntoNotes test set.

We observe that both BERT-base c2f and BERT-
large c2f perform better in predicting coreference
arc between a pair of mention-spans compared to
their respective baselines (by 2.37 points for accu-
racy and 2.18 F1 points on average). We find that,
although training the contextual probing model to
learn contextual features for coreference arc pre-
diction helps to encode the necessary coreference
information into the baseline span representations,
it still cannot outperform the probing model that
utilises span representations in BERT-coref. This is
likely caused by better coreference-related features
that are learned by the BERT encoder when it is
fine-tuned on OntoNotes.

We also see that fine-tuning the span representa-
tions on coreference resolution task helps encode
local and long-range context inside the mention-
spans efficiently. This can be observed from the
performance of CNN-baseline, where the probing
model is trained using a 1D CNN layer with kernel
width of 3 and 5 to allow the model to see the con-
tribution of local and long-range dependencies, but
ultimately still underperforms compared to BERT-
coref.

Surprisingly, our baseline span representations
which were constructed from only lexical priors
perform better compared to the CNN-baseline span
representations on both metrics. We attribute this to
our decision of using contextual embeddings from
the final layer of pre-trained BERT, as most trans-
ferable representations from contextual encoders
trained with a language modelling objective tend
to occur in the intermediate layers, and that the
topmost layers might be overly specialised for next-
word prediction (Liu et al., 2019a; Peters et al.,
2018a,b; Blevins et al., 2018; Devlin et al., 2019).
This might cause the CNN layer to learn suboptimal
representations of the mention-spans. The probing
model that we choose is also highly selective, with
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Accuracy F1 Score

BERT-base c2f (fine-tuned) 92.93 93.02
BERT-large c2f (fine-tuned) 93.65∗ 93.68∗

BERT-base CNN (original, K=3) 89.51 89.91
BERT-base CNN (original, K=5) 89.04 89.28
BERT-large CNN (original, K=3) 90.27 90.35
BERT-large CNN (original, K=5) 88.09 88.28

BERT-base (original) baseline 90.37 90.65
BERT-large (original) baseline 91.47 91.69

BERT-base c2f (random) 64.83 65.17
BERT-large c2f (random) 67.53 68.36

Table 1: Comparison of the probing model’s performance with various mention-span representations evaluated on
the OntoNotes test set. An asterisk (*) denotes the best performance on each metric. BERT-large c2f improves the
accuracy and F1 score over the probing baseline by 3.28% and 3.03% for the base variant, while for BERT-large
baseline the improvements are 2.18% and 1.99% respectively.

selectivity of 28.1 for BERT-base c2f and 26.1 for
BERT-large c2f. This also means that to achieve
high accuracy, the probes must rely on coreference
information encoded in the span representation.

5.2 Ablations

To examine the importance of each component in
BERT-coref span representation, we conduct an
ablation study on each part of the representation
and report the accuracy and the F1 score for the
probing model on the test data (Table 2).3

The head-finding attention mechanism is crucial
for coreference-arc prediction, as it contributes the
highest to the final result with 0.98 and 0.95 points
for accuracy and for F1 score on average, respec-
tively. This is consistent with previous findings
from Lee et al. (2017), who shows that the atten-
tion mechanism is able to learn representations
important for coreference.

We also observe that span-width embeddings
play an important role in determining a coreference
relation, without them the performance degrades
on average by 0.4 and 0.37 for accuracy and F1.
Contrary to the head-finding attention and span-
width embeddings, boundary representations did
not contribute much to the model’s performance.
We hypothesise that although boundary represen-
tations may encode a large amount of information
for coreference resolution, they are not significant
for coreference arc prediction, as the model does
not have to predict distribution over possible spans.

3Results for replication experiments after acceptance are
reported in Appendix A.

5.3 Encoding Long-range Coreference

We compare how our probing model performs
on various separation distances between mention-
spans. Figure 2 depicts F1 scores as a function
of distance between pairs of mention-spans. Al-
though performance with BERT models degrades
with larger distances, the span representations in
BERT-coref hold up better in general compared
to the baseline or CNN-baseline. The BERT-base
variant experiences a minor degradation in perfor-
mance up to 5 points when d = 125 tokens, while
for BERT-large the F1 score drops only by 7 points
between d = 0 tokens and d = 250 tokens, which
suggests that the depth of the Transformer layer
helps to encode long-range coreference.

However, we lack sufficient evidence to suggest
that the span representations are able to encode
long-range coreference relations efficiently, seeing
that although the encoder has been fine-tuned on
OntoNotes, the model still cannot perform consis-
tently across distant spans, with the lowest F1 score
of 67% and 75% for BERT-base and BERT-large
respectively, when d = 451 to 475 tokens.

5.4 Error Analysis

We provide qualitative error analysis for predicted
coreference between mention-pairs. We look at the
output of BERT-base c2f (cased, fine-tuned) and
BERT-large c2f (cased, fine-tuned). The predic-
tions of both models on the same subset of 1,250
predictions from the test set are analysed. Overall,
we found 93 errors in the model with BERT-base
embeddings and 84 for the model with BERT-large
embeddings. The errors are grouped into: Similar
Word Forms, Anaphora, Gender, Mention Para-
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Accuracy F1 Score ∆Accuracy ∆F1 Score

BERT-base c2f (fine-tuned) 92.93 93.02
- boundary representations 92.88 92.96 −0.05 −0.06
- head-finding attention 92.05 92.16 −0.88 −0.86
- span-width embeddings 92.46 92.56 −0.47 −0.46

BERT-large c2f (fine-tuned) 93.65 93.68
- boundary representations 93.47 93.49 −0.18 −0.19
- head-finding attention 92.57 92.65 −1.08 −1.03
- span-width embeddings 93.32 93.41 −0.33 −0.27

Table 2: Comparison of the probing models on the OntoNotes test set with various components removed. The head-
finding attention and span-width embeddings contribute significantly to the performance of the probing model.

(a)

(b)

Figure 2: F1 scores of the probing model as a function of separating distance between two mention-spans with
BERT-base (2a) and BERT-large (2b) on test set. The performance of the model with either BERT-base or BERT-
large embeddings tends to decrease as the distance between wordpiece tokens increases.

phrasing, and Temporal and Spacial Agreement.
Although Gender can be considered as a subcat-
egory of Anaphora, we decided to separate it to
check whether gender bias is present in the models.

Table 3 portrays an overview of the errors made
by both models in each category. We note that men-
tions separated by a distance of more than 25 tokens
have a higher error rate than mentions separated by
smaller distances, suggesting that BERT-base c2f

and BERT-large c2f perform better when resolving
coreference locally.

In the gender category, we only found one prob-
lematic example. The proper name Scooter Libby
is consistently predicted to corefer with she and
her, although the real world referent is male.

Consistent with Joshi et al. (2019), the most diffi-
cult case for both models is anaphora, even at very
short distances between mentions, as in the follow-
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Category Snippet BERT-base c2f BERT-large c2f

Similar
Word Forms

... in some of the questioning eh of Miller, I think ...
you have Judy Miller there ( 13 )
... this is the Dick Cheney aide she agreed to refer ...
I think the agreement was strange ( 85 )

17 13

Anaphora

... it was very prompt with traffic management and
emergency repair ... ah, because it involved various ( 5 )
... the news on the day of the accident ...
instead of the east and it did not ( 277 )

47 41

Gender ... killed a piece written by a reporter about Scooter Libby ...
They didn’ t say that you know until she walked out ( 58 ) 0 2

Mention
Paraphrasing

When someone sews a patch over a hole in an old coat,
they ... If they do, the patch will shrink ( 22 )
... read a statement from a Sixty Minutes spokesman ...
When Mister Carson the representative spoke ... ( 241 )

20 19

Temporal
and Spacial

... people from economic circles, who even predicted that
in 1998 ... They pointed out that, this year, except ... ( 13 )
... and only 582 million US dollars last year...
momentum can not be restrained, this year ... ( 379 )

9 9

Total 93 84

Table 3: Number of errors by the BERT-base c2f and BERT-large c2f fine-tuned models. The number of tokens
between the highlighted mentions is given in the parenthesis. False positives are denoted bold, false negatives in
italic.

ing example with a distance of only 5 tokens: “we
should say it was very prompt with traffic manage-
ment and emergency repair, ah, because it involved
various [. . . ]”. Cases of coreference between two
pronouns are also difficult for both models.

The similar word forms category concerns er-
rors in mentions with morphologically related word
forms which are identified as coreferent, for in-
stance “[. . . ] this is the Dick Cheney aide she
agreed to refer [. . . ]”. I think the agreement was
strange [. . . ]”. In contrast, together with anaphora,
errors involving paraphrasing and temporal and
spacial agreement have an extra level of complex-
ity in that they involve real world knowledge. For
instance, for humans it is trivial that 1996 and 1997
are years and that they are different ones. The sys-
tems, on the other hand, consistently label them as
coreferent, as if they were morphologically related
forms.

6 Conclusion and Future Work

In this paper, we quantify the coreference informa-
tion in the span representation by how well they
can do on the coreference arc prediction task. We
demonstrate that using mention-span representa-
tions as inputs, a simple probing model can be
used to predict coreference for pairs of mention
spans with accuracy and F1 score over 90%. This
suggests that a significant amount of coreference

information is encoded in mention-span represen-
tations obtained from BERT embeddings, which
are fine-tuned on the OntoNotes dataset. Consis-
tently with non-neural architectures, our analysis
also shows that non-local coreference is challeng-
ing for span representations. Furthermore, we show
that the head-finding attention mechanism encodes
essential coreference-related features in span rep-
resentations, even when using original pre-trained
BERT embeddings.

The findings we report are solely based on an En-
glish corpus. Other pieces of research (Azerkovich,
2020; Hint et al., 2020) suggest that such posi-
tive results might be more challenging to achieve
for morphologically or syntactically complex lan-
guages.

Although we work with the OntoNotes dataset,
there are other challenging coreference resolution
datasets that focus on ambiguous pronouns (GAP
by Webster et al. (2018)) or commonsense rea-
soning (WinoGrande by Sakaguchi et al. (2019)),
which can be used to understand coreference infor-
mation in span representations better. Moreover,
we would like to probe span representations derived
from other pre-trained language models such as
RoBERTa (Liu et al., 2019b) and SpanBERT (Joshi
et al., 2020). Alternative Transformer-based archi-
tecture that is better at handling long sequences
such as Longformer (Beltagy et al., 2020) also
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seems promising to explore, as it might improve
span representations capability to model long-range
coreference. Lastly, instead of building span rep-
resentations from the final layer of a pre-trained
BERT model, one can opt to use the activations
from the intermediate layers as well as ELMo-style
scalar mixing (Tenney et al., 2019; Peters et al.,
2018a). We leave this to future work.
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A Appendix

A.1 Averaged Accuracy and F1 Score for
Ablation Study

Accuracy ∆Accuracy

BERT-base c2f (fine-tuned) 92.93
- boundary representations 92.77 −0.16
- head-finding attention 91.74 −1.19
- span-width embeddings 92.59 −0.34

BERT-large c2f (fine-tuned) 93.65
- boundary representations 93.88 +0.23
- head-finding attention 92.65 −1.00
- span-width embeddings 93.43 −0.22

Table 4: Averaged accuracy for ablation on the
OntoNotes test set. We take the average accuracy of
10 runs.

F1 Score ∆F1 Score

BERT-base c2f (fine-tuned) 93.02
- boundary representations 92.89 −0.13
- head-finding attention 91.81 −1.21
- span-width embeddings 92.68 −0.34

BERT-large c2f (fine-tuned) 93.68
- boundary representations 93.89 +0.21
- head-finding attention 92.64 −1.04
- span-width embeddings 93.44 −0.24

Table 5: Averaged F1 score for ablation on the
OntoNotes test set. We take the average F1 score of
10 runs.
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