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Abstract

Domain pretraining followed by task fine-
tuning has become the standard paradigm for
NLP tasks, but requires in-domain labelled
data for task fine-tuning. To overcome this,
we propose to utilise unlabelled domain data
by assigning pseudo-labels from a general
model. We evaluate the approach on two clin-
ical STS datasets, and achieve r = 0.80 on
N2C2-STS. Further investigation reveals that
if the data distribution of unlabelled sentence
pairs is closer to the test data, we can ob-
tain better performance. By leveraging a large
general-purpose STS dataset and small-scale
in-domain training data, we obtain further im-
provements to r = 0.90, a new SOTA.

1 Introduction

Semantic textual similarity (STS) measures the de-
gree of semantic equivalence between two text snip-
pets, based on a graded numerical value, with appli-
cations including question answering (Yadav et al.,
2020), duplicate detection (Poerner and Schütze,
2019), and entity linking (Zhou et al., 2020).

Modern pretrained language models have
achieved impressive results for general STS (De-
vlin et al., 2019). However in low-resource do-
mains without in-domain labelled data, results are
generally lower (Wang et al., 2020b). In the clinical
domain in particular, annotation requires medical
experts (Wang et al., 2018; Romanov and Shivade,
2018), meaning that labelled datasets are generally
small, hampering clinical STS.

We address the question of how to apply pre-
trained language models to such domain-specific
tasks where there is little or no labelled data, focus-
ing specifically on the task of clinical STS.

Employing a general STS model generally yields
poor results over technical domains due to covari-
ate shift. To bridge this gap, a standard approach is

to pretrain the LM on in-domain text, such as Clin-
icalBERT (Alsentzer et al., 2019) using MIMIC-
III (Johnson et al., 2016). However, existing re-
search has tended to estimate effectiveness under
the fine-tuning setting, rather than via inference
tasks (Peng et al., 2019; Wang et al., 2020b).

In this paper, we first evaluate domain pre-
training approaches for clinical STS, with no la-
belled data. Based on the assumption that general
STS models trained on large-scale STS datasets
will perform reasonably well on clinical sentence
pairs (Section 4), we then experiment with learning
from the pseudo-labelled data (Section 5).

Experimental results show both domain pre-
training and pseudo-labelled data fine-tuning im-
prove clinical STS, and the combination of the
two achieves the best performance of r = 0.80 on
N2C2-STS (Section 6.3). Further analysis shows
that the score distribution and volume of pseudo-
labelled pairs influence the performance of fine-
tuning. We also find that training for more itera-
tions leads to minor improvements.

The paper makes three major contributions: (1)
we propose a simple pseudo-training method, and
show it to perform well on clinical STS; (2) we
evaluate several existing approaches to clinical STS
in a zero-shot setting, and benchmark against our
method; and (3) we achieve state-of-the-art results
of r = 0.90 for N2C2-STS.

2 Related Work

The general approach to domain-specific task mod-
elling is: (1) pretrain a language model (LM) on
a large volume of open-domain text (Devlin et al.,
2019; Liu et al., 2019); and (2) fine-tune on domain-
specific text and task-specific labelled data (Guru-
rangan et al., 2020; Peng et al., 2019). For this
approach, however, domain-specific labelled data
is required, an assumption that we seek to relax.
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For STS, in the absence of labelled data, the sim-
plest approach is to calculate the cosine similarity
between the CLS-vectors of two sentences or aver-
aged last-layer embeddings, but this tends to per-
form poorly, even worse than averaged GloVe (Pen-
nington et al., 2014) embeddings. SBERT (Reimers
and Gurevych, 2019) proposed to use a Siamese
structure based on BERT to learn sentence repre-
sentations, where they fine-tuned the model over
general NLI data, and continued to fine-tune on
general STS data (STS-B) (Cer et al., 2017). In
this work, we experiment with this approach specif-
ically in the clinical context.

3 Datasets and Tasks

We select two available clinical STS benchmark
datasets for evaluation: MedSTS (Wang et al.,
2018) and N2C2-STS (Wang et al., 2020a). The
latter annotated 412 instances as new test bed, and
updated train partition by labelling extra 574 in-
stances and merging the former train and test cases
(see Table 1). Our aim is to predict a score, given
a sentence pair (S1, S2), closing to the gold label
— a numerical value ranging from 0 to 5, where 0
refers to completely dissimilar semantics while 5
is completely equivalent in the meaning.

For example,
S1: Discussed goals, risks, alternatives, advanced
directives, and the necessity of other members of
the surgical team participating in the procedure
with the patient.
S2: Discussed risks, goals, alternatives, advance
directives, and the necessity of other members of
the healthcare team participating in the procedure
with the patient and his mother.
Label: 4, as the two sentences are mostly equiva-
lent and differ only in unimportant details (in bold).

Pearson’s correlation (r) and Spearman’s corre-
lation (ρ) between the predicted and gold standard
scores are used as evaluation metrics.

4 Observations

In modern NLP, large amounts of high-quality train-
ing data are a key element in building successful
systems (Aharoni and Goldberg, 2020). This is also
the case with STS, where additional training data
has been shown to improve accuracy (Wang et al.,
2020b). However, domain shifts inevitably lead
to performance drops (Gururangan et al., 2020).
Therefore, we ask: RQ1 Can large-scale general-
domain labelled STS data be transferred to train

Dataset Len Train Size Test Size

MedSTS 25.4 750 318
N2C2-STS 19.3 1642 412

Table 1: Clinical STS datasets. Train and Test Size =
number of text pairs. Len = mean sentence length in
tokens.

Eval set / Model Data r ρ

STS-B dev:
CLS-BERT STS-B train .900 .896
CLS-BERT STS-G .928 .927

N2C2-STS test:
HConvBERT STS-B train + N2C2-STS train .894 .830
HConvBERT STS-G + N2C2-STS train .902 .836

Table 2: Pearson’s r and Spearman’s ρ evaluation on
STS-B dev (upper half) and N2C2-STS test (bottom
half), based on fine-tuning over STS-B train (5,749)
and STS-G (28,518), for CLS-BERT and HConvBERT.

clinical STS models? RQ2 How does low-quality
training data impact clinical STS performance, vs.
high-quality labelled data or no labelled data?

Effect of Larger General STS Corpus. We
source general-domain labelled data from: (1)
SemEval-STS shared tasks 2012–2017 (Agirre
et al., 2012, 2013, 2014, 2015, 2016; Cer et al.,
2017); and SICK-R (Marelli et al., 2014). This
results in a total of 28,518 labelled sentence pairs,
which we refer to as “STS-G”.

We adapt a BERT encoder connected to a linear
regression layer to fine-tune a general-domain STS
model using STS-G, where the CLS-vector is used
to represent the sentence pair (CLS-BERT). We
compare this with a model trained only on STS-
B. We evaluate both models on STS-B dev (same
setup as Section 6.1).

For clinical STS, we employ a hierarchical con-
volution (HConv) model based on BERT (updat-
ing parameters of the last four layers), where the
model is first fine-tuned with STS-B, then N2C2-
STS is augmented by back-translation (Wang
et al., 2020b). The model architecture and hyper-
parameter settings are the same as the original pa-
per, such that we merely replace STS-B with STS-
G, and observe that more training data improves
clincial STS.

As shown in Table 2, the extra training data in
STS-G results in an increase in r of up to .028,
in the case of HConvBERT (Wang et al., 2020b),
resulting in a new SOTA of r = .902.
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Discussion. Though general-domain data lacks
clinical information, the model clearly benefits
from the extra out-of-domain training data (answer-
ing RQ1). This inspires us to rethink the clinical
STS task as a combination of domain-specific text
understanding and domain-invariant task learning,
leading to the question: can the two aspects be
learned separately? That is, can task learning take
place via large volumes of general-domain labelled
data, and domain-specific characteristics be learned
from silver-standard labelled domain data, such as
low-quality clinical sentence pairs labelled by a
general STS model?

5 Method

Next, we investigate the use of pseudo-labelled
clinical data based on the general STS model.

5.1 Pseudo-Labelled Sentence Pairs

Gururangan et al. (2020) illustrate that if the data
distribution of the text used for pretraining is more
similar to the task data, the performance will be bet-
ter. Based on this, we propose a distribution-centric
strategy for generating and selecting sentence pairs.

Generation. Two data sources — MIMIC-III
clinical notes and N2C2-STS training data (ig-
noring labels) — are used to generate unlabelled
sentence pairs. We sample 10,000 discharge sum-
maries from MIMIC-III, which we segment into 27
parts based on section subtitles. Of these, we select
five sections we consider to be most related to the
N2C2-STS task: diagnosis, medications, history of
present illness, follow-up instructions and physical
exam. After sentence segmentation using SpaCy
(Honnibal and Montani, 2017), we randomly sam-
ple sentence pairs from each section partition.

Labelling and Sampling. We take the CLS-
BERT model trained on STS-G, and generate
a score for all sentence pairs. To balance the
data, we group into 5 equal-width bands based
on score: [0.0, 1.0], (1.0, 2.0], (2.0, 3.0], (3.0, 4.0]
and (4.0, 5.0]. We use all pairs whose assigned
score is above 3.0, and sample N pairs from the
other three intervals.

5.2 Iterative Training

We fine-tune the model over the resulting pseudo-
labelled data, repeat the process of labelling and
sampling, and further fine-tune the model on the
second set of pseudo-labelled data.

Score [0.0, 1.0] (1.0, 2.0] (2.0, 3.0] (3.0, 4.0] (4.0, 5.0]

500k 229622 211405 54517 4015 441
STS-PL 4015 4015 4015 4015 441

100k 45602 42479 10996 839 84
STS-PS 1500 1500 1500 839 84

500k 399975 81282 16841 1468 434
STS-DP 1468 1468 1468 1468 434

Table 3: Score distribution of 500k sentence pairs used
for STS-PL and 100k pairs used for STS-PS. STS-DP is
based on a domain-pretrained model (see Section 6.3).

6 Experiments

We first evaluate existing approaches for clinical
STS in the zero-shot setting, and compare with
our method. Then we analyse the impact of the
volume of sampled instances and data distribution
on the fine-tuning quality. We experiment with the
number of iterations in Section 6.5.

6.1 Experimental Setup

We evaluate over MedSTS and N2C2-STS. As gath-
ering naturally occurring pairs of sentences with
different degrees of semantic similarity is very chal-
lenging (Wang et al., 2018), only 84 instances in
(4.0, 5.0] are sampled from a group of 100k unla-
belled sentence pairs (see Table 3). To increase
the number of instances with high similarity, an-
other group of 500k unlabelled sentence pairs is
generated from discharge summaries. Limiting to
cases above 3.0, (1) “STS-PS” (Pseudo-labelled
Small) = 5,423 pairs, is sampled from 100k based
on N = 1500; and (2) “STS-PL” (Pseudo-labelled
Large) = 16,501 pairs, is sampled from 500k based
on N = 4015.

Unless otherwise indicated, pseudo labelling is
based on CLS-BERTbase-STS-G (see Section 4).
All models are trained with a batch size of 16, learn-
ing rate of 2e-5, and 3 epochs with linear scheduler
setting warmup proportion of 0.1 of fine-tuning.
For all CLS-BERT models, we update all 12 layers,
and for HConvBERT we update the last 4 layers.

6.2 Results

We perform experiments over three models
(SBERT, CLS-BERT, and HConvBERT), two pre-
training configurations (general and clinical), and
four training datasets (general gold-labelled STS-B
and STS-G, clinical pseudo-labelled STS-PL and
STS-PS).

Results are presented in Tables 4 and 5 for N2C2-
STS and MedSTS, resp. Here, the subscripts for
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Model Data r ρ

Standard labels:
IBM-N2C2 N2C2-STS train .901 —
HConvBERTbase N2C2-STS train + STS-G .902 .836

Zero-shot setting:
SBERTbase NLI .378 .392
SBERTbase NLI + STS-B .603 .604
CLS-BERTbase STS-B .682 .689
CLS-BERTclinical STS-B .694 .697
CLS-BERTbase STS-B + STS-PL .780 .755
CLS-BERTbase STS-B + STS-PS .777 .749
CLS-BERTbase STS-G .721 .720
CLS-BERTclinical STS-G .788 .768
CLS-BERTbase STS-G + STS-PL .781 .767
CLS-BERTbase STS-G + STS-PS .763 .750
HConvBERTbase STS-B .728 .719
HConvBERTclinical STS-B .522 .526
HConvBERTbase STS-B + STS-PL .760 .740
HConvBERTbase STS-B + STS-PS .758 .733
HConvBERTbase STS-G .731 .716
HConvBERTclinical STS-G .653 .653
HConvBERTbase STS-G + STS-PL .768 .749
HConvBERTbase STS-G + STS-PS .752 .734

Table 4: Results on N2C2-STS, based on fine-tuning
on STS-B, STS-G, STS-PS and STS-PL.

model descriptors – “base” and “clinical” – corre-
spond to the two pretraining configurations, general
and clinical. The “Data” column indicates the cor-
pus used for fine-tuning, and A+B means that the
model is first fine-tuned on A then fine-tuned on B.
The model using general (“base”) pretraining and
fine-tuning only on STS-B or STS-G is referred to
as the “general STS model”.

Both pretraining using in-domain text
(“clinical”) and fine-tuning on pseudo-labelled
data (+STS-PS/STS-PL) improve performance
over the general STS model, with fine-tuning on
pseudo-labelled data generally performing better
than domain pretraining, in addition to being
computationally cheaper.

It may be argued that the performance improve-
ment is gained simply as a result of using an en-
larged data set for fine-tuning, instead of learn-
ing domain characteristics from clinical pseudo-
labelled data. However, for both datasets, and un-
der CLS-BERTbase and HConvBERTbase, compar-
ing results using: (1) STS-B with size of 5,749;
(2) STS-B + STS-PS with size of 11,172 (5,749 +
5.423); and (3) STS-G with size of 28,518, we
find that both (2) and (3) have higher r and ρ
than (1), suggesting that enlarging the data size for
fine-tuning is beneficial to improving performance.
Simutaneously, (2) always performs much better
than (3) though (3) is larger and has more gold la-

Model Data r ρ

Standard labels:
CLS-BERTP+M MedSTS train .848 —

Zero-shot setting:
Baseline — .618 —
SBERTbase NLI .608 .594
SBERTbase NLI + STS-B .731 .679
CLS-BERTbase STS-B .786 .716
CLS-BERTclinical STS-B .788 .693
CLS-BERTbase STS-B + STS-PL .808 .726
CLS-BERTbase STS-B + STS-PS .815 .739
CLS-BERTbase STS-G .792 .694
CLS-BERTclinical STS-G .800 .694
CLS-BERTbase STS-G + STS-PL .801 .709
CLS-BERTbase STS-G + STS-PS .800 .702
HConvBERTbase STS-B .776 .698
HConvBERTclinical STS-B .719 .655
HConvBERTbase STS-B + STS-PL .798 .713
HConvBERTbase STS-B + STS-PS .798 .716
HConvBERTbase STS-G .799 .727
HConvBERTclinical STS-G .764 .690
HConvBERTbase STS-G + STS-PL .803 .712
HConvBERTbase STS-G + STS-PS .806 .723

Table 5: Results on MedSTS, based on fine-tuning on
STS-B, STS-G, STS-PS and STS-PL.

bels; this indicates the gains are mainly attributable
to learned domain characteristics rather than merely
increased data. Moreover, based on the results for
CLS-BERTbase and HConvBERTbase using STS-PL
and STS-PS, it would appear that the amount and
score distribution of the pseudo-labelled data influ-
ences fine-tuning performance, which we return to
investigate further in Section 6.4.

6.3 Combination of Domain Pretraining (DP)
and Fine-tuning

We adapt CLS-BERTclinical-STS-G to predict
scores for 500,000 pairs, generating STS-DP
(6,306) after sampling as shown in Table 3. We
continue to fine-tune CLS-BERTclinical-STS-G us-
ing STS-DP, boosting the performance to r = .803
and ρ = .788, from r = .788 and ρ = .768.

6.4 Impact of Data Distribution and Amount

In this section, we investigate how data source,
score distribution — percentage of instances dis-
tributed in five score interval, and the volume
of sampled instances influence fine-tuning perfor-
mance. Based on CLS-BERTbase with STS-G, we
continue to fine-tune over five different groups of
data: (1) N2C2-STS training data without gold-
standard labels, where the score distribution of
pseudo labels is 0.04, 0.15, 0.25, 0.35, 0.21; (2)
data sampled from STS-PL in the same volume
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Exp. Source Amount Score distribution r ρ

0 — 0 — .721 .720
1 N2C2-STS 1642 0.04, 0.15, 0.25, 0.35, 0.21 .788 .788
2 STS-PL 1642 0.04, 0.15, 0.25, 0.35, 0.21 .766 .738
3 STS-PL 1650 0.20, 0.20, 0.20, 0.20, 0.20 .761 .731
4 STS-PL 1648 0.24, 0.24, 0.24, 0.24, 0.03 .767 .748
5 STS-PL 16501 0.24, 0.24, 0.24, 0.24, 0.03 .781 .767

Table 6: Results for CLS-BERTbase-STS-G on N2C2-
STS based on fine-tuning on different datasets. Exp.1
is N2C2-STS train data removing gold-standard labels,
Exp.2 is sampled from STS-PL with same score distri-
bution as Exp.1, Exp.3 is uniformly sampled from STS-
PL, Exp.4 is proportionally sampled from STS-PL and
Exp.5 is full STS-PL.

and with the score distribution as (1); (3) uniformly
sampled from STS-PL with 330 pairs in each score
interval; (4) proportionally sampled from STS-PL
at a ratio of 1/10 for each score interval; and (5)
full STS-PL.

Comparing Experiments 2, 3 and 4 in Table 6,
which have same data source and size (1.6k), and
differ only in score distribution, we observe only
minor performance differences. Experiments 1 and
2 rely on different sources, where Experiment 1
has the same source as the test data, and performs
much better than Experiment 2. An aligned data
source therefore is the optimal scenario. Look-
ing at Experiments 4 and 5, where the difference
is in the amount of sampled data, it is clear that
more instances brings further improvements. But
Could performance be improved consistently with
increased pseudo-labelled data?

To answer this question, we proportionally sam-
pled from STS-PL by ratio of 0.1, 0.2, 0.3, 0.4,
0.6, 0.8, 1.0, and also sampled from 500k unla-
belled sentence pairs settingN = 5000, 6000, 7000,
7500, 8000, resulting in 12 subsets in sizes rang-
ing from 1,648 to 28,456, for fine-tuning based
on CLS-BERTbase-STS-G. As shown in Figure 1,1

from 0 to 16,501, both r and ρ gradually increase,
and then fluctuate around 0.77 and 0.76 resp. This
reveals the trade-off between increasing the num-
ber of pseudo-labelled fine-tuning instances and
error propagation due to cumulative noise.

6.5 Impact of Number of Iterations

Based on CLS-BERTbase with STS-G, we investi-
gate the impact of multiple iterations of fine-tuning

1Random sampling affects the model performance, partic-
ularly when the data size is less than 5000, so we sampled five
times for 1648, 3300 and 4948, so these results are averages
over multiple samples of the given size.
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Figure 1: Impact of pseudo-labelled data size on N2C2-
STS test.

Iteration Amount Score distribution r ρ

1 16501 0.243, 0.243, 0.243, 0.243, 0.027 .781 .767
2 22205 0.245, 0.245, 0.245, 0.245, 0.020 .788 .765
3 27320 0.245, 0.245, 0.245, 0.245, 0.020 .788 .759

Table 7: Results on N2C2-STS through differing num-
ber of iterations of iterative fine-tuning. Amount =
number of fine-tuning instances.

in Table 7, as introduced in Section 5.2. The perfor-
mance boost from additional iterations is modest.
Increasing iterations from 2 to 3, the accuracy does
not improve, which is consistent with the findings
in Figure 1.

7 Conclusion

In this paper, we have proposed a simple method
of pseudo-labelling in-domain data and iterative
training, to improve clinical STS. Evaluation over
two clinical STS datasets demonstrates the effec-
tiveness of the approach, and domain pretraining
is shown to achieve further improvements. Further
investigation indicated that keeping the distribution
of pseudo-labelled instances close to that of the
in-domain data improves performance. We also
observed modest improvements through more iter-
ations of iterative training. Our work provides an
alternative approach to employing domain-specific
unlabelled data to support clinical STS. As future
work, we plan to explore the application of our
method to other model structures such as SBERT.
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Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota.

Suchin Gururangan, Ana Marasović, Swabha
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