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Abstract

We present preliminary results on investigat-
ing the benefits of coreference resolution fea-
tures for neural RST discourse parsing by con-
sidering different levels of coupling of the dis-
course parser with the coreference resolver. In
particular, starting with a strong baseline neu-
ral parser unaware of any coreference informa-
tion, we compare a parser which utilizes only
the output of a neural coreference resolver,
with a more sophisticated model, where dis-
course parsing and coreference resolution are
jointly learned in a neural multitask fashion.
Results indicate that these initial attempts to
incorporate coreference information do not
boost the performance of discourse parsing in
a statistically significant way.

1 Introduction and Task Description

Discourse parsing is a very useful Natural Lan-
guage Processing (NLP) task involving predicting
and analyzing discourse structures, which repre-
sent the coherence properties and relations among
constituents of multi-sentential documents. In this
work, we investigate discourse parsing in the con-
text of Rhetorical Structure Theory (RST) Mann
and Thompson (1988), which encodes documents
into complete constituency discourse trees. An
RST tree is defined on the sequence of a docu-
ment’s EDUs (Elementary Discourse Units), which
are clause-like sentences or sentence fragments
(propositions), acting as the leaves of the tree. Ad-
jacent EDUs and constituents are hierarchically ag-
gregated to form (possibly non-binary) constituents,
with internal nodes containing (1) a nuclearity la-
bel, defining the importance of that subtree (rooted
at the internal node) in the local context and (2) a
relation label, defining the type of semantic con-
nection between the two subtrees (e.g., Elaboration,
Background).
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Figure 1: An example (Asher and Lascarides, 2003)
of a discourse being ill-formed due to the invalid
anaphoric link. The leaf EDUs are as follows: [Max
had a great evening last night.]1 [He had a great meal.]2
[He ate salmon.]3 [He devoured lots of cheese.]4 [He
then won a dancing competition.]5 [It was a beautiful
pink]6

Previous research has shown that the use of RST-
style discourse parsing as a system component can
enhance important tasks, such as sentiment analy-
sis, summarization and text categorization (Bhatia
et al., 2015; Nejat et al., 2017; Hogenboom et al.,
2015; Gerani et al., 2014; Ji and Smith, 2017). And
more recently, it has been found that RST discourse
structures can complement learned contextual em-
beddings (e.g., BERT (Devlin et al., 2018)), in
tasks where linguistic information on complete doc-
uments is critical, such as argumentation analysis
(Chakrabarty et al., 2019).

In this work, we present preliminary results of
investigating the benefits of coreference resolu-
tion features for RST discourse parsing. From
the theoretical perspective, it has long been estab-
lished (Asher and Lascarides, 2003) that discourse
structure can impose constraints on mention an-
tecedent distributions, with these constraints being
derived from the role of each discourse unit (sen-
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tence or EDU) with respect to the global discourse.
The Veins theory (Cristea et al., 1998) is the most
known formalization of anaphoric constraints with
respect to RST tree structures, involving assigning
to each EDU a subset of preceding EDUs defined
by the nuclearity attributes of the EDU’s parent
nodes in the document’s discourse tree (see Ap-
pendix A for the exact definition). These constrains
act as a domain of referential accessibility where
the antecedents must reside, for otherwise the dis-
course would be considered incoherent. As an ex-
ample of this phenomenon, consider the discourse
structure in Figure 1. In principle, a reader could
apply commonsense knowledge to resolve the pro-
noun it in the last sentence to salmon in the third
sentence, any proficient English speaker would call
such a discourse ill-formed and incoherent, due
to the fact that it breaks the discourse-imposed
antecedent scope. In general, anaphora can only
be resolved with respect to the most salient (sen-
tence 1 in Figure 1) units of the preceding discourse
(Asher and Lascarides, 2003). For our purposes,
this means that having access to a document’s coref-
erence structure might be beneficial to the task of
predicting the discourse structure, since the corefer-
ence structure can constrain the discourse parser’s
solution space. However, as shown in a corpus
study by Zeldes (2017), the antecedent boundaries
defined by Veins Theory are often too restrictive,
suggesting that while discourse structures can be
useful for predicting coreference structures and
vice versa, these mutual constrains must be defined
softly, at least in the context of RST theory.

To explore these ideas computationally with re-
spect to modern neural models, we investigate
the utility of automatically extracted coreference
features and discourse-coreference shared repre-
sentations in the context and for the benefit of
neural RST discourse parsing. Our strong base-
line SpanBERT-NoCoref utilizes SpanBERT (Joshi
et al., 2020) as in the current SOTA coreference
resolver, without utilizing any direct coreference
information. Next, our SpanBERT-CorefFeats con-
siders the output of coreference resolver as per Dai
and Huang (2019), letting us test the benefit of
predicted and so possibly noisy coreference fea-
tures. Finally, our more sophisticated SpanBERT-
Multitask model learns discourse parsing together
with coreference resolution in the neural multitask
learning fashion, sharing the SpanBERT contextual
word encoder for both models.

2 Related Work

Dai and Huang (2019) have already explored the
benefit of using coreference information for neural
PDTB implicit discourse relation classification, in
a way similar to our SpanBERT-CorefFeats model.
In our study, we also explore the use of shared
encoder architecture for both tasks to detect the
additional possible synergy.

Modelwise, the most common approach to in-
fer discourse trees is the linear bottom-up shift-
reduce method, adopted from syntactic parsing.
Wang et al. (2017) uses hand-crafted features and
the shift-reduce method predicted by two separate
Support-Vector-Machines (SVMs) for structure-
and nuclearity-prediction and relation-estimation.
The neural model by Yu et al. (2018) uses a similar
topology, but instead relies entirely on LSTMs for
automatic feature extraction and on a single multi-
layer-perceptron (MLP) for classifying all possible
actions. Top-down approaches to discourse pars-
ing are also quite promising, with recent work of
Kobayashi et al. (2020) applying ELMO (Peters
et al., 2018) for computing span representations and
achieving the new absolute SOTA performance, re-
porting however the scores of an ensemble of five
independent runs of their proposed model instead
of single-model results. In this work we follow the
shift-reduce strategy and apply SpanBERT-Base
(Joshi et al., 2020; Wolf et al., 2020), which we
introduce below, for encoding the document con-
tents.

The field of coreference resolution has recently
been dominated by deep learning models. The
current SOTA model by Joshi et al. (2020) is
built upon the neural coreference resolver of (Lee
et al., 2018) by incorporating SpanBERT language
model, which modifies the commonly used BERT
(Devlin et al., 2019) architecture with a novel span
masking pretraining objective. In our work, we re-
implemented their coreference resolver in PyTorch
(Paszke et al., 2019). Our code for both models is
available1.

3 Shift-Reduce Architecture

All our proposed parsers share the same basic shift-
reduce architecture, consisting of a Queue, which
is initially filled with documents EDUs in order

1http://www.cs.ubc.ca/
cs-research/lci/research-groups/
natural-language-processing/index.html

http://www.cs.ubc.ca/cs-research/lci/research-groups/natural-language-processing/index.html
http://www.cs.ubc.ca/cs-research/lci/research-groups/natural-language-processing/index.html
http://www.cs.ubc.ca/cs-research/lci/research-groups/natural-language-processing/index.html
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Figure 2: Overview of our models. For spans S2 are S1, the wi:i+2 and wj,j+1 respectively are the nuclear EDUs.
(Left) All components of SpanBERT-NoCoref. (Middle) SpanBERT-CorefFeats modifies the initial SpanBERT
embeddings according to predicted coreference clusters (in red). (Right) SpanBERT-MultiTask updates the final
span representations with embeddings of mentions of shared entities.

from first to last one, and a Stack, which is initially
empty, as well as the following actions on them:

The Shift delays aggregations of sub-trees at the
beginning of the document by popping the top EDU
Q1 on the queue and pushing it onto the stack.

The Reduce-X aggregates the top subtrees
(S1, S2) on the stack into a single subtree (S1−2).
Each reduce action further defines a nuclear-
ity assignment XN ∈ {NN, NS, SN} to the
nodes covered by S1−2 and a relation XR ∈
{Elaboration, Contrast, ...} holding between them.

3.1 Action Classifier Parametrization

Similarly to (Wang et al., 2017; Yu et al., 2018),
all models under consideration utilize the informa-
tion from top two elements S1, S2 of the stack,
and top element Q1 of the queue. In addition
to word-/word+coference-based representations
vS2 , vS1 , vQ1 for these nodes, computed differ-
ently by each model as described below, we ex-
tract textual organization features of Wang et al.
(2017). In particular, for each pair S2 − S1 and
S1 − Q1, we extract indicator features represent-
ing whether the pair is within the same sentence
or paragraph; for each of S2, S1 and Q1 we com-
pute whether each of them are at the start/end of a
sentence/paragraph/document.

In accord with Wang et al. (2017), the parsing
action at each timestep is chosen by two trainable
classifiers, being multi-layer perceptrons (MLPs) in
our system, where each classifier takes in the con-
catenation of vS2 , vS1 , vQ1 , together with the dense

embeddings for the aforementioned organizational
features. The first classifer predicts the action
and nuclearity assignment among yAct,Nuc ∈
{Shift, ReduceNN , ReduceNS , ReduceSN},
and in case the Reduce action is chosen, the
second classifier predicts the discourse relation
among 18 coarse-grained RST relation classes
yRel ∈ {Attribution,Elaboration, ...}.

3.2 Action Classifier Training and Inference

Both classifiers are trained using the Cross-Entropy
loss, computed for each Stack-Queue parsing step.
At test time, we apply the greedy decoding strategy
to predict the discourse structure.

4 Proposed Models

We now describe the three proposed discourse pars-
ing models which differ in the levels of coupling
with the coreference model. See Figure 2 for the
visual comparison.

SpanBERT-NoCoref: in addition to the orga-
nizational features, our baseline system utilizes
only the output SpanBERT-contextualized word
embeddings. To predict each Stack-Queue action,
a full document is passed through SpanBERT in
a non-overlapping sliding window fashion, as per
Joshi et al. (2020), so that the context of full doc-
ument can be considered for each parsing action
to account for possible context-sensitivity of dis-
course structures (Dai and Huang, 2018). The node
representation vQ1 for the first Queue element is
computed as the mean of the first and the last word
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Model Structure Nuclearity Relation
HILDA(2010) 82.6 66.6 54.6
DPLP(2014) 82.0 68.2 57.8
CODRA(2015) 82.6 68.3 55.8
Two-Stage(2017) 86.0 72.4 59.7
Transition-Syntax(2018) 85.5 73.1 60.2
D2P2S2E (Ensemble)(2020) 87.0 74.6 60.0

SpanBERT-NoCoref 87.8± 0.2 75.8± 0.2 63.4± 0.3
SpanBERT-CorefFeats 88.1± 0.3 76.1± 0.6 63.6± 0.3
SpanBERT-MultiTask 87.9± 0.2 75.9± 0.6 63.3± 0.7

Human (2017) 88.3 77.3 65.4

Table 1: RST-Parseval micro precision for structure, nuclearity and relation prediction on RST-DT corpus. Scores
for previous approaches are from either Morey et al. (2017) or the original papers.

embedding of the EDU that this Queue element
represents. vS1 and vS2 are computed as the means
of the first and the last word embeddings of the
nuclear EDU of S1 and S2, as each non-leaf node
in an RST structure encodes a relation between
nuclear EDUs of its children (Morey et al., 2018).

SpanBERT-CorefFeats: with this architecture
variant, we attempt to assess the benefit of coref-
erence features generated by the coreference re-
solver for RST parsing. Given a document with
n words, the coreference features will be used to
update the initial (not contextualized) SpanBERT
word embeddings w1:n, which will later be passed
to SpanBERT.

Specifically, for a given document we apply
the pre-trained coreference parser of Joshi et al.
(2020) to extract the document’s coreference clus-
ters C1, C2, ..., each of which are equivalence
classes representing different mentions of the same
entity. Afterwards, we compute the vector rep-
resentation ci for each cluster Ci by performing
attention-based averaging over word-vectors corre-
sponding to mentions in that cluster:

ci =
∑
k∈Ci

akwk

where wk ∈ Rd is the initial SpanBERT word em-
bedding for word k and ak ∈ [0, 1] are attention
scores. These cluster representations are then used
for updating the document’s word representations
using the gating mechanism Lee et al. (2018): for
each word wk ∈ D,

fk = σ(W [ci;wk])

w′k =

{
fk ◦ wk + (1− fk) ◦ ci if wk ∈ Ci

wk otherwise

Finally, the embeddings w′k are passed to Span-
BERT for contextualization, and the node rep-
resentations vS1 , vS2 , vQ1 are computed as in
SpanBERT-NoCoref.

SpanBERT-MultiTask: learns discourse pars-
ing and coreference resolution in a multitask learn-
ing regime, weight-sharing the SpanBERT encoder
module. The coreference resolver training step
proceeds in the same fashion as in (Joshi et al.,
2020). For updating the discourse parsing model,
we use the pre-computed coreference clusters Ci

obtained from the pretrained coreference model, as
running it at every training step was prohibitively
time-consuming. Using the contextualized Span-
BERT word embeddings s1:n for all words in the
document, we check these coreference clusters for
overlaps: considering a pair of spans S1, S2, if
a cluster Ci has entity mentions in the spans of
both stack elements S1 and S2, so that if there are
mentions mj ,mk ∈ Ci such that mj ∈ S1 and
mk ∈ S2, we update the span representation vS1

(computed as in SpanBERT-NoCoref) with the at-
tention weighted sum of mentionsmk ∈ Ci∩S2 by
applying the gating mechanism as in SpanBERT-
CorefFeats, so that the span representation for S1
can incorporate more relevant context from S2. The
representation for vS2 is computed similarly using
mentions mk ∈ Ci ∩ S1, and the analogous com-
putation is performed for S1 −Q1 pair.

For learning both tasks at the same time, we
utilize the approach similar to (Sanh et al., 2018),
where gradient updates are performed separately
for each task and the probability of sampling a task
is proportional to the relative size of each task’s
dataset. The initial shared SpanBERT encoder
weights are set from the pretrained coreference
resolver checkpoint.
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Figure 3: A subtree from SpanBERT-NoCoref prediction for wsj 0631 (left) and gold-standard (right). Incorrect
nodes are colored in purple. The EDUs are: [Finnair and SAS said]6 [they plan to swap stakes in each other.]7
[Neither discussed details]8 [pending board meetings next month.]9.

5 Experimental Settings and Results

All models were trained on the RST-DT (Carlson
et al., 2002) and evaluated with RST-Parseval pro-
cedure (Marcu, 2000), with the coreference com-
ponent of SpanBERT-MultiTask being trained on
full OntoNotes 5.0 corpus (Weischedel et al., 2013).
The details of the training procedure such as hyper-
parameter assignment are outlined in the Appendix
B. The test results are presented in Table 1 and are
the average and standard deviation single-model
scores of five independent runs.

Firstly, we observe that our models strongly out-
perform all previous approaches, indicating huge
benefit of pretrained language models for RST dis-
course parsing, with results approaching human
performance. Then, with respect to coreference
features, we notice that the models utilizing coref-
erence information are statistically equivalent in
performance to the SpanBERT-NoCoref baseline,
while displaying higher variance of the test scores
for Nuclearity and Relation prediction. This sug-
gests four plausible (and not mutually exclusive)
explanations: (1) the coreference information rel-
evant to discourse parsing is already captured by
SpanBERT, (2) or that coreference information is
not a strong signal for discourse structure (Zeldes,
2017), or that (3) the coreference information ex-
tracted automatically is too noisy, or that (4) our
specific ways of combining coreference with dis-
course parsing are not adequate and more work is
needed to develop better solutions. It should also
be noted that we only experimented on a single
discourse parsing dataset, so the conclusions or
generalizations should be considered preliminary.

In an attempt to shed some light on the results,

we compare the predicted and gold subtree from
one of the documents in our development set on
Figure 3. The trees were analyzed using the RST
tree visualization tool by Huber (2019). According
to Veins theory, the pronoun [neither] in EDU 8
is a mention that should have access to its men-
tions ([Finnair and SAS] or [they]) in preceding
EDUs. However, accoding to the discourse struc-
ture predicted by SpanBERT-NoCoref, the vein for
node (8) does not contain the EDUs (6) and (7)
(and in fact any of its preceding EDUs), so that
[neither] cannot be linked to any of its preceding
mentions. On the other hand, according to the gold
discourse structure, EDU 8 has EDU 7 on its vein,
meaning that this anaphora can be resolved. This
means that if one had access to gold coreference
structure and applied Veins Theory strictly, the sub-
structure produced by SpanBERT-NoCoref would
not be permitted.

6 Conclusions and Future Work

We empirically compare different levels of cou-
pling between a shift-reduce neural discourse
parser and a neural coreference resolver. Remark-
ably, our baseline delivers SOTA performance on
RST-DT, but does not seem to benefit from corefer-
ence features.

For future work, we plan to experiment with (1)
alternative discourse parsing architectures and ap-
proaches for neural multitasking, along with more
powerful coreference models (2) alternative ways
of augmenting a neural discourse parser with coref-
erence information and other tasks like summa-
rization (3) improving the coreference resolution
performance by leveraging information provided
by a discourse parser.



165

References
Ralph Weischedel et al. 2013. Ontonotes release 5.0.

Linguistic Data Consortium.

Nicholas Asher and Alex Lascarides. 2003. Logics of
Conversation. Cambridge University Press.

Parminder Bhatia, Yangfeng Ji, and Jacob Eisenstein.
2015. Better document-level sentiment analysis
from rst discourse parsing. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 2212–2218.

Lynn Carlson, Mary Ellen Okurowski, and Daniel
Marcu. 2002. RST discourse treebank. Linguistic
Data Consortium, University of Pennsylvania.

Tuhin Chakrabarty, Christopher Hidey, Smaranda
Muresan, Kathleen McKeown, and Alyssa Hwang.
2019. Ampersand: Argument mining for persuasive
online discussions. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2926–2936.

Dan Cristea, Nancy Ide, and Laurent Romary. 1998.
Veins theory: A model of global discourse cohesion
and coherence. In 36th Annual Meeting of the Asso-
ciation for Computational Linguistics and 17th In-
ternational Conference on Computational Linguis-
tics, Volume 1, pages 281–285, Montreal, Quebec,
Canada. Association for Computational Linguistics.

Zeyu Dai and Ruihong Huang. 2018. Improving im-
plicit discourse relation classification by modeling
inter-dependencies of discourse units in a paragraph.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 141–151, New
Orleans, Louisiana. Association for Computational
Linguistics.

Zeyu Dai and Ruihong Huang. 2019. A regularization
approach for incorporating event knowledge and
coreference relations into neural discourse parsing.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2976–
2987, Hong Kong, China. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Shima Gerani, Yashar Mehdad, Giuseppe Carenini,
Raymond T Ng, and Bita Nejat. 2014. Abstractive
summarization of product reviews using discourse
structure. In Proceedings of the 2014 conference on
empirical methods in natural language processing
(EMNLP), pages 1602–1613.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Hugo Hernault, Helmut Prendinger, Mitsuru Ishizuka,
et al. 2010. Hilda: A discourse parser using sup-
port vector machine classification. Dialogue & Dis-
course, 1(3).

Alexander Hogenboom, Flavius Frasincar, Franciska
De Jong, and Uzay Kaymak. 2015. Using rhetori-
cal structure in sentiment analysis. Commun. ACM,
58(7):69–77.

Patrick Huber. 2019. Discourse-sentiment alignment
tool (dsat).

Yangfeng Ji and Jacob Eisenstein. 2014. Representa-
tion learning for text-level discourse parsing. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 13–24.

Yangfeng Ji and Noah A Smith. 2017. Neural dis-
course structure for text categorization. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 996–1005.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
Spanbert: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Shafiq Joty, Giuseppe Carenini, and Raymond T Ng.
2015. Codra: A novel discriminative framework
for rhetorical analysis. Computational Linguistics,
41(3).

Naoki Kobayashi, Tsutomu Hirao, Hidetaka Kami-
gaito, Manabu Okumura, and Masaaki Nagata. 2020.
Top-down rst parsing utilizing granularity levels in
documents. Proceedings of the AAAI Conference on
Artificial Intelligence, 34:8099–8106.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687–692, New Orleans, Louisiana. Association for
Computational Linguistics.

https://doi.org/10.3115/980845.980891
https://doi.org/10.3115/980845.980891
https://doi.org/10.18653/v1/N18-1013
https://doi.org/10.18653/v1/N18-1013
https://doi.org/10.18653/v1/N18-1013
https://doi.org/10.18653/v1/D19-1295
https://doi.org/10.18653/v1/D19-1295
https://doi.org/10.18653/v1/D19-1295
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1609/aaai.v34i05.6321
https://doi.org/10.1609/aaai.v34i05.6321
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/N18-2108


166

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

William C Mann and Sandra A Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text-Interdisciplinary Jour-
nal for the Study of Discourse, 8(3):243–281.

Daniel Marcu. 2000. The Theory and Practice of Dis-
course Parsing and Summarization.

Mathieu Morey, Philippe Muller, and Nicholas Asher.
2017. How much progress have we made on RST
discourse parsing? a replication study of recent re-
sults on the RST-DT. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1319–1324, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Mathieu Morey, Philippe Muller, and Nicholas Asher.
2018. A dependency perspective on rst discourse
parsing and evaluation. Computational Linguistics,
44(2):197–235.

Bita Nejat, Giuseppe Carenini, and Raymond Ng. 2017.
Exploring joint neural model for sentence level dis-
course parsing and sentiment analysis. In Proceed-
ings of the 18th Annual SIGdial Meeting on Dis-
course and Dialogue, pages 289–298.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Gar-
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A Veins Theory Definitions

The following definitions are from Cristea et al.
(1998). For each node in an RST tree, its head is
defined as follows:

1. The head of the terminal (leaf) node is itself.

2. The head of a non-terminal node is the con-
catenation of the heads of its nuclear children.

Next, we define the vein expression of each node
recursively top-down. When the node is a leaf,
the preceding nodes on its vein correspond to its
domain of referential accessibility.

1. The vein expression of the root is its head.

2. For each nuclear node, its vein expression is
the union of its head with:

• its parent’s vein, if this node has no left
siblings that are satellites.
• its parent’s vein and its left sibling’s vein,

if this sibling is a satellite.

3. For every satellite node, its vein expression is
the union of its head with:

• its parent’s vein, if this node is a left
child.
• its parent’s vein with heads of prior (up

in the tree) satellite nodes removed.

B Hyperparameters and Training
Settings

As RST-DT does not specify a standard training-
validation split, we select 10% of the training docu-
ments for the validation set, stratifying the split by
the number of EDUs in each document. Similarly
to Joshi et al. (2020), we train all of our models
with AdamW (Loshchilov and Hutter, 2019) op-
timizer with learning rate of 1e−5 for SpanBERT
and 2e−4 for model-specific components, with the
batch size of 5 and linear decay for 20 epochs. All
of our MLPs consist of 2 linear layers, with a GeLU
(Hendrycks and Gimpel, 2016) nonlinearity and a
Dropout layer with a value of 0.3 between them.
Each organizational feature of Wang et al. (2017)
is represented using a learnable 10-dimentional
embedding, or a vector of zeros if the feature is
missing (for example, the feature specifying if the
2-top elements of the stack are in the same sentence
when the stack contains only one element). With

regards to multitask regime, the probability of dis-
course parsing task being sampled over coreference
resolution was≈ 0.72 (each Stack-Queue state was
treated as a datapoint), but due to highly demand-
ing computational requirements of the coreference
resolver and time constrains, this probability was
increased to 0.9. Nonetheless, the results for the
correct task proportions will be provided through
other sources.


