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Abstract

Automated Essay Scoring (AES) can be used
to automatically generate holistic scores with
reliability comparable to human scoring. In
addition, AES systems can provide formative
feedback to learners, typically at the essay
level. In contrast, we are interested in pro-
viding feedback specialized to the content of
the essay, and specifically for the content ar-
eas required by the rubric. A key objective
is that the feedback should be localized along-
side the relevant essay text. An important
step in this process is determining where in
the essay the rubric designated points and top-
ics are discussed. A natural approach to this
task is to train a classifier using manually an-
notated data; however, collecting such data
is extremely resource intensive. Instead, we
propose a method to predict these annotation
spans without requiring any labeled annotation
data. Our approach is to consider AES as a
Multiple Instance Learning (MIL) task. We
show that such models can both predict con-
tent scores and localize content by leveraging
their sentence-level score predictions. This ca-
pability arises despite never having access to
annotation training data. Implications are dis-
cussed for improving formative feedback and
explainable AES models.

1 Introduction

The assessment of writing is an integral compo-
nent in the pedagogical use of constructed response
items. Often, a student’s response is scored ac-
cording to a rubric that specifies the components of
writing to be assessed – such as content, grammar,
and organization – and establishes an ordinal scale
to assign a score for each of those components.
Furthermore, there is strong evidence of learning
improvements when instructors provide feedback
to their students (Graham et al., 2011). Their com-
ments can take the form of holistic, document-level
feedback, or more specific, targeted feedback that

addresses an error or praises an insight at relevant
locations in the paper.

As far back as the 1960s, computers have been
employed in essay scoring (Page, 1966). Thus,
automated essay scoring (AES) is a well-studied
area, and with modern approaches, AES systems
are often as reliable as human scorers (Shermis and
Burstein, 2003, 2013). However, many of these
systems are limited to providing holistic scores
– that is, they assign an ordinal value for every
component in the rubric.

Furthermore, some AES systems can provide
document-level feedback, but this requires students
to interpret which parts of their text the feedback
refers to. When an automated scoring system addi-
tionally provides location information, students can
leverage a more specific frame of reference to bet-
ter understand the feedback. Indeed, students are
more likely to understand and implement revisions
when given feedback that summarizes and localizes
relevant information (Patchan et al., 2016).

We are interested in automatically providing lo-
calized feedback on the content of an essay. The
specific kinds of feedback provided can vary, rang-
ing from positive feedback reinforcing that a stu-
dent correctly covered a specific topic, to feedback
indicating areas that the student could improve.
This latter category includes errors such as domain
misconceptions or inadequate citations. We con-
sider wholly omitted topics to be outside the scope
of localized feedback, as they represent an overall
issue in the essay that is best addressed by essay-
level feedback.

From a machine learning perspective, content
localization is difficult. Current automated local-
ization is often very fine-grained, e.g., grammar
checkers can identify spelling or grammar mistakes
at the word level. However, we view the content
of a student’s essay as primarily a sentence-level
aspect of student writing. Critically, to provide this
type of content feedback, we need to be able to
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detect where in their essay a student is discussing
that particular content. One approach would be to
collect a corpus of training data containing essays
with annotations indicating text spans where topics
of interest were discussed. A supervised machine
learning classifier could be trained on this data, and
this localization model could then be integrated into
a full AES feedback system. For example, a scor-
ing model could identify the degree of coverage
of rubric-required topics t1, . . . , tn. A formative
feedback system could generate suggestions for in-
adequately covered topics. Finally, the localization
system could identify where this formative feed-
back should be presented. In this work, we address
the localization part of this process.

While AES systems typically provide scoring of
several rubric traits, we are interested primarily in
the details of an essay’s content, and so our work
here focuses on a detailed breakdown of content
coverage into individual topics. For example, con-
sider a prompt that asks students to discuss how
to construct a scientific study on the benefits of
aromatherapy. Each student answer is a short essay,
and is scored on its coverage of six content topics.
Examples of these topics include discussion of inde-
pendent and dependent variables, defining a blind
study, and discussing the difficulties in designing
a blind study for aromatherapy. These kinds of
content topics are what our localization efforts are
focused on. Figure 1 shows a a screenshot from an
annotation tool containing an example essay with
human-provided annotations and scores.

The downside of building a localization classi-
fier based on annotation data is that such anno-
tation data is very expensive to collect. Holistic
scoring data itself is expensive to collect, and ob-
taining reliable annotations is even more difficult
to orchestrate. Due to these issues, an approach
that eliminates annotation training data is desirable.
We propose a weakly-supervised multiple instance
learning (MIL) approach to content localization,
that relies on either document-level scoring infor-
mation, or on a set of manually curated reference
sentences. We show that both approaches can per-
form well at the topic localization task, without
having been trained on localization data.

2 Automated Essay Scoring and
Feedback

Automated Essay Scoring systems for providing
holistic scoring are well studied (Shermis and

Burstein, 2003, 2013). Some systems are specifi-
cally designed to provide formative feedback, with
or without an accompanying overall score. Roscoe
et al. (2012) presents an automated feedback sys-
tem that measures attributes of the student response
and provides specific feedback if certain thresh-
olds are met (e.g., “use larger words” when the
mean syllables per word is too low). In Foltz et al.
(2000) an AES system is shown that uses Latent
Semantic Analysis (LSA) to measure similarities
between student sentences and reference sentences.
Each required topic has a set of 1–3 reference sen-
tences, and if no sentence in the student essay is
similar to any reference sentences for that topic,
feedback encouraging the student to more fully de-
scribe the topic is presented. Summary Street R©

provides students with content feedback during the
summarization task, and specifically uses a refer-
ence document with LSA for semantic comparison
(Steinhart, 2001; Franzke et al., 2005).

There has been effort toward providing students
with localized feedback as well. Burstein et al.
(2003) presents a system that uses an ensemble
of supervised machine learning models to locate
and provide feedback on discourse components
such as thesis statements. Similarly, Chukharev-
Hudilainen and Saricaoglu (2016) presents a sys-
tem that provides feedback on discourse structure
in essays written by English language learners.

A major drawback of these more localized feed-
back systems is the requirement that they be trained
on annotation data, which is expensive to gather.
Our work, which removes this constraint, is in-
spired by approaches that determine the contribu-
tion of individual sentences to the overall essay
score. One such approach is described in Dong
et al. (2017), which presents a neural network that
generates an attention vector over the sentences in
a response. This attention vector directly relates to
the importance of each individual sentence in the
computation of the final predicted score.

Woods et al. (2017) attempts to localize feed-
back based purely on the output of a holistic AES
model. Specifically, they train an ordinal logistic
regression model on a feature space consisting of
character, word, and part-of-speech n-grams. They
show that this model performs well on the AES
task. They then propose a method for determin-
ing the contribution of each sentence to the overall
score by measuring how much more likely a lower
(or higher) score would be if that sentence was re-
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Figure 1: Screenshot from an annotation tool containing an example essay with colored text indicating human-
provided annotations (left), the color-coded annotation key (top right) and holistic scores (bottom right).

moved. They then use the Mahalanobis distance to
compute how much that sentence’s contribution dif-
fers from a known distribution of sentence contribu-
tions. Finally, they present feedback to the student,
localized to sentences that were either noticeably
beneficial or detrimental to the overall essay.

We are interested in almost exactly the same
task as Woods et al. (2017) – the only difference is
that we aim to predict the locations humans would
annotate, while their goal was to evaluate the effec-
tiveness of their localized feedback. Specifically,
we frame annotation prediction as a task with a set
of essays and a set of labels, such that each sen-
tence in each essay has a binary label indicating
whether or not the specified topic was covered in
that sentence. The goal is to develop a model that
can predict these binary labels given the essays.

Latent Dirichlet Allocation (LDA) is an unsuper-
vised method for automatically identifying topics
in a document (Blei et al., 2003), and is related
to our goal of identifying sentences that received
human annotations. This requires an assumption
that the human annotators identified sentences that
could match a specific topic learned by LDA. While
there is some work on using LDA to aid in anno-
tation (Camelin et al., 2011), we are unaware of
any attempts to extend it to the educational writing
domain. Our approach differs from LDA in that we
use supervised techniques whose predictions can
be transferred to the annotation domain, rather than
approaching the problem as a wholly unsupervised
task. Additionally, we are classifying sentences
by topics rather than explicitly creating word topic
models for the topics.

If one views student essays as summaries (e.g.,
of the section of the textbook that the writing
prompt corresponds to), then summarization eval-
uation approaches could be applicable. In particu-
lar, the PEAK algorithm (Yang et al., 2016) builds
a hypergraph of subject-predicate-object triples,
and then salient nodes in that graph are identified.
These salient nodes are then collected into sum-
mary content units (SCUs), which can be used to
score summaries. In our case, these SCUs would
correspond to recurring topics in the student essays.
One possible application of PEAK to our annota-
tion prediction problem would be to run PEAK on
a collection of high-scoring student essays. Simi-
larity to the identified SCUs could then be used as a
weak signal of the presence of a human annotation
for a given sentence. Our approach differs from
this application of PEAK in that we not only utilize
similarity to sentences from high-scoring essays,
but also use sentences from low-scoring essays as
negative examples for a given topic.

3 Multiple Instance Learning

To accomplish our goal of predicting annotations
without having access to annotation data, we ap-
proach AES as a multiple instance learning regres-
sion problem. Multiple instance learning is a su-
pervised learning paradigm in which the goal is
to label bags of items, where the number of items
in a bag can vary. The items in a bag are also re-
ferred to as instances. MIL is a well-studied area
of machine learning, with a broad literature into
its applications both in NLP (e.g., Bunescu and
Mooney (2007)) and in general settings (e.g., Diet-
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terich et al. (1997)). The description provided here
is based on Carbonneau et al. (2016).

The standard description of MIL assumes that
the goal is a binary classification. Intuitively, each
bag has a known binary label, and we can think of
the instances in a bag as having unknown binary
labels. We then assume that the bag label is some
aggregation of the unknown instance labels. We
first describe MIL in these terms, and then extend
those ideas to regression.

Formally, let X denote our collection of train-
ing data, and let i denote an index over bags,
such that each Xi ∈ X is of the form Xi =
{xi,1, xi,2, . . . , xi,m}. Note that m can differ
among the elements of X , that is, the cardinali-
ties of two elementsXi, Xj ∈ X need not be equal.
Let Y denote our training labels, such that each Xi

has a corresponding Yi ∈ {0, 1}. We assume that
there is a latent label for each instance xi,j , denoted
by yi,j . Note that, in our specific application, xi,j
corresponds to the j-th sentence of the i-th docu-
ment in our corpus. The standard assumption in
MIL asserts that

Yi =

{
0 if ∀xi,j ∈ Xi, yi,j = 0
1 if ∃xi,j ∈ Xi, yi,j = 1

That is, the standard assumption holds that a bag
is positive if any of its constituent instances are
positive. Another way of framing this assumption
is that a single instance is responsible for an entire
bag being positive.

In contrast, the collective assumption holds that
Yi is determined by some aggregation function over
all of the instances in a bag. Thus, under the col-
lective assumption, a bag’s label is dependent upon
more than one and possibly all of the instances in
that bag.

AES is usually approached as a regression task,
so these notions must be extended to regression.
We adapt the standard assumption, that a single
instance determines the bag label, by using a func-
tion that selects a single instance value from the
bag. In this work, we use the maximum instance
label. We adapt the collective assumption, that all
instance labels contribute to the bag label, by using
a function that aggregates across all instance labels.
In this work, we use the mean instance label.

The application of MIL to natural language pro-
cessing tasks is quite common. Wang et al. (2016)
trains a convolutional neural network to aggregate
predictions across sentences in order to predict dis-
cussion of events in written articles. By framing

this task as a MIL problem, not only can they learn
to predict the types of events articles pertain to, they
can also predict which sentences specifically dis-
cuss those events. A variety of similar approaches
that assign values to sentences and then use aggre-
gation to create document scores have been used
for sentiment analysis (Kotzias et al., 2015; Pappas
and Popescu-Belis, 2017; Angelidis and Lapata,
2018; Lutz et al., 2019).

To the best of our knowledge, applications of
MIL in educational domains are rare, and we are
not aware of any attempts to explicitly approach
AES as a MIL task. The educational MIL work
that we are aware of uses MIL to determine overall
student performance given their trajectory over the
duration of a course (Zafra et al., 2011).

4 Automated Essay Scoring with
Multiple Instance Learning

By framing AES as a MIL problem, the goal be-
comes predicting, for each sentence, the score for
that sentence, and then aggregating those sentence-
level predictions to create a document-level pre-
diction. This goal requires determining both how
to predict these sentence-level scores, and how to
aggregate them into document-level scores. Note
that we perform this task independently for each
topic t1, . . . , tn, but this discussion is limited to a
single topic for clarity.

We define the AES task as follows. Assume
we are given a collection of student essays D and
corresponding scores y. We assume these scores
are numeric and lie in a range defined by the rubric
– we use integers, but continuous values could also
work. For example, if the rubric for a concept
defined the possible scores as Omitted/Incorrect,
Partially Correct, and Correct, the corresponding
entries in y could be drawn from {0, 1, 2}. The
AES task is to predict y given D.

The intuition for why MIL is appropriate for
AES is that, for many kinds of topics, the content of
a single sentence is sufficient to determine a score.
For example, consider a psychology writing prompt
that requires students to include the definition of
a specific kind of therapy. If an essay includes a
sentence that correctly defines that type of therapy,
then the essay as a whole will receive a high score
for that topic.

We approach the sentence-level scoring task us-
ing k-Nearest Neighbors (kNN) (Cover and Hart,
1967). Denote the class label of a training example
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a as ya. For each document in our training corpus,
we project each sentence into a semantic vector
space, generating a corresponding vector that we
denote as x. We assign to x the score of its parent
document. We then train a kNN model on all of
the sentences in the training corpus. We use the
Euclidean distance as the metric for our nearest
neighbor computations.

To predict the score of a new document using this
model, we first split the document into sentences,
project those sentences into our vector space, and
use the kNN model to predict the score of each
sentence. We define this sentence-level scoring
function φ as

φ(x) =
1

k

∑
a∈knn(x)

ya

where knn(x) denotes the set of k nearest neigh-
bors of x. We aggregate these sentence-level scores
through a document-level scoring function θ:

θ(Xi) = agg
xi,j∈Xi

(φ(xi,j))

where agg corresponds to either the maximum or
the mean – that is, agg determines whether we are
making the standard or collective assumption.

We consider three semantic vector spaces. We
define our vocabulary V as the set of all words
appearing in the training sentences. The first vec-
tor space is a tf-idf space, in which each sentence
is projected into R|V | and each dimension in that
vector corresponds to the term frequency of the
corresponding vocabulary term multiplied by the
inverse of the number of documents that contained
that term.

We also consider a pretrained latent semantic
analysis space. This space is constructed by us-
ing the singular value decomposition of the tf-idf
matrix of a pretraining corpus to create a more com-
pact representation of that tf-idf matrix (Landauer
et al., 1998).

Finally, we consider embedding our sentences
using SBERT (Reimers and Gurevych, 2019).
SBERT is a version of BERT (Devlin et al., 2019)
that has been fine-tuned on the SNLI (Bowman
et al., 2015) and Multi-Genre NLI (Williams et al.,
2018) tasks. These tasks involves predicting how
sentences relate to one another. Critically, this
means that the SBERT network has been specifi-
cally fine-tuned to embed individual sentences into
a common space.

5 Weakly Supervised Localization

While this kNN-MIL model is ultimately trained to
predict document-level scores for essays, as a side
effect, it also generates a score prediction for each
sentence. The central idea is that we can directly
use these sentence-level scores as weak signals of
the presence of annotation spans in the sentences.

Concretely, given our trained kNN-MIL model
and an essay Xi, we predict the presence of an-
notations as follows. Assume that the minimum
and maximum scores allowed by the rubric for the
given topic are Smin and Smax, respectively. We
leverage the sentence-level scoring function φ to
compute an annotation prediction function α:

α(xi,j) =
φ(xi,j)− Smin

Smax − Smin

That is, our annotation prediction function α is a
rescaling of φ such that it lies in [0, 1], allowing
us to interpret it as a normalized prediction of a
sentence having an annotation.

As our goal is to predict annotation spans with-
out explicit annotation data, we also consider a
modification of this process. Rather than training
our kNN-MIL model on a corpus of scored student
essays, we could instead use a set of manually cu-
rated reference sentences to train the model. We
consider two sources of reference sentences.

First, we consider reference sentences pulled
from the corresponding rubric, labeled by the topic
they belong to. Rubrics often have descriptions of
ideal answers and their key points, so generating
such a set is low-cost. However, sentences from
rubric descriptions may not discuss a topic in the
same way that a student would, or they may fail to
anticipate specific correct student answers.

For these reasons, we also consider selecting ref-
erence sentences by manually picking sentences
from the training essays. We consider all training
essays that received the highest score on a topic as
candidates and choose one to a few sentences that
clearly address the topic. We specifically look for
exemplars making different points and written in
different ways. These identified sentences are man-
ually labeled as belonging to the given topic, and
each one is used as a different reference sentence
when training our kNN-MIL model. Typically, just
a few exemplars per topic is sufficient (Foltz et al.,
2000).

Whether we collect examples of formal wording
from the rubric or informal wording from student
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answers, or both, we must then label the reference
sentences for use in our kNN-MIL model. For a
given topic, the references drawn from other topics
provide negative examples of it. To convert these
manual binary topic labels into the integer space
that we use for the AES task, we assign to each ref-
erence sentence the maximum score for the topic(s)
it was labeled as belonging to, and the minimum
score to it for all other topics.

The key benefit of our approach is that it never
requires access to annotation training data. In-
stead, given a collection of student essays for a
new prompt, training a kNN-MIL model for that
prompt requires one of a few sources of data. If
we have human-provided document-level scores
for the topics we are interested in, we can train
a kNN-MIL model on those labeled documents.
Otherwise, if the rubric contains detailed enough
reference sentences and descriptions for the vari-
ous topics, we can train a kNN-MIL model using
reference sentences collected from the rubric. And
finally, we can have a human expert collect exam-
ples of the topics of interest from the essays, and
then train a kNN-MIL model using those examples
as reference sentences.

6 Datasets

To evaluate the performance of kNN-MIL, we
need student essays that have both document-level
scores and annotation spans. To the best of our
knowledge, there is no publicly available dataset
that contains both.

Thus, we make use of an existing Pearson propri-
etary corpus developed to explore fine-grained con-
tent assessment for formative feedback. This cor-
pus consists of student responses to four university-
level psychology writing prompts. While the es-
says were originally written and scored against
holistic writing traits, a subsequent annotation ef-
fort factored the content trait into multiple topics
that represent core ideas or assertions an instructor
would expect a student to address within the essay.
For example, the topic Comparing Egocentrism
from a prompt about Piaget’s stages of develop-
ment has the following reference answer:

A child in the pre-operational stage is unable to

see things from another person’s point of view,

whereas a child in the concrete operational stage

can.

Annotators were tasked with assigning an essay-
level rating for each topic with a judgment of Com-
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Figure 2: Box plots of inter-annotator correlations
of the sentence-level annotation labels for each topic
(left) and correlation between scores for all topic pairs
(right).

plete, Partial, Incorrect or Omitted. Additionally,
they were asked to mark spans in the essay pertain-
ing to the topic – these could be as short as a few
words or as long as multiple sentences. Two psy-
chology subject matter experts (SMEs) performed
the rating and span selection tasks. Ideally, rat-
ing and span annotations would have also been
adjudicated by a third SME. However, due to time
and cost constraints, we lack adjudicated labels for
three of the four prompts. For this reason, we ran
our experiments on both annotators separately.

As our techniques work at a sentence-level, but
the human annotations can be shorter or longer
than a single sentence, we frame the annotation
prediction task as the task of predicting, for a given
sentence, whether an annotation overlapped with
that sentence. We show the distribution of inter-
annotator agreements for the topics in the four
prompts in the left panel of Figure 2, calculated as
the correlation between these sentence-level anno-
tation labels. The annotators achieved reasonable
reliability except on the Sensory prompt, where the
median correlation was below 0.5, and one topic
in the Piaget prompt, where the annotators had a
correlation near 0.

The features of these four prompts are shown
in Table 1. Essays had 5–8 topics and covered ar-
eas such as the stages of sleep; the construction
of a potential experimental study on aromather-
apy; Piaget’s stages of cognitive development; and
graduated versus flooding approaches to exposure
therapy for a hypothetical case of agoraphobia. Ta-
ble 2 shows how many sentences were available for
training the kNN-MIL models for each prompt.

Our approach assumes that the topic scores are
numeric. We convert the scores in this dataset by
mapping both Omitted and Incorrect to 0, Partial
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Prompt # of Essays # of Topics Mean Words Annotator 1 Annotator 2

Sleep Stages 283 7 361 9% 8%
Sensory Study 348 6 395 7% 14%
Piaget Stages 448 8 367 10% 6%
Exposure Therapy 258 5 450 15% 9%

Table 1: Characteristics and summary statistics of prompts used in the experiments. The Annotator columns
indicate, for a specific topic, the average percentage of sentences annotated with that topic.

Prompt Rubric Student Training

Sleep Stages 15 19 4741
Sensory Study 11 13 5362
Piaget Stages 26 22 6342
Exposure Therapy 20 48 5184

Table 2: Number of sentences available for kNN-MIL
training. The Rubric column shows the number of refer-
ence sentences taken from the rubric, while the Student
column shows the number manually chosen from the
student essays. The Training column shows the total
number of sentences in the full set of essays.

to 1, and Complete to 2. As our approach uses
these topic scores to generate annotation predic-
tions, its ability to predict different annotations for
different topics depends on the topic scores not be-
ing highly correlated. The right panel of Figure
2 shows the distribution of inter-topic correlations
for each prompt. While there is considerable vari-
ation between the prompts, we do see that, except
for one topic pair on the Piaget prompt, all inter-
topic correlations are less than 0.8, and the median
correlations are all below 0.5.

7 Experiments

Our goal is to determine how well the kNN-MIL
approaches perform on the annotation prediction
task. We also want to verify that our approaches
perform reasonably well on the essay scoring task –
while we are not directly interested in essay scor-
ing, if our approaches are incapable of predicting
essay scores, that would indicate that the underly-
ing assumptions of our kNN-MIL approaches are
likely invalid.

For each prompt, we construct 30 randomized
train/test splits, holding out 20% of the data as the
test set. We then train and evaluate our models on
those splits, recording two key values: the corre-

lation of the model’s document-level scores to the
human scorer, and the area under the ROC curve of
the model’s sentence-level annotation predictions.

We compare results between three categories of
models. The first is the kNN-MIL model, trained
on the training set. We refer to this model as the
Base kNN-MIL model. The second is the kNN-
MIL model trained on a manually curated reference
set, which we refer to as the Manual kNN-MIL
model. Finally, we compare to the ordinal logis-
tic regression-based approach presented in Woods
et al. (2017), which we will refer to as the OLR
model. Additionally, as a baseline for compari-
son on the annotation prediction task, we train a
sentence-level kNN model directly on the human
annotation data, which we refer to as the Annota-
tion kNN model. We consider the Annotation kNN
model to provide a rough upper bound on how well
the kNN-MIL approaches can perform. Finally, for
our kNN-MIL models, we investigate how varying
k and the vector space impacts model performance.

We use the all-threshold ordinal logistic regres-
sion model from mord (Pedregosa-Izquierdo, 2015)
and the part of speech tagger from spaCy (Honnibal
and Montani, 2017) in our implementation of the
OLR model. The Mahalanobis distance computa-
tion for this approach requires a known distribution
of score changes, for this we use the distribution of
score changes of the training set.

We use the kNN and tf-idf implementations from
scikit-learn (Pedregosa et al., 2011) and the LSA
implementation from gensim (Řehůřek and Sojka,
2010). Our pretrained LSA space is 300 dimen-
sional, and is trained on a collection of 45,108
English documents sampled from grade 3-12 read-
ings and augmented with material from psychology
textbooks. (Landauer et al., 1998). After filtering
very common and uncommon words, this space
includes 37,013 terms, covering 85% of the terms
appearing in the training data.
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Figure 3: Annotation prediction performance of the
kNN-MIL models as k is varied, averaged across all
prompts, concepts, and annotators. Error bars omitted
for clarity.

8 Discussion

We present the average annotation prediction per-
formance of the kNN-MIL models for different val-
ues of k in Figure 3. While all approaches achieve
AUCs above 0.5, the LSA-based space performs
relatively poorly. The tf-idf space performs well,
especially for the Base kNN-MIL model. In the
tf-idf space, Base kNN-MIL performance peaks
at k = 400. For the Manual kNN-MIL models,
best performance occurs with the combined refer-
ence set using the tf-idf or SBERT spaces, around
k = 10. Performance for Manual kNN-MIL with
only rubric references or student references peaks
and declines sooner than for combined due to the
set of possible neighbors being smaller.

Note that the substantial difference in k between
Base kNN-MIL and Manual kNN-MIL is due to the
fact that we have orders of magnitude fewer manual
reference sentences than training set sentences.

In light of these results, for clarity in the rest
of this discussion, we focus on k = 400 for Base
kNN-MIL, k = 10 and the combined reference set
for Manual kNN-MIL, and exclude the LSA space.

To determine how annotation prediction differs
across model types, we show the average overall
AUC of all models in Table 3. In this table, we
see that our best performance is achieved when we
train a kNN model on actual annotation data. In
contrast, the OLR model performs relatively poorly,
suggesting that its success at predicting sentences
that require some sort of feedback does not directly
translate into an ability to predict locations of an-
notations.

Between the different kNN-MIL approaches,
Base kNN-MIL using a tf-idf vector space performs
best on three of the four prompts, and regardless of
vector space, Base kNN-MIL performs as well or

better than Manual kNN-MIL on those same three
prompts. On the remaining prompt, Exposure Ther-
apy, Manual kNN-MIL with SBERT performs best,
but the differences between the various kNN-MIL
approaches are relatively small on this prompt.

These annotation predictions results show that
the kNN-MIL approach performs well despite
never being explicitly trained on the annotation pre-
diction task. While the Base kNN-MIL approach is
overall better than the Manual kNN-MIL approach,
it also requires a large amount of scored data for
training. Which kNN-MIL approach is best for
a particular situation thus depends on if the addi-
tional performance gain of Base kNN-MIL is worth
the added cost of obtaining essay scoring data.

Finally, we show performance on the essay scor-
ing task in Table 4. On this task, the OLR model
and the Base kNN-MIL model with a tf-idf space
perform the best, and the Manual kNN-MIL models
perform the worst. We had predicted that the stan-
dard MIL assumption would perform well for AES,
and our results show that this is true – for both Base
and Manual kNN-MIL, using the maximum sen-
tence topic score in an answer outperforms using
the mean sentence topic score.

The Base kNN-MIL model can perform rela-
tively well at both the document scoring task and
the annotation prediction task. This suggests that
it could be used as an explainable AES model, as
the annotation predictions are directly tied to the
document-level scores it provides. In this quite dif-
ferent application, the localization would be used
to explain the sentences contributing to the final
score, rather than to provide context for formative
feedback.

9 Conclusions and Future Work

We have presented a novel approach of using MIL
to train annotation prediction models without ac-
cess to annotation training data. This technique
performs well and can allow for automated localiza-
tion without expensive data annotation. It also per-
forms relatively well on the document-level scoring
task, suggesting that its sentence-level score predic-
tions could be used as part of an explainable model
for AES.

Given that our kNN-MIL approach operates at
the sentence level, it is unlikely to correctly locate
annotations that exist across multiple sentences.
Adapting our method to better incorporate infor-
mation across sentences (e.g., by incorporating co-
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Model Space Exposure Therapy Piaget Stages Sensory Study Sleep Stages

Annotation kNN
sbert 0.88 (0.04) 0.89 (0.08) 0.85 (0.06) 0.91 (0.03)
tfidf 0.87 (0.04) 0.92 (0.07) 0.89 (0.06) 0.93 (0.02)

Base kNN-MIL
sbert 0.76 (0.08) 0.78 (0.09) 0.77 (0.09) 0.78 (0.06)
tfidf 0.74 (0.06) 0.84 (0.10) 0.81 (0.09) 0.80 (0.07)

Manual kNN-MIL
sbert 0.78 (0.07) 0.73 (0.12) 0.70 (0.10) 0.78 (0.06)
tfidf 0.74 (0.08) 0.77 (0.09) 0.68 (0.10) 0.75 (0.07)

OLR 0.55 (0.04) 0.63 (0.08) 0.63 (0.07) 0.61 (0.05)

Table 3: Area under the ROC curve on the annotation prediction task, averaged over all topics and annotators.
Standard deviation shown in parentheses.

Model agg Space Exposure Therapy Piaget Stages Sensory Study Sleep Stages

Base kNN-MIL
max

sbert 0.49 (0.14) 0.51 (0.18) 0.41 (0.15) 0.60 (0.11)
tfidf 0.47 (0.12) 0.61 (0.19) 0.52 (0.17) 0.67 (0.12)

mean
sbert 0.39 (0.15) 0.44 (0.16) 0.36 (0.15) 0.61 (0.14)
tfidf 0.40 (0.14) 0.52 (0.16) 0.46 (0.14) 0.63 (0.13)

Manual kNN-MIL
max

sbert 0.41 (0.15) 0.30 (0.18) 0.25 (0.15) 0.37 (0.14)
tfidf 0.38 (0.14) 0.40 (0.15) 0.23 (0.16) 0.34 (0.18)

mean
sbert 0.29 (0.15) 0.23 (0.15) 0.16 (0.15) 0.27 (0.14)
tfidf 0.29 (0.16) 0.29 (0.13) 0.19 (0.16) 0.22 (0.20)

OLR 0.50 (0.18) 0.63 (0.16) 0.51 (0.18) 0.69 (0.14)

Table 4: Pearson correlation coefficients on the document-level scoring task, averaged over all topics. Standard
deviation shown in parentheses.

reference resolution) could help improve its overall
performance. Additionally, as the Base kNN-MIL
approach uses topics as negative examples for each
other, we expect that it would not work well in situ-
ations where the inter-topic score correlations were
high. We expect the Manual kNN-MIL approach
to be less sensitive to this issue. Determining other
ways to include negative examples would allow the
Base kNN-MIL approach to be applied to prompts
whose topics were highly correlated.

In our current domain, psychology, and in the
context of low-stakes formative feedback, incorrect
answers are uncommon compared to omitted or par-
tial answers. In contrast, for domains that require
chained reasoning over more complex mental mod-
els, such as accounting, cell biology, or computer
science, we expect the ability to correctly detect
misconceptions and errors to be far more important.
In general, future work is required to determine
how well our approach will work in other domains,
and which domains it is best suited to.

Determining where topics are discussed is only
one step in the full formative feedback process.

More work is required to determine the path from
holistic scoring and topic localization to the most
helpful kinds of feedback for a student. In partic-
ular, we need to consider different kinds of peda-
gogical feedback and how such feedback could be
individualized. Additionally, we could provide not
just text but also video, peer interaction, worked ex-
amples, and other approaches from the full panoply
of potential pedagogical interventions. Finally, we
need to decide what actions will help the student
the most, which relies on our pedagogical theory
of how to help a student achieve their current in-
structional objectives.

Acknowledgements

We would like to thank Alok Baikadi, Julio Brad-
ford, Jill Budden, Amy Burkhardt, Dave Farnham,
Andrew Gorman and Jorge Roccatagliata for their
efforts in collecting the annotated dataset used in
this work.



39

References
Stefanos Angelidis and Mirella Lapata. 2018. Multi-

ple instance learning networks for Fine-Grained sen-
timent analysis. Transactions of the Association for
Computational Linguistics, 6:17–31.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research., 3(Jan):993–1022.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Razvan Bunescu and Raymond Mooney. 2007. Learn-
ing to extract relations from the web using mini-
mal supervision. In Proceedings of the 45th An-
nual Meeting of the Association of Computational
Linguistics, pages 576–583.

Jill Burstein, Daniel Marcu, and Kevin Knight. 2003.
Finding the write stuff: Automatic identification of
discourse structure in student essays. Intelligent Sys-
tems, IEEE, 18:32 – 39.

Nathalie Camelin, Boris Detienne, Stéphane Huet, Do-
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,

https://doi.org/10.1109/MIS.2003.1179191
https://doi.org/10.1109/MIS.2003.1179191
https://doi.org/10.1016/j.patcog.2017.10.009
https://doi.org/10.1016/j.patcog.2017.10.009
https://doi.org/10.1016/j.patcog.2017.10.009
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1016/S0004-3702(96)00034-3
https://doi.org/10.1016/S0004-3702(96)00034-3
https://doi.org/10.2190/DH8F-QJWM-J457-FQVB
https://doi.org/10.2190/DH8F-QJWM-J457-FQVB
https://doi.org/10.2190/DH8F-QJWM-J457-FQVB
https://doi.org/10.24251/HICSS.2019.137
https://doi.org/10.24251/HICSS.2019.137
https://doi.org/10.24251/HICSS.2019.137
https://doi.org/10.1037/edu0000103
https://doi.org/10.1037/edu0000103
https://doi.org/10.1037/edu0000103


40
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