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Abstract

Recently, large-scale pre-trained neural net-
work models such as BERT have achieved
many state-of-the-art results in natural lan-
guage processing. Recent work has explored
the linguistic capacities of these models. How-
ever, no work has focused on the ability of
these models to generalize these capacities to
novel words. This type of generalization is
exhibited by humans (Berko, 1958), and is
intimately related to morphology–humans are
in many cases able to identify inflections of
novel words in the appropriate context. This
type of morphological capacity has not been
previously tested in BERT models, and is
important for morphologically-rich languages,
which are under-studied in the literature re-
garding BERT’s linguistic capacities. In this
work, we investigate this by considering mono-
lingual and multilingual BERT models’ abil-
ities to agree in number with novel plural
words in English, French, German, Spanish,
and Dutch. We find that many models are not
able to reliably determine plurality of novel
words, suggesting potential deficiencies in the
morphological capacities of BERT models.

1 Introduction

In recent years, large-scale pre-trained neural net-
work models have transformed the landscape of
natural language processing (NLP) research. This
approach to NLP became prominent after sev-
eral models such as BERT (Devlin et al., 2019)
achieved new state of the art performance on a
wide range of NLP tasks such as natural language
inference. The successful performance of BERT
and other models like it on natural language under-
standing tasks suggests that they may be learning
valuable general linguistic competencies. However,
it is not clear whether these models are able to gen-
eralize these competencies to unseen words. With
the large training sets of these models ( 3.3 billion

tokens in Devlin et al. (2019)), their state-of-the-art-
establishing performance may feasibly have been
achieved without ever being tested on a word that
was not in the training set.

Nevertheless, BERT may need be concerned
about unseen words. Increasingly, there is an inter-
est in creating BERT and BERT-like models trained
on large corpora of languages other than English.
In comparison to English, many of the world’s
languages exhibit a much greater amount of inflec-
tional morphology. However, most of the results
motivating this explosion of BERT models are in
English NLP. It is unclear, then, how well BERT
will generalize to languages with complex mor-
phology. While BERT models are being developed
for other languages, many of these models have
been less comprehensively evaluated than English
BERT. For instance, the publicly available Turkish
(Schweter, 2020) BERT model (one of the most
morphologically complex languages for which a
BERT model is available) has only been evaluated
on named entity recognition and part-of-speech tag-
ging. It is unclear, then, how well the model would
fare on more complex NLP tasks.

In this work, we investigate BERT’s ability to
capture this type of information by studying its
ability to identify the correct plural form of novel
words in English, French, Spanish, Dutch, and Ger-
man. We find that BERT is able to distinguish
plural and singular forms to perform number agree-
ment significantly above chance in all languages.
However, many BERT models perform substan-
tially worse on novel words than on words in the
training set, even when prompted with an example
that shows the singular form, a task which humans
are known to be capable of (Berko, 1958). This
indicates that even simple morphological capaci-
ties are not reliably acquired in a human-like way
in the BERT training paradigm, showing room for
improvement in future models.
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2 Background

BERT is part of a growing research direction of pre-
training deep learning models, often a variant of a
“Transformer” architecture (Vaswani et al., 2017),
on large amounts of natural language data using
some variant of a language modelling objective.
This line of research includes other such successful
models as ELMo (Peters et al., 2018) and XLNet
(Yang et al., 2019). All of these models are trained
on very large corpora, with ELMo being the small-
est (trained on 1 billion tokens in Peters et al. (2018)
– in contrast to BERT’s 4 billion tokens in Devlin
et al. (2019)). All of these models are also highly
computationally intensive to train, so it is desirable
to avoid training new BERT models.

BERT uses a transformer-based architecture,
making it bidirectionally sensitive. It is trained
on a masked language modelling objective, mean-
ing that it takes in as input a sequence with some
words replaced with a [MASK] token, and is ex-
pected to output the original sequence. To enable
this, a final fully connected layer and softmax is
added after the transformer encoder to produce the
desired output. This means BERT is “out of the
box” capable of answering exactly those questions
that can be posed as replacing [MASK] tokens.

BERT-like models are also generally so-called
open-vocabulary language models, meaning they
can assign a probability to any string. This enables
them to give probabilities to novel words and novel
forms of known words, giving BERT the capac-
ity to learn morphological generalizations. This
is achieved through the use of subword segmenta-
tion, in which a strategy such as byte-pair encoding
(BPE) (Sennrich et al., 2016) or Unigram LM seg-
mentation (such as WordPiece (Kudo, 2018) and
the related SentencePiece) is used to turn words
into a sequence of multi-character tokens.

These segmentation strategies use statistical
methods to determine which multi-character to-
kens are added to their vocabularies, meaning that
high-frequency sub-word strings will more likely
be added as tokens. These tokens may or may not
correspond to morpheme boundaries. If they do not,
then models that rely on them will encounter the
same morpheme expressed in many distinct tokens,
requiring the model to learn agreement for all to-
kens which may contain, e.g., the plural affix. This
may mean that uncommon segments containing
inflectional affixes will be less reliable in agree-
ment, since they have no relation in representation

to frequently-occurring subwords containing the
same inflection.

2.1 BERT and linguistic competence

Previous work has explored the types of generaliza-
tions predicted by linguistic and psycholinguistic
theory that have been learned by the English BERT
models. This work has focused primarily on syntac-
tic generalizations. Initial work by Goldberg found
that BERT models showed promise at modelling
short- and long-distance subject-verb agreement
as well as reflexive anaphora phenomena (Gold-
berg, 2019). van Schijndel et al. (2019) revisited
these results without giving a bidirectional context
to BERT and found it performed at best no bet-
ter than existing LSTM models (contrasting with
Goldberg’s work). Ettinger (2020) differentiates
her work from these works by noting their primar-
ily syntactic focus, and promises to test more di-
verse linguistic capacities, but focuses on semantic
and pragmatic capacities, showing among other
things that BERT fails to fully model the meaning
of negation. Recently, Mueller et al. (2020) pre-
sented cross-linguistic targeted syntactic evaluation
of BERT, but only considered multilingual BERT.
Most of the work on the formal linguistic capacities
has not considered monolingual BERT models for
languages other than English (one recent exception
being Edmiston (2020)).

Very recently, a few works have considered
the morphological aspects of BERT. Bostrom and
Durrett (2020) argue that byte-pair encoding less
faithfully expresses English morphology than Un-
igram segmentation, and show a performance im-
provement in downstream tasks with a unigram-
segmentation-based BERT model. Hofmann et al.
(2020) show that BERT can be fine-tuned with
a classification layer to complete a derivational
morphology cloze task, finding that imposing mor-
pheme boundaries with hyphenation on the input
side ultimately improved BERT’s performance at
this task. Finally, Edmiston (2020) investigates sev-
eral monolingual BERT models for representations
of morphological information. Edmiston shows
that many morphological features can be extracted
by training a simple classifier on a BERT layer. He
also identifies a small number of attention heads
in each model that seem to pay attention to the
morphologically marked words in agreement phe-
nomena over other words. However, this agreement
experiment makes no attempt to isolate the mor-
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phological information from words which BERT
has seen, allowing for the possibility of morpholog-
ical “memorization” rather than true human-like
generalization.

Previous work in psycholinguistics has investi-
gated the human capacity for morphological gener-
alization, and it is this work we intend to build on
to explore BERT’s morphological capacity. Specifi-
cally, Berko (1958) presents the Wug test, a simple
test for productive morphology in which speakers
are prompted with a sentence containing one form
of an unknown word and prompted to complete a
sentence with another form. We present a task in-
spired by this one in which the ability to recognize
an unseen form of a word is probed through the
ability to correctly agree with that word’s form. In
this work, we specifically investigate subject-verb
number agreement.

3 Methods

This work focuses on BERT’s ability to recognize
novel words as singular or plural. This construc-
tion was chosen for its testability (through number
agreement on verbs) and its disparity in complex-
ity between languages. In English, French, Dutch
and Spanish, a large majority of plurals are derived
according to rules that can be expressed simply in
terms of adding a suffix corresponding to the suffix
of the base noun. Further, in French and Span-
ish, the plurality of a noun is unambiguous if it is
preceded by a determiner.

3.1 Plural formations of the languages

In written English, the plural of most nouns is
formed by one of three strategies: either 1. -s is
added to the end of the noun, 2. -es is added to the
end, or 3. a copy of the final letter followed by -es
is added to the end. Strategy 2 is used after sibi-
lant sounds, and Strategy 3 is generally used after
sibilant sounds which are preceded by a lax vowel.
Strategy 1 is used in all other cases (except known
irregulars). The words selected for this study were
chosen such that their spelling indicates an obvious
phonetic realization, and that they are distributed
across these 3 strategies.

The French and Spanish plural constructions are
arguably simpler than in English. In French, plural
nouns are generally formed by adding -s to the
end; unless the noun ends in s, z, or x, in which
case nothing is added, in eau, in which case -x is
added, or in -al or -ail in which case the suffix

may be removed and -aux added. In addition to
inflecting the word, French marks plurality in its
definite determiner, making it unambiguous from
the determiner whether a noun is singular or plural.

On the other hand, the German plural construc-
tion is significantly more complex than in En-
glish. Like French and Spanish, German marks
for plurality in the determiner, but the determiner
used to indicate plurality in the nominative case
is shared with that used to mark feminine noun
gender, meaning that noun gender cannot be deter-
mined purely from the determiner. Consider for
example the woman→the women, which in Span-
ish is la mujer→las mujeres, but in German is die
Frau→die Frauen. Further, German uses several
different strategies to form the plural, including
adding nothing to the word (-∅), adding -e, adding
-(e)r, adding -(e)n, and adding -s. These strategies
(with the exception of -(e)n) may also be combined
with “umlautification” of the stressed vowel in the
noun, yielding a total of 7 possible plural markers,
none of which consitute a majority of examples
(Köpcke, 1988; Wiese, 2000).

Singular form Plural form

das Fett die Fette
das Brett die Bretter
das Bett die Betten
der Sohn die Söhne
der Thron die Throne

Table 1: The German plural cannot be predicted from
the form of the singular word. Here, we see similar
singular words that form the plural in different ways.

The literature on the German plural generally
considers it to be a phenomenon over lexical classes
which are not phonologically predictable. Several
tendencies can be observed in German plural for-
mation, though few are universal. For example,
nouns ending in -e typically form their plural by
adding -n (Trommer, 2020). Nevertheless, even
near-minimal pairs of nouns may form their plural
in distinct ways (see Table 1). Indeed, adult Ger-
man speakers often vary widely in their choices
for novel words (Zaretsky et al., 2013; McCurdy
et al., 2020). Accordingly, substantial prior work
has suggested the German plural may be a challeng-
ing pattern for neural networks to learn (Feldman,
2005; Marcus et al., 1995; McCurdy et al., 2020).

The Dutch plural represents an interesting inter-
mediate case. As in German, the determiner gives
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Condition Stimulus Candidates

No prime, real words
The author knows many different foreign languages
and [MASK] playing tennis with colleagues.

enjoy/enjoys

Prime, real words This is a pilot. the pilots [MASK]. laugh/laughs
Prime, non-words This is a bik. the biks [MASK]. laugh/laughs

Table 2: Sample agreement stimuli in representative conditions in English. Correct completion is in bold.

Model Language Parameters Training tokens Tokenization

BERTBASE (Devlin et al., 2019) English 110M 3.3B WordPiece 30k
CamemBERT (Martin et al., 2020) French 110M 32.7B SentencePiece 32k
FlauBERT (Le et al., 2020) French 138M 12.8B BPE 50k
BETO (Cañete et al., 2020) Spanish 110M 3B BPE 32k
BERTje (Vries et al., 2019) Dutch 110M 2.4B SentencePiece 30k
Deepset 1 German 110M 1.8B SentencePiece 30k
dbmdz2 German 110M 2.4B SentencePiece 30k
mBERT3 All 110M – WordPiece 110k

Table 3: The models used in this work and associated statistics. Note that the SentencePiece and WordPiece
segmentation methods are different implementations of the same algorithm, described in Kudo (2018).

some ambiguous information about plurality, with
the determiners het and de both being used for sin-
gular nouns, but only de used with plural nouns.
The plural in Dutch is constructed using either the
ending -en or -s. Generally, -en is used to form
the plural of nouns ending with a stressed syllable,
and -s is used with nouns ending in an unstressed
syllable, although this generalization is not perfect
(van der Hulst and Kooij, 1998).

3.2 Experimental setup
This experiment probes the ability of BERT to rec-
ognize the plurals of novel words as such. We probe
this indirectly, though a number agreement task fol-
lowing the setup in van Schijndel et al. (2019). As
in that study, We use the challenge set from Mar-
vin and Linzen (2018) as a starting point. Number
agreement was chosen as a task because it is not
fully understood how to treat BERT as a generative
model. Therefore, we probe plural recognition as
an auxiliary task which BERT has been shown to
succeed at (Goldberg, 2019). This task is formu-
lated as a forced choice between a plural verb form
or singular verb form.

The Marvin and Linzen (2018) challenge set was
translated into English, German, Dutch, Spanish,

1https://deepset.ai/german-bert
2https://github.com/dbmdz/berts
3https://github.com/google-research/

bert/blob/master/multilingual.md

and French by fluent speakers with an elementary
background in formal linguistics. These languages
each have a singular-plural distinction and subject-
verb number agreement. Syntactic constructions
not possible in all five languages were omitted.
Some verbs in each dataset were changed to en-
sure each verb was a single token for all models
in that language. The datasets in each language
were then modified to replace the subject of the
targeted verb with a non-word. For each language,
24 non-words were used. English, French, Spanish,
and Dutch non-words were manually created by
fluent speakers, while the 24 German non-words
were taken from McCurdy et al. (2020), to account
for the fact that the German plural of non-words
is known to be inconsistent across speakers. The
plural formation chosen by a plurality of German
speakers in McCurdy et al. (2020) for each Ger-
man non-word was used; genders were chosen to
be distributed uniformly.

The BERT models were evaluated on number
agreement on the original datasets and the non-
word datasets. Models were evaluated bidirection-
ally, as in Goldberg (2019), to provide a maximally-
charitable estimate of BERT’s morphological ca-
pacity in each language.

Finally, models were reevaluated on the non-
word data with a “prime” for the non-word. In
English, the prime takes the form of the sentence

https://deepset.ai/german-bert
https://github.com/dbmdz/berts
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md


337

Real words Non-words

Language Model No prime Prime No prime Prime

English BERTBASE 1.00 1.00 0.87 0.90
French CamemBERT 0.99 0.98 0.98 0.99

FlauBERT 0.92 0.97 0.89 0.98
mBERT 0.97 0.98 0.99 0.99

Spanish BETO 0.98 0.87 0.90 0.80
mBERT 0.89 0.89 0.81 0.84

Dutch BERTje 1.00 0.98 0.85 0.79
mBERT 0.93 0.93 0.77 0.81

German deepset 1.00 1.00 0.70 0.72
dbmdz 1.00 0.99 0.75 0.79
mBERT 1.00 1.00 0.80 0.75

Table 4: Agreement accuracy on simple sentences (e.g. “The author laughs.”).

“This is a ”, where the blank was replaced
with the singular form of the novel noun in the
target sentence and the appropriate determiner for
the noun’s gender was selected. This construction
was translated into each language.

While it may seem unintuitive that BERT could
benefit from the use of this prime at test time, since
it is unable to adjust its weights, with self-attention
it is theoretically possible to encode a simple “rule”
for using the number of a noun seen for the first
time (as disambiguated via subject-verb agreement)
to influence number agreement for a noun with a
similar form. It is this possibility, as well as the
human capacity for this type of generalization, that
motivates this condition. Examples of stimuli in
each condition for English are presented in Table 2.

We consider several cased BERT models, both
monolingual and multilingual. The BERTBASE

size was used for all languages for comparabil-
ity between models, as not all languages have a
BERTLARGE model available. The models used are
summarized in Table 3 Experiments were run on
a single Nvidia GeForce GTX 1080 Ti, and take
under an hour to run.4

4 Results

Table 4 presents the results for the simple agree-
ment tests with bidirectional context. Here, “sim-
ple” refers to sentences consisting of a subject im-
mediately followed by an intransitive verb (e.g.,
“The man laughed.”). The number of singular sen-

4Code for generating the dataset and replicating the experi-
ments is available at https://github.com/ColemanHaley/BERT-
novel-morphology.

tences ranged between 212-672 depending on lan-
guage and non-word condition. As in Goldberg
(2019), ceiling performance is found on the orig-
inal dataset in English. CamemBERT also per-
formed near ceiling. Since the task is a forced
choice between 2 verb forms (singular or plural),
and there are an equal number of singular and plu-
ral subjects, chance performance is 0.5. Agreement
performance on the non-word sentences was much
better than chance, even without the inclusion of a
prime for the non-word (p < 0.001). This indicates
the model is often able to guess whether an noun
not seen in training is likely to be singular or plu-
ral. Notably, not all models across languages suc-
ceeded completely at subject-verb agreement even
with real words on simple sentences–FlauBERT
for French and mBERT for Dutch and Spanish
achieved less than 0.95 accuracy in this simple
task.

Cross-linguistically, there is no consistent trend
in whether the model is able to use the prime to
achieve better performance. While FlauBERT was
the only model to achieve statistically significant
gains (p < 0.01) in the non-word case with the
addition of the prime, this gain was also signifi-
cant (p < 0.05) in the real word case, suggesting
deeper issues with this model’s agreement capa-
bilities generally. Many models were slightly hurt
by the inclusion of the prime, suggesting that they
may be spuriously agreeing with the prime, even
across a sentence boundary.

As one might expect, the German BERT models
had the lowest average performance on the non-
word conditions, with no model surpassing 0.80
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accuracy. However, only French models achieved
an accuracy of greater than 0.90 in any non-word
case. Given that the correct form for French and
Spanish agreement can be determined from the
noun’s article alone, it is surprising that the Span-
ish models do not fully utilize this heuristic; this
heuristic may explain the high French performance.

mBERT performs about as well as the monolin-
gual BERT models in French and German, but per-
forms worse in Dutch and Spanish. In no case did
it significantly out-perform a monolingual model
(p > 0.1).

5 Discussion

To investigate whether the lower novel-word perfor-
mance was related to the segmentations of the novel
words, we measured how often each non-word was
associated with an error. We found inconsistent
results across models. BERTje was found to per-
form especially poorly on 4 out of 24 non-words,
incorrectly choosing a singular verb for a plural
form of the word 93% of the time. On investigat-
ing the segmentations, these words were found to
be segmented to “[UNK]” by the tokenizer. This
model uses the standard SentencePiece Unigram
tokenizer5, ostensibly the same as many of these
other models. Typically, this tokenizer is consid-
ered to be open-vocabulary, yet it fails to segment
these subwords, indicating that this is not strictly
true for this very popular implementation. If these
4 words are disregarded, in the no-prime case this
model achieves an accuracy of 0.93, the highest
of all non-French models across languages. While
this error is of substantial concern, it affects only
the Dutch BERTje results, as no other models were
found to have this behavior.

Other models were found to frequently fail on
the plural or singular forms of some words, such
as BETO, which 50% of the time identified “co-
manas” as a singular word form. Some models,
such as the English model and FlauBERT, instead
seemed to be uncertain about the plurality of all
forms, making a moderate amount errors at roughly
equal rates across non-words. In the case of the
English model, the model has a bias towards plural-
ity, with plural accuracy 0.19 greater than singular
accuracy; however, FlauBERT makes agreement
errors at roughly equal rates regardless of whether
the subject is singular or plural.

5https://github.com/google/
sentencepiece

With the German models, accuracy was > 0.88
for singular non-words, many of which are disam-
biguated by their determiner. Accordingly, most
errors are plural word forms which the model iden-
tified as singular. Both monolingual German mod-
els showed a pattern of having many plural forms
that were identified as singular > 70% of the time.
Most of the remaining forms in each model were
correctly identified as plural > 70% of the time,
indicating that these models are relatively certain
in their predictions. Unfortunately, no clear rela-
tionship to how closely the segmentation pattern
matches the morphology was found with whether
the correct verb is selected for a given non-word.
However, it is possible that the frequency of the
final subword segment occurring as a plural affix
in a German corpus would be more predictive of
which segments are likely to result in errors.

5.1 Non-linguistic factors

Although these results are largely consistent with
the linguistic hypotheses discussed in Section 3.1,
there is an uneven amount of training data across
the models and languages. Notably, the French
monolingual models used the most data, with Ger-
man models using the least. However, this relation-
ship is different within the mBERT model itself.
This model, being trained on the Wikipedia dumps
of each language, has the most data for English,
followed by German, then French, then Spanish,
then Dutch. While this does not completely disen-
tangle the effects of training size (e.g., for the low
Dutch performance), it does indicate that the dispar-
ity between model performances in, e.g., French
and German cannot be explained solely by this
factor. Further, almost all models use the same
vocabulary size and number of parameters, with
only FlauBERT being substantially larger, so this
is also likely not a major factor. Therefore, it seems
plausible that a primary driver of the differences
in model performance between languages reported
here is the language’s plural construction.6

5.2 Implications for BERTology

While this study is primarily focused on the mor-
phological and novel-word generalization capac-
ities of BERT, it also investigates more models
and languages than prior work on BERT’s lin-
guistic capacities–no previous work has looked at

6Additional architectural differences between the models
are described in Appendix A.

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
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more than one monolingual model for a single non-
English language. The results here strongly suggest
that the field of “BERTology” needs to consider
the generality of their claims across not just dif-
ferent languages, but even across different BERT
models developed on the same language. Even
models based on the same architecture and within
the same language, such as the German deepset
and dbmdz models show different results on this
simple task. While French subject-verb agreement
can be determined solely from the subject deter-
miner, FlauBERT achieved only 0.92 accuracy on
even simple French sentences, while both mBERT
and CamemBERT achieve accuracies higher than
0.95. This suggests that even in languages where
subject-verb agreement is relatively simple, the
BERT training objective alone cannot guarantee
total generalization, even when the model performs
well on downstream tasks. This suggests a need
for greater scruitiny of claims of BERT’s linguistic
capacity that evaluate only one or two models.

5.3 Potential practical implications

Finally, To consider the relation of these theoreti-
cal findings to real-world performance, we ran the
German experiments on real nouns again without
capitalizing nouns. While all nouns are capital-
ized in formal German, this case serves as an ex-
ample of a simple typo that might occur in real
data. Agreement accuracy dropped from 1.00 in
all 3 German models to 0.90, 0.79, and 0.89 in the
mBERT, deepset, and dbmdz models respectively.
This indicates that BERT’s agreement faculty is
highly sensitive to noise, failing to generalize even
to highly plausible “non-words” (in this case, un-
cased nouns). This casts substantial doubt on the
generality of BERT’s extensively studied agree-
ment competencies.

6 Conclusion

These results suggest that BERT models have some
understanding of morphology when applied to
novel words (or at least the plurals in a few Ger-
manic and Romance languages). Performance is
much significantly better than chance in simple
agreement cases, even when no prime is given.
This shows that the BERT models have learned
something about what plural and singular forms
“look like.” However, non-word performance is
not helped especially by the inclusion of a priming
sentence, indicating that the BERT models in ques-

tion may not have learned to recognize new words
and apply rules to them, as humans might. Further
work should investigate what types of primes affect
the performance and how.

The model performance here represents a best
case for BERT’s morphological capacity on novel
words. The plural construction is extremely com-
mon in text and is connected to phenomena like
agreement which additionally pressures it to be
learned on a non-semantic level. Further, the sim-
ple sentences studied here allow for the potential
of n-gram-level agreement heuristics which are not
possible in the general case.

That BERT struggles to capture morphology in
this way is likely not due to a lack of training data.
There are two potential culprits: the tokenization
method and the training objective. The FlauBERT
results especially indicate that the masked language
modeling objective may not sufficiently encourage
agreement. Cross-linguistically, the models seem
not to have picked up on how to use the informa-
tion in the prime. In addition, the subword tok-
enization methods used by BERT and BERT-like
models make the morphology learning problem sig-
nificantly more complicated. This is because the
plural morpheme is connected to some number of fi-
nal characters of a word as a single token, meaning
even plurals formed in the same way may be repre-
sented differently. This work points to a need for
subword segmentation strategies that more closely
mirror a language’s morphology than current ap-
proaches like Unigram segmentation or byte-pair
encoding. In this aspect of language, there remains
a large gap between BERT’s behavior and human
performance.
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A Additional model details

This appendix summarizes some additional differ-
ences between the models. It is not clear to the
author that these would be related to the pattern of
results presented here, but they are included so that
interested readers need not hunt them down.

The models vary in whether they use an auxil-
iary task in addition to the masked language mod-
elling (MLM) task described in the background.
Some models use next-sentence prediction (NSP),
in which the BERT model sees two sentences and
must determine whether the second one follows
the first. The initial BERT study indicated this
improved performance, but subsequent work (Liu
et al., 2019) found the opposite to be true, and
many subsequent BERT models omit this objective.

BERTje instead includes a sentence order predic-
tion (SOP) task, in which the model is presented
with two consecutive sentences which may be in
their original order or may be swapped, and must
predict if they are in the correct order. (Vries et al.,
2019) claim the addition of this objective improves
their performance on downstream tasks.

Another attribute of the models that vary is how
they handle the masking in MLM. The original
BERT model masked out a portion of its training
data before training, so every time a sentence is
encountered the masked segments are the same.
Subsequent works such as Liu et al. (2019) uti-
lize dynamic masking, where different segments
are masked in different training epochs. This is
often achieved by masking the training data a fixed
number of times and cycling through them during
training. Finally, some models utilize sub-word
masking (SWM), in which individual subwords
are masked independently, while other models use
whole-word masking (WWM), where all subwords
of a single word are always masked together.

Model Objective(s) Masking Strategy

BERTBASE MLM, NSP Static, SWM
CamemBERT MLM Dynamic, WWM
FlauBERT MLM Dynamic, WWM
BETO MLM Dynamic, WWM
BERTje MLM, SOP Static, WWM
Deepset MLM, NSP Static, SWM
dbmdz MLM, NSP Static, SWM
mBERT MLM, NSP Static, SWM

Table 5: Additional details of models. MLM = masked
language modeling, NSP = next sentence prediction,
SOP = sentence order prediction, SWM = sub-word
masking, WWM = whole-word masking .
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