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Abstract

Inferring the nature of the relationships be-
tween biomedical entities from text is an im-
portant problem due to the difficulty of main-
taining human-curated knowledge bases in
rapidly evolving fields. Neural word embed-
dings have earned attention for an apparent
ability to encode relational information. How-
ever, word embedding models that disregard
syntax during training are limited in their abil-
ity to encode the structural relationships fun-
damental to cognitive theories of analogy. In
this paper, we demonstrate the utility of en-
coding dependency structure in word embed-
dings in a model we call Embedding of Struc-
tural Dependencies (ESD) as a way to repre-
sent biomedical relationships in two analog-
ical retrieval tasks: a relationship retrieval
(RR) task, and a literature-based discovery
(LBD) task meant to hypothesize plausible re-
lationships between pairs of entities unseen
in training. We compare our model to skip-
gram with negative sampling (SGNS), using
19 databases of biomedical relationships as our
evaluation data, with improvements in perfor-
mance on 17 (LBD) and 18 (RR) of these
sets. These results suggest embeddings encod-
ing dependency path information are of value
for biomedical analogy retrieval.

1 Introduction

Distributed vector space models of language have
been shown to be useful as representations of re-
latedness and can be applied to information re-
trieval and knowledge base augmentation, includ-
ing within the biomedical domain (Cohen and Wid-
dows, 2009). A vast amount of knowledge on
biomedical relationships of interest, such as thera-
peutic relationships, drug-drug interactions, and ad-
verse drug events, exists in largely human-curated
knowledge bases (Zhu et al., 2019). However, the
rate at which new papers are published means new

relationships are being discovered faster than hu-
man curators can manually update the knowledge
bases. Furthermore, it is appealing to automati-
cally generate hypotheses about novel relationships
given the information in scientific literature (Swan-
son, 1986), a process also known as ‘literature-
based discovery.’ A trustworthy model should also
be able to reliably represent known relationships
that are validated by existing literature.

Neural word embedding techniques such as
word2vec1 and fastText2 are a widely-used
and effective approach to the generation of vector
representations of words (Mikolov et al., 2013a)
and biomedical concepts (De Vine et al., 2014). An
appealing feature of these models is their capac-
ity to solve proportional analogy problems using
simple geometric operators over vectors (Mikolov
et al., 2013b). In this way, it is possible to find ana-
logical relationships between words and concepts
without the need to specify the relationship type
explicitly, a capacity that has recently been used to
identify therapeutically-important drug/gene rela-
tionships for precision oncology (Fathiamini et al.,
2019). However, neural embeddings are trained
to predict co-occurrence events without consider-
ation of syntax, limiting their ability to encode
information about relational structure, which is an
essential component of cognitive theories of ana-
logical reasoning (Gentner and Markman, 1997).
Additionally, recent work (Peters et al., 2018) has
found that contextualized word embeddings from
language models such as ELMo, when evaluated on
analogy tasks, perform worse on semantic relation
tasks than static embedding models.

The present work explores the utility of encod-
ing syntactic structure in the form of dependency
paths into neural word embeddings for analogical

1https://github.com/tmikolov/word2vec
2https://fasttext.cc/
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Figure 1: Overview of training and evaluation pipeline. Two embedding models, Embedding of Structural Depen-
dencies (ESD) and Skip-gram with Negative Sampling (SGNS), are trained on data from a corpus of ≈70 million
sentences from Medline. The resulting representations are then evaluated on data collected from biomedical knowl-
edge bases.

retrieval of biomedical relations. To this end, we
build and evaluate vector space models for repre-
senting biomedical relationships, using a corpus of
dependency-parsed sentences from biomedical lit-
erature as a source of grammatical representations
of relationships between concepts.

We compare two methods for learning biomedi-
cal concept embeddings, the skip-gram with neg-
ative sampling (SGNS) algorithm (Mikolov et al.,
2013a) and Embedding of Semantic Predications
(ESP) (Cohen and Widdows, 2017), which adapts
SGNS to encode concept-predicate-concept triples.
In the current work, we adapt ESP to encode de-
pendency paths, an approach we call Embedding
of Structural Dependencies (ESD). We train ESD
and SGNS on a corpus of approximately 70 mil-
lion sentences from biomedical research paper ab-
stracts from Medline, and evaluate each model’s
ability to solve analogical retrieval problems de-
rived from various biomedical knowledge bases.
We train ESD on concept-path-concept triples ex-
tracted from these sentences, and SGNS on full
sentences that have been minimally preprocessed
with named entities (see §3). Figure 1 shows the
pipeline from training to evaluation.

From an applications perspective, we aim to eval-
uate the utility of these representations of relation-
ships for two tasks. The first involves correctly
identifying a concept that is related in a particular
way to another concept, when this relationship has
already been described explicitly in the biomedical
literature. This task is related to the NLP task of
relationship extraction, but rather than considering
one sentence at a time, distributional models rep-
resent information from across all of the instances
in which this pair have co-occurred, as well as

information about relationships between similar
concepts. We refer to this task as relationship re-
trieval (RR). The second task involves identifying
concepts that are related in a particular way to one
another, where this relationship has not been de-
scribed in the literature previously. We refer to this
task as literature-based discovery (LBD), as identi-
fying such implicit knowledge is the main goal of
this field (Swanson, 1986).

We evaluate on four kinds of biomedical rela-
tionships, characterized by the semantic types of
the entity pairs involved, namely chemical-gene,
chemical-disease, gene-gene, and gene-disease re-
lationships.

The following paper is structured as follows.
§2 describes vector space models of language as
they are evaluated for their ability to solve pro-
portional analogy problems, as well as prior work
in encoding dependency paths for downstream ap-
plications in relation extraction. §3 presents the
dependency path corpus from Percha and Altman
(2018). §4 summarizes the knowledge bases from
which we develop our evaluation data sets. §5 de-
scribes the training details for each vector space
model. §6 and §7 describe the methods and re-
sults for the RR and LBD evaluation paradigms.
§8 and §9 offer discussion and conclude the paper.
Code and evaluation data will be made available at
https://github.com/amandalynne/ESD.

2 Background

We look to prior work in using proportional analo-
gies as a test of relationship representation in the
general domain with existing studies on vector
space models trained on generic English. While our
biomedical data is largely in English, we constrain

https://github.com/amandalynne/ESD
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our evaluation to specific biomedical concepts and
relationships as we apply and extend established
methods.

Vector space models of language and
analogical reasoning
Vector space models of semantics have been ap-
plied in information retrieval, cognitive science
and computational linguistics for decades (Turney
and Pantel, 2010), with a resurgence of interest in
recent years. Mikolov et al. (2013a) and Mikolov
et al. (2013b) introduce the skip-gram architecture.
This work demonstrated the use of a continuous
vector space model of language that could be used
for analogical reasoning when vector offset meth-
ods are applied, providing the following canoni-
cal example: if xi is the vector corresponding to
word i, xking - xman + xwoman yields a vector that is
close in proximity to xqueen. This result suggests
that the model has learned something about seman-
tic gender. They identified some other linguistic
patterns recoverable from the vector space model,
such as pluralization: xapple - xapples ≈ xcar - xcars,
and developed evaluation sets of proportional anal-
ogy problems that have since been widely used
as benchmarks for distributional models (see for
example (Levy et al., 2015)).

However, work soon followed that pointed out
some of the shortcomings of attributing these re-
sults to the models’ analogical reasoning capacity.
For example, Linzen (2016) showed that the vector
for ‘queen’ is itself one of the nearest neighbors to
the vector for ‘woman,’ and so it can be argued that
the model does not actually learn relational infor-
mation that can be applied to analogical reasoning,
but rather, can rely on the direct similarity between
the target terms in the analogy to produce desirable
results.

Furthermore, Gladkova et al. (2016) introduce
the Better Analogy Test Set (BATS) to provide
an evaluation set for analogical reasoning that in-
cludes a broader set of semantic and syntactic re-
lationships between words. This set proved far
more challenging for embedding-based approaches.
Newman-Griffis et al. (2017) provide results of vec-
tor offset methods applied to a dataset of biomedi-
cal analogies derived from UMLS triples, showing
that certain biomedical relationships are more diffi-
cult to learn with analogical reasoning than others.

Because the aim of this project is to robustly
learn a handful of biomedical relationships, we are
less concerned about the linguistic generalizability

of these particular representations, but future work
will examine the application of these vector space
models to analogies in the general domain.

Dependency embeddings

Levy and Goldberg (2014a) adapt the SGNS
model to encode direct dependency relationships,
rather than dependency paths. In this approach,
a dependency-type/relative pair is treated as a tar-
get for prediction when the head of a phrase is
observed (e.g. P (scientist/nsubj|discovers)).
The dependency-based skipgram embeddings were
shown to better reflect the functional roles of words
than those trained on narrative text, which tended
to emphasize topical associations. Recent work
(Zhang et al. (2018), Zhou et al. (2018), Li et al.
(2019)) has also integrated dependency path rep-
resentations in neural architectures for biomedi-
cal relation extraction, framing it as a classifica-
tion task rather than an analogical reasoning task.
The work of Washio and Kato (2018) is perhaps
the most closely related to our approach, in that
neural embeddings are trained on word-path-word
triples. Aside from our application of domain-
specific Named Entity Recognition (NER), a key
methodological difference between this work and
the current work is that their approach represents
word pairs as a linear transformation of the con-
catenation of their embeddings, while we use XOR
as a binding operator (following the approach of
Kanerva (1996)), which was first used to model
biomedical analogical retrieval with semantic pred-
ications extracted from the literature by Cohen et al.
(2011)3. On account of the use of a binding opera-
tor, individual entities, pairs of entities and depen-
dency paths are all represented in a common vector
space.

3 Text Data

We train both the ESD and SGNS models on data
released by Percha and Altman (2018). This cor-
pus4 consists of about 70 million sentences from
a subset of MEDLINE (approximately 16.5 mil-
lion abstracts) which have PubTator (Wei et al.,
2013) annotations applied to identify phrases that
denote names of chemicals (including drugs and
other chemicals of interest), genes (and the proteins
they code for), and diseases (including side effects

3For related work, see Widdows and Cohen (2014)
4Version 7 of the corpus retrieved at https://zenodo.

org/record/3459420

https://zenodo.org/record/3459420
https://zenodo.org/record/3459420
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Figure 2: Example of a path of dependencies between two entities of interest. The full parse is not shown, but
rather, the minimum path of dependency relations between the two entities given the sentence.

and other phenotypes). Throughout this paper, we
use these shorthand names for each of these cate-
gories, following the convention established in Wei
et al. (2013) and followed by Percha and Altman
(2018).

The following example sentence from an article
processed by PubTator shows how multi-word
phrases that denote biomedical entities of interest,
in this case atypical depression and seasonal affec-
tive disorder, are concatenated by underscores to
constitute single tokens:

Chromium has a beneficial effect on eating-related atypical

symptoms of depression, and may be a valuable agent in

treating atypical depression and seasonal affective disorder.

Percha and Altman (2018) also provide pruned
Stanford dependency (De Marneffe and Manning,
2008) parses for the sentences in the corpus, con-
sisting, for each sentence, of the minimal path of de-
pendency relations connecting pairs of biomedical
named entities identified by PubTator. Specifi-
cally, they extract dependency paths that connect
chemicals to genes, chemicals to diseases, genes
to diseases, and genes to genes. Figure 2 shows an
example of a dependency path of relations between
two terms, risperidone and rage. We use these de-
pendency paths as representations for predicates
that denote biomedical relationships of interest by
concatenating the string representations of each
path element, which are shown below the sentence
in Figure 2. Following Percha and Altman (2018),
we exclude paths that denote a coordinating con-
junction between elements and paths that denote an
appositive construction, both of which are highly
common in the set. In this corpus of 70 million
sentences, there are about 44 million unique depen-
dency paths that connect concepts of interest, the
vast majority (around 40 million) of which appear
just once in the corpus. 540,011 of these paths
appear at least 5 times in the corpus.

4 Knowledge Bases

We construct our evaluation data sets with exem-
plars from knowledge bases for four primary kinds
of biomedical relationships, characterized by the
interactions between pairs of entities of the fol-
lowing types: chemical-gene, chemical-disease,
gene-disease, and gene-gene.

We evaluate on pairs of entities from the fol-
lowing knowledge bases: DrugBank (Wishart
et al., 2018), Online Mendelian Inheritance in
Man (OMIM) (Hamosh et al., 2005), PharmGKB
(PGKB) (Whirl-Carrillo et al., 2012), Reactome
(Fabregat et al., 2016), Side Effect Resource
(SIDER) (Kuhn et al., 2016), and Therapeutic Tar-
get Database (TTD) Wang et al. (2020).

Each knowledge base consists of pairs of en-
tities that relate in a specific way. For example,
SIDER Side Effects consists of chemical-disease-
typed pairs such that the chemical is known to have
the disease as a side effect, e.g. (sertraline, in-
somnia). Meanwhile, another chemical-disease
pair from a different database, Therapeutic Target
Database (TTD) indications, is such that the chem-
ical is indicated as a treatment for the disease, e.g.
(carphenazine, schizophrenia). In constructing our
evaluation sets, we process all terms such that they
are lower-cased, and multi-word terms are concate-
nated by underscores. Furthermore, we eliminate
from our evaluation sets any knowledge base terms
that do not appear in the training corpus described
in §3 at least 5 times. It should be noted that across
these sets, a single biomedical entity may appear
with numerous spellings and naming conventions.

Table 2 shows the corresponding relationship
type for each of the knowledge bases we use, as
well as the number of pairs from each that are used
in our evaluation data. The relationship retrieval
data consists of knowledge base pairs that appear
in our training corpus connected by a dependency
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path at least once, while the literature-based dis-
covery targets are those knowledge base pairs that
do not appear connected by a dependency path in
the corpus.

5 Training Details

SGNS With SGNS, a shallow neural network is
trained to estimate the probability of encounter-
ing a context term, tc, within a sliding window
centered on an observed term, to. The train-
ing objective involves maximizing this probabil-
ity for true context terms P (tc|to), and minimiz-
ing it for randomly drawn counterexamples t¬c,
P (t¬c|to), with probability estimated as the sig-
moid function of the scalar product between the in-
put weight vector for the observed term and the out-
put weight vector of the context term, σ(

−→
to .
−−→
tc|¬c).

We used the Semantic Vectors5 implemen-
tation of SGNS (which performs similarly to the
fastText implementation across a range of ana-
logical retrieval benchmarks (Cohen and Widdows,
2018)) to train 250-dimensional embeddings, with
a sliding window radius of two, on the complete
set of full sentences from the corpus described in
§3 as the training corpus. As previously mentioned,
multi-word phrases corresponding to named enti-
ties recognized by the PubTator system in these
sentences are concatenated by underscores, and
consequently receive a single vector representation.

ESD With ESD, a shallow neural network is
trained to estimate the probability of encountering
the object, o, of a subject-predicate-object triple
sPo. The training objective involves maximiz-
ing this probability for true objects P (o|s, P ) and
minimizing it for randomly drawn counterexam-
ples, ¬o, P (¬o|s, P ). We adapted the Semantic
Vectors5 implementation of ESP to encode de-
pendency paths, with binary vectors as represen-
tational basis (Widdows and Cohen, 2012) and
the non-negative normalized Hamming distance
(NNHD) to estimate the similarity between them.

NNHD = max

(
0, 1− 2×Hamming distance

dimensionality

)
With this representational paradigm, probabil-

ity can be estimated as NNHD(o, s⊗ P ), where
⊗ represents the use of pairwise exclusive OR as
a binding operator, in accordance with the Bi-
nary Spatter Code (Kanerva, 1996). While ESP

5https://github.com/semanticvectors/semanticvectors

was originally developed to encode knowledge ex-
tracted from the literature using a small set of prede-
fined predicates (e.g. TREATS), we adapt it here to
encode a large variety (n=546,085) of dependency
paths. For training, we concatenate the dependency
relations (the underscored parts in Figure 2) into a
single predicate token for which a vector is learned.
Some examples of path tokens (concatenated de-
pendency relations) can be seen in Table 1. Unlike
the original ESP implementation where predicate
vectors were held constant, we permit dependency
path vectors to evolve during training6. Further de-
tails on ESP can be found in (Cohen and Widdows,
2017). For the current work, we set the dimension-
ality at 8000 bits (as this is equivalent in representa-
tional capacity to 250-dimensional single precision
real vectors). For ESD, Table 1 shows the nearest
neighboring dependency path vectors to the bound
product I(metformin) ⊗ O(diabetes), illustrat-
ing paths that indicate the relationship between
these terms, and ESD’s capability to learn similar
representations for paths with similar meaning.

Both SGNS and ESD were trained over five
epochs, with a subsampling threshold of 10−5, a
minimum term frequency threshold of 5 (which
includes concatenated dependency paths for ESD),
and a maximum frequency threshold of 106.

6 Evaluation Methods

We use a proportional analogy ranked retrieval task
for both the RR and LBD tasks, following prior
work as described in §2. Figure 3 visualizes this
process. From a set of (X, Y) entity pairs from a
knowledge base, given a term C and all terms D
such that (C, D) is a pair in the set, we select n
random (A, B) cue pairs from a disjoint set of pairs.
We refer to (C, D) pairs as ‘target pairs,’ correct D
completions as ‘targets,’ and (A, B) pairs as ‘cues.’
The vectors for the cue terms (A, B) and the term
C are summed in the following fashion to produce
the resulting vector v. Given an analogical pair
A:B::C:D, where A and C, B and D are of the same
semantic type, respectively, we develop cue vectors
for the target D in each model as follows:

SGNS : −→v =
−→
B −

−→
A +

−→
C

ESD : −→v =
−−→
I(A)⊗

−−−→
O(B)⊗

−−→
I(C)

6This capability has been used to to predict drug interac-
tions, with performance exceeding that of models with orders
of magnitude more parameters (Burkhardt et al., 2019).
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SCORE PATH

0.974 controlled nmod start entity end entity amod controlled
0.935 add-on nmod start entity end entity amod add-on
0.565 reduces nsubj start entity reduces dobj requirement requirement nmod end entity
0.537 associated compound start entity end entity nsubj associated
0.516 start entity conj efficacy efficacy acl treating treating dobj end entity
0.438 treatment amod start entity treatment nmod end entity

Table 1: Nearest neighboring dependency path embeddings to I(metformin)⊗O(diabetes) where I andO indicate
input and output weight vectors respectively.

Figure 3: Overview of analogical ranked retrieval paradigm.

where I and O represent the input and out-
put weight vectors of the ESD model, respec-
tively. The SGNS method is the same as the
3COSADD method as described in Levy and Gold-
berg (2014b).

A K-nearest neighbor search is performed for v
(using cosine distance for SGNS, NNHD for ESD)
over the search space, and we record the ranks
for each correct D target. The search space is con-
strained such that it consists of those terms from our
training corpus that have a vector in both ESD and
SGNS, a total of about 300,000 terms overall. For
ESD, this space consists of the output weight vec-
tors for each concept. For the proportional analogy
task using K-nearest neighbors to rank completions
to the analogy, the desired outcome is for the cor-
rect targets to be highly similar to the analogy cue
vector v, such that the highest ranks are assigned to
the correct target terms D in a search over the entire
vector space. In this fashion, we perform this KNN
search for every (X, Y) pair in the knowledge base
and record the ranks for correct targets. We then
compare the ranks of terms D across both vector
spaces; the higher the ranks, the better the model is
at capturing relational similarity.

Table 2 shows, for each knowledge base, how
many total unique X terms and total (X, Y) pairs
are used for each task. Additionally, we show the
average number of correct Y terms per X and the
maximum number of correct Y terms per X. For
the relationship retrieval task, we consider those
(X, Y) pairs which are connected by at least one
dependency path in our corpus. Meanwhile, (X, Y)
pairs for the LBD task must not be connected by a
dependency path in the corpus (we treat these held-
out pairs as a proxy for estimating the quality of
novel hypotheses). We know from the (X, Y) pair’s
presence in the knowledge base that it is a gold
standard pair for the given relationship type, but
from the models’ perspective this information is
not available from the text alone. Thus, we believe
it is a good test of the models’ ability to generate
plausible hypotheses. To reiterate, the methodology
for both the relationship retrieval and literature-
based discovery evaluations is the same; the only
difference is in which pairs of terms from each
knowledge base are used for evaluation data.

We examine the role of increasing the number
of cues in improving retrieval. For example, for a
given (C, D) target pair, we can combine vectors
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Relationship Retrieval Literature-based Discovery
Total X Total Pairs Mean Y / X Max Y / X Total X Total Pairs Mean Y / X Max Y / X

Chem-Gene

Gene Targets (DrugBank) 1626 6290 4 107 3569 37162 10 420
PGKB 535 2089 4 48 1563 28053 18 144
Agonists (TTD) 148 172 1 3 307 462 2 7
Antagonists (TTD) 188 200 1 2 508 620 1 5
Gene Targets (TTD) 1179 1436 1 7 4088 6430 2 15
Inhibitors (TTD) 522 669 1 7 1273 2082 2 15

Chem-Disease

Side Effects (SIDER) 334 1289 4 31 892 6591 7 46
Drug Indication (SIDER) 1077 2737 3 22 2160 8356 4 45
Biomarker-Disease (TTD) 298 417 1 11 253 321 1 6
Drug Indication (TTD) 1749 1958 1 6 2664 2999 1 10
Disease Targets (TTD) 710 1502 2 22 1085 3088 3 27

Gene-Disease
OMIM 2197 2870 1 9 3461 5545 2 11
PGKB 600 1693 3 34 1609 12605 8 73

Gene-Gene

Enzymes (DrugBank) 966 3622 4 33 1781 16242 9 71
Carriers (DrugBank) 203 345 2 27 444 1174 3 18
Transporters (DrugBank) 510 2357 5 44 1140 13889 12 94
PGKB 497 2595 5 50 940 14142 15 89
Complex (Reactome) 1757 3061 2 9 2550 6593 3 31
Reaction (Reactome) 579 1031 2 9 1274 4024 3 29

Table 2: Total unique X terms, total (X, Y) pairs, average number of correct Y terms per X, and maximum number
of correct Y terms per X for each knowledge base.

for multiple (A, B) pairs with the C term vector to
produce a final cue vector that is closer to the target
D. When multiple cues are used, we superpose the
cue vector for each of the cues, and normalize the
resulting vector, with normalization of real vectors
to unit length in SGNS, and normalization of binary
vectors using the majority rule with ties split at
random with ESD. Cues are always selected from
the subset of knowledge base pairs that co-occur
in our training corpus. We ensure that none of the
(A, B) cue terms overlap with each other, nor with
the (C, D) target terms, to assure that self-similarity
does not inflate performance. We produced results
for a range of 1, 5, 10, 25, and 50 cues, finding that
the best results come from using 25 cues; we only
report these resulting scores in §7.

As a baseline inspired partly by Linzen (2016),
we compute the similarity of vectors for B and D
terms and C and D terms compared directly to each
other, omitting the analogical task. The intuition
here is that C and D terms are potentially close
together in the vector space merely due to frequent
co-occurrence in the corpus, and any analogical
reasoning performance is merely relying on that
fact. Meanwhile, terms B and D can be close to-
gether in the vector space simply because they are
the same semantic type, and thus occur in similar
contexts. In this case, relational analogy might not
explain the performance, but mere distributional
similarity. In the B:D comparison setting, cues B
are added together to create a single cue vector with
which to perform the KNN ranking over terms in
which to find the target term D. These cue terms

B are extracted from the same A, B cue pairs as
those used for the full analogy setting to ensure a
reasonable comparison across methods. In the C:D
comparison setting, no cues are aggregated.

7 Results

We present qualitative and quantitative results for
each vector space model’s ability to represent and
retrieve relational information.

Qualitative Results Table 3 shows a side-by-
side comparison of the top 10 retrieved terms given
the vector for the term risperidone composed with
25 randomly selected (drug, indication) cues from
SIDER. The goal is to complete the proportional
analogy corresponding to the treatment relation-
ship. Of the top 10 terms retrieved in the ESD vec-
tor space, 4 are correct completions to the analogy,
while 3 more are plausible completions based on lit-
erature. ‘Tardive oromandibular dystonia,’ while of
the correct semantic type targeted by this analogy,
is actually a side effect of risperidone. A major-
ity of the retrieved results, however, are known or
plausible treatment targets. Meanwhile, most of the
top 10 terms retrieved by SGNS are names of other
drugs that are similar to risperidone. Additionally,
‘psychiatric and visual disturbances’ and ‘tardive
dyskinesia’ are side effects of risperidone, not treat-
ment targets. Notably, all of the results retrieved
with ESD are of the correct semantic type, i.e., they
are disorders, while SGNS retrieves a mix of drugs
and side effects.

Quantitative Results For each C term in each
evaluation set, we record the ranks of all D tar-
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rank ESD (ours) SGNS
1 separation anxiety risperidone ×
2 schizophrenia olanzapine ×
3 depressed state quetiapine ×
4 bipolar mania aripiprazole ×
5 tardive oromanibular dystonia clozapine ×
6 treatment of trichotillomania ∗ psychiatric and visual disturbances
7 pervasive developmental disorder (NOS) ∗ ziprasidone ×
8 borderline personality disorder amisulpride ×
9 psychotic disorders paliperidone ×

10 mania tardive dyskinesia

Table 3: Top 10 results for a K-nearest neighbor search over terms for treatment targets for the drug risperidone
(an antipsychotic drug), using 25 (drug, indication) pairs from SIDER as cues. Bolded terms are correct targets,
i.e., they are listed as treatment targets for risperidone in SIDER. ∗: a disorder that risperidone treats or might treat,
based on external literature or a synonym for a target from SIDER; ×: a chemical, i.e., something that could not
be a treatment target for a drug.

get terms resulting from the K-nearest neighbor
search. For ease of comparison, we normalize all
raw ranks by the length of the full search space
(324363 terms in total), and then subtract this value
from 1 so that lower ranks (i.e., better results) are
displayed as higher numbers, for ease of interpre-
tation. For a baseline score, we ran a simulation
in which the entire search space was shuffled ran-
domly 100 times, and recorded the median ranks of
multiple target D terms, given some C. We find that
the median rank for D terms in a randomly shuffled
space tended toward the middle of the ranked list.
Thus, the baseline score is established as 0.5; any
score lower than this means the model performed
worse than a random shuffle at retrieving target
terms. In Table 4, 1 is the highest possible score,
and 0 is the lowest.

We report results at 25 (A, B) cues, the setting
for which performance was best for both ESD and
SGNS. ‘Full’ in Table 4 refers to evaluation with
a full A:B::C:D analogy, while ‘B:D’ refers to the
baseline that compares vectors for terms directly,
rather than using relational information. We do
not report C:D comparison results, as they were
categorically worse than both Full and B:D results.

8 Discussion

The results in Table 4 show that ESD outperforms
SGNS on the RR task for 18 of 19 databases, and
for 17 of 19 databases on the LBD task. It is clear
that literature-based discovery is harder than rela-
tionship retrieval, as the scores are generally lower
across the board for this task. We discuss the results

for each task separately.

8.1 Relationship retrieval
For a total of 12 out of 19 sets, ESD on full analo-
gies outperforms ESD on direct B:D comparisons,
suggesting that the model has learned generalizable
relationship information for these types of relations
rather than relying on distributional term similarity.
Because gene-gene pairs consist of entities of the
same semantic type, it can be argued that B:D simi-
larity should be very high, and yet scores are higher
for the full analogy over the B:D baseline for most
of these sets, for both ESD and SGNS. For SIDER
side effects, the B:D baseline for ESD shows higher
scores than the full analogy for both LBD and RR;
one reason for this could be that there is a high
degree of side effect overlap between drugs, and so
the side effect terms themselves are highly similar
to each other.

8.2 Literature-based discovery
The best performance on a majority of the sets
comes from the ESD B:D model, suggesting that
the model relies on term similarity over relational
information for performance. Although SGNS
doesn’t perform the best overall, the full analogy
model tends to outperform its B:D counterpart, sug-
gesting that SGNS has managed to extrapolate re-
lational information to the retrieval of held-out tar-
gets. As previously mentioned, performance on
this task is made difficult due to the lack of normal-
ization of concepts across our datasets. Addition-
ally, as Table 4 shows, several top ranked terms are
plausible analogy completions, but do not appear as
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Relationship retrieval LBD
ESD (ours) SGNS ESD (ours) SGNS

Full B:D Full B:D Full B:D Full B:D

Chem-Gene

Gene Targets (DrugBank) 0.912 0.897 0.839 0.212 0.715 0.806 0.496 0.250
PGKB 0.969 0.994 0.705 0.361 0.737 0.918 0.366 0.317
Agonists (TTD) 0.997 0.907 0.998 0.647 0.802 0.781 0.924 0.708
Antagonists (TTD) 1.000 0.900 0.999 0.732 0.802 0.703 0.831 0.750
Gene Targets (TTD) 0.998 0.867 0.994 0.387 0.746 0.760 0.625 0.479
Inhibitors (TTD) 0.998 0.874 0.993 0.415 0.773 0.759 0.682 0.392

Chem-Disease

Side Effects (SIDER) 0.997 0.999 0.967 0.942 0.952 0.994 0.799 0.932
Drug Indication (SIDER) 1.000 0.995 0.949 0.588 0.969 0.988 0.663 0.605
Biomarker-Disease (TTD) 0.996 0.997 0.944 0.781 0.932 0.977 0.799 0.726
Drug Indication (TTD) 1.000 0.994 0.981 0.675 0.977 0.992 0.722 0.661
Disease Targets (TTD) 0.990 0.997 0.900 0.711 0.887 0.989 0.663 0.648

Gene-Disease
OMIM 0.997 0.911 0.950 0.599 0.668 0.792 0.578 0.578
PGKB 0.982 0.996 0.781 0.624 0.836 0.969 0.592 0.618

Gene-Gene

Enzymes (DrugBank) 1.000 1.000 0.987 0.981 0.979 0.999 0.900 0.975
Carriers (DrugBank) 0.987 1.000 0.636 0.555 0.841 0.962 0.360 0.487
Transporters (DrugBank) 1.000 1.000 0.974 0.947 0.996 0.999 0.870 0.951
PGKB 0.999 0.995 0.899 0.471 0.907 0.956 0.479 0.425
Complex (Reactome) 1.000 0.819 1.000 0.206 0.866 0.731 0.838 0.399
Reaction (Reactome) 1.000 0.917 0.996 0.273 0.878 0.826 0.699 0.366

Table 4: Results for relationship retrieval (RR) and literature-based discovery (LBD) for full analogy (A:B::C:D)
and B:D retrieval. Scores are displayed here as the median of scores (1 - normalized rank) for all D terms in a
knowledge base evaluation set.

gold-standard targets in the databases. Considering
the case of SIDER, which is built from automati-
cally extracted information (not human-curated)
the plausible results here are missing from the
database but are supported by evidence from pub-
lished papers (e.g. Oravecz and Štuhec (2014)).

9 Conclusion

We have compared two vector space models of
language, Embedding of Structural Dependencies
and Skip-gram with Negative Sampling, for their
ability to represent biomedical relationships from
literature in an analogical retrieval task. Our results
suggest that encoding structural information in the
form of dependency paths connecting biomedical
entities of interest can improve performance on
two analogical retrieval tasks, relationship retrieval
and literature-based discovery. In future work, we
would like to compare our methods with knowledge
base completion techniques using contextualized
vectors from language models as in Bosselut et al.
(2019) as another method applicable to literature-
based discovery.
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