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Abstract

Multimodal sentiment analysis aims to learn a joint representation of multiple features. As
demonstrated by previous studies, it is shown that the language modality may contain more
semantic information than that of other modalities. Based on this observation, we propose
a Multi-perspective Fusion Network(MPFN) focusing on Sense Attentive Language for multi-
modal sentiment analysis. Different from previous studies, we use the language modality as the
main part of the final joint representation, and propose a multi-stage and uni-stage fusion strategy
to get the fusion representation of the multiple modalities to assist the final language-dominated
multimodal representation. In our model, a Sense-Level Attention Network is proposed to dy-
namically learn the word representation which is guided by the fusion of the multiple modalities.
As in turn, the learned language representation can also help the multi-stage and uni-stage fusion
of the different modalities. In this way, the model can jointly learn a well integrated final rep-
resentation focusing on the language and the interactions between the multiple modalities both
on multi-stage and uni-stage. Several experiments are carried on the CMU-MOSI, the CMU-
MOSEI and the YouTube public datasets. The experiments show that our model performs better
or competitive results compared with the baseline models.

1 Introduction

Multimodal sentiment analysis is a task of predicting sentiment of a video, an image or a text based on
multiple modal features. With the increase of short videos on the internet, such as Douyin, YouTube, etc.,
multimoal sentiment analysis can be used to analyze the opinions of the public based on the speaker’s
language, facial gestures and acoustic behaviors.

Based on the successes in video, image, audio and language processing, multimodal sentiment analysis
has been studied extensively and produced impressive results in recent years (Liang et al., 2018; Liu et
al., 2018; Mai et al., 2019; Wang et al., 2019; Zadeh et al., 2018c). The core of the multimodal sentiment
analysis is to capture a better fusion of different modalities. Different methods are proposed to fuse
the multimodal features and help to capture the interactions of the modalities. Tensor Fusion Network
(Zadeh et al., 2017) is proposed to obtain raw unimodal representations, bimodal interactions and tri-
modal interactions in the form of 2D-tensor and 3D-tensor simultaneously. Low-rank Fusion Network
(Liu et al., 2018) is then proposed to alleviate the drawback of the large amount of parameters by low-
rank factor. Although the above methods achieved good results, they treat all modalities equally and fuse
the modalities in the same contribution. We find that language modality always contain more semantic
information for sentiment analysis, that’s why most of ablation experiments of previous studies (Mai et
al., 2019; Poria et al., 2017a; Zadeh et al., 2017) show that when using features from only one modality,
the model using language features performs much better than using vision features or acoustic features.

In this paper, we take the assumption that the language modality contains more information than
that of the vision and acoustic modalities. We regard language as the major modality and hope to use

*Corresponding author: xiali@gdufs.edu.cn
c©2020 China National Conference on Computational Linguistics

Published under Creative Commons Attribution 4.0 International License

Proceedings of the 19th China National Conference on Computational Linguistics, pages 1089-1100,  
Hainan, China, October 30 - Novermber 1, 2020. (c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

CC
L2
02
0



Computational Linguistics

other modalities to assist the language modality to produce better performance for multimodal senti-
ment analysis. To this end, we propose a multi-perspective fusion network for multimodal sentiment
analysis focusing on sense attentive language. Our model focuses on two aspects: (1)getting rich seman-
tic language representation through the fusion of the sense level attention of language guided by other
modalities. (2)learning comprehensive multimodal fusion from multiple perspectives, as well as keeping
the enhanced language representation.

In order to get rich semantic information of the language modality, we incorporate a sense-level at-
tention network into the model to obtain a more elaborate representation of the language. Generally
speaking, there are many words which have more than one sense and their different senses may lead
to different sentiment of a text in different context. Previous studies try to distinguish the ambiguities
of a word from the text modality (Xie et al., 2017; Zeng et al., 2018) using HowNet (Dong, 1988) and
LIWC(Pennebaker et al., 2007), while we hope the sense of a word can be distinguished not only by
the context of the text but also by fusion of other modalities(video and acoustic). As an example shown
in Figure1, we hope to predict the sentiment of the language “It would make sense”. As can be seen,
the word “sense” in the language modality has a higher attention weight which could be guided by the
“smile face of the vision modality” and “high sound audio modality”, and also by the “common sense”
of the word “sense”, which expresses more positive sentiment.

Figure 1: The sense-level attention and word-level attention of the text “It would make sense” learned
by our model. The first line is the acoustic modality, the second line is the video modality. The third line
and the last line are the language modality, in which the third line is the original sentence, and the last
line presents the senses of word “sense”. Darker color means greater weight.

For the effectiveness of modal fusion, the key problem is to model the gap between different modalities
and to learn a better multimodal fusion. In this paper, we propose a multi-stage and uni-stage strategy to
fuse the multiple modalities in order to capture the interactions between multi-stage sharing information
and global information integrated from uni-stage fusion. For multi-stage fusion, we use CNN with dif-
ferent window sizes to capture the multimodal fusion of consecutive temporals within different windows
respectively. As for uni-stage fusion, we first perform a projection operation on the concatenation of
the LSTM outputs of three modalities, then attention mechanism is applied to learn the different contri-
butions of the multimodal features at each temporal and produce a summary, which is regarded as the
global multimodal fusion. The main contributions of our work are as follows:

1) To the best of our knowledge, this is the first time to use WordNet to reduce ambiguity for the task
of multimodal sentiment analysis, which dynamically learn the different weights of the sense words to
produce sense-attentive language presentation.

2) We propose to take language as the major modality and learn multimodal fusion from multi-stage
and uni-stage perspective. Our final representation not only contains multimodal fusion, but also keeps
the language representation, which is helpful in multimodal sentiment analysis.

3) Our model outperforms the baseline models on the CMU-MOSI, the CMU-MOSEI and the
YouTube datasets and the ablation study shows the effectiveness of each components in our model.
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2 Related Work

Compared with conventional text-based sentiment analysis, sentiment analysis with multiple modali-
ties achieves significant improvements (Baltrusaitis et al., 2019). One of the most challenging task in
multimodal sentiment analysis is to learn a joint representation of multiple modalities.

Earlier work uses fusion approaches such as concatenation of multi-modality features (Lazaridou et al.,
2015; Ngiam et al., 2011), while recent studies propose more sophisticated fusion approaches. Poria et
al. (2017a) propose a LSTM-based model to capture contextual information. Zadeh et al. (2017) propose
a Tensor Fusion Network to explicitly aggregate unimodal, bimodal and trimodal interactions. Liu et al.
(2018) propose a Low-rank Fusion Network to alleviate the drawback of the large amount of parameters
by low-rank factor. Chen et al. (2017) propose a Gated Multimodal Embedding model to learn an on-off
switch to filter noisy or contradictory modalities.

As the modalities can have interactions between different timestamps, several models are proposed to
fuse the multiple modals from different views. Zadeh et al. (2018c) propose a Multi-attention Recur-
rent Network (MARN) to capture the interaction between modalities at different timestamps. Zadeh et
al. (2018a) propose a Memory Fusion Network to learn view-specific interactions and use an attention
mechanism called the Delta-memory Attention Network (DMAN) to identify the cross-view interactions.
Liang et al. (2018) propose a Recurrent Multistage Fusion Network (RMFN) to model cross-modal in-
teractions using multi-stage fusion approach, in which each stage of fusion focuses on a different subset
of multimodal signals, learning increasingly discriminative multimodal representations.

Recently, Pham et al. (2019) propose to learn joint representations based on translations between
modalities. They use a cycle consistency loss to ensure that the joint representations retain maximal
information from all modalities. Instead of directly fusing features at holistic level, Mai et al. (2019)
propose a strategy named ‘divide, conquer and combine’ for multimodal fusion. Their model performs
fusion hierarchically to consider both local and global interactions. Wang et al. (2019) propose a Recur-
rent Attended Variation Embedding Network (RAVEN) to model expressive nonverbal representations
by analyzing the fine-grained visual and acoustic patterns. Tsai et al. (2019) introduce a model that
factorizes representations into two sets of independent factors: multimodal discriminative and modality-
specific generative factors to optimize for a joint generative-discriminative objective across multimodal
data and labels.

Although previous studies propose many effective approaches, most of them treat all modalities
equally during the learning of multimodal fusion, which are different from our approach. In our model,
we propose a sense-level attention network to learn different word representation under different senses.
With the sense-attentive word representation, we can learn enhanced language representation. In addi-
tion, we try to learn sufficient multiomodal fusion through multi-stage fusion and uni-stage fusion, as
well as keeping the language representation to form our final representation.

3 Our Model

Our model consists of three components: sense attentive language representation which is regared as
the main representation of the multimodal fusion; multi-stage multimodal fusion which is designed to
capture the interactions between the sharing information on the multi-stage; uni-stage multimodal fusion
which is used to capture the global fusion information. The whole architecture of our model is shown
in Figure 2. In the following sections, we will introduce the sense-level attention network in section 3.1,
and describe the multi-stage multimodal fusion and the uni-stage multimodal fusion strategy in section
3.2. Section 3.3 describes the final representation and model trainning.

3.1 Sense-level Attention Network
As language has rich semantic information, a word may has different senses in different contexts, which
may make the sentiment of a sentence totally different. However, the word’s embedding representation
is unique in the pretrained embeddings. In order to let the model to better distinguish different meanings
of a same word, similar to the work of (Xie et al., 2017; Zeng et al., 2018), we use WordNet to get k
number of different senses of a word into the model. If a word don’t have any sense in WordNet, we input
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Figure 2: The whole architecture of our model. The sense-level attention is used to learn the different
importance of the sense words of each word in the language modality and produce a sense-attentive
representation of language. LSTM layers are then used to model the features from language, vision and
acoustic modalities. Three blocks are used to learn multi-stage multimodal fusion, uni-stage multimodal
fusion and language representation respectively, which are concatenated to form the final representation.

k number of original words into the model. If there are more than k number of senses for the word, we
take the first k number of senses in order and pad the sense sequence with the original word if the number
of senses of the word is less than k. We denote the sense sequence of the i-th word in the sentence as
Si = {si1, si2, . . . , sik}. The word senses and the original word are converted into embeddings to be
input into the model. Then attention mechanism is used to learn the importance weight of different senses
of a word and the weighted sum of the embeddings of different senses forms the new representation li of
the word, as shown in equations (1-3), where Wi and ui are the trainable weights, bi is the bias.

oij = relu (Wisij + bi) (1)

αij = softmax (uioij) (2)

li =
k∑

j=1

aijsij (3)

3.2 Multi-stage and Uni-stage Multimodal Fusion
In order to obtain comprehensive multimodal fusion, we propose two strategies to learn the relationship
and interactive information between multiple modal features, which are multi-stage fusion and uni-stage
fusion. The two strategies are shown in Figure 3.

After getting the new representation of language modality and the original features of acoustic and
vision modality, denoted as L = {l1, l2, . . . , lT }, A = {a1, a2, .., aT } and V = {v1, v2, .., vT }
respectively. We use three LSTM layers for modeling the features, aiming to consider the inter-
relationship of the individual modality in different timestamps. The outputs of LSTM of acoustic,
vision and language modality are denoted as HA = {ha1, ha2, . . . , haT }, HV = {hv1, hv2, . . . , hvT } and
HL = {hl1, hl2, . . . , hlT } respectively.

Multi-stage Multimodal Fusion. First we concatenate hai , hvi and hli, then we use different CNN
layers with different window sizes to learn the multi-stage shared fusion. For CNN with window size
1, we aim to model the relationship between the three modalities timestamp by timestamp, through
which we can get the fusion about the word, facial expression and speech tone of the speaker at the
same timestamp. For CNN with window size bigger than 1, we aim to model the relationship between
the three modalities within several timestamps. We perform maxpooling operation on top of the CNNs
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Figure 3: The strategies of multimodal fusion proposed in our model. The multi-stage fusion aims to
capture the interactions of the shared multimodal information in different time steps. The uni-stage
fusion aims to capture the global interactions of multimodal features fused within the same timestep.

respectively and concatenate the results, getting the multi-stage shared multimodal fusion hmulti−stage.
The convolution operation of CNN is shown in equation(4-6), where Wz and bz are trainable weights
and bias respectively, w is the window size, f is activation function which is relu in our implementation
and [ ] denotes for concatenation.

hi =
[
hai , h

v
i , h

l
i

]
(4)

zi = f (Wz [hi : hi+w−1] + bz) (5)

Zw = maxpooling ([z1, z2, ..., zT ]) (6)

As stated above, we use different CNN layers with different window sizes following maxpooling
operation, getting Zw representation (w = 1, 2, ...), finally Zw are concatenated to form the multi-stage
fusion hmulti−stage.

Uni-stage Multimodal Fusion. The uni-stage fusion is applied to learn the different contributions
of the multimodal feature at each temporal and produce a summary, which is regarded as the global
multimodal fusion. We use another block to learn uni-stage multimodal fusion. Specifically, as shown
in equation (7), we use a non-linear projection layer to project features of three modalities into the same
space.

h
′
i = f

(
Wf

[
hai , h

v
i , h

l
i

]
+ bf

)
(7)

Where Wf is the trainable weights, bi is the bias, f is relu activation function and [ ] denotes for
concatenation. Then we perform attention operation on the projected results h

′
i to get a summary about

of which stages the multimodal features are most important for sentiment analysis, as shown in equations
(8-10).

oi = tanh
(
Wah

′
i + bi

)
(8)

αi = softmax (uaoi) (9)

huni−stage =
T∑
i=1

aih
′
i (10)

Where αi is the attention weight of timestamp i.We use the attention weights to perform weighted sum
on h

′
i, getting the uni-stage multimodal fusion huni−stage.

3.3 Final Representation and Model Training
As mentioned before, we believe that language modality contains richer information than other modal-
ities, thus we perform attention operation on HL to get the final language representation hl. At last
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we concatenate hl, the multi-stage multimodal fusion hmulti−stage and uni-stage multimodal fusion
huni−stage to form the final representation hfinal. The final representation is input to a fully-connected
layer and a prediction layer to get the output, as shown in equations (11-12):

h
′
final = relu (W 1hfinal + b1

)
(11)

y = f(W2h
′
final + b2) (12)

Where W1 and W2 are trainable weights, b1 and b2 are biases. f is softmax function for classification
task. For regression task, we don’t need activation function. y is the prediction.

4 Experiments

4.1 Dataset
We conduct several experiments on the CMU-MOSI(Zadeh et al., 2016) dataset, the CMU-
MOSEI(Zadeh et al., 2018b) dataset and the YouTube(Morency et al., 2011) dataset. The CMU-MOSI
dataset contains 93 videos from the social media website, each of which comes from a different speaker
who is expressing his or her opinions towards a movie. The videos in CMU-MOSI dataset are split
into 2199 video clips, and each clip has a sentiment label y ∈ [−3, 3], which represents strongly pos-
itive(labeled as +3), positive(+2), weakly positive(+1), neutral(0), weakly negative(-1), negative(-2),
strongly negative(-3) respectively. The CMU-MOSEI dataset is a made up of 23,043 movie review
video clips taken from YouTube. Following (Mai et al., 2019), we consider positive, negative and neutral
sentiments in the paper. The YouTube dataset is collected from YouTube which contains 269 video clips.
The statistical information of the three datasets is shown in Table 1.

Dataset CMU-MOSI CMU-MOSEI YouTube
#Train 1284 15920 173
#Valid 229 2291 36
#Test 686 4832 60

Table 1: The statistical information of the experimental dataset.

4.2 Evaluation Metrix
Following previous work, we use different evaluation metrix on differetn datasets. For CMU-MOSI, we
conduct experiments on binary classification task, multi-class classification task and regression task. For
binary classification, we report accuracy and F1 score, whereas for multi-class classification we only
report accuracy. For regression task, we report Mean Absolute Error (MAE) and Pearson’s Correlation
(Corr). For all the metrics, higher values denote better performance, except MAE where lower values
denote better performance. For CMU-MOSEI and YouTube datasets, we conduct 3 classification task
and report accuracy and F1 score.

4.3 Experimental Details
For all datasets, 300-dimensional GloVe embeddings(Pennington et al., 2014) are used to represent the
language features; Facet0 library is used to extract a set of visual features and COVAREP(Degottex et
al., 2014) is used to extract acoustic features. We use WordNet to get 4 sense words for each word.
Note that we add a constraint that the sense words should contain the orginal word. Besides, in WordNet,
sense may contains more than one word, if this happen we use the average embedding of the words in the
sense as the representation of the sense. The sizes of hidden states of LSTMs encoding language features,
vision features and acoustic features are 100, 10 and 30 respectively. We use CNNs with window size 1
and 3 respectively to learn the multi-stage multimodal fusion and the filter number of CNN is set to 50.
The batch size is set to 32, 16 and 16 for CMU-MOSI, CMU-MOSEI, YouTube datasets respectively,

0https://imotions.com/biosensor/fea-facial-expression-analysis/
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and the initial learning rate is set to 0.0008, 0.0003 and 0.0001 for the three datasets respectively. For
CMU-MOSI dataset, we use L1 loss as training loss, for other two datasets, we use cross entropy loss
as training loss. We report the experimental results predicted by the model which performs best on the
validation set.

4.4 Baseline Models

We use several models as our baselines to compare with our model. Firstly,we use THMM(Morency
et al., 2011) and MV-HCRF(Song et al., 2012) as the traditional baseline models. THMM(Morency
et al., 2011) concatenates language, acoustic and vision features and then uses HMM for classifica-
tion. MV-HCRF(Song et al., 2012) is an extension of the HCRF for Multi-view data, explicitly cap-
turing view-shared and view specific sub-structures. Secondly, we use MV-LSTM(Rajagopalan et al.,
2016), BC-LSTM(Poria et al., 2017a), CAT-LSTM(Poria et al., 2017b), GME-LSTM(Chen et al., 2017),
TFN(Zadeh et al., 2017),CHFusion(Majumder et al., 2018),LMF(Liu et al., 2018),MFN(Zadeh et al.,
2018a), RMFN(Liang et al., 2018) and MARN(Zadeh et al., 2018c) as the early neural network based
compared models. Lastly, we use several previous state of the art models as our baseline models.
MCTN(Pham et al., 2019) learns joint representations of multi-modalities by cyclic translations between
modalities. HFFN(Mai et al., 2019) proposes a hierarchical feature fusion network, named ‘divide, con-
quer and combine’ to explore both local and global interactions in multiple stages. MFM (Tsai et al.,
2019) is proposed to optimize for a joint generative-discriminative objective across multimodal data and
labels.

4.5 Experimental Results

Experimental Results on the CMU-MOSI Dataset. The results of our model and baseline models on
the CMU-MOSI dataset is shown in Table 2. As is shown, the neural network based models outperform
traditional machine learning models with a large margin. Among all models, our model achieves the
second best performance on accuracy and F1 score of binary classification and accuracy of 7 classifica-
tion, and our model achieves the best performance on MAE and Pearson’s correlation of regression task
compared with the baseline models. Specifically, our model achieves competitive results compared with
HFFN on binary classification task, and outperforms MCTN, which is the best model on MAE among
the baseline models by 4.5% on MAE. For Pearson’s correlation (Corr), our model outperforms RMFN
which achieves the best performance on Corr among the baselines by 3.9%. As for seven classification
task, we achieve the second best performance. The overall experimental results on the CMU-MOSI
dataset show the effectiveness of our model.

Experimental Results on YouTube Dataset. Table 3 shows the experimental results of our model
and the baseline models on YouTube dataset. YouTube is a very small dataset, as shown in Table 1,
we can see that not all neural network based models outperform traditional machine learning models
both on accuracy and F1 score. However, compared with the baseline models, our model achieves the
best performance on both accuracy and F1 score, which outperforms the previous state-of-the-art model
MFM by 1.7% on accuracy and 3.5% on F1 score. Although YouTube dataset is very small, our model
can achieve the best performance among the baseline models.

Experimental Results on CMU-MOSEI Dataset. For CMU-MOSEI dataset, we conduct experiments
on 3 classification tasks. We present the experimental results of different models in Table 4. As we can
see, our model achieves the best performance on both accuracy and F1 score, which outperforms HFFN
by 0.93% on accuracy and 0.6% on F1 score, and outperforms BC-LSTM by 0.53% on accuracy and
0.63% on F1 score. Note that CMU-MOSEI is the largest dataset in this paper. In addition, we can see
that although CAT-LSTM and LMF achieve relative good performance on accuracy, their performance
on F1 score is much worse than that on accuracy. Our model can achieve both good performance on
accuracy and F1 score. Experimental results on CMU-MOSEI dataset and YouTube dataset show that
our model can adapt to both small data and large data.
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Model Binary Regression 7-class
Acc F1 MAE Corr Acc

THMM(Morency et al., 2011) 50.7 45.4 - - 17.8
MV-HCRF(Song et al., 2012) 65.6 65.7 - - 24.6
MV-LSTM(Rajagopalan et al., 2016) 73.9 74.0 1.019 0.601 33.2
BC-LSTM (Poria et al., 2017a) 73.9 73.9 1.079 0.581 28.7
GME-LSTM (Chen et al., 2017) 76.5 73.4 0.955 - -
TFN (Zadeh et al., 2017) 74.6 74.5 1.040 0.587 28.7
LMF (Liu et al., 2018) 76.4 75.7 0.912 0.668 32.8
RMFN(Liang et al., 2018) 78.4 78.0 0.922 0.681 38.3
MARN (Zadeh et al., 2018c) 77.1 77.0 0.968 0.625 34.7
MFN (Zadeh et al., 2018a) 77.4 77.3 0.965 0.632 34.1
MFM (Tsai et al., 2019) 78.1 78.1 0.951 0.662 36.2
MCTN (Pham et al., 2019) 79.3 79.1 0.909 0.676 -
HFFN (Mai et al., 2019) 80.2 80.3 - - -
MPFN(Ours) 80.0 80.0 0.864 0.720 37.0

Table 2: Experimental results of different models on CMU-MOSI dataset.

Model Acc F1
THMM (Morency et al., 2011) 42.4 27.9
MV-HCRF (Song et al., 2012) 44.1 44.0
MV-LSTM (Rajagopalan et al., 2016) 45.8 43.3
BC-LSTM (Poria et al., 2017a) 45.0 45.1
TFN(Zadeh et al., 2017) 45.0 41.0
MARN (Zadeh et al., 2018c) 48.3 44.9
MFN (Zadeh et al., 2018a) 51.7 51,6
MCTN (Pham et al., 2019) 51.7 52.4
MFM (Tsai et al., 2019) 53.3 52.4
MPFN(Ours) 55.0 55.9

Table 3: Experimental results of different models on YouTube dataset

Model Acc F1
BC-LSTM (Poria et al., 2017a) 60.77 59.04
TFN (Zadeh et al., 2017) 59.40 57.33
CAT-LSTM (Poria et al., 2017b) 60.72 58.83
CHFusion (Majumder et al., 2018) 58.45 56.90
LMF (Liu et al., 2018) 60.27 53.87
HFFN (Mai et al., 2019) 60.37 59.07
MPFN(Ours) 61.30 59.67

Table 4: Experimental results of different models on CMU-MOSEI dataset.

4.6 Ablation Studies

In order to investigate the impact of various components in our model, we conduct several ablation exper-
iments on the CMU-MOSI dataset, which are shown in Table 5. In the experiment, we remove one kind
of component of our full model each time. Specifically, we remove the sense-level attention (denoted as
MPFN-no-sense-att), the multi-stage multimodal fusion (denoted as MPFN-no-multi-stage-fusion), the
uni-stage multimodal fusion (denoted as MPFN-no-uni-stage-fusion) and final language representation
(denoted as MPFN-no-language-final) respectively.

As shown in Table 5, once we remove any component of our model, the performance will decline.
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For example, if we remove the sense-level attention and use the original word embedding as word rep-
resentation, the performance of our model will drop by 1.0% on accuracy, 1.4% on F1 score of binary
classification task, 3.8% on MAE, 2.5% on Corr, and 2.9% on accuracy of 7 classification task on the
CMU-MOSI dataset. This observation suggests that using WordNet and sense-level attention to dynam-
ically learn the word representation is effective.

In terms of multimodal fusion, we can see that if we remove the multi-stage fusion block or the uni-
stage fusion block, the performance of our model will also drop, which indicates that both multi-stage
fusion and uni-stage fusion are important for multimodal sentiment analysis. Furthermore, it seems that
the multi-stage multimodal fusion plays a more important role than uni-stage multimodal fusion on the
CMU-MOSI dataset.

Last but not least, we remove the final language representation which is concatenated with the multi-
modal fusion representation to see whether this operation is useful. The experimental results prove our
early assumption. As we mentioned, ablation studies of previous researches show that if only using fea-
tures of one modality as input, the model which use language modality features as input performs best. If
only using multimodal fusion representation to form the final representation, some intra-modality infor-
mation of language will be lost during fusion process. Concatenating the final language representation
with the multimodal fusion representation to form the final representation can address this problem.

Model Binary Regression 7-class
Acc F1 MAE Corr Acc

MPFN-no-sense-att 79.0 78.6 0.902 0.695 34.1
MPFN-no-multi-stage-fusion 79.0 79.0 0.882 0.698 36.9
MPFN-no-uni-stage-fusion 79.3 79.3 0.888 0.711 33.5
MPFN-no-language-final 79.3 79.3 0.899 0.714 34.4
MPFN(Ours) 80.0 80.0 0.864 0.720 37.0

Table 5: Ablation study on CMU-MOSI dataset.

4.7 Discussion

In order to investigate how each modality effects the performance of our model, we conduct several
experiments to compare the performance of our model using unimodal, bimodal and multimodal features,
as shown in Table 6.

For unimodal features, we can see that our model only using sense attentive language representation
outperforms the model that only using audio features or video features with significant margin, which
is consistent with our early assumption that language modality is dominant. For bimodal features, we
can infer that when integrating language modaltity with acoustic modality or vision modality, the perfor-
mance of the model outperforms that of only using language representation, which indicates that acoustic
and vision modalities play auxiliary roles and the multi-perspective multimodal fusion can improve the
performance of the model. However, when using audio features and video features as input, the perfor-
mance of the model is still much worse than that of only using language modality, which again proves
that language modality is the most important modality in this task.

When cooperating three modalities, our full model MPFN achieves the best performance among the
different combinations, which demonstrates the effectiveness of multi-perspective multimodal fusion
proposed in this paper.

5 Conclusion

In this paper, we propose a novel multi-perspective fusion network focusing on sense attentive lan-
guage for multimodal sentiment analysis. Evaluations show that using our proposed multi-stage and
uni-stage fusion strategies and using sense attentive language representation can improve performance
on multimodal sentiment analysis for the CMU-MOSI, CMU-MOSEI and YouTube data. Our model also
achieves a new state-of-the-art in the YouTube and CMU-MOSEI dataset on accuracy and F1 measure
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Modality Source Binary Regression 7-class
Acc F1 MAE Corr Acc

Unimodal
Audio 57.1 56.2 1.396 0.196 16.0
Video 57.3 57.3 1.431 0.137 16.2
Sense attentive language 79.0 79.1 0.922 0.689 34.0

Bimodal
Sense attentive language +Audio 79.7 79.6 0.881 0.701 34.7
Sense attentive language +Video 79.6 79.6 0.915 0.714 32.9
Audio+Video 59.0 59.0 1.391 0.176 19.7

Multimodal Sense attentive language +Audio+Video 80.0 80.0 0.864 0.720 37.0

Table 6: The performance of our model using unimodal, bimodal and multimodal features.

metrics compared with the baseline models. The experimental results using different modal combinations
also show that the proposed sense attentive language modal achieves the most significant performance
improvement on the CMU-MOSI dataset, especially on the 7-classification results, indicating that the
sense attentive language modal plays an important role in multimodal sentiment analysis task. Like most
of other models, our approach also focuses on the multimodal data with the same length of stamp. In the
future, we will investigate a novel fusion of multimodal data with different length of stamp.
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