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Abstract

When comparing entities extracted by a med-
ical entity recognition system with gold stan-
dard annotations over a test set, two types of
mismatches might occur, label mismatch or
span mismatch. Here we focus on span mis-
match and show that its severity can vary from
a serious error to a fully acceptable entity ex-
traction due to the subjectivity of span anno-
tations. For a domain-specific BERT-based
NER system, we showed that 25% of the er-
rors have the same labels and overlapping span
with gold standard entities. We collected ex-
pert judgement which shows more than 90% of
these mismatches are accepted or partially ac-
cepted by the user. Using the training set of the
NER system, we built a fast and lightweight
entity classifier to approximate the user expe-
rience of such mismatches through accepting
or rejecting them. The decisions made by this
classifier are used to calculate a learning-based
F-score which is shown to be a better approx-
imation of a forgiving user’s experience than
the relaxed F-score. We demonstrated the re-
sults of applying the proposed evaluation met-
ric for a variety of deep learning medical entity
recognition models trained with two datasets.

1 Introduction

Named entity recognition (NER) in medical texts
involves the automated recognition and classifica-
tion of relevant medical/clinical entities, and has nu-
merous applications including information extrac-
tion from clinical narratives (Meystre et al., 2008),
identifying potential drug interactions and adverse
affects (Harpaz et al., 2014; Liu et al., 2016), and
de-identification of personal health data (Dernon-
court et al., 2017).

In recent years, medical NER systems have im-
proved over previous baseline performance by in-
corporating developments such as deep learning
models (Yadav and Bethard, 2018), contextual

word embeddings (Zhu et al., 2018; Si et al., 2019),
and domain-specific word embeddings (Alsentzer
et al., 2019; Lee et al., 2019; Peng et al., 2019).
Typically, research groups report their results us-
ing common evaluation metrics (most often preci-
sion, recall, and F-score) on standardized data sets.
While this facilitates exact comparison, it is diffi-
cult to know whether modest gains in F-score are
associated with significant qualitative differences
in the system performance, and how the benefits
and drawbacks of different embedding types are
reflected in the output of the NER system.

This work aims to investigate the types of errors
and their proportion in the output of modern deep
learning models for medical NER. We suggest that
an evaluation metric should be a close reflection of
what users experience when using the model. We
investigate different types of errors that are penal-
ized by exact F-score and identify a specific error
type where there is high degrees of disagreement
between the human user experience and what ex-
act F-score measures: namely, errors where the
extracted entity is correctly labeled, but the span
only overlaps with the annotated entity rather than
matching perfectly. We obtain expert human judge-
ment for 5296 such errors, ranking the severity
of the error in terms of end user experience. We
then compare the commonly used F-score metrics
with human perception, and investigate if there is
a way to automatically analyze such errors as part
of the system evaluation. The code that calculates
the number of different types of errors given the
predictions of an NER model and the correspond-
ing annotations is available upon request and will
be released at https://github.com/nrc-cnrc/

NRC-MedNER-Eval after publication. We will also
release the collected expert judgements so that
other researchers can use it as a benchmark for
further investigation about this type of errors.

https://github.com/nrc-cnrc/NRC-MedNER-Eval
https://github.com/nrc-cnrc/NRC-MedNER-Eval
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2 What do NER Evaluation Metrics
Measure?

An output entity from an NER system can be incor-
rect for two reasons: either the span is wrong, or
the label is wrong (or both). Although entity-level
exact F-score (also called strict F-score) is estab-
lished as the most common metric for comparing
NER models, exact F-score is the least forgiving
metric in that it only credits a prediction when both
the span and the label exactly match the annotation.

Other evaluation metrics have been proposed.
The Message Understanding Conference (MUC)
used an evaluation which took into account differ-
ent types of errors made by the system (Chinchor
and Sundheim, 1993). Building on that work, the
SemEval 2013 Task 9.1 (recognizing and labelling
pharmacological substances in biomedical text) em-
ployed four different evaluations: strict match, in
which label and span match the gold standard ex-
actly, exact boundary match, in which the span
boundaries match exactly regardless of label, par-
tial boundary match, in which the span boundaries
partially match regardless of label, and type match,
in which the label is correct and the span overlaps
with the gold standard (Segura Bedmar et al., 2013).
The latter metric, also commonly known as inexact
match, has been used to compute inexact or relaxed
F-score in the i2b2 2010 clinical NER challenge
(Uzuner et al., 2011). Relaxed F-score and exact
F-score are the most frequently used evaluation
metrics for measuring the performance of medical
NER systems (Yadav and Bethard, 2018). Other
biomedical NER evaluations have accepted a span
as a match as long as either the right or left bound-
ary is correct (Tsai et al., 2006). In BioNLP shared
task 2013, the accuracy of the boundaries is relaxed
or measured based on similarity of entities (Bossy
et al., 2013). Another strategy is to annotate all
possible spans for an entity and accept any matches
as correct (Yeh et al., 2005), although this detailed
level of annotation is rare.

Here, we focus on the differences between what
F-score measures and the user experience. In the
case of a correct label with a span mismatch, it is
not always obvious that the user is experiencing an
error, due to the subjectivity of span annotations
(Tsai et al., 2006; Kipper-Schuler et al., 2008). Ex-
isting evaluation metrics treat all such span mis-
matches equally, either penalizing them all (exact
F-score), rewarding them all (relaxed F-score), or
based on oversimplified rules that do not general-

ize across applications and data sets. We use both
human judgement and a learning-based approach
to evaluate span mismatch errors and the result-
ing gap between what F-score measures and what
a human user experiences. We only consider the
information extraction task and not any specific
downstream task.

3 Types of Errors in NER systems

While the SemEval 2013 Task 9.1 categorized dif-
ferent types of matches for the purpose of evalua-
tion, we further categorize mismatches for the sake
of error analysis. We consider five types of mis-
matches between annotation and prediction of the
NER system. Reporting and comparing the number
of these mismatches alongside an averaged score
such as F-score can shed light on the differences of
NER systems.

• Mismatch Type-1, Complete False Positive:
An entity is predicted by the NER model, but
is not annotated in the hand-labelled text.

• Mismatch Type-2, Complete False Nega-
tive: A hand labelled entity is not predicted
by the model.

• Mismatch Type-3, Wrong label, Right
span: A hand-labelled entity and a predicted
one have the same spans but different tags.

• Mismatch Type-4, Wrong label, Overlap-
ping span: A hand-labelled entity and a pre-
dicted one have overlapping spans but differ-
ent tags.

• Mismatch Type-5, Right label, Overlap-
ping span: A hand-labelled entity and a pre-
dicted one have overlapping spans and the
same tags.

We focus on Type-5 errors and show that treat-
ing these mismatches is not a trivial task. Pre-
vious works have shown that some Type-5 mis-
matches are completely wrong predictions while
others are fully acceptable predictions resulting
from the subjectivity and inconsistency of span
annotations (Tsai et al., 2006).

Figure 1 shows several examples of error Type-5.
In the first example, an adenosine - thallium stress
test is annotated as a test, while the NER system
extracts thallium stress test as a test. Here, what
NER extracted is partially correct but misses an
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Figure 1: Examples of Type-5 error. We used the visualisation tool developed in (Zhu et al., 2018)

important part of the entity. Whether the extracted
entity is acceptable may depend on the downstream
task. In the next sentence, patchy consolidation in
all lobes is annotated as a problem, but the NER
system extracted patchy consolidation in all lobes
of both longs as the problem. Here, the system’s
prediction is more complete than the annotated
entity, and so it appears to be a fully acceptable
prediction. In the last example, according to human
annotation, 1cm cyst in the right lobe of the liver is
a problem, but the NER system extracts two entities
from the same phrase, 1) 1cm cyst in the right
lobe as a problem and 2) liver as another problem.
While the first extracted entity is correct and may
be acceptable the second one is completely wrong.

4 Datasets and Models

We consider two medical text datasets, one clinical
and the other biomedical. We analyse the errors of
three models for each dataset to cover a variety of
deep learning models.

i2b2 dataset: The i2b2 dataset of annotated clin-
ical notes was introduced by (Uzuner et al., 2011)
in a shared task on entity recognition and relation
extraction. The texts, consisting of de-identified
discharge summaries, have been annotated for three
entity types: problems, tests, and treatments. There
are two versions of this dataset, as the version that
was released to the wider NLP community contains
fewer texts than in the original shared task. We use

the second version, which has become an impor-
tant benchmark in the literature on clinical NER
(Bhatia et al., 2019; Zhu et al., 2018). There are
170 documents (16520 entities) in the i2b2 train set
and 256 documents (31161 entities) in its test set.

The i2b2 dataset was annotated by community
annotators with carefully crafted guidelines. The
ground truth generated by the community obtained
F-measures above 0.90 against the ground truth of
the experts (Uzuner et al., 2011).

MedMentions dataset: The MedMentions
dataset was released in 2019 and contains 4,392
abstracts from biomedical articles on PubMed
(Mohan and Li, 2019). The abstracts are annotated
for UMLS concepts and semantic types. The fully
annotated dataset contains 127 semantic types and
these classes are highly-imbalanced. The creators
of the dataset also provide a version which has
been annotated with only a subset of the most
relevant concepts, called ‘st21pv’ (21 semantic
types from preferred vocabularies); we consider
this version in the current work. While fewer
papers have been published on MedMentions to
date, it represents an interesting challenge to NLP
systems due to its imbalanced and high number of
classes, and some observed inconsistencies in the
annotations (Fraser et al., 2019). There are 3513
documents (162,908 entities) in the st21pv train set
and 879 documents (40,101 entities) in the test set.

MedMentions was annotated by a team of profes-
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sional annotators with rich experience in biomedi-
cal content curation. The precision of the annota-
tion in MedMention is estimated as 97.3% (Mohan
and Li, 2019).

Model Structures: We explore a variety of NER
deep learning models. For all the models we fol-
low the commonly used deep learning structure
consisting of a pretrained embedding model and su-
pervised prediction layers. For embedding, we ex-
plore three different models: a non-contextualized
embedding model (Glove), general domain contex-
tualized embedding model (BERT pretrained on
general domain text) and a domain-specific contex-
tualized embedding model (BERT pretrained on
domain-specific text corpora). For the i2b2 dataset,
we consider Glove+bi-LSTM+CRF (Pennington
et al., 2014), BERT+linear (Devlin et al., 2018)
and ClinicalBERT+linear (Alsentzer et al., 2019)
models. For the st21pv MedMentions dataset, we
consider Glove+bi-LSTM+CRF, BERT+linear and
BioBERT+linear models (Lee et al., 2019). Clin-
ical BERT is pretrained on clinical notes (similar
to i2b2) and BioBERT is pretrained on biomedical
articles from PubMed (similar to st21pv).

5 Analysis of Error Types Across Models
and Datasets

Further investigation of Type-5 errors is only worth-
while if a significant proportion of the errors belong
to this group. We looked at the distribution of error
types across datasets and NER models, described
in Section 4, and visualized the results in Figure 2.
By calculating the distribution of error types, we
observed that for all assessed models at least 20%
of the errors are recognized as Type-5 mismatches.

Moreover, for both datasets, we observed that
better NER models generate more Type-5 errors.
Models based on general BERT outperform glove-
based models in terms of both exact and relaxed
f-score and they also generate relatively more Type-
5 errors. Same pattern is observed when comparing
domain-specific BERT models with general BERT
models. This observation may be explained with
the fact that contextualized embeddings combine
the meaning of words through attention mechanism
and the span information might be more vague in
the resulting representation. Figure 3 shows exact
F-score, relaxed F-score and the proportion of Type-
5 mismatches to the total number of errors, for all
the models and datasets. This analysis implies that
proper handling of Type-5 errors becomes more

important for comparison of modern strong NER
systems.

6 Expert Judgement on Type-5 Errors

We considered an information extraction task and
asked a medical doctor to assess the Type-5 errors
made by the BioBERT NER model on the st21pv
dataset and either confirm or reject the extracted
entity with granular scores. Our goal is to: 1) inves-
tigate the proportion of Type-5 extracted entities
that are acceptable, 2) set a benchmark of human
experience from Type-5 errors.

Human Judgement Scheme: The following
scoring scheme is used by the expert for scoring
the acceptability of Type-5 mismatches for the
BioBERT-based model trained with the st21vp
dataset. The Type-5 mismatches are identified and
the expert is given the original sentence in the test
set, the annotated (gold-standard) entity, and the
entity predicted by the NER model for all 5296
Type-5 mismatches.

SCORE = 1: The predicted entity is wrong
and gets rejected. For example, while gene transfer
is annotated as a research activity in the test set,
the NER extracted gene as research activity.
SCORE = 2: The predicted entity is correct but an
important piece of information is missing when
seen in the full sentence. The prediction is partially
accepted by the expert. For example, injury of
lung is labeled as injury or poisoning in the test
set, but the NER extracts only the word injury as
injury or poisoning.
SCORE = 3: The predicted entity is correct
but could be more complete. The prediction is
accepted by the expert. The entity normal HaCaT
lines is annotated as anatomical structure in the
test set but the NER extracts only HaCaT lines
with the same label.
SCORE = 4: The predicted entity is equally
correct and is accepted by the expert. As an
example the annotated entity in test set is 196b-5p,
as an anatomical structure but the NER extracts
-196b-5p, as an entity with the same tag.
SCORE = 5: The predicted entity is more
complete than the annotated entity and is accepted
by the expert. The annotated entity in the test set is
drugs with the tag chemical and the NER extracts
Alzheimer’s drugs with the same tag.
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Figure 2: Types of errors made on the i2b2 and MedMentions-st21pv datasets

Figure 3: The change of relative proportion of Type-5 errors across dataset and models as the f-scores change

Results of Human Judgement Analysis: The
results of the expert judgement are summarized
in Figure 4.

• Almost 40% of the Type-5 errors are scored
as 5. This means that in 40% of the cases the
prediction of the NER is more complete than
the entity labeled in its test set.

• 70% of the extracted entities scored 3 or above
and are fully accepted by the expert.

• 21% of the Type-5 mismatches are scored as
2. These are accepted as a correct entity ex-
traction when seen out of the context, but in
the context of a given sentence they lack an
important piece of information. Depending
on the downstream tasks, they might be an
acceptable prediction or not.

• Only 9% of the extracted entities are totally
rejected by the expert.

Figure 4: Results of expert judgement for Type-5 mis-
matches of the BioBERT-based NER model trained
with MedMentions-st21pv dataset.

7 Entity Classifier for Automatic
Refining of Type-5 Mismatches

We propose that an entity classifier can be trained
to predict the tag of entities extracted by the NER
model and the predicted tag can be used to distin-
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(a) Training

(b) Using for evaluation of the NER model

Figure 5: Workflow of the proposed entity classifier

guish between acceptable and unacceptable Type-5
errors. Figure 5 shows the workflow of the pro-
posed method. Using the training dataset of the
NER model, we train an entity classifier with gold
standard entities as inputs and their assigned tags
as outputs. For this classifier, the span is given
and the tag is the only information that has to be
learned. Although the full context of the sentence
helps the NER model to learn a better representa-
tion of the entity, many entities can be classified
without seeing the full sentence and this is what the
entity classifier learns.

For Type-5 entities, the human annotators and
the NER already agree on the tag and it is only the
span that is in disagreement. So, the intuition here
is that the entity classifier can confirm or reject the
tag predicted by NER, given the identified span.
This classifier is meant to play a third party role
that has seen the variety of span annotations in
the training dataset and performs the task that the
human expert did in Section 6. This classifier is
trained once for each dataset and is not dependent
on the type of the NER model.

7.1 Building the Training Data for the Entity
Classifier

In order to build a training dataset for the entity clas-
sifier, we extracted pairs of (entity, tag) from the
IOB annotated dataset. The entity classifier should
also be able to identify cases where the extracted
entity does not belong to any of the pre-defined
tags. For this reason we add the label other to the
list of tags of the classifier. To find examples of the
other class, we used the spaCy library (Honnibal
and Montani, 2017) to extract all the noun chunks
that are out of the boundaries of tagged entities and
randomly chose a number of them. We limited the

size of the other class to the average size of classes
related to the existing tags.

7.2 Classifier Structure

For the classifier structure, we chose to use a Dis-
tilBERT model (Sanh et al., 2019) with a linear
prediction layer. DistilBERT is a distilled version
of BERT that is an optimum choice when fast in-
ference is required. Since this classifier is going
to be used for evaluation and error analysis and
is not the main focus of building an NER model,
the lightweight and fast inference is an important
practical criterion. We train the classifier only one
epoch for both datasets. When trained on the train
set and tested on the test set, we achieved 89% F-
score for i2b2 and 77% F-score for st21pv dataset.

Figure 6: Comparison of decisions made by the hu-
man expert and the entity classifier for the Type-5 mis-
matches of BioBERT NER and st21pv dataset.

7.3 Using the Entity Classifier for Refining
Type-5 Mismatches

By building the entity classifier, our goal is to re-
fine the Type-5 errors and separate the acceptable
predictions of the NER from the unacceptable. For
instance, in the last example shown in Figure 1
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Annotated in test set Tag in test set Extracted by NER Tag from Entity classifier Decision
Central pathology biomedical discipline Central Spatial concept Reject

Therapies healthcare activity Agonist Therapies healthcare activity Accept

Table 1: Examples of accepted and rejected Type-5 mismatches using the entity classifier (st21pv dataset).

there are two Type-5 errors. We feed the two ex-
tracted entities ‘1 cm cyst in the right lobe’ and

‘liver’ to the entity classifier trained for i2b2 dataset.
The classifier predicts the tag ‘problem’ for the
extracted entity ‘1 cm cyst in the right lobe’ and

‘Other’ for the extracted entity ‘liver’. Using these
predictions we decide that the first entity is ac-
ceptable, since although the span of the extracted
entity does not match the annotation, the classifier
still recognizes it as a member of the correct class.
We reject the extracted entity ‘liver’ as a ‘prob-
lem’ since the classifier recognizes it as not being
a ‘problem’. Table 1 shows examples of rejected
and accepted Type-5 mismatches from the st21pv
dataset.

7.4 Comparing the Classifier and the Expert

Figure 6 shows the comparison between the ex-
pert’s judgment and the classifier’s judgement
about Type-5 mismatches for the BioBERT NER
model on st21 pv dataset.

Our analysis shows that 96% of the entities ac-
cepted by the classifier are also accepted or par-
tially accepted by the expert, and 86% of the en-
tities accepted or partially accepted by the expert
are accepted by the classifier as well. The clas-
sifier and the expert disagree about 17% of the
entities. In 24% of the disagreements, the proba-
bilities assigned to the tags generated by the en-
tity classifier are low (less than 0.5) and our man-
ual investigation shows that the classifier’s predic-
tion is mostly wrong in these cases. These mis-
takes mostly occurs in 5 classes namely anatomi-
cal structure, biologic function, chemical, finding
and health care activity.

We also observed that this classifier is not able
to distinguish between accepted and partially ac-
cepted entities extracted by the NER model, which
is one of the limitations of this method. The prob-
abilities assigned to the tags is 0.89 ± 0.17 for
accepted entities, 0.88±0.17 for partially accepted
entities, and 0.78± 0.23 for rejected entities.

8 Refining Type-5 Mismatches Across
Datasets and Models

Figure 7 shows how the entity classifier refines
Type-5 errors across models and datasets. Con-
sistently, a significant proportion of Type-5 errors
are accepted by the entity classifier. For exam-
ple, for the Glove-based model trained on i2b2
dataset, the entity classifier accepts 90% of Type-
5 errors which is 26.6% of the total number of
the errors penalized by the exact f-score. The pro-
portion of accepted Type-5 mismatches to the to-
tal number of errors is 31.11% for i2b2+BERT,
33.23% for i2b2+ClinicalBERT, 17.95% for
st21pv+Glove, 19.55% for st21pv+BERT and
19.36% for st21pv+BioBERT. To sum up, about
20% to 30% of the mismatches penalized by exact
f-score are accepted by the entity classifier.

9 Learning-Based F-score

The trained entity classifier can be leveraged for
F-score calculation. Here, instead of penalizing
all the type-5 mismatches as in exact F-score or
rewarding all of them in relaxed F-score, we penal-
ize the type-5 mismatches that are rejected by the
classifier and reward the rest of them. In other
words, this F-score penalizes errors of Type-1,
Type-2, Type-3, Type-4 and the Rejected Type-
5 mismatches. Accepted Type-5 mismatches and
exact matches are rewarded.

9.1 Evaluation of the Learning-Based F-score

We use the expert judgement collected in Section 6
to quantify human experience for the BioBERT-
based NER model on st21pv dataset and then
use that as a benchmark to evaluate the proposed
learning-based F-score. We consider two scenar-
ios based on the scores described in Section 6, 1)
a strict user that only accepts scores equal to or
above 3, 2) a forgiving user that accepts scores
equal to or above 2. We calculated the F-score for
each scenario and investigated the error of exact
F-score, relaxed F-score and the proposed F-score
to each of these scenarios. Table 2 shows that in
applications where strict evaluation of the NER
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Figure 7: Number of accepted/rejected Type-5 mismatches by the entity classifier

F-score err. wtr strict user err. wtr forgiving user

Exact -4.3% -5.5%
Proposed 5.9% 4.7%
Relaxed 8.2% 7.1%

Table 2: Comparing F-scores with human experience.

is needed, exact F-score is better than both pro-
posed and relaxed f-score and results in the least
error with respect to the human experience. How-
ever, in cases that partially accepted entities can
be considered as useful predictions, the proposed
method results in the least disagreement with hu-
man experience. A better classifier would be able
to model human preferences better, and thus make
the learning-based F-score a stronger alternative
to exact or relaxed F-scores. Another important
finding from Table 2 that when choosing between
exact and relaxed F-score, exact is the better metric
to choose.

Figure 8 shows how the proposed F-score can be
compared with exact and relaxed F-score. We only
have annotations for the BioBERT+stpv dataset
and for the rest of the models we cannot evaluate
the F-score with respect to human experience. As
expected, from this figure we observe that for all
the models, the proposed F-score is a forgiving one
and is much closer to the relaxed F-score than the
exact F-score.

10 Discussion

We highlighted the fact that when we evaluate NER
systems by comparing extracted and annotated en-
tities across a test set, for a significant part of the
errors that are penalized by the exact F-score, the la-

bel is recognized correctly and the span has overlap
with the annotated entity. We referred to this type
of error as Type-5 mismatch and for six NER mod-
els (3 model structures and 2 datasets) showed that
at least 20% of the errors belong to this category.
The previous literature has raised the issue that in
the case of medical NER, many such predictions
are valid and useful entity extractions and penaliz-
ing them is a flaw of evaluation metrics. However,
distinguishing between acceptable and unaccept-
able predictions when the label is correct and the
span overlaps is not trivial.

We argue that the best evaluation metric is the
one that reflects the human experience of the sys-
tem best. We collected human judgement about a
all Type-5 errors made by a NER model based on
BioBERT embeddings, trained with st21pv dataset
and showed that almost 70% of such errors are
completely acceptable and only 10% of them are
rejected by the user. The rest of the predictions are
acceptable entities for the associated tags but lack
important information when seen in the context.

Setting human experience as a benchmark, we
suggested that expert judgement can be approxi-
mated by a decision made by an entity classifier.
The entity classifier can be trained using the train-
ing set of an NER. While the NER model looks at
the context and identifies the type of the entity and a
partially correct span, this classifier looks at the ex-
tracted entities out of context and decides whether
with the partially correct span, the extracted en-
tity can still belong to the predicted class or not.
The entity classifier trained on st21pv dataset ac-
cepts more than 80% of Type-5 errors made by
BioBERT-based NER model trained with the same
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Figure 8: Comparison of f-scores.

dataset, 96% of which is also accepted by the ex-
pert user. The proposed entity classifier is trained
for each NER training set once and can be used to
evaluate any NER model trained on that dataset,
regardless of the structure of the NER model being
evaluated. We used a computationally inexpensive
model structure and encourage researchers to use
this model in order to automatically evaluate Type-
5 mismatches. Reporting the distribution of errors
across all error types and also accepted and rejected
Type-5 errors, will allow us to compare our models
in a variety of dimensions and sheds light on how
these models behave differently for detecting labels
and spans.

Accepting some Type-5 errors as useful predic-
tions can be translated to F-score calculation by
not penalizing the accepted entity extractions. We
did this calculation separately for the cases that
were accepted by human expert or the classifier,
and showed that the F-score resulting from the clas-
sifier is closer to the judgement of a forgiving user
than both the exact and the relaxed F-score. In
cases where a strict evaluation of the system is de-
sired, exact F-score is a better approximation of
human experience, due to the fact that the entity
classifier is a forgiving one and accepts most of the
cases that are partially accepted by the expert.

We only collected human judgement on the de-
cisions made by NER model for one model and
one dataset. Further investigation is needed to con-
firm or reject our observations and to investigate
the limitations and potential capabilities of training
an entity classifier alongside a NER model and us-
ing that for error analysis. Also, further research
is needed to find a way of distinguishing between
partially accepted and accepted entity extractions,
which is a necessary tool for measuring the experi-

ence of a strict user. Using extra sources of training
data other than the NER training dataset may be a
way to improve the judgements of the entity classi-
fier. We used this classifier for error analysis and
refining of Type-5 errors. In future work, we can
look at the possibility of using this classifier as a
refining tool for all types of mismatches or a post-
processing tool without the need for annotation to
identify the types of mismatches.

11 Conclusion

Medical NER systems that are based on most recent
deep learning structures generate a high amount of
outputs that match with the hand-labelled entities
in terms of tag but only overlap in the span. While
the exact f-score penalizes all of these predictions
and relaxed f-score credits all of them, a human
user accepts a significant proportion of them as
valid entities and rejects the rest.
A reformatted version of the NER training dataset
can be used to train an entity classifier for eval-
uation of extracted entities with right label and
overlapping span. We showed that there is a high
degree of agreement between human expert and
this entity classifier in accepting or rejecting span
mismatches. This classifier is used to calculate a
learning-based evaluation metric that outperforms
relaxed F-score in approximating the experience of
a forgiving user.
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