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Introduction

Welcome to the ACL 2020 Student Research Workshop!

The ACL 2020 Student Research Workshop (SRW) is a forum for student researchers in computational
linguistics and natural language processing. The workshop provides a unique opportunity for student
participants to present their work and receive valuable feedback from the international research
community as well as from faculty mentors.

Following the tradition of the previous student research workshops, we have two tracks: research papers
and thesis proposals. The research paper track is a venue for Ph.D. students, Masters students, and
advanced undergraduates to describe completed work or work-in-progress along with preliminary results.
The thesis proposal track is offered for advanced Masters and Ph.D. students who have decided on a thesis
topic and are interested in feedback on their proposal and ideas about future directions for their work.

This year, the student research workshop has received considerable attention, reflecting the growth of
the field. We received 137 submissions in total: 10 thesis proposals and 127 research papers. Among
these, 12 research papers were non-archival. We accepted 49 papers, with an acceptance rate of 36%.
After withdrawals and excluding non-archival papers, 43 papers appear in these proceedings, including
six thesis proposals and 37 research papers. All the accepted papers will be presented virtually, as a part
of the main conference, spread across three days (July 6th-8th).

Mentoring is at the heart of the SRW. In keeping with previous years, we had a pre-submission mentoring
program before the submission deadline. A total of 57 papers participated in the pre-submission
mentoring program. This program offered students the opportunity to receive comments from an
experienced researcher to improve the writing style and presentation of their submissions. Additionally,
authors of accepted SRW papers were matched with mentors to review their camera-ready drafts and
conference presentations.

We are deeply grateful to our sponsors, including the National Science Foundation and the Don and
Betty Walker Scholarship Fund. We also thank Grammarly for offering writing assistance to the authors
of SRW papers. We thank our program committee members for their careful reviews of each paper and
all of our mentors for donating their time to provide feedback to our student authors. Thank you to our
faculty advisors, Omri Abend, Sujian Li, and Zhou Yu, for their essential advice and guidance, and to
the ACL 2020 organizing committee for their support. Finally, thank you to our student participants!
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Ivan Vulić - University of Cambridge
Andy Way - ADAPT, Dublin City University
Bonnie Webber - University of Edinburgh
John Wieting - Carnegie Mellon University
Adina Williams - Facebook Inc.
Steven Wilson - University of Edinburgh
Shuly Wintner - University of Haifa
Yumo Xu - University of Edinburgh
Hitomi Yanaka - RIKEN AIP
Fan Yang - University of Houston
Rongtian Ye - Aalto University
Da Yin - Peking University
Michael Yoder - Carnegie Mellon University
Vicky Zayats - University of Washington
Omnia Zayed - PhD Student - National University of Ireland Galway
Meishan Zhang - Tianjin University, China
Haoran Zhang - University of Pittsburgh

xi



Shiyue Zhang - The University of North Carolina at Chapel Hill
Yanpeng Zhao - The University of Edinburgh
Pei Zhou - University of Southern California
Chunting Zhou - Carnegie Mellon University
Zhong Zhou - Carnegie Mellon University
Shuyan Zhou - Carnegie Mellon University
Hao Zhu - Carnegie Mellon University
Arkaitz Zubiaga - Queen Mary University of London

xii



Table of Contents

Adaptive Transformers for Learning Multimodal Representations
Prajjwal Bhargava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Story-level Text Style Transfer: A Proposal
Yusu Qian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Unsupervised Paraphasia Classification in Aphasic Speech
Sharan Pai, Nikhil Sachdeva, Prince Sachdeva and Rajiv Ratn Shah . . . . . . . . . . . . . . . . . . . . . . . . . . 13

HGCN4MeSH: Hybrid Graph Convolution Network for MeSH Indexing
Miaomiao Yu, Yujiu Yang and Chenhui Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

Grammatical Error Correction Using Pseudo Learner Corpus Considering Learner’s Error Tendency
Yujin Takahashi, Satoru Katsumata and Mamoru Komachi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Research on Task Discovery for Transfer Learning in Deep Neural Networks
Arda Akdemir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

RPD: A Distance Function Between Word Embeddings
Xuhui Zhou, Shujian Huang and Zaixiang Zheng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Reflection-based Word Attribute Transfer
Yoichi Ishibashi, Katsuhito Sudoh, Koichiro Yoshino and Satoshi Nakamura . . . . . . . . . . . . . . . . . . 51

Topic Balancing with Additive Regularization of Topic Models
Eugeniia Veselova and Konstantin Vorontsov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Combining Subword Representations into Word-level Representations in the Transformer Architecture
Noe Casas, Marta R. Costa-jussà and José A. R. Fonollosa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Zero-shot North Korean to English Neural Machine Translation by Character Tokenization and Phoneme
Decomposition

Hwichan Kim, Tosho Hirasawa and Mamoru Komachi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Media Bias, the Social Sciences, and NLP: Automating Frame Analyses to Identify Bias by Word Choice
and Labeling

Felix Hamborg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

SCAR: Sentence Compression using Autoencoders for Reconstruction
Chanakya Malireddy, Tirth Maniar and Manish Shrivastava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Feature Difference Makes Sense: A medical image captioning model exploiting feature difference and
tag information

Hyeryun Park, Kyungmo Kim, Jooyoung Yoon, Seongkeun Park and Jinwook Choi . . . . . . . . . . . 95

Multi-Task Neural Model for Agglutinative Language Translation
Yirong Pan, Xiao Li, Yating Yang and Rui Dong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Considering Likelihood in NLP Classification Explanations with Occlusion and Language Modeling
David Harbecke and Christoph Alt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Non-Topical Coherence in Social Talk: A Call for Dialogue Model Enrichment
Alex Luu and Sophia A. Malamud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xiii



Why is penguin more similar to polar bear than to sea gull? Analyzing conceptual knowledge in distri-
butional models

Pia Sommerauer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A Simple and Effective Dependency Parser for Telugu
Sneha Nallani, Manish Shrivastava and Dipti Sharma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

Pointwise Paraphrase Appraisal is Potentially Problematic
Hannah Chen, Yangfeng Ji and David Evans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Efficient Neural Machine Translation for Low-Resource Languages via Exploiting Related Languages
Vikrant Goyal, Sourav Kumar and Dipti Misra Sharma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Exploring Interpretability in Event Extraction: Multitask Learning of a Neural Event Classifier and an
Explanation Decoder

Zheng Tang, Gus Hahn-Powell and Mihai Surdeanu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Crossing the Line: Where do Demographic Variables Fit into Humor Detection?
J. A. Meaney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Effectively Aligning and Filtering Parallel Corpora under Sparse Data Conditions
Steinþór Steingrímsson, Hrafn Loftsson and Andy Way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Understanding Points of Correspondence between Sentences for Abstractive Summarization
Logan Lebanoff, John Muchovej, Franck Dernoncourt, Doo Soon Kim, Lidan Wang, Walter Chang

and Fei Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

uBLEU: Uncertainty-Aware Automatic Evaluation Method for Open-Domain Dialogue Systems
Tsuta Yuma, Naoki Yoshinaga and Masashi Toyoda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

To compress or not to compress? A Finite-State approach to Nen verbal morphology
Saliha Muradoglu, Nicholas Evans and Hanna Suominen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

AraDIC: Arabic Document Classification Using Image-Based Character Embeddings and Class-Balanced
Loss

Mahmoud Daif, Shunsuke Kitada and Hitoshi Iyatomi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Embeddings of Label Components for Sequence Labeling: A Case Study of Fine-grained Named Entity
Recognition

Takuma Kato, Kaori Abe, Hiroki Ouchi, Shumpei Miyawaki, Jun Suzuki and Kentaro Inui . . . . 222

Building a Japanese Typo Dataset from Wikipedia’s Revision History
Yu Tanaka, Yugo Murawaki, Daisuke Kawahara and Sadao Kurohashi . . . . . . . . . . . . . . . . . . . . . . 230

Preventing Critical Scoring Errors in Short Answer Scoring with Confidence Estimation
Hiroaki Funayama, Shota Sasaki, Yuichiroh Matsubayashi, Tomoya Mizumoto, Jun Suzuki, Masato

Mita and Kentaro Inui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

How much complexity does an RNN architecture need to learn syntax-sensitive dependencies?
Gantavya Bhatt, Hritik Bansal, Rishubh Singh and Sumeet Agarwal . . . . . . . . . . . . . . . . . . . . . . . . 244

Unsupervised Multilingual Sentence Embeddings for Parallel Corpus Mining
Ivana Kvapilíková, Mikel Artetxe, Gorka Labaka, Eneko Agirre and Ondřej Bojar . . . . . . . . . . . 255
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Abstract

The usage of transformers has grown
from learning about language semantics to
forming meaningful visiolinguistic repre-
sentations. These architectures are often
over-parametrized, requiring large amounts of
computation. In this work, we extend adap-
tive approaches to learn more about model
interpretability and computational efficiency.
Specifically, we study attention spans, sparse,
and structured dropout methods to help
understand how their attention mechanism
extends for vision and language tasks. We
further show that these approaches can help us
learn more about how the network perceives
the complexity of input sequences, sparsity
preferences for different modalities, and other
related phenomena.

1 Introduction

Learning richer representations from visual and
text data is a central task to solve multi-modal
learning. Attention-based methods have proven
to be very useful in learning long term dependen-
cies and forming richer representations of the in-
put sequences. Numerous approaches (Lu et al.,
2019; Su et al., 2019; Li et al., 2019; Chen et al.,
2019) have been proposed for learning visiolinguis-
tic representations with transformers. Although
these approaches have provided us with significant
improvement on various benchmarks (language
and visiolinguistic), the architectures used are over-
parameterized require extensive training lasting for
several weeks using multiple objectives to form
a generalized representation of the task to be ad-
dressed, which is then followed by fine-tuning on
a downstream task. This workflow has become a
concerning problem. It results in deep learning
methodologies being inaccessible and increased
carbon footprints (Strubell et al., 2019). In this
work, we specifically explore adaptive methods.

We refer to Adaptive mechanisms as those meth-
ods that change their behavior during training/run
time and adapt stochastically to the environment
based on data heuristics (parameters) learned by en-
countering samples from the same data distribution
optimized by an objective function. Alternative
approaches such as pruning, distillation (Hinton
et al., 2015) and quantization are rigid to some
extent and induce some form of permanent modi-
fications to the model. Adaptive methods enforce
the network to learn parameters such that their be-
havior changes as per the complexity of the input
sequence as perceived by the neural network. The
code to reproduce the results in this work is pub-
licly available at this link1.

Current self-attention approaches assume that
the attention span of a head is invariant to the com-
plexity of an input sequence. Attention heads can
learn their optimal context size (Sukhbaatar et al.,
2019), which results in a reduction of FLOPS.
When an optimal attention span is learned, the
amount of attention given to a particular input se-
quence by an attention head is determined by its
context size. We show that the context size varies
with the emergent complexity of the sequence, and
spans can help us understand how much sensitive a
layer is to an input sequence.

Training models with a quarter of a million pa-
rameters are not feasible and practical for most
users. One effective way to facilitate neural net-
work scaling is by making the weights of the net-
work sparse. This configuration allows us to per-
form faster training of deeper networks with rela-
tively less compute. To make attention distributions
sparse, we use ↵ entmax (Correia et al., 2019) to
obtain probability distribution of weights. Nor-
malized exponential functions like softmax cannot
assign a zero attention weight. This property en-

1https://github.com/prajjwal1/
adaptive_transformer
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forces the context vector to stay dense, resulting
in non-relevant sequences to be considered even
though the network has discarded them by putting
a deficient weight. Adaptive sparsity can make
an attention head to learn richer distributions by
oscillating the behavior of distribution to stay be-
tween softmax and sparsemax. We show that this
behavior can help us understand preferences for the
density of attention weight distribution and how it
varies amongst each head about different modality.

We also study a form of regularization method
called Layerdrop (Fan et al., 2019) to understand
its regularization impact for multi-modal features.
If the network can learn to drop identical layers
(Data Driven pruning), then it can be regarded as an
adaptive depth mechanism. We specifically use the
Every other pruning method where the user speci-
fies the drop rate because it offers maximal gains
as suggested compared to its counterpart pruning
methods. This method has proven to be effective
in reducing the number of parameters and pruning
layers during inference.

The contribution of this work is as follows:

• The adaptive approaches have only been
tested with linguistic features only. We extend
these approaches to study how do they align
to capture complex relationships between dif-
ferent modalities. We also study the effects of
aligning these approaches to understand their
compatibility through ablation analysis.

• We perform interpretability analysis to learn
how these approaches can enhance our under-
standing of attention behavior and adaptive
approaches.

• We provide experimental results on the recent
adaptive approaches for the multi-modal input
sequences.

2 Background

2.1 LXMERT

We use LXMERT (Tan and Bansal, 2019) as the
baseline architecture. The adaptive approaches can
be combined with any other self-attention mecha-
nism based transformer. LXMERT uses self and
cross attention layers to jointly attend to image
and text inputs (input sequence). Specifically, it
takes a word-level sentence and object-level image
embeddings. The encoder consists of three main

components: language (9 layers) and visual (5 lay-
ers) encoder (single-modality) to form textual and
image representations and cross-modality encoder
(5 layers) to jointly attend to both these representa-
tions. Cross attention is responsible for forming the
mapping between ROI features and textual repre-
sentations. Since the architecture used is identical,
we refer the readers to (Tan and Bansal, 2019) for a
detailed description of pre-training strategies. The
network used has been pre-trained on four objec-
tives: Masked Cross Modality LM, Masked Object
Prediction, Cross Modality Matching, and Image
Question Answering. Faster RCNN is used to ex-
tract ROI features from the input images.

2.2 Adaptive Attention Span

Unlike dynamic attention, which assumes that all
attention heads require the same amount of span,
learning an optimal attention span enables the gath-
ering of information as per the context size deter-
mined by the attention head. A max upper bound
span limit is enforced on each head, which helps
reduce computation and memory requirements. As
proposed in (Sukhbaatar et al., 2019), different
heads emphasize on different context depending
upon the task it is addressing. We explicitly show
that these spans vary significantly based on the
complexity of the task. We use the same masking
function with minor modification:

mz(x) = min


max


1

R
(R+ z � x), 0

�
, 1

�

(1)
Here, z acts as a model’s parameter. We initialize it
with kaiming normal (He et al., 2015) distribution.
mz is coupled with the attention weights. Hyperpa-
rameter R helps in controlling the softness of this
attention distribution.

The attention head compute the similarities be-
tween current token t and past token r in the span
[t� S, t) as:

str = xTt Q
T
(Kxr + Pt�r) (2)

where K, Q and Pt�r denote key, query vectors,
and position embedding respectively. In the stan-
dard setting, attention weight distribution is ob-
tained by applying softmax on the similarity vector.

Atr = softmax(str) (3)

The attention weights from Equation 3 are then
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Figure 1: Variation of adaptive spans in different attention layers (single and cross-modality) as the training pro-
gresses. Accuracy on the local-validation set is reported per epoch. The maximum adaptive span limit was set to
1024

processed by the masking function as:

Atr =
mz(t� r)exp(str)

t�1P
q=t�S

mz(t� q)exp(str)

(4)

The masking function is a non-increasing func-
tion that applies a transformation to the input values
of attention scores to keep them in range of [0, 1].
The parameters of mz are updated with model pa-
rameters to learn the optimal span.

2.3 Adaptive Sparse Attention
In order to make attention weights sparse, we use
↵ entmax as proposed in (Correia et al., 2019).
Specifically, softmax is replaced with ↵ entmax to
compute attention weights given attention scores
in Equation 3.

Att(Q,K, V ) = ⇡

✓
QK>

p
d

◆
V (5)

⇡(Z)ij = ↵ -entmax (zi)j (6)

↵ plays a crucial role in determining the behavior
of an attention head. If ↵ > 1, the weight dis-
tribution would move away from softmax’s dense
representation towards sparse mappings as its cur-
vature changes. For ↵ = 2, we obtain complete
sparse mappings. The value of alpha oscillates be-
tween 1 and 2. It is set as a network parameter,
which is jointly optimized in the training process.
Different values of ↵ will govern the behavior of
the attention head.

2.4 LayerDrop

Layerdrop (Fan et al., 2019) is a method to reduce
the depth of the transformer in a controlled manner.
This method drops the identical sub-layers in the
transformer determined by a pruning strategy. We
follow the Every Other strategy, which drops the
layer as specified by a drop rate. It has been noted
that this pruning strategy works well as compared
to Search on Valid and Data Driven pruning strate-
gies. Let N denote the total number of layers in
the network. Setting p = 1 implies that we are
dropping one layer out of all the layers assigned
for a modality. The number of remaining layers
becomes N � p. Although the network will consist
of an equivalent amount of parameters as that of N
layers, all the operations will be carried out equiv-
alent to operations in N � p layers. This strategy
allows us to prune layers during inference time.

3 Experimental Setup

Visual Question Answering To solve the VQA
task, given an image and a question related to it,
the network is supposed to predict the right an-
swer from the given set of answer choices. We
performed all the experimentation on the VQA 2.0
dataset (Antol et al., 2015). The dataset consists
of three sets with a train set containing 83k images
and 444k questions, a validation set containing 41k
images and 214k questions, and a test set contain-
ing 81k images and 448k questions. In this case,
the network is asked to predict an answer from
3129 answer choices for a particular question.
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Implementation We use the pre-trained weights
provided by (Tan and Bansal, 2019). We fine-tune
LXMERT to form visiolinguistic representations
based on image and text sequences with adaptive
approaches mentioned above. This operation is
followed by a classifier that receives the concate-
nated pooled features of image and text to predict
the answer. Fine-tuning is performed on a single
P100 GPU with 128 batch size. Optimization is per-
formed with Lookahead (Zhang et al., 2019) with
LAMB (You et al., 2019) as the inner optimizer.
Learning rate schedule is regulated by Cyclical
LR (Smith, 2017), with base and max learning rates
set to 1e� 5 and 1e� 4.

4 Experimental Findings and Results

Adaptive span for understanding the complex-
ity of the input sequence We demonstrate how
learning spans can help in understanding the behav-
ior of individual layers. Figure 1 shows how span
varies amongst different attention layers. Studying
spans can help us understand which layers are more
sensitive to the input sequences encountered during
the training process.

In the case of single modality encoder, spans
for self-attention layers for vision and language
decrease monotonically, indicating that the learning
behavior is somewhat similar, although slopes tell
us that the rate of learning is dissimilar. Similar
behavior is seen in the cross-modality encoder for
language.

Requiring a larger context size is indicative
of the complexity of the sequences. When self-
attention attends to both modalities, we observe
that the intermediate layers responsible for forming
complex representations increase their spans. This
observation shows that a more significant span is
necessary to attend both modalities jointly. Self-
attention also requires a high span when attending
to visual features in the cross-modality encoder.
This observation shows that visual sequences are
perceived as a more complex input to process than
a language input in the cross-modality encoder.

Determining sparsity preferences for vision and
language modality with ↵ The value of ↵ deter-
mines if the head is favoring sparse or dense atten-
tion weight distribution. For dealing with language
modality, self-attention favors mostly sparse map-
ping of attention weights in intermediate layers.
Similar behavior is observed inside cross-modality
encoder as well. This observation shows that lan-

Figure 2: Regularization effect of layerdrop

guage modality benefits from sparse weights being
assigned as attention distribution. The value of
↵ is restricted below 1.5 for processing visual in-
puts. When vision modality is involved, heads that
preferred sparse mapping initially are converging
towards denser mapping, indicating that this repre-
sentation of attention weights is preferred. We also
observe that when both modalities are involved, the
network prefers, even more, denser weight distribu-
tion. This observation shows that vision modality
is given more preference (partly due to perceived
complexity) over language inputs to process the
sequence. Figure 3 shows variation of ↵ values as
training progresses.

Regularization effect of Layerdrop We con-
sider two configurations of the model. The first one
has 10 language, 6 vision, and 6 cross-modality
layers with drop rate (p) set to 1 layer. In this
case, the number of parameters is more, but the
FLOPS is equivalent to the standard 9-5-5 base-
line configuration. The later one has the 9-5-5
configuration with p set to 1. This rate causes a
FLOP reduction of 17.54%. It is observed that lay-
erdrop requires ⇠3.5x more compute runtime for
convergence during training. A possible explana-
tion can be that additional training aids in forming
a consolidated understanding of multi-modal rep-
resentations. Even after ensuring the convergence
of the model, a strong regularization effect (with
a minimum value of p) prevents the network from
achieving performance that is close enough with
the mentioned adaptive methods with an equivalent
number of parameters being used training. Figure 2
and Table 2 shows this noted observations.

Quantitative Analysis In this section, Table 1
compares the adaptive approaches with the baseline
model and other state-of-the-art models, which rely
upon standard softmax attention mechanism. We
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Language Encoder (9 layers)
Cross Modality Encoder (Lan-
guage) (5 layers)

Cross Modality Encoder for Vi-
sion and Language (5 layers)

Cross Modality Encoder for Vi-
sion (5 layers) Vision Encoder (5 layers)
Figure 3: Variation of Alpha in Entmax in first six attention heads during an intermediate training stage of 9-5-5
LXMERT model. X and Y axis denote epoch and alpha values, respectively. For simplicity, we only show alpha
values for the first six attention heads (12). Color codes denote different attention heads.

Figure 4: Top 5 confidence scores of an example input sequence Left: Adaptive Entmax Center: Adaptive Atten-
tion Span Right: 10-6-6 config with Layerdrop (p=1). Zoom in to see scores and labels.

notice that these approaches achieve near close
performance as standard attention mechanisms by
being computationally efficient. The results are
reported without any hyperparameter tuning.

Qualitative Analysis In this section, we analyze
the confidence scores on complex examples to bet-
ter understand the network’s predictions. We usu-
ally take the class with maximum confidence, but
analyzing confidence scores of other classes can
help us learn about what the network is learning
about the similarity of different tasks in the image.
Figure 4 shows confidence scores on an example
input. We observe that entmax aids in forming a
consolidated understanding of contrastive features.
In most cases, the top 5 confidence scores include
predictions present in the ground truth. Due to
sparse mapping, the network makes strong, con-
fident predictions about one label. When trained
with an adaptive attention span, the network some-
times seems unsure about the correct label as ex-

pected from softmax behavior. It works well when
a high probability is assigned to one label in the
ground truth. We did not observe comparable per-
formance from Layerdrop. In this example, the
right answer is assigned a deficient score. The net-
work does not seem to learn distinguishing features
from similar classes properly.

5 Ablation Analysis

We normalize attention scores with entmax instead
of softmax before applying the masking function
to use both adaptive attention span and sparse at-
tention weights mapping. It is evident from Table 2
that the adaptive span works better with the denser
representation of attention weights to perform op-
timally. The effect of soft masking function is
reduced when used with a sparse mapping func-
tion. We evaluate the layerdrop method with two
configurations of the network 9-5-5 (language, vi-
sion, and cross-modality layers) and 10-6-6 with
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Model test-dev test-std

BUTD (Anderson et al., 2018) 65.32 65.67

ViLBERT (Lu et al., 2019) 70.55 70.92
VLBERT (Su et al., 2019) 71.16 -
VisualBERT (Li et al., 2019) 70.80 71.00
UNITER (Chen et al., 2019) 72.27 72.46

LXMERT (Tan and Bansal, 2019)
w/ softmax 72.42 72.54
w/ Adaptive Attetion Span 71.62 71.72
w/ Adaptive Sparse 71.73 71.97
w/ Layerdrop (10-6-6) (p=1) 66.4 66.72

Table 1: Comparison to the state-of-the-art methods
with adaptive approaches on the VQA dataset.

Model test-dev test-std

LXMERT (Tan and Bansal, 2019)
w/ Attention Span and Entmax 63.07 63.33
Default (10-6-6) 66.35 66.57
w/ Layerdrop (9-5-5) (p=1) 66.51 66.81

Table 2: Ablation study for Adaptive approaches

p = 1. From Table 2, we see that the shallower
network performs better than the deeper-layered
model. This observation shows that there is a spe-
cific threshold drop rate up until which layerdrop
helps. It is plausible that this type of regularization
is favorable in deeper networks.

6 Conclusion

While attention-based approaches are becoming
universal, computationally efficient ways must
be favored for broader adoption of provided pre-
trained models on low resource hardware. Adaptive
methods can significantly reduce the cost incurred
to train such models and carbon footprints. In this
work, we extend adaptive approaches to Visiolin-
guistic tasks to understand more about attention and
adaptive mechanisms. While the empirical results
are encouraging, important future work includes
explorations of higher efficient adaptive and sparse
mechanisms that can significantly cause FLOPS
and parameter reduction with minimal loss in per-
formance.
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Abstract

Text style transfer aims to change the style
of the input text to the target style while pre-
serving the content to some extent. Previous
works on this task are on the sentence level.
We aim to work on story-level text style trans-
fer to generate stories that preserve the plot of
the input story while exhibiting a strong target
style. The challenge in this task compared to
previous work is that the structure of the input
story, consisting of leading roles and their re-
lations with each other, needs to be preserved,
and that the generated story needs to be con-
sistent after adding flavors. We plan to ex-
plore three methods including the BERT-based
method, the Story Realization method, and the
Graph-based method.

1 Introduction

Text style transfer has been extensively explored
by the NLP community on the sentence level. In
previous work, researchers defined style of a sen-
tence as one or some of its attributes, including
but not limited to sentiment (Xu et al., 2018; John
et al., 2019; Liao et al., 2018), formality (Luo et al.,
2019; Jain et al., 2018; Rao and Tetreault, 2018),
factuality (Zhang et al., 2018), etc. The goal is to
change the specified attribute or attributes in the in-
put sentence to the target attribute or attributes. For
example, changing a positive sentence to a negative
sentence while keeping its key information. There
are also works on transferring Shakespearean En-
glish to modern English and backward (Xu et al.,
2012; Jhamtani et al., 2017).

In this paper, we propose methods to transfer
text style on the story level. The task takes a story
as input, and generates a story in the target style
with the main plot of the input story preserved. In
our work, we define style as the setting of the story
which reveals time background and geographical
information. For example, if a story starts with a

boy receiving a package containing parchments and
a robe delivered by an owl, a good guess is that this
is a magic story most likely taken from or inspired
by Harry Potter. If we want to change the above
mentioned story into the Alice in Wonderland style,
an ideal output maybe a story about a girl receiving
a package containing an invitation to a tea party
from a rabbit.

Compared with sentence-level text style trans-
fer, our proposed work faces more challenges. It
is impractical to collect parallel stories that have
the same plot or structure but differ in settings. To
deal with this, we break down the task into two
parts. First, we explore methods to build a struc-
tural representation of the original story to preserve
the main plot, including leading roles and their con-
nections. Second, we generate a story given the
retrieved information or graph and the target style.

2 Related Work

The work we propose is closely related to previous
work on event extraction from text so that we have
a structure representation of the input story, and
text generation from events to produce the story in
the target style.

Graph Extraction from Text Generating text
on the story level from events ideally requires the
events to be organized as a structural representation,
otherwise the plot will not be consistent. While
manually constructing graphs is expensive, there
are multiple approaches to automatically construct
graphs based on stories, including Named Entity
Recognition (NER), Knowledge Graph, and other
text graph generation methods. While NER has
been studied for a while, the task of extracting
named entities with semantic relations between
nodes labelled has much room left to be explored.
Most previous work on extracting entities together
with relations either extract them separately and
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Figure 1: Illustration of how Story-realization Method works

Figure 2: Structure of Graph Convolutional Network

predict the latter given the former (Chan and Roth,
2011; Zhou et al., 2005), or rely on feature engi-
neering to extract them jointly (Ren et al., 2017).

Recently, Fu et al. (2019) employed relation-
weighted graph convolutional networks (GCNs)
(Kipf and Welling, 2016) to build an end-to-end
relation extraction model, GraphRel, and reported
SOTA results. Figure 2 illustrates how GCN works.
GCN is a variant of convolutional neural networks
(CNNs) that works on graphs. The representation
of each node is updated based on its adjacent nodes.

Text Generation from Graph Due to the vari-
ety of graphs and information loss of long-distance
dependencies, it is hard to generate coherent stories
that span across multiple sentences from a graph.
Koncel-Kedziorski et al. (2019) proposed a novel
graph transformer to alleviate this problem by lever-
aging the relational structure of graphs without set-
ting linearization or hierarchical constraints.

The usage of GCN for text generation from
graphs is enjoying growing popularity among re-
searchers. Marcheggiani and Perez-Beltrachini
(2018) used GCNs to build an encoder which cal-

culates the node representation of each node in a
directed graph. After adding residual connections
and dense connections between the GCN layers,
they used an LSTM decoder. Guo et al. (2019)
built Densely Connected Graph Convolutional Net-
works to address the issue of learning deeper GCNs,
and achieved better results on graph-to-sequence
learning and AMR-to-text generation than previous
methods.

3 Proposed Methodology

Our goal is to adapt the original story to the target
setting. A well-known example of such kind of
adaptation is New York theatre production Sleep No
More, which adapts the story of Macbeth deprived
of its original time setting, and sets in a 1930s hotel
called the McKittrick.

3.1 Data Set

The data sets ideal for our proposed work need
to satisfy the following requirements. First, each
corpus needs to have an abundant amount of text
in the same style. Second, the style of each corpus
should differ from each other significantly, to the
extent that a snippet from a certain corpus tells
enough for people to tell which corpus it is from.

We select paragraphs between 100 and 200
words from each corpus and use GraphRel to auto-
matically build graphs from the text.

For each method described in the next section,
we use different training data. For the BERT-
based method, we use the story corpora as training
data. For the Story-realization method, we use the
selected paragraphs and corresponding extracted
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Figure 3: Illustration of how Graph-based Method works

named entities as training data. For the Graph-
based method, we use the selected paragraphs and
graphs built by GraphRel as training data.

To satisfy these requirements, we choose the
Harry Potter Series and the Game of the Throne
Series as our corpora. The former consists
of 1,084,170 words and the latter consists of
1,736,054 words.

3.2 Models
We plan to experiment with the following three
methods. The first two methods serve as baselines.

BERT-based Method This method will be
based on Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018).
In this method, first we use the corpus in the target
style to fine-tune BERT. Then we build a vocabu-
lary for the target corpus, setting the threshold of
minimum occurrence to 20. We examine each word
in the input story to see if they are included in the
vocabulary of the target corpus. If they are not, we
use the fine-tuned BERT to mask and predict these
words one by one. The BERT-based method serves
as our baseline model as it modifies the input story
sentence by sentence instead of as a whole.

In simpler cases where we only wish to change
the era of the story and do not have any other re-
quirements, we can add append a phrase indicat-
ing the era to the original sentences. For example,
when we mask video in the sentence ’The boy spent
a whole day playing video games.’, BERT (large-
cased version) correctly predicts the word to be
video. If we add the phrase ’on the first day of the
18th century’, the prediction becomes card, which
matches the time setting.

Story Realization Method Ammanabrolu et al.
(2019) proposed an ensemble-based model to gen-
erate sentences given plot events. This involves
two steps. First, we need to extract events from
the input story. This can be done through Named
Entity Recognition (in this work we will use Al-
lennlp NER) and finding VerbNet (Kipper-Schuler,
2005) classes of verbs and WordNet (Miller, 1995)
Synsets for nouns recognized as events. The
next step is to expand these events to a story.
We plan to experiment with the ensemble model
by Ammanabrolu et al. (2019) which is reported
to combine the strength of the retrieve-and-edit
method (Hashimoto et al., 2018), the template fill-
ing method, the sequence-to-sequence methods
with finite state machine decoder, Monte Carlo
beam decoding, and vanilla beam-decoding respec-
tively. This method will conduct an event-to-event
generation first to include more events before gen-
erating the output story. Figure 1 illustrates how
this method works.

Here we need to note that sometimes ex-
tracted entities or relations are out-of-target-corpus-
vocabulary words in the target style corpus. For
example, computer is not in the corpus of Harry
Potter. We need to replace these words with words
that have the same part of speech and closest in
the word embedding trained on the target corpus.
Euclidean distance is used for distance calculation.

We expect that compared with the BERT-based
method, the Story Realization method will perform
better in terms of creativity while not as well in
terms of content preservation.
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Graph-based Method In this method, a sim-
ilar replacing scheme of out-of-target-corpus-
vocabulary words as in the story realization method
should be used on the input story. Then we plan
to experiment with graph transformers and other
graph-to-text generators trained on our data sets,
compare their performance on our task, and exam-
ine the possibility to improve their performance by
making modifications. Specifically, in the text-to-
graph step we explore using Graph Neural Network.
We plan to start with using GraphRel, the GCN-
based SOTA entity and relation extraction model,
to convert the input story to a graph.

Figure 3 illustrates how the Graph-based Method
works. The input is an extract from the novel Edu-
cated. A graph containing key information is built
upon the input story. Some modification is done
to replace out-of-target-corpus-vocabulary words.
We expect the output to preserve the structure of
the input story while being creative and consistent.
Towards this goal, we plan to experiment with dif-
ferent GCNs structures for text generation.

3.3 Evaluation
We plan to evaluate our generated stories using
perplexity and human evaluation, with an emphasis
on the latter considering the creative nature of this
task.

The generated stories will be evaluated by lin-
guists from these aspects: grammar and fluency;
main plot preservation; strength of the target style;
creativeness. Each aspect will be given a score
between 1 and 5, with 1 representing total failure,
2 representing barely acceptable, 3 representing
acceptable, 4 representing good, and 5 representing
the most satisfying performance.

4 Summary

We propose to explore text style transfer on the
story level. The challenge remains in preserving the
main plot and generating consistent and meaningful
text in the target style. We plan to focus mostly on
studying the possible application of GCN in this
task. We will perform extensive experiments and
report results in future work.
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Abstract

Aphasia is a speech and language disorder that
results from brain damage, often characterized
by word retrieval deficit (anomia) resulting in
naming errors (paraphasia). Automatic para-
phasia detection has many benefits for both
treatment and diagnosis of Aphasia and its
type. But supervised learning methods cant be
utilized adequately as there is a lack of apha-
sic speech data. In this paper, we describe our
novel unsupervised method, which can be im-
plemented without the need for labeled para-
phasia data. Our evaluations show that our
method outperforms previous work based on
supervised learning and transfer learning ap-
proaches for English. We demonstrate the util-
ity of our method as an essential first step in
developing augmentative and alternative com-
munication (AAC) devices for patients suffer-
ing from aphasia in any language.

1 Introduction

Aphasia is a speech and language disorder com-
monly acquired by brain damage resulting from a
stroke (Bhogal et al., 2003). Many people around
the world suffer from Aphasia as there are at least
2 million patients in USA and 250,000 in Great
Britain (National Aphasia Association, 2019).

Anomia, the difficulty in spoken word retrieval,
is a common symptom in Aphasic speech (Laine
and Martin, 2013). A majority of persons with
aphasia (PWA) suffer from varying degrees of
anomia (Nickels, 2002). Anomia further results in
various types of Paraphasia (naming errors) which
impedes the PWA’s ability to carry out meaning-
ful conversation leading to loneliness and social
anxiety (Beeke et al., 2013).

There are three common types of paraphasia
which occur in aphasic speech, namely semantic,
phonemic and neologistic (Laine and Martin, 2013;
Goodglass and Kaplan, 1972). In semantic para-

phasia, the PWA substitutes a semantically sim-
ilar word eg. (substituting elbow with knee). In
phonemic paraphasia, there are various sub types
involving the type of phoneme substitution such
as, substituting bat with lat, inserting or deleting a
phoneme (drake as dake) or phoneme movements
(candle with cancle). Lastly, in neologistic para-
phasia, the target word is substituted with a non-
word (harmonica with parokada). Detecting and
classifying the type of paraphasia is useful to de-
termine the type of aphasia and which treatment to
prescribe (Nickels, 2002; Friedmann et al., 2013).

Aphasia TalkBank (MacWhinney, 2007), is a
large scale multi-modal online database of aphasic
speech data. It contains aphasic speech data for
many languages such as English, French etc which
is primarily used by clinical researchers to study
aphasia (Forbes et al., 2012). While the amount
of data is sufficient for clinical researchers, there
is a lack of data to implement supervised learning
methods. This is true not only for a well researched
language like English, but also for low-resource 1

languages like Greek, Spanish etc.
To counter the lack of data and to extend the

proposed method for low-resource languages too,
we investigate an unsupervised approach. We first
consider large and available speech corpuses such
as LibriSpeech (Panayotov et al., 2015) to create
speech embeddings of individual words similar to
(Chung et al., 2016). We then perform soft cluster-
ing using HDBSCAN on these embeddings, and
classify each word by using simple rules with a
cutoff hyperparameter. The whole method is end-
to-end unsupervised and can be applied to any lan-
guage.

In our evaluations section, we demonstrate the
efficacy of our method over a naive baseline and the
transfer learning method used by (Le et al., 2017)

1we define low-resource wrt amount of available aphasic
speech data

13



for English. We hope that such an unsupervised
method allows for development of AAC devices
improving daily life of not only English-speaking
PWA’s but also PWA’s in other languages.

2 Related Work

Recently, researchers have demonstrated the use of
machine learning methods not only to diagnose
the type of aphasia but also to rehabilitate and
treat PWA’s. Mainly focusing on obtaining a medi-
cal diagnosis, (Fraser et al., 2013) applied feature
selection using a transcript and low-level acous-
tic features to classify between two sub-types of
primary progressive aphasia. Likewise, (Peintner
et al., 2008) used speech and language features to
classify between three broad types of frontotempo-
ral lobar degeneration, including progressive non-
fluent aphasia. Further, given speech samples of
PWA’s, (Le et al., 2014; Le and Mower Provost,
2015; Le et al., 2016) proposed approaches for
predicting the utterance-level pronunciation and
prosody scores. (Abad et al., 2012, 2013) aimed
to tackle the contextually similar problem through
keyword spotting. It recognized target words from
phrases spoken by the PWA but disregarded fine-
grained word-level errors such as paraphasias.

Deep learning methods to detect paraphasia was
first demonstrated in (Le et al., 2017). It worked
around the notion of mispronunciation detection,
adopting the methods of (Lee et al., 2013; Lee and
Glass, 2013), which used Dynamic Time Warping
(DTW) features to provide a quantitative compar-
ison of word and phone-level pronunciations be-
tween native and non-native speakers. Similarly,
(Le et al., 2017) has used DTW and other acous-
tic features like Phone Edit distance and Good-
ness of Pronunciation, to distinguish between target
transcripts and paraphasias. Consequently, it has
also used Automatic Speech Recognition (ASR)
techniques to generate the target transcripts from
the paraphasias automatically. In the end, all of
these proposed methods require target transcripts
for their core functioning.

To the best of our knowledge, no existing work
provides an unsupervised approach to detecting
and classifying paraphasia from aphasic speech. In
this paper, we explore a realistic scenario where we
have access only to the free form discussion with
PWA’s.

3 Method

Aphasic speech data can be collected in mainly two
ways: as a free form discussion between a PWA
and an interviewer or a PWA reading a set of pro-
vided scripts. While a PWA reading from scripts
is conducive to supervised learning methods, it is
rarely the case in real life. Hence, our goal is to
perform paraphasia detection and classification in
the wild i.e. without any target scripts. Another
motivation for classification in the wild is the lack
of labeled English aphasic speech data. Further, the
available speech data has a class imbalance (phone-
mic and neologistic paraphasias account for 12.0
and 6.4 percent respectively). Low-resource lan-
guages such as Hindi, Greek etc. have a serious
lack of aphasia speech data and almost non-existent
labeled speech data. Using transfer-learning ap-
proaches similar to (Le et al., 2017), would not
allow extending it to such low-resource languages.
Hence, it was necessary to investigate unsupervised
approaches for paraphasia classification. In this sec-
tion, we outline our proposed unsupervised method
which consists of first creating speech embeddings
of non-aphasic speech data and then performing
soft clustering to further classify the type of para-
phasia detected.

3.1 Speech Embedding
In order to classify phonemic and neologistic para-
phasia, capturing phoneme placement in a word is
necessary.

Previous work, used features such as Goodness
of Pronunciation and Phoneme Edit-Distance to do
the same. Hence, we adopt speech embeddings
which focus on phoneme pronunciation.

In particular, we use the Audio-Word2Vec em-
beddings outlined in (Chung et al., 2016) as they
have demonstrated good performance in distin-
guishing utterances that have large (>3) phoneme
sequence edit distance and grouping utterances
with low phoneme sequence edit distance (0 to
2). These speech embeddings are created in an un-
supervised fashion. Each word utterance is passed
through a sequence-to-sequence encoder and recon-
structed via a decoder. This process preserves the
acoustic information in the embedding.

(Chung et al., 2016) further demonstrated that
sequential phoneme structure is preserved in the
vector space. This property can be exploited us-
ing density based clustering, the next step of our
proposed method.
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Classifying semantic paraphasia requires differ-
ent approaches which cannot be encompassed in
methods used to classify phonemic and neologistic
paraphasia and hence is left as future work.

3.2 Probing Tasks
Unsupervised word embeddings can be improved
further and geared specifically for aphasic speech,
but in order to understand what these embeddings
are capturing it is important to probe them. Taking
inspiration from (Conneau et al., 2018), we create
probing tasks specifically for paraphasia. Probing
tasks are simple classification tasks for embeddings.
We detail three probing tasks specifically for phone-
mic and neologistic paraphasia.

1. Phoneme-Movement: Phonemic paraphasia is
often characterized with phoneme movement,
usually involving a shift in the position of one
or two phonemes. In this binary classification
task, the embeddings are used to determine if
a phoneme shift took place or not.

2. Phoneme-Add/Delete: The addition or dele-
tion of a phoneme is seen in phonemic para-
phasia. We use the generated embeddings to
determine if the word utterance has a phoneme
addition/deletion or is unchanged.

3. In-Dictionary: In this task, we check if the
embeddings can classify if the word is in the
language’s dictionary or not. Neologistic para-
phasia occurs when PWA’s substitute target
words with non-words.

These three probing tasks, while not exhaustive,
can be used to determine how well the speech em-
beddings can perform for paraphasia detection.

3.3 Density based Clustering
As our method is unsupervised, we do not have
access to whether each word utterance is a para-
phasia (further what type) or not. To classify each
utterance, we use techniques similar to anomaly
detection.

Firstly, the embeddings generated for each word,
represent only non-paraphasia words. This is be-
cause the dataset used to create these embeddings
consists of only correct words utterances. We clus-
ter these non-paraphasia embeddings into distinct
clusters where the members of each cluster are
embeddings of the same word. We use individ-
ual words as centroids rather than phoneme based

centroids. This is because, phoneme based cen-
troid choices such as monophones, senones etc.
creates a surjective mapping from embeddings to
centroids (eg. both words cat and hat contain the
same phoneme ae, hence both words will be as-
signed to the same centroid), whereas word based
centroids has a bijective mapping.

Secondly, we use HDBSCAN (McInnes et al.,
2017) to perform density based clustering as it al-
lows for cluster densities of varying size. The two
most influential parameters namely, minimum clus-
ter size and minimum samples are chosen so as to
produce number of clusters equal to the vocabulary
size of the dataset.

Lastly, we exploit the soft clustering property of
HDBSCAN to detect paraphasias. We use simple
rule based methods to perform classification. When
a word utterance is correct i.e it is not a paraphasia,
the top 1 cluster probability should be high, as the
embedding should have a core distance of 0. Hence
if the utterance satisfies top1 probability � ↵ then
it is classified as a correct word. We use ↵ = 0.75
in our experiments.

Now, if a word utterance is phonemic paraphasia,
HDBSCAN returns near similar cluster member-
ship probabilities for 2 to 3 clusters (eg. lat will be
clustered close to correct words bat, late etc.)

top1 � top2  � (1)

If a word utterance satisfies equation 1 then we
can classify it as a phonemic paraphasia. We use
� = 0.2 in our experiments.

For a neologistic paraphasia, the cluster mem-
bership probabilities are evenly low, as the word
utterance is a non-word and was never seen by
HDBSCAN while clustering. Hence, a utterance
that satisfies

kX
topi  �

is classified as a neologistic paraphasia. In our
experiments k = 5 and � = 0.5

This clustering based method does not violate
the unsupervised nature of the proposed goal. Our
reasoning is validated by the empirical evaluations
performed in further sections.

4 Evaluation

In order to validate the claims made in the previous
section, we perform the following evaluations. For
a fair comparison, we use the same test dataset used
in (Le et al., 2017), and perform further analysis
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on our soft clustering approach. In this section,
we detail the experimental setup used including
the model structure and hyperparameters, the met-
rics and the baselines used to compare and finally
expand on the results of our method.

4.1 Data
We use two speech datasets, one to create word ut-
terance embeddings and perform HDBSCAN clus-
tering and another to test our method.

As detailed in (Chung et al., 2016), we used
the LibriSpeech corpus (Panayotov et al., 2015) to
create audio-word2vec embeddings. We have used
the train-clean-100 subset to train the Seq2Seq
autoencoder and a combination of dev-clean and
test-clean subsets to perform density based soft
clustering. MFCC’s of 13 feature-coefficient were
used as input to the models.

For our test dataset we used speech data from
Aphasia TalkBank (MacWhinney, 2007), specif-
ically, the Scripts section of the English section.
Scripts contains recordings of PWA’s reading a
script, with each word utterance conveniently la-
beled as [*p:n] and [*n:k] for phonemic and ne-
ologistic paraphasia. (Le et al., 2017) uses the
Fridriksson subset consisting of 12 PWA’s reading
4 predefined scripts each, allowing (Le et al., 2017)
to use supervised learning to classify paraphasia
as they have access to the target word. We used
this same subset, for our experiments to remain
consistent.

4.2 Analysis
In this section we provide empirical evidence to
substantiate our intuition while building our unsu-
pervised method.

4.2.1 Probing Tasks
The three probing tasks are used to determine how
well the unsupervised embeddings are perform-
ing on specific tasks. We examine three different
types of embedding methods. First is the original
setup (Chung et al., 2016) utilized, an Sequence-to-
Sequence autoencoder with both the RNN Encoder
and Decoder consisting of one hidden layer of 100
LSTM units was used. The networks were trained
with SGD without momentum with a fixed learn-
ing rate of 0.3 and for 500 epochs. Secondly we
improve upon the autoencoder architecture by us-
ing 2 instead of 1 hidden layer of 100 bidirectional
LSTM units. (Chung et al., 2016) noticed that the
embeddings favoured phonemes towards the end

of the word, this problem is alleviated by using
bidirectional LSTM. The networks were trained
with Adam with a learning rate of 0.01 and for 500
epochs.

Method Ph-
Move

Ph-
Add/Del

In-
Dict

Audio-word2vec 68% 81% 76%
Bi-LSTM 73% 77% 83%

Table 1: Performance of embedding generation meth-
ods on probing tasks reported as averaged accuracy val-
ues.

As seen in table 1, the bi-directional LSTM ver-
sion of audio-word2vec performs better and hence
going further we use this setup for creating word
utterance embeddings.

4.2.2 Soft Clustering
We empirically demonstrate that the word embed-
ding clusters behave similar to the format outlined
in the Methods section. We use (McInnes et al.,
2017) implementation of HDBSCAN in our exper-
iments.

First we report the HDBSCAN cluster member-
ship scores for correct, phonemic and neologistic
paraphasias in Table 2. The paraphasia are tran-
scribed in CHAT transcription format.

Word Top 1 Top 2 Top 3
Correct Words

weather .882 .073 .032
hot .821 .072 .053

rarely .764 .213 .014
Phonemic Paraphasia

u@u (to) .537 .419 .065
duz@u (choose) .501 .324 .171
fpł@u (spring) .461 .253 .258

Neologistic Paraphasia
ziz@u (easy) .277 .102 .156
muz@u (use) .196 .162 .153
zt@u (vast) .234 .142 .077

Table 2: Top k cluster membership probability scores
for correct, phonemic and neologistic paraphasia. Cor-
rect word for corresponding paraphasia is included in
parenthesis

The cluster membership probabilities, align with
the choice of cutoff rules used in the Methods sec-
tion. Phonemic paraphasia is usually assigned a
membership score split across two or three clusters.
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Figure 1: (a) TSNE projections of phonemic paraphasia (in red) with top 1,2 and 3 clusters. The darker the color
the higher the cluster membership probability. (b) Minimum spanning tree based on mutual reachability scores

This is true because of the phoneme movement,
addition or deletion property leaving rest of the
word unaffected, causing confusion so as to which
cluster the utterance belongs to. TSNE projection
of a sample phonemic paraphasia with its top 1,2
and 3 clusters is displayed in Figure 1. The mini-
mum spanning tree of the clusters also displays the
confusion in allocating cluster membership to the
phonemic error. Similarly neologistic paraphasia,
has uniformly low cluster membership scores, as
the utterance is never seen by HDBSCAN as it is a
non-word.

A very small set of word utterances ( 20) satis-
fied the condition for both phonemic and neologis-
tic paraphasia eg.( top 1,2 and 3 probabilities were
.32 .11 and .09) These utterances were classified as
phonemic due to the higher value of top 1 than the
average neologistic paraphasia.

4.3 Results
As noted by (Le et al., 2017), it is necessary to
classify if the word is correct in addition to phone-
mic or neologistic for future ASR and AAC system
development. We report the averaged F1 score on
three binary classification schemes, namely C-pn
(correct vs. phonemic or neologistic), C-p (correct
vs. phonemic) and C-n (correct vs. neologistic)

As baselines, we compare with a naive baseline
which classifies all words as correct (the majority
class) and the DBLSTM-RNN acoustic model by
(Le et al., 2017). It is necessary to note that the
DBLSTM-RNN was trained on supervised data
using transfer learning methods.

Our method demonstrates results in table 3
which are comparable to the supervised learning
method. It outperforms the other baselines for C-pn
and C-p.

Method C-pn C-p C-n
Majority Baseline .442 .461 .484
(Le et al., 2017) .704 .632 .761

Ours .761 .683 .728

Table 3: Paraphasia detection and further classification
reported as averaged F1 scores.

While, a tighter set of cutoff hyperparameters
can be used to classify the paraphasias as the AAC
devices and systems gets further personalized. Our
choice of hyperparameters is purposely kept gener-
alized so as to accommodate various PWA speakers.
We also believe a better embedding method will
allow for better scores even with our general cutoff
hyperparameters, especially neologistic paraphasia
as it will be further from any word cluster.

5 Conclusion

The work presented in this paper is heavily inspired
by (Le et al., 2017), but differs and improves it in
the following ways. We provide a completely unsu-
pervised method which outperforms previous work
in paraphasia classification and detection. While
we maintain that our method can be used for all
languages, irrespective of aphasic speech data, due
to time constraints we could include only English
in our evaluations. We lay the ground-work for
paraphasia classification in low-resource languages
allowing for development of ASR and AAC sys-
tems for not only English-speaking PWA’s but also
PWA’s in developing nations. Our future work
will target demonstrating the method on other lan-
guages. We also hope to address semantic parapha-
sia in future work and create, deploy AAC systems
building on the method proposed in this paper.
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Abstract
Recently, deep learning has been used in Med-
ical Subject Headings (MeSH) indexing to
reduce the labor costs associated with manual
annotation, including DeepMeSH, TextCNN,
etc. However, these models fail to capture the
complex correlations between MeSH terms.
To this end, we use a Graph Convolution
Network (GCN) to learn the relationship
between these terms and present a novel Hy-
brid Graph Convolution Net for MeSH index
(HGCN4MeSH). We utilize two bidirectional
GRUs to learn the embedding representation
of the abstract and the title of the MeSH
index text respectively. We construct the
adjacency matrix of MeSH terms, based on
the co-occurence relationships in corpus,
and use the matrix to learn representations
using the GCN. On the basis of learning the
joint representation, the prediction problem
of the MeSH index keywords is an extreme
multi-label classification problem after the
attention layer operation. Experimental results
on two datasets show that HGCN4MeSH is
competitive with the state-of-the-art methods.

1 Introduction

MEDLINE1 is an important database for publi-
cations of biomedical and life science containing
more than 24 million journal citations. To facilitate
information storage and retrieval, the National Li-
brary of Medicine (NLM) created Medical Subject
Headings (MeSH)2 to index articles in MEDLINE.
MeSH is an annually-updated hierarchical glossary.
There are 29368 concepts3 of MeSH in 2019, cov-
ering various area from biomedicine to information
technology. Currently, the articles in MEDLINE
are indexed primarily by NLM human experts. It is
estimated that it costs millions of dollars each year

⇤The corresponding author.
1https://www.nlm.nih.gov/bsd/medline.html
2https://www.nlm.nih.gov/mesh/meshhome.html
3https://www.nlm.nih.gov/databases/download/mesh.html

Example1: [Animals, Blotting Western, Body, Weight,
Heme, Oxygenase1, Male, Mice ,Mice Obese, Motor, Ac-
tivity, Oxygen, Consumption, Protoporphyrins, Receptor
Melanocortin Type 4, Thermogenesis, Weight]
Example2: [Animals, Blotting Western, Cell Hypoxia,
Cell Line, Cell Survival, Cells Cultured, E2F1 Transcrip-
tion Factor, Hepatocytes, Hypoxia-Inducible Factor 1 al-
pha Subunit, Membrane Proteins, Mice, Mice Inbred
C57BL, Mitochondrial Proteins, RNA Small Interfering]
Example3: [Animals, Appetite Regulation, Energy
Metabolism, Fats, Feedback Physiological, Glucose, Hu-
mans, Intestine Small, Signal Transduction]

Table 1: Examples of tags from article 26815432,
27391842, 26736497 in MEDLINE. It can be seen that
when the tag ‘Mice’ appears, tag ‘Animals’ is likely to
appear. However, when tag ‘Animals’ appears, the tag
‘Mice’ does not necessarily appear.

to index new articles (Mork et al., 2013). Therefore,
it is necessary to build an efficient and accurate
model for indexing documents — MeSH index.

Xun et al. (2019) demonstrated that the MeSH
indexing problem can be cast as an extreme multi-
label classification task. Each MeSH term can be
regarded as a tag, with a total of 29368 tags, and
each article has an average of 13 tags. Recently,
there are some deep learning models applied to
MeSH terms indexes successfully, such as Atten-
tionMeSH (Jin et al., 2018), MeSHProbeNet (Xun
et al., 2019), etc. However, these models do not
considered the correlation and the co-occurrence
relationship between MeSH terms. By ignoring
the complexity between objects, these methods are
inherently limited. Table 1 is a real example of
article tags from the data.

In this paper, we propose a novel GCN (Kipf
and Welling, 2016)-based MeSH term index model,
HGCN4MeSH, which learns the co-occurrence rep-
resentation of tags via a GCN-based mapping func-
tion. Specifically, we design a novel data-driven
adjacency matrix to guide the information prop-
agation between nodes. To solve the problem of
too many tags in extreme multi-label classification

20



Figure 1: The proposed model framework. Balls of various sizes and colors represent different representations
of MeSH terms, BiGRU is the bidirectional gated recurrent unit. First, A hybrid graph is constructed for MeSH
terms, where each node represents a MeSH term. The abstract and title are input into GRU for feature extraction
respectively and GCN updates the representation of MeSH terms by learning co-occurrences of MeSH terms during
training. The final representation of MeSH terms consists of two parts, one is the representation generated by GCN,
the other is the semantic representation of MeSH terms. Then we can calculate the attention weight between MeSH
terms and title; abstract, output the final score via a linear layer and a sigmoid activation function.

cases, we propose a hybrid adjacency matrix, that
is, constructing a bidirectional GCN between high-
frequency tags and a unidirectional GCN between
high-frequency and low-frequency tags to reduce
the computation. The major contribution are:

• We propose a novel end-to-end extreme multi-
label classification framework (Figure 1),
which employs a GCN to learn tags repre-
sentation.

• We utilize a partial block adjacency matrix
to reduce calculation and noise for extreme
multi-label classification. The experimental
results show that our method is competitive
with the state-of-the-art method.

2 Related Work

Aronson et al. (2004) introduced the Medical Text

Index (MTI) to help experts find suitable MeSH
terms for articles quickly and accurately. Peng et al.
(2016) proposed DeepMeSH, which achieved the
best results in the 2017 BioASQ challenge task
A. BioASQ is a challenge funded by the Euro-
pean Union; the task A of BioASQ requires par-
ticipants to use only the abstracts and titles to pre-
dict corresponding MeSH terms. DeepMeSH uti-
lized TF-IDF (Jones, 1972) and document to vec-
tor (D2V) (Le and Mikolov, 2014) to represent
each abstract and They used k-nearest-neighbor
(KNN) (Altman, 1992) classifiers to generate can-
didate MeSH terms. AttentionMeSH (Jin et al.,
2018) was also divided into two parts. The first
part used KNN to generate candidate MeSH terms,
and the second used bidirectional Recurrent Gated
Unit (BiGRU) (Cho et al., 2014) architecture to
capture context features. Xun et al. (2019) used
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the representation learned from the name of journal
combine with the information from the abstract and
a multi-view neural classifier to get results. Wang
and Mercer (2019) provided a useable data set, in-
cluding the title, abstract, paragraphs associated
with the figures, and tables of each text, and used
multi-channel TextCNN (Kim, 2014) to solve the
problem.

MeSH terms were modelled independently in
those methods, which ignored the relationships be-
tween MeSH terms. In this paper, we use a GCN
to capture the more complex topological relation-
ships.

3 HGCN4MeSH Model

3.1 Graph Convolutional Network and
Correlation Matrix

We use Graph Convolutional Network (GCN) to
model the relationship between MeSH terms. Kipf
and Welling (2016) proposed GCN which induces
embedding vectors of the nodes according to the
properties of their neighbor nodes. Given a graph
G = (V,E) where V and E denote the set of nodes
and edges respectively. The GCN is a multi-layer
neural network. With convolutional operations, the
propagation of every layer can be written as

H l+1
= h(Ã ·H l

·W l
). (1)

Here, H l
2 Rn⇥d and H l+1

2 Rn⇥d0 indicate
the nodes representation of the lth and (l + 1)

th

hidden layer respectively (where n is the number
of nodes and d, d0 are the dimensions of the node
representations), Ã 2 Rn⇥n represents the normal-
ized version of the correlation matrix A 2 Rn⇥n,
h(·) means a non-linear operation such as ReLU, ·
means the matrix product operation, W l

2 Rd⇥d0

is a layer-specific trainable transformation matrix.
GCN updates the node features by propagating

the information between neighbor nodes, based on
the corresponding correlation matrix. Hence, the
crucial thing is how to build the adjacency matrix.
In most applications, the adjacency matrix is pre-
defined. However, there is no corresponding adja-
cency matrix already defined in the area of extreme
multi-label text classification. Facing this problem,
we propose the hybrid adjacency matrix construc-
tion method. We construct the adjacency matrix
between tag frequencies and the co-occurrence re-
lationships between tags.

In extreme multi-label text scenarios, the num-
ber of tags is often in the tens of thousands. If we

consider the relationship between all the tags, the
adjacency matrix would be huge and consume con-
siderable memory and time during the computation.
Considering that in the extreme multi-label classi-
fication task, the distribution of tags is long-tailed,
which means that there are some tags appear rarely,
hence Ã is a sparse matrix.

Figure 2: The construction of adjacency matrix. (a)
the adjacency matrix of original GCN (m⇥m) (b) the
hybrid adjacency matrix of our model (m⇥ n)

Hence, we set a threshold frequency to divide
tags into low-frequency and high-frequency groups.
We find that the number of low-frequency tags co-
occurring with high-frequency tags is larger than
the number of low-frequency tags co-occurring
with low-frequency tags through empirically. Thus,
we build an adjacency matrix Ã 2 Rm⇥n, where
m is the number of the high-frequency tags and
n denotes the total number of tags. It means that
we utilize the information between high-frequency
tags and low-frequency tags, so it is called hybrid
adjacency matrix. Figure 2 shows the example of
adjacency matrix. We use the empirical conditional
probability to model the directed relationship be-
tween tags:

p(Lj |Li) =
Mij

Ni
(2)

which means the occurrence probability of tag Lj

when tag Li appears, where Ni denotes the occur-
rences times of the tag Li, and Mij denotes the
concurring times of tag Li and tag Lj .

Pij = p(Lj |Li) (3)

However, due to a large number of tags, these co-
occurrencesmay be noisy estimate for some tags
with low co-occurrence frequency, so we set a
threshold ⌧ as follows:

Aij =

(
Pij Pij > ⌧

0 Pij  ⌧
(4)
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3.2 Document Representation
The core challenging in MeSH idnexing is to learn
representations for the title and abstract. After to-
kenizing the titles and abstracts, we derive the
context-aware title representation via a bidirec-
tional Gated Recurrent Unit (BiGRU) (Cho et al.,
2014):

Htitle = BiGRU(Xtitle) 2 RL⇥2dh

Habstract = BiGRU(Xabstract) 2 RL0
⇥2dh

(5)

where Htitle, Habstract mean the hidden state
of title, abstract respectively. Xtitle 2 RL⇥de ,
Xabstract 2 RL0

⇥de denote the feature of title, ab-
stract respectively (de means the embedding di-
mension of word), L is the length of title, L0 is the
length of title, dh is the hidden layer dimension. In
this work, the title and the abstract share the same
process.

3.3 MeSH Representation
First, we use the corresponding word embedding
of all MeSH terms as the initial input (H0) to GCN.
In section 3.1, we introduced a novel adjacency
matrix A, we can get the new representation of
MeSH terms with co-occurrence information after
multi-layers of GCN.

HGCN = �(Ã ·H l
·W l

) (6)

where H l
2 Rm⇥dl is the high-frequency MeSH

terms representation of lth layer, Ã is the normal-
ized version of adjacency matrix and W l is a layer-
specific trainable transformation matrix. In other
words, only the representations of high-frequency
MeSH terms are propagated at each layer in GCN.
After getting the representation of MeSH terms in-
terrelation by GCN, we also use the embedding of
MeSH terms to retain the semantic information.

HMeSH = [HGCN : eMeSH ] (7)

where the symbol : means the concatenated op-
eration; eMeSH is the word embedding of MeSH
terms.

Now we can utilize MeSH representations to se-
lect the most relevant text representation features
for classification by attention mechanism (Bah-
danau et al., 2014). We calculate the similarity
between MeSH terms and text by dot products and
use Softmax to normalize the word axis:

Sim = Htitle ·HMeSH

Aattn = softmax(Sim)
(8)

Ultimately, we can get the representation of MeSH
terms by words representation:

H 0

MeSH = AattnHtitle +A0

attnHabstract (9)

where A0
attn is the attention score between abstract

and MeSH terms, and Habstract is the hidden state
of abstract. Then we can gain the score of MeSH
terms:

ŷ = �(WH 0

MeSH + b) (10)

here, �(·) is the sigmoid function, W is the train-
able weight matrix and b is the bias. The binary
cross-entropy loss function is applied in the model:

Lj = �(yjlog(ŷj) + (1� yj)log(1� ŷj)) (11)

where yj is the ground truth, ŷj 2 [0, 1]. The total
loss is:

L =
1

K

KX

j=1

Lj (12)

Here, K is the total number of training data.
Finally, the MeSH multi-label classifier outputs

the MeSH index that we want.

4 Experiments

4.1 Dataset
PMC Collection contains 257590 manually anno-
tated biomedical articles and covers 22881 MeSH
terms in total. Each documents contains 13.34
MeSH terms on average.
SETC2015 contains 14828 annotated articles cre-
ated by Demner-Fushman and Mork (2015). Wang
and Mercer (2019) used this dataset to create a
new dataset, which covers 14365 MeSH terms and
contains 13.15 MeSH terms per document.

4.2 Implementation Details
In the processing, non-English characters are re-
moved. The embedding dimensions of title and
abstract are both 200, GRU layer number is set to
2, and the hidden dimension is 200. In the part
of GCN, we use a layer of GCN with both input
and output dimensions of 200. LeakyReLU (Maas
et al., 2013) with a negative slope of 0.2 is used as
the non-linear activation function. For the division
of word frequency, we choose the high-frequency
MeSH terms with more than 1000 occurrences, the
low-frequency MeSH terms with less than 1000
of the PMC Collection dataset. For SETC2015
dataset, the threshold is 500. We set ⌧ in Eq.(4)
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p@k nDCG@k
p@1 p@3 p@5 p@10 p@15 nDCG@1 nDCG@3 nDCG@5

PMC Collection
multichannel TextCNN 0.8791 0.7214 0.6148 0.5179 0.4801 0.8791 0.7574 0.6752

HGCN4MeSH-1 0.9145 0.8250 0.7417 0.5773 0.4618 0.9145 0.8463 0.7832
HGCN4MeSH 0.9267 0.8495 0.7707 0.6124 0.4953 0.9267 0.8677 0.8086

SETC2015
multichannel TextCNN 0.8051 0.6298 0.5206 0.4196 0.3959 0.8051 0.6698 0.5841

HGCN4MeSH-1 0.9054 0.7841 0.6921 0.5415 0.4450 0.9054 0.8124 0.7411
HGCN4MeSH 0.9185 0.7930 0.7078 0.5581 0.4563 0.9185 0.8221 0.7555

Table 2: Results for our Model in p@k and nDCG, HGCN4MeSH-1 is the model using the embedding of MeSH
terms merely without GCN, HGCN4MeSH is the model with GCN

to be 0.1. Dropout (Srivastava et al., 2014) is 0.2,
and learning rate 0.0005. Besides, we apply the
Adam optimizer (Kingma and Ba, 2014) and early
stopping strategies (Yao et al., 2007). The model is
implemented with PyTorch (Paszke et al., 2017).

4.3 Evaluation Metrics
Due to the large space of the tags, only a few tags
can match the text. Hence, the major metrics for
performance evaluation are ranking-based meth-
ods.

Precision at k (p@k) and normalized discounted
cumulative gain (nDCG) are ranking-based evalu-
ation methods. In this paper, we also utilize these
two authoritative metrics.

4.4 Experiments Results
Table 2 shows the rank-based matric result. Al-
though there are some strong baselines of bioASQ
challenge, the code is available to test on the two
dataset. We compare with the state-of-art method,
multichannel TextCNN (Wang and Mercer, 2019).
For the proposed model, we report the results of
the model with GCN or not. It is obvious that our
model without GCN outperforms baseline, and the
performance of the model with GCN is the best
result, which may due to the fact that the model
with GCN pays more attention to the co-occurrence
relationships between the tags.

In addition, the score of the PMC Collection
dataset increases by about 2-4 points after introduc-
ing GCN. However, the score of SETC2015 only
increases by 1-2 points. The reason is that there are
only 14000 samples of SETC2015. Thus the data-
driven adjacency matrix is biased. Nevertheless,
since the PMC Collection dataset contains about
250000 data, the adjacency matrix based on the
dataset should be closer to the true co-occurrence
relationship between the MeSH terms, and results
to better performance.

Model p@k

l f p@1 p@3 p@5 p@10

1 0.5k 0.9116 0.8345 0.7597 0.6029
1 1k 0.9267 0.8495 0.7707 0.6124
1 1.5k 0.9185 0.8409 0.7518 0.6103
4 2k 0.9174 0.8359 0.7618 0.6046

Table 3: The result of MeSH terms on testing set for
different frequency threshold. l is the GCN layer, f
is the frequency threshold, f=1k means MeSH terms
with less than 1000 occurrences is low-frequency tag,
and those with more than 1000 occurrences are high-
frequency tags.

Model p@k

l f p@1 p@3 p@5 p@10

1 1k 0.9267 0.8495 0.7707 0.6124
2 1k 0.9094 0.8323 0.7577 0.6008
3 1k 0.9170 0.8285 0.7494 0.5945

Table 4: The result of MeSH terms for different GCN
layers. l=1 means the GCN layer is 1.

4.5 Ablation Studies

In the Table 3, we can observe effects of thresholds
that define low-frequency MeSH terms and
high-frequency MeSH terms. If the threshold
is too high, it may cause fewer high-frequency
MeSH terms, which causes the representation
between different MeSH terms to be too smooth.
However, when the frequency threshold is too low,
there are many high-frequency words, and some
co-occurrence of many words may become noise.

Table 4 shows that with the number of GCN
layers increasing, the results decrease. As the
number of GCN layers increasesthe information
transmission between nodes may accumulate,
resulting in excessive smoothness of the final
representation.
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Model p@1 p@3 p@5 p@10

w/o atten 0.8897 0.7978 0.7235 0.5531
w/o GCN 0.9145 0.8250 0.7417 0.5773
w/o title 0.9094 0.8351 0.7589 0.5984
w/o abs 0.8763 0.7857 0.7050 0.5569

title&abs 0.9082 0.8361 0.7621 0.6058
ours 0.9267 0.8495 0.7707 0.6124

Table 5: The result of ablation studies. w/o: without;
atten: attention; abs: abstract; ours:HGCN4MeSH; ti-
tle&abs: title and abstract are concatenated as the input
of GRU.

The results of the ablation experiment are shown
in Table 5. Title contains a lot of useful information,
the effect of extracting information from title and
abstract separately is slightly better than directly
concatenating both.

5 Conclusion

Modelling the relationship between MeSH terms is
a key issue in MeSH indexing. This paper proposes
a model for constructing specifying the relationship
between MeSH terms based on GCN and a new
end-to-end model for MeSH indexing.

In the field of biomedicine, the co-occurrence
relationship of tags is very common and useful. We
use the co-occurrence relationship between tags to
design the adjacency matrix by the GCN using the
data-driven method, which can also be extended to
other extreme multi-label classification fields.
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Abstract
Recently, several studies have focused on im-
proving the performance of grammatical er-
ror correction (GEC) tasks using pseudo data.
However, a large amount of pseudo data are re-
quired to train an accurate GEC model. To ad-
dress the limitations of language and compu-
tational resources, we assume that introducing
pseudo errors into sentences similar to those
written by the language learners is more effi-
cient, rather than incorporating random pseudo
errors into monolingual data. In this regard,
we study the effect of pseudo data on GEC task
performance using two approaches. First, we
extract sentences that are similar to the learn-
ers’ sentences from monolingual data. Second,
we generate realistic pseudo errors by con-
sidering error types that learners often make.
Based on our comparative results, we observe
that F0.5 scores for the Russian GEC task are
significantly improved.

1 Introduction
Recently, several studies have proposed models
to solve grammatical error correction (GEC)
task as an application of writing support for
language learners of various languages, such
as English or Russian. A standard approach to
improve GEC models is to incorporate pseudo
errors into large monolingual datasets for pre-
training. In particular, previous works achieved
state-of-the-art performance by pre-training the
model using pseudo data with a subsequent fine-
tuning of the pre-trained model using a learner
corpus (Zhao et al., 2019; Kiyono et al., 2019;
Grundkiewicz et al., 2019; Náplava and Straka,
2019; Grundkiewicz and Junczys-Dowmunt,
2019).

Considering the aforementioned approach, sev-
eral methods have been proposed for the genera-
tion of pseudo data for pre-training a GEC model.

⇤Currently at Retrieva, Inc.

In theory, it is possible to include all types of errors
in a dataset via random error generation. However,
considering the limitations of computational re-
sources required to train a GEC model using large
pseudo datasets, there is a need to generate pseudo
datasets with only realistic errors.

Thus, in this study, we generate pseudo data to
train GEC models considering the types of errors
made by language learners and study the effect of
this realistic pseudo training data. First, we extract
sentences similar to the training data from mono-
lingual datasets to generate pseudo data for pre-
training. Second, we analyze the error tendency
of learners and add pseudo errors considering the
errors learners tend to make in English and Rus-
sian languages. Through experiments, we show
that the proposed pseudo data generation method
improves the F0.5 scores of the GEC model.

In summary, the primary contributions of this
study are as follows:

• We confirm that selecting training data sim-
ilar to the learners’ corpus instead of us-
ing randomly selected monolingual data im-
proves the performance of the GEC model.

• We show the effect of realistic pseudo errors
by considering the types of errors typically
made by language learners for the Russian
GEC task.

2 Related Works

Pseudo data have been generated for GEC tasks
in several previous works. Zhao et al. (2019) gen-
erated pseudo data by adding randomly generated
pseudo errors, in an error-free sentence. In par-
ticular, in this approach, randomly selected words
were replaced or deleted from a large monolin-
gual dataset. In addition, a random word was
inserted into sentences, and words in a sentence
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En (CoNLL 2013) Ru (RULEC-GEC dev)

Error type Ratio (%) Error type Ratio (%)

Art./Det. 19.9 Spelling 22.8
Collocation/Idiom 12.5 Insert 13.2
Noun number 11.4 Noun case 10.2
Preposition 8.98 Replace 9.99
Word form 6.56 Delete 9.58

Table 1: Comparison of error statistics between English
and Russian learner corpora (Development Data).

were swapped around. A similar approach was
proposed by Kiyono et al. (2019), where an origi-
nal word is masked or retained to generate pseudo
data for pre-training. However, both of these
methods generate errors that are not similar to
the real errors made by language learners. The
data in Table 1 indicates that English language
learners tend to make errors related to article and
word choice, while Russian language learners of-
ten make errors related to spelling, insertions, and
noun inflections. In our study, we use these error
tendencies to generate realistic errors to develop
pre-training datasets for GEC tasks in those lan-
guages.

Furthermore, Grundkiewicz et al. (2019) gener-
ated realistic pseudo data by building a confusion
set based on an unsupervised spellchecker to re-
strict word replacements made by learners in the
resulting dataset. They used the conditional proba-
bility P (cor|err) based on the spellchecker distri-
bution; however, it is not the same as P (err|cor),
nor does it include error types other than spelling
errors. Conversely, in our work, we approximate
P (err|cor) using a uniform distribution for the
set of candidates for a correct word. This uni-
form distribution is developed using prior knowl-
edge of error types instead of that obtained from
a spellchecker. Thus, our generated pseudo data
contains comparatively more realistic pseudo er-
rors. Kasewa et al. (2018) determined the dis-
tribution of the pseudo error generation model
P (err|cor) from parallel data obtained using a
grammatical error detection task.

Moreover, Grundkiewicz and Junczys-Dowmunt
(2019) developed a confusion set that retained
out-of-vocabulary words and preserved consistent
letter casing. However, using this approach,
unrealistic errors might be included in the pseudo
data because it primarily considers the surface
of words. Further, Náplava and Straka (2019)
conducted a GEC experiment in multiple lan-

thetocosttotalat… a government …
Original sent.

Erroneous sent.

theforcosttotalat… the governments …
Preposition

error
Noun Number

error

about, by, for, in,
from, of, with, on, at

Article
error

the, [no article]

Figure 1: Example of pseudo error generation.

guages, such as English, Russian, German, and
Czech, and proposed a pseudo error generation
model for Czech, considering errors in diacritics.
In the present study, we incorporate the most
common error types in monolingual data based
on language-specific prior knowledge to obtain
development data.

3 Method for Pseudo Data Generation

First, we describe the method for pseudo data gen-
eration that considers learner error types. Subse-
quently, we use the generated pseudo data for pre-
training a GEC model.

In this study, we combine the proposed method
of pseudo data generation with previous methods.
In particular, we incorporate the basic random ap-
proach (deletion, insertion, swapping) in our ap-
proach, as well as the more recent sophisticated
approach proposed by Grundkiewicz et al. (2019)
(character level perturb, confusion set based on an
unsupervised spellchecker).

3.1 Data Selection

We assume that the sentences, where errors of
the learners’ error types are added, should be
similar to that of the learners’ sentences them-
selves. Thus, we used a data selection method
(Moore and Lewis, 2010), where an N-gram lan-
guage model (LM) is used to score input sen-
tences. This method creates a generic LM N and
targets LM I sets for the generic and target do-
mains, respectively. Subsequently, the entropy H
is calculated for the sentence s in monolingual
data from these LM sets (LMmodel 2 {I,N}). Fi-
nally, the entropy difference (Equation 1) for the
sentence is calculated. Data selection is then per-
formed based on the similarity to the target domain
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in descending order of the assigned score.

score(s) = H(s;N)�H(s; I) (1)

H(s; LMmodel) = �
1

|s|
logPLMmodel(s)

where |s| indicates the sentence length,
PLMmodel(s) indicates the probability estimated
by the LMmodel for sentence s.

In this study, for each sentence in the mono-
lingual data, the entropy difference is calculated
between the LM trained on monolingual data and
that trained on the data in the target domain. Sub-
sequently, sentences are extracted according to the
LM scores for pre-training data.

3.2 Error Types
Figure 1 shows an example of pseudo error gen-
eration according to the most common error types
in learners’ corpora. As an example of preposition
errors, we limit the confusion set by defining the
pseudo error generation model as P (err|cor =

“to”) where err 2 {about, by, for, from, in, of,
with, on, at}. The pseudo error is generated using
a uniform distribution for the pseudo error gener-
ation model P (err|cor).

English. As listed in Table 1, the common er-
ror types in English are those related to arti-
cle/determiner, collocation/idiom, noun number,
preposition, and word form. Thus, for English, we
consider each error type as follows:

• For article/determiner errors, the set of re-
placement candidates is the entire vocabulary
in the random baseline. However, we limit
the set of replacement candidates to other ar-
ticles and determiners only. This set contains
an entry of “no article” as well (i.e., deletion).

• For noun number errors, the error can be
generated by swapping the singular or plu-
ral form of a noun with the plural or singular
form, respectively.

• For preposition errors, we define a candi-
date set as the top 10 most frequently used
prepositions (Bryant and Briscoe, 2018). We
only replace the preposition with one from
the candidate sets.

• For word form errors, we define a candidate
set for replacement using word_forms 1.

1https://github.com/gutfeeling/
word_forms

Lang. Dataset Corpus Sent.

English One Billion Corpus mono 10M
Lang-8 + NUCLE para 134K

Russian Russian News Crawl mono 10M
Lang-8 + RULEC-GEC para 54K

Table 2: Data statistics.

We did not consider collocation and idiom errors
in our study because defining a candidate set for
those error types is challenging.

Russian. For the Russian language, we consider
replacement and spelling errors as per the previ-
ously proposed methods (i.e., random and unsu-
pervised spellchecker). For noun case errors, we
define a candidate set for replacement using a dic-
tionary. When the target word is a noun and is
included in the dictionary, the candidates for re-
placement consist of the inflected patterns speci-
fied in the dictionary.

4 Experiments

4.1 Data

Table 2 lists the details of monolingual and par-
allel data used for training in our study. As
training data, we used Lang-8 (Mizumoto et al.,
2012) and NUS Corpus of Learner English
(NUCLE) (Dahlmeier et al., 2013) for English,
while we used Lang-8 and Russian Learner Cor-
pus of Academic Writing-GEC (RULEC-GEC)
(Rozovskaya and Roth, 2019) for Russian. As
pre-training data (i.e., pseudo data), we used One
Billion Corpus 2 for English and Russian News
Crawl 3 for Russian.

4.2 Experimental Setting

We used the transformer model with copy-
augmented architecture (Zhao et al., 2019) as the
GEC model with almost the same hyperparame-
ters. In particular, we set max-epoch = 3 for pre-
training, and 15 for training. As an evaluation met-
ric, we computed the precision, recall, and F0.5

score for the CoNLL-2014 dataset and RULEC-
GEC test set. Furthermore, we used the CoNLL-
2013 (Ng et al., 2013) data and the RULEC-GEC
dev data for development.

2https://www.statmt.org/lm-benchmark/
3http://www.statmt.org/wmt18/

translation-task.html
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CoNLL-2014 (En) RULEC-GEC test (Ru)

System Pseudo data Prec. Rec. F0.5 Prec. Rec. F0.5

Random errors w/o Data selection (baseline) 10M 67.5 34.1 56.5 22.7 3.6 11.1

Random errors w/ Data selection 2M 67.9 31.1 54.9 18.7 0.11 4.5
4M 68.0 32.5 55.8 19.2 1.53 5.8
6M 67.4 33.7 56.2 20.5 2.42 8.2
8M 68.9 34.3 57.3 25.3 3.35 11.0

10M 68.2 34.9 57.3 27.7 3.77 12.2

Error type w/o Data selection 10M 69.2 34.2 57.5 41.1 12.4 28.1

Error type w/ Data selection (proposed) 2M 67.5 31.3 54.8 32.8 2.5 9.7
4M 68.8 33.1 56.6 37.2 6.7 19.5
6M 70.0 33.5 57.5 44.2 11.9 28.6
8M 68.5 34.6 57.2 49.0 15.0 33.7

10M 69.1 34.5 57.6 48.6 16.8 35.2

Table 3: Results comparison of for each evaluated method. Best score in each column is indicated in bold.

As explained in Section 3.1, we trained the tar-
get LM to extract sentences from monolingual
data using a part of the target side of the paral-
lel data, where its domain matched the develop-
ment data. We extracted the highest-scoring 10M
sentences from the original monolingual datasets,
One Billion Corpus, and Russian News Crawl,
which have 30M and 80M sentences, respectively.

Furthermore, as discussed in Section 3.2, we
generated pseudo data by incorporating pseudo er-
rors into the monolingual corpus of each language.
For noun case errors in Russian, we used a dic-
tionary 4 containing noun inflections. We verified
that the total number of pseudo errors in each ex-
periment was similar to ensure a fair comparison.
In our experiments, we compared the following
three baselines to study the effects of pseudo er-
rors and data selection in the monolingual corpus.

Random errors w/o Data selection In this ap-
proach, pseudo errors are added into randomly
selected 10M monolingual data. The added er-
rors include deleting, adding, and replacing ran-
domly selected words, and shuffling the words in
a sentence. This method corresponds to that of
Zhao et al. (2019).

Random errors w/ Data selection First, we se-
lected the top 10M sentences from the monolin-
gual corpus using the LM scoring method de-
scribed in Section 3.1. In our experiments, the
amount of data is up to 10M sentences, increased
by 2M sentences. In this approach, the process of
adding pseudo errors is the same as in the Random

4http://opencorpora.org/?
page=downloads

errors w/o Data selection approach.

Error type w/o Data selection In this approach,
we introduced pseudo errors to randomly selected
10M monolingual data, as described in Section
3.2.

Error type w/ Data selection This method is
our proposed approach, where we combine the
data selection and error type approaches.

4.3 Result
Table 3 lists the results for each system.

Data selection. When comparing the results ob-
tained using the Random errors, we can evaluate
the effect of the data selection method. For En-
glish, the random methods, which incorporated
the data selection approach, perform better than
the random method without it (56.5 ! 57.3). In
contrast, for Russian, similar improvements were
noted for both approaches (11.1! 12.2).

Furthermore, when comparing the results ob-
tained using the error type, we confirmed that
the data selection approach significantly improved
GEC performance for Russian data. However, for
the English data, no significant improvements for
GEC performance were observed. Moreover, for
the Russian data, we found that both precision and
recall improved when using the error type-based
approach (Precision: 41.1 ! 48.6, Recall: 12.4
! 16.8).

Error types. When comparing random and er-
ror type w/ data selection approaches, we observed
the effect of pseudo data containing pseudo er-
rors based on learners’ error types in GEC perfor-
mance. For the English data, the improvement is
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System Sentence

Source Sentence We know each others’ status, changements and so on through the social media.
Gold Sentence We know each others’ status, changes and so on through the social media.

Random w/ Data selection We know each others’ status, changements and so on through the social media.
Error type w/ Data selection We know each others’ status, changes and so on through the social media.

Source Sentence Besides, we can make more friends by such interactions when our friends ...
Gold Sentence Besides, we can make more friends through such interactions when our friends ...

Random w/ Data selection Besides, we can make more friends through such interactions when our friends ...
Error type w/ Data selection Besides, we can make more friends with such interactions when our friends ...

Source Sentence В сочинение было много ошибок.
Gold Sentence В сочинении было много ошибок. (En: There were many mistakes in the essay.)

Random w/ Data selection В сочинение было много ошибок.
Error type w/ Data selection В сочинении было много ошибок.

Table 4: Comparison of system outputs in English and Russian. Examples on the top indicate those word form
errors that were successfully corrected, while those on the middle indicate preposition errors that were not suc-
cessfully corrected. Those on the bottom indicate noun case errors that were successfully corrected in Russian.

Figure 2: Comparison of recall for each error type. All
systems were input with 10M pseudo data sentences.

not large. In contrast, for Russian data, the pro-
posed method achieved the same level of accuracy
using only one-third of the parallel corpus (8.23!
9.68). Moreover, using the same amount of data,
the score was almost tripled (12.2 ! 35.2).

5 Analysis

Error type. Figure 2 shows the recall for each
error type. We selected error types that most com-
monly appear in the development data.

For English data, the recall was comparable for
all error types. Regarding error types other than
preposition errors, an equal or improved recall was
realized. In contrast, for preposition errors, the re-
call reduced significantly. It seems that this degra-
dation in the recall can be attributed to the method
used to add preposition errors in our study. In par-
ticular, we only considered replacement for prepo-

sition error generation, and not deletion or inser-
tion. We believe this problem could be handled
by generating preposition errors via insertion and
deletion as well.

For Russian data, recall improved significantly
for spelling and noun error cases. Note that these
two error types are not considered explicitly dur-
ing random error generation. In contrast, recalls
for other error types are approximately compara-
ble because the errors were generated using the
same approach. Therefore, overall, we observed
that the approach significantly improved by con-
sidering error types that could not be obtained us-
ing random error generation.

Example. Table 4 lists the output examples of
two systems: Random errors w/ data selection and
error type w/ data selection. Words in red indicate
errors in the sentence, while those in blue indicate
correct words.

At the top of Table 4, we present an instance of a
word form error that was corrected using the pro-
posed method. In particular, the random method
outputted the input sentence as it stands. Con-
versely, the proposed method corrected the word
form error by considering other word forms.

Furthermore, in the middle of Table 4, we
present an output example wherein preposition
errors were left uncorrected by the proposed
method. In particular, the random method cor-
rected the preposition error in an appropriately;
however, our proposed method failed in perform-
ing the task. This difference in results is due to the
limitations we posed on the dataset for the replace-
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ment to generate realistic pseudo errors. Thus,
this example suggests that the recall degradation
for preposition errors was caused by restricting the
confusion set too strictly.

Finally, in the bottom of Table 4, we present an
instance of a noun case error in Russian. The word
“сочинение” is a neuter noun, and this case in-
flection of the word represents nominative or ac-
cusative case. When this word is used with the
preposition “В”, meaning English “in” in this ex-
ample, it is necessary to change the case to prepo-
sitional case (сочинение ! сочинении). From
this example, our proposed method can correct
noun case error, while the random method cannot
correct them.

As an overall tendency of Russian noun case er-
rors, the random method often outputted the input
sentence as it is, according to our observation of
the outputs, or it outputted a completely different
word.

As a case of failure to correct, in our proposed
method, we confirmed a tendency that the method
changed case inflections to the wrong ones.

6 Conclusions

In this study, we studied the effect of pseudo data
obtained using two approaches. In particular, we
confirmed that combining data selection and real-
istic error injection approaches to obtain pseudo
data improved the F0.5 scores. Moreover, we ana-
lyzed the recall for each error type. Based on our
experimental results, we observed that the recall
for error types considered in our study improved
or were comparable.
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Abstract
Deep neural network based machine learning
models are shown to perform poorly on un-
seen or out-of-domain examples by numerous
recent studies. Transfer learning aims to avoid
overfitting and to improve generalizability by
leveraging the information obtained from mul-
tiple tasks. Yet, the benefits of transfer learn-
ing depend largely on task selection and find-
ing the right method of sharing. In this the-
sis, we hypothesize that current deep neural
network based transfer learning models do not
achieve their fullest potential for various tasks
and there are still many task combinations that
will benefit from transfer learning that are not
considered by the current models. To this
end, we started our research by implementing
a novel multi-task learner with relaxed anno-
tated data requirements and obtained a perfor-
mance improvement on two NLP tasks. We
will further devise models to tackle tasks from
multiple areas of machine learning, such as
Bioinformatics and Computer Vision, in addi-
tion to NLP.

1 Introduction

Deep neural network based machine learning mod-
els have shown remarkable progress in the last
decades across a wide range of tasks. The typi-
cal training regime uses a large amount of labeled
data to get a general mapping of the elements in the
input space to the label space, which is known as
supervised learning. Yet, it is shown by numerous
studies that these models suffer from overfitting
and are sensitive to noise and examples that are not
available in the training data (Jia and Liang, 2017;
Belinkov et al., 2017). In addition, these models
are usually trained from scratch for each new task
where the weights of the models are initialized ran-
domly. This approach does not follow the way
humans learn new tasks, i.e. leveraging external
world knowledge and information obtained from

related tasks when learning a new task (Bruner,
1985; Hayes et al., 2002).

Transfer learning (TL) is a biologically moti-
vated training paradigm that aims to mitigate the
above mentioned real-world challenges of conven-
tional supervised learning (Ruder, 2019). Signals
in the training set of a source task are used as ad-
ditional information for a given target task to en-
able better generalization. It is especially useful
when the labeled data is limited for the target task
and when the tasks are relatively similar (Collobert
and Weston, 2008; Hashimoto et al., 2017; Ruder,
2019). Learning the structure among tasks is an es-
sential first step to benefit most from transfer learn-
ing, and to this end Zamir et al. (2018) proposed a
fully-computational framework to learn this struc-
ture in the Computer Vision domain. Straight-
forward application of transfer learning algorithms
may lead to catastrophic forgetting where models
forget the source task after being exposed to the
target task. In addition, there is a lack of theoret-
ical understanding of the task relationships, and
as a result, tasks for transfer learning are usually
determined with hindsight.

Multi-task learning (MTL) is a special case of
transfer learning where multiple tasks are learned
simultaneously. Caruana (1997) summarizes multi-
task learning as leveraging information obtained
from the training data of different tasks to improve
generalization. It enables better generalization
and lowers the annotated data requirements (Caru-
ana, 1997; Maurer et al., 2016). Current multi-
task learning systems typically use hard-sharing,
where a low layer hidden representation is shared
among all tasks to have an inductive bias (Collobert
et al., 2011; Chu et al., 2015). It is recently shown
that for dissimilar tasks hard-sharing may degrade
the performance, which is also called negative-
transfer (Yosinski et al., 2014). More sophisticated
information sharing methodologies must be consid-
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ered in addition to finding useful task combinations,
to make the most out of multi-task learning and to
avoid negative-transfer.

The above findings and challenges motivate our
research on transfer learning in deep neural net-
works. Specifically, we focus our research on inves-
tigating the task relations on the currently proposed
models and on proposing new task combinations.
Through our research, we plan to find answers to
‘where to transfer from’ (task selection), ‘what to
transfer’ (datasets and data selection) and ‘how to
transfer’ (pretraining and model architecture). Our
main hypothesis is that, 1) neural network based
transfer learning models improve over their single-
task counterparts both in terms of generalizabil-
ity and overall performance, 2) currently proposed
transfer learning models do not achieve their fullest
potential, and 3) there are many task combinations
that will benefit from transfer learning. We will
focus on the following research questions about
transfer learning models throughout this thesis:

RQ1. How to optimize the model architecture
and sharing methodology for a given task combina-
tion?

RQ2. What are some good auxiliary tasks to
improve the perfomance of a target task?

RQ3. How to find useful pretraining schemes?
The first question aims to find the most useful

architecture and the sharing methodology when the
task combination is known/determined. Second
is a higher-level research question to find useful
task combinations and can be considered as the
preliminary step for the first one. Finally, question
three aims to find the right pretraining scheme to
make the most ouf of transfer learning for a given
set of target tasks. By combining these research
questions, we aim to find the most useful multi-task
learning setting for a given domain.

We started our research by analyzing the limi-
tations of current supervised learning systems and
showed the sensitivity of neural network based
models to the changes in the domain (Akdemir
et al., 2018). Next, we proposed a novel joint learn-
ing model that relaxes labeled data requirements
for the Named Entity Recognition and Dependency
Parsing tasks and showed improvements over the
conventional methods. The results for the model
are given in more detail in Section 4. We will
further devise models to tackle tasks from multi-
ple areas of machine learning, such as Bioinfor-
matics and Computer Vision (CV) in addition to

NLP. Specifically, we plan to focus on biomedical
question answering and object detection tasks from
Bioinformatics and CV areas, respectively. We
motivate the choice of these two domains as fol-
lows: Transfer learning with ImageNet achieved a
huge success, and almost all state-of-the-art models
for downstream tasks in CV make use of transfer
learning. The abundance of transfer learning based
models makes CV a good test-domain for evaluat-
ing the contributions we will propose for different
pretraining schemes for transfer learning. On the
contrary, applications of transfer learning is scarce
in Bioinformatics compared to CV and NLP. Hence,
there should be various task combinations that can
benefit from transfer learning in the Bioinformat-
ics domain that were not investigated before. This
motivated us to choose Bioinformatics as a target
domain to find new task combinations.

The remainder of this paper is structured as fol-
lows. Section 2 gives a summary of the related
work on transfer learning and multi-task learning.
This is followed by the Research Plan, where we ex-
plain the methodology we will use regarding each
research question. Finally, Section 4 describes the
evaluation methods and datasets that will be used
to assess the significance of our contributions re-
garding each research question.

2 Related Work

Our research is related to the works in the subtopics
we summarize below.

2.1 Transfer Learning

We follow the taxonomy defined by Ruder (2019)
to differentiate between transfer learning and multi-
task learning. Specifically, transfer learning is an
umbrella term for settings where information from
a source task is leveraged to improve the perfor-
mance of a target task. If the target and source
are learned simultaneously, this methodology is
defined as ‘multi-task learning’, whereas if we em-
ploy a sequential learning of each task, this is re-
ferred to as ‘sequential transfer learning’. For in-
stance, in the domain of reinforcement learning,
Rusu et al. (2016) proposed ‘progressive neural
networks’ which learn each task sequentially and
fixes the parameters for the subsequent tasks. On
the contrary, Hashimoto et al. (2017) proposed a
joint many task model to simultaneously learn mul-
tiple NLP tasks.

In the area of Computer Vision, sequential trans-
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fer learning unlocked many potentials. Models pre-
trained on ImageNet are finetuned on the target task
datasests (Krizhevsky et al., 2012) to achieve state-
of-the-art results. Similarly, Peters et al. (2018)
showed pretrained models improve performance
across a wide range of NLP tasks. Radford et al.
(2018) and Devlin et al. (2019) pretrained mod-
els over huge unlabeled datasets and these models
are successfully applied to many downstream NLP
tasks. However, Mou et al. (2016) showed that
transferability depends largely on the semantic re-
latedness of the tasks. Finding related tasks is a key
factor to achieve better transfer learning models,
but a thorough understanding of how to find the
most useful pretraining task is still missing (Ruder,
2019).

Another key factor to improve transferability
is the selection of relevant data. Recently, Ruder
and Plank (2017) proposed learning a similarity
metric over the training sets by using Bayesian
Optimization for transfer learning. Their work is
limited to a domain adaptation setting where the
source tasks are the same as the target task but the
domains of the datasets are different. We propose
extending their method to avoid negative-transfer
in various multi-task settings.

2.2 Multi-task Learning

Ruder (2017) gives a comprehensive overview of
multi-task learning models, where they define two
main categories based on the information sharing
methodology: hard-sharing and soft-sharing. In
Hard-sharing, models contain a low-level layer
which is shared among all task-specific layers,
whereas in soft-sharing each model has its own
weight set and regularization is applied to force
these weights to be similar across all models. Soft-
sharing based models are shown to benefit from
multi-task learning when applied to related tasks.
Yet, the benefits of this method are unclear for
loosely related tasks.

Long and Wang (2015) attempted to learn the
information flow between task-specific models.
Ruder (2017) showed the effect of applying regular-
ization to the network weights to generalize better.
Using a more sophisticated approach to control the
information flow and applying additional regular-
ization terms on the network weights are promising
ways to obtain improvements over the current mod-
els. Zhang et al. (2018) proposed learning the most
suitable model for a given multi-task setting using

the previous results obtained for various (S,M)

pairs where S is a set of tasks and M is the learn-
ing model. They find the best candidate covariance
matrix which represents the task relations to esti-
mate the relative error for a new multi-task setting
and show the effectiveness of their approach. One
drawback of these approaches is that they focus
only on learning the task-relatedness between tasks
and ignore the architectural variations. Meyerson
and Miikkulainen (2019) showed that architectures
can also be decomposed to allow sharing of various
sub-modules for a set of tasks. Yet, more research
is necessary to find out the best method of shar-
ing and the best architecture for a given multi-task
setting.

3 Research Plan

In this section, we restate the research questions
and explain the approach we are planning to take.

RQ1: How to optimize the model architec-
ture and sharing methodology for a given task
combination?

Currently proposed multi-task learners mostly
use hard sharing, where models share a common
low-level layer, and task-specific sharing methods
are not analyzed for many task combinations (Col-
lobert et al., 2011; Søgaard and Goldberg, 2016;
Hashimoto et al., 2017). Following Long and Wang
(2015), we plan to use learnable parameters to con-
trol the information flow between each task-specific
model. Learning joint label embeddings for dis-
parate label classes (Augenstein et al., 2018) is
another promising approach that goes beyond hard-
sharing. Specifically, we will apply this method
to leverage our previously proposed joint learner
for Dependency Parsing and Named Entity Recog-
nition. Part-of-speech tags strongly correlate with
named entities and dependencies (Hashimoto et al.,
2017; Akdemir and Güngör, 2019b). Thus, we ar-
gue that learning joint label embeddings of these
tasks can help to further capture the relations be-
tween them.

RQ2: What are some good auxiliary tasks to
improve the performance of a target task?

Regarding this research question, we will fix a
target task and try to improve the performance by 1)
incorporating a transfer learning framework and 2)
applying a more sophisticated data selection mecha-
nism. To better understand the task relations (where
to transfer from), we will compare the performance
on a fixed target task using several auxiliary tasks
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obtained through different task selection mecha-
nisms. Lee et al. (2019) proposed pretraining the
BERT model in the biomedical domain and apply
the model to make predictions in several different
downstream tasks in Bioinfomatics such as gene-
disease relation extraction and biological named
entity recognition. We argue that their approach
can be combined with multi-task learning to further
leverage the information available in the dataset of
each task. Specifically, we claim that biological
named entity recognition can be used as an auxil-
iary task to improve the performance of biological
question answering systems. Our preliminary re-
sults are given in Section 4. The biological named
entity dataset consists of several types of entities
(genes, chemicals and disease mentions) and each
type can be considered as a different task. We will
use these set of tasks to compare the performance
of the task selection mechanisms.

Deciding which data are useful (what to trans-
fer), in addition to finding promising task combina-
tions, is another key factor to increase transferabil-
ity (Ruder and Plank, 2017). However, many of the
current multi-task models use all the available data
for all tasks (Long and Wang, 2015; Hashimoto
et al., 2017; Lee et al., 2019). To this end, we
will apply the previously proposed data selection
mechanisms on our new task combinations to find
the most useful and relevant examples from each
dataset to improve the transferability and to avoid
negative-transfer. Previous work on data selection
successfully showed that using a Bayesian suite for
deciding which data to use for multi-task learning
brings significant improvements (Ruder and Plank,
2017). This motivated us to incorporate similar
data selection mechanisms to further improve the
performance of transfer learning models. We will
compare several data selection mechanisms by fix-
ing the model to be used and the task combination.

RQ3: How to find useful pretraining
schemes?

The standard approach in sequential transfer
learning is to pretrain a model using an objective
that is relevant to and useful for the target task.
In NLP, the prevailing method is to train a lan-
guage model using the next sentence prediction
and masked token prediction objectives over huge
unlabeled datasets, e.g. the BERT model (Devlin
et al., 2019). The pretrained models are usually
fine-tuned on task-specific datasets, yet the char-
acteristics of the downstream task are usually not

considered during the pretraining process. Regard-
ing this research question, our main goal is to find
task-specific pretraining schemes and to compare
the performance with fine tuned models that are not
pretrained considering the downstream task (Lee
et al., 2019).

Curriculum learning aims to find a good order-
ing of the training samples to go beyond random
sampling (Bengio et al., 2009). The training sam-
ples are ordered according to their difficulties using
prior knowledge. Recently, Jiang et al. (2015) pro-
posed self paced curriculum learning which tries to
learn this ordering dynamically during training to
mitigate the drawbacks of defining static difficul-
ties for training samples using external knowledge.
Following this idea of changing the difficulty of the
training samples (Bengio et al., 2009; Kumar et al.,
2010; Jiang et al., 2015; Liang et al., 2016), we
propose using ‘adaptive masking’ for pretraining
language models. The standard approach for pre-
training with masked language modeling involves
predicting the distribution of a randomly masked
word using its context (Devlin et al., 2019). Each
masked word can be considered as an instance of
a cloze test which is frequently used to assess the
linguistic skills in humans. In a cloze test, students
are expected to understand the context to fill in the
masked word. Randomly selecting which words
to mask causes the difficulty of each instance to
change randomly as well. We propose adaptively
changing the difficulty of the next training instance
by observing the performance of the model. In
this context, we define difficulty as the amount
of contextual information necessary to select the
most probable word, whereas Bengio et al. (2009)
defined difficulty as the inverse of the frequency
of each masked token regardless of their contexts.
Table 1 illustrates why going beyond random mask-
ing is a promising method to improve the learning
process. For the first example, the model (or the
person tested) must predict ‘school’ from the con-
text which includes the word ‘students’. In the
second example, the model must comprehend the
overall negative meaning to predict ‘low’ instead
of ‘high’. 1 The idea can be extended easily to
other domains of machine learning such as object
detection where ‘difficult words’ are replaced with
‘difficult objects’.

1The examples were taken from intermediate and advanced
level cloze grammar tests from the englishlearner website:
https://www.englishlearner.com/tests
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Difficulty Sentence

Intermediate Two students from Cologne, Germany, ages 17 and 18,
are accused of plotting an attack at their school on November 20.

Advanced Low levels of literacy have a damaging impact on almost every aspect of adult life.

Table 1: Two example sentences for the masked language modeling task. The underlined tokens are the originally
masked ones in the reference tests. Tokens that are more challenging to predict are shown in bold.

4 Evaluation

In order to evaluate the significance of our contri-
butions, we will do evaluations for each research
question separately. Below we give the evaluation
methodology, together with example tasks and the
related datasets that will be used for each research
question.

4.1 RQ1.
We will compare our proposed methodology with
the previously proposed multi-task learners and
the state-of-the-art single-task learners in the same
setting. We proposed a novel multi-task learning
framework to improve the performance of the target
task, Named Entity Recognition, using the informa-
tion obtained from the auxiliary task, Dependency
Parsing, for the Turkish language. Dependency
Parsing is chosen as the auxiliary task following
the previous work that showed the importance of
dependencies for the Named Entity Recognition
task, for morphologically rich languages, e.g the
Turkish language (Güngör et al., 2018; Straka et al.,
2019; Akdemir and Güngör, 2019a). The results
in Table 2 show that our proposed model (Model
2) achieves an absolute 2.45% F-1 score overall
improvement over the conventional joint learning
model (Model 1). The conventional model requires
a single dataset annotated with labels for both
tasks, which is a delimiting constraint for less re-
sourced languages. Instead, we proposed using sep-
arate datasets for each task (Akdemir and Güngör,
2019b) which allows the model to be trained on a
larger dataset.

Next, we proposed a hierarchical multi-task
learning framework (Akdemir et al., 2020) that
builds on our previous work mentioned above. In
this framework, each task-specific component is
implemented following the state-of-the-art mod-
els and experiments are conducted using differ-
ent sharing methodologies to find the most use-
ful setting for this task combination. We fol-
lowed Qi et al. (2018) and Lample et al. (2016) to
implement a Highway Long Short Term Memory

Model 1 Model 2
PER 84.50 86.48
LOC 81.97 86.36
ORG 78.34 78.63

Overall 82.11 84.56

Table 2: Results comparing the proposed model
(Model 2) with the conventional joint learner (Model
1). All results are given in percentage (%) F-1.

(H-LSTM) based dependency parser and a BiL-
STM Conditional Random Fields based named en-
tity recognizer. In addition, we used BERT sub-
word contextual embeddings as the common low-
level layer shared by the task-specific components.
This framework achieved absolute improvements
of 18.86% and 4.61% F-1 over our previously
proposed model for DEP and NER tasks respec-
tively. In addition, the framework showed absolute
improvements of 1.44% and 0.13% F-1 over the
state-of-the-art models for the Turkish language for
DEP and NER tasks respectively. The details about
the implementation and the experiments conducted
are given in (Akdemir et al., 2020).

We will further test the validity of our hypoth-
esis on other less resourced morphologically rich
languages such as the Czech Language (Demir and
Özgür, 2014).

Dataset. To test our hierarchical multi-task
learner on the Czech Language, we will use the
‘Czech Named Entity Corpus 2.0’ (Ševčı́ková et al.,
2007) for the NER task and the PDT-UD tree-
bank (Hajič et al., 2017) of the ‘CoNLL 2018
Shared Task’ (Zeman et al., 2018) for Depen-
dency Parsing task. The NER dataset contains
8,993 sentences with 35,220 entities and uses a
two-level named entity classification. For our pur-
poses it is sufficient to use the first level classes
(10 classes) as the named entity labels, referred as
supertypes. PDT-UD contains 87,913 sentences
obtained mainly from newswire.
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4.2 RQ2.
To evaluate the significance of the contributions
we make regarding RQ2, we will fix a target task
and compare the performance using the newly pro-
posed auxiliary task(s). As mentioned in Section 3,
an example target task is biomedical question an-
swering. We argue that detecting and categorizing
diseases and biological entities is an important first
step to answer biological questions. In addition,
the effect of applying data selection will be evalu-
ated by fixing a deep learning model for the object
detection task. It was chosen because there are
numerous models already proposed for multi-task
object detection which allows us to clearly assess
the significance of our contributions.

Dataset. We use the BC2GM (Smith et al.,
2008), BC4CHEMD (Krallinger et al., 2017), and
BC5CDR (Li et al., 2016) datasets for biological
named entity recognition which contain gene en-
tities, chemical entities and disease mentions re-
spectively. To test our claim, we use the BioASQ
dataset (Tsatsaronis et al., 2015) used during the
biomedical question answering competition which
contains yes-no, factoid and list type questions.

The preliminary results we obtained for Biolog-
ical Question Answering task can be seen on Ta-
ble 3. 2 We started with BERT (Devlin et al., 2019)
embeddings and obtained improvements through 1)
transfer learning on the biomedical abstracts from
PubMed, 2) pretraining the question answering
module on the Squad question answering dataset
and 3) training a multi-task learning model for all
question types. Step 3 is our contribution and has
not been employed before, to the best of our knowl-
edge. We aim to show further improvements by in-
corporating multi-task learning of biological named
entities.

BioAsq-6b - Factoid
Model LAcc SAcc MRR

BERT (baseline) 0.24 0.35 0.28
+TL on PubMed 0.32 0.50 0.39

+pretraining on Squad 0.39 0.58 0.47
+MTL of all questions 0.42 0.61 0.49

Table 3: Initial results on Biological Question
Answering-6 factoid type questions.

For multi-task object detection from different do-
mains, we will use the Office-Caltech (Gong et al.,

2LAcc,SAcc and MRR are abbreviations for Lenient Accu-
racy, Strict Accuracy and Mean Reciprocal Rank, respectively.

2012) dataset, which is the standard benchmark
for transfer learning in Computer Vision. The Of-
fice dataset contains images from three different
domains; Amazon, Webcam and DSLR, containing
31 categories. Caltech dataset is the 10 overlapping
categories from the Caltech-256 dataset (Griffin
et al., 2007).

4.3 RQ3.

We will evaluate our newly proposed pretraining
schemes both performance-wise and resource-wise.
We choose the standard pretraining objective of
BERT (Devlin et al., 2019) as the baseline and we
will train the same model using our newly proposed
‘adaptive masking’.

Dataset. We will use the unlabeled Wikipedia
articles in English for pretraining the model using
both pretraining tasks. Next, we will evaluate the
performance of the system on the benchmark ‘The
Stanford Question Answering Dataset’, SQuAD
2.0, which contains over 150,000 answerable and
unanswerable questions. We choose question an-
swering as the downstream task, as it was used as
the downstream task to evaluate the performance
of BERT (Devlin et al., 2019) .

5 Summary

Transfer learning is a promising area of research
for deep neural network based machine learning
models. It helps achieve better generalization and
utilization of the training datasets. In this paper, we
pointed out the current key challenges and unsolved
problems: 1) Going beyond the conventional way
of hard-sharing in multi-task learning and finding
the most useful architecture for a given setting, 2)
Finding good auxiliary tasks in a multi-task setting
for a specific target task, and 3) Finding useful
pretraining schemes. Our research aims to apply
the current work on transfer learning to new tasks
and also find novel methods to obtain better multi-
task learning models.
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Krŭza. 2007. Named entities in Czech: annotating
data and developing NE tagger. In International
Conference on Text, Speech and Dialogue, pages
188–195. Springer.

Larry Smith, Lorraine K Tanabe, Rie Johnson nee
Ando, Cheng-Ju Kuo, I-Fang Chung, Chun-Nan
Hsu, Yu-Shi Lin, Roman Klinger, Christoph M
Friedrich, Kuzman Ganchev, et al. 2008. Overview
of BioCreative II gene mention recognition.
Genome biology, 9(2):S2.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-
task learning with low level tasks supervised at lower
layers. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 231–235.

Milan Straka, Jana Straková, and Jan Hajič. 2019.
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Abstract
It is well-understood that different algorithms,
training processes, and corpora produce dif-
ferent word embeddings. However, less is
known about the relation between different em-
bedding spaces, i.e. how far different sets of
embeddings deviate from each other. In this
paper, we propose a novel metric called Rel-
ative pairwise inner Product Distance (RPD)
to quantify the distance between different sets
of word embeddings. This metric has a uni-
fied scale for comparing different sets of word
embeddings. Based on the properties of RPD,
we study the relations of word embeddings of
different algorithms systematically, and inves-
tigate the influence of different training pro-
cesses and corpora. The results shed light on
the poorly understood word embeddings and
justify RPD as a measure of the distance of em-
bedding spaces.

1 Introduction
Word embeddings are important in Natural lan-
guage processing (NLP) which map words into a
low-dimensional vector space. Many works have
been proposed to generate word embeddings (Mnih
and Kavukcuoglu, 2013; Mikolov et al., 2013; Pen-
nington et al., 2014; Levy and Goldberg, 2014a;
Bojanowski et al., 2017; Devlin et al., 2019).

With many different sets of word embeddings
produced by different algorithms and corpora, it is
interesting to investigate the relationships between
these sets of word embeddings. Intrinsically, this
would help us better understand word embeddings
(Levy et al., 2015). Practically, knowing the rela-
tionship between different sets of word embeddings
helps us build better word meta-embeddings (Yin
and Schütze, 2016), reduce biases in word embed-
dings (Bolukbasi et al., 2016), pick better hyper-
parameters (Yin and Shen, 2018), and choose suit-
able algorithms in different scenarios (Kozlowski
et al., 2019).

To study the relationship between different em-
bedding spaces systematically, we propose RPD
as a measure of the distance between different sets
of embeddings. We derive statistical properties of
RPD including its asymptotic upper bound and nor-
mality under the independence condition. We also
provide a geometric interpretation of RPD. Further-
more, we show that RPD is strongly correlated with
the performance of word embeddings measured by
intrinsic metrics, such as comparing semantic simi-
larity and evaluating analogies.

With the help of RPD, we study the rela-
tions among several popular embedding meth-
ods, including GloVe (Pennington et al., 2014),
SGNS1 (Mikolov et al., 2013), Singular Value De-
composition (SVD) factorization of PMI matrix,
and SVD factorization of log count (LC) matrix.
Results show that these methods are statistically
correlated, which suggests that there is an unified
theory behind these methods.

Additionally, we analyze the influence of train-
ing processes, i.e. hyperparameters (negative sam-
pling), random initialization; and the influence of
corpora towards word embeddings. Our findings
include the fact that different training corpora result
in significantly different GloVe embeddings, and
that the main difference between embedding spaces
comes from the algorithms although hyperparam-
eters also have certain influence. Those findings
not only provide some interesting insights of word
embeddings but also fit nicely with our intuition,
which further proves RPD as a suitable measure to
quantify the relationship between different sets of
word embeddings.

2 Background

Before introducing RPD, we review the theory be-
hind some static word embedding methods, and

1Skip-gram with Negative Sampling
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discuss some previous works investigating the rela-
tionship between embedding spaces.

2.1 Word Embedding Models

We consider the following four word embedding
models: SGNS, GloVe, SVDPMI, SVDLC. SGNS
and GloVe are two widely used embedding meth-
ods, while SVDPMI and SVDLC are matrix fac-
torization methods which are intrinsically related
to SGNS and GloVe (Levy and Goldberg, 2014b;
Levy et al., 2015; Yin and Shen, 2018).

The embedding of all the words forms an em-
bedding matrix E 2 R

n⇥d, where the d here is the
dimension of each word vector and n is the size of
the vocabulary.

SGNS maximizes a likelihood function for word
and context pairs that occur in the dataset and min-
imizes it for randomly sampled unobserved pairs,
i.e. negative samples (NS). We denote the method
with k NS as SGNSk.

GloVe factorizes the log-count matrix shifted by
the entire vocabulary’s bias term. The bias here are
parameters learned stochastically with an objective
weighted according to the frequency of words.

SVDPMI/LC SVD factorizes a signal matrix
M = UDV T , which aims at reducing the dimen-
sions of the cooccurrence matrix. The resulting

embedding is E = U:,1:dD
1
2
1:d,1:d , where d is the

dimension of word embeddings. We denote the
method as SVDPMI, if the signal is the PMI matrix,
and SVDLC if the signal is the log count matrix.

Although the scope of this paper focuses on stan-
dard word embeddings that were learned at the
word level, RPD could be adapted to analyze em-
beddings that were learned from word pieces, for
example, fastText (Bojanowski et al., 2017) and
contextualized embeddings (Peters et al., 2018; De-
vlin et al., 2019).

2.2 Relationship Between Embedding Spaces

Levy and Goldberg (2014b) provide a good anal-
ogy between SGNS and SVDPMI. They suggest
that SGNS is essentially factorizing the pointwise
mutual information (PMI) matrix. However, their
analogy is based on the assumption of no dimen-
sion constraint in SGNS, which is not possible in
practice. Furthermore, their analogy is not suit-
able for analyzing methods besides SGNS and PMI
models since their theoretical derivation relies on
the specific objective of SGNS.

Yin and Shen (2018) provide a way to select

the best dimension of word embeddings for spe-
cific tasks by exploring the relations of embed-
ding spaces of different dimension. They introduce
Pairwise Inner Product (PIP) loss (Yin and Shen,
2018), an unitary-invariant metric for measuring
word embeddings’ distance (Smith et al., 2017).
The unitary-invariance of word embeddings states
that two embedding vector spaces are equivalent if
one can be obtained from another by multiplying a
unitary matrix. However, PIP loss is not suitable for
comparing numerically across embedding spaces
since PIP loss has different energy for different
embedding spaces.

3 Quantifying Distances between
Embeddings

In this section, we describe the definition of RPD
and its properties, which make RPD a suitable
and effective method to quantify the distance be-
tween embedding spaces. Note that two embedding
spaces do not necessarily have the same vocabulary
for calculating the RPD.

3.1 RPD
For the following discussion, we always use the
Frobenius norm as the norm of matrices.

Definition 1. (RPD) The RPD between embedding
matrices E1 and E2 is defined as follows:

RPD(E1, E2) =
1

2

kẼ1Ẽ1
T
� Ẽ2Ẽ2

T
k
2

kẼ1Ẽ1
T
kkẼ2Ẽ2

T
k

.

where Ẽ comes from dividing each entry of E
by its standard deviation. For convenience, we let
Ẽ ⌘ E for the following discussion.

The numerator of RPD respects the unitary-
invariant property of word embeddings, which
means that unitary transformation (i.e. rotation)
preserves the relative geometry of an embedding
space. The denominator is a normalization, which
allows us to regard the whole embedding matrix as
an integrated part (i.e. RPD does not correlate with
the number of words of embedding spaces). This
step makes comparisons across methods possible.

3.2 Statistical Properties of RPD
We assume the widely used isotropic assump-
tion (Arora et al., 2016) that the ensemble of word
vectors consists of i.i.d draws generated by v = sv̂,
where v̂ is from the spherical Gaussian distribution,
and s is a scalar random variable. In our case, we
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can assume each entry of embedding comes from a
standard normal distribution E: vij ⇠ N (0, 1).

Note that the assumption may not always work
in practice, especially for other embeddings such
as contextualized embeddings. However, under
the isotropic conditions, the statistical properties
derived are intuitively and empirically plausible.
Besides, those properties serve to better interpret
the value of RPD alone. Since RPD, in many cases,
is used for comparison, we should be comfortable
with the assumption.
Upper bound We estimate the asymptotic upper
bound of RPD. By factorizing the numerator of
RPD, we get (1).

RPD(E1, E2) =
1

2

kE1ET
1 k

2
+ kE2ET

2 k
2

kE1ET
1 kkE2ET

2 k

�
hE1ET

1 , E2ET
2 i

kE1ET
1 kkE2ET

2 k
(1)

Applying the Cauchy-Schwarz inequality to the last
term of (1)2, we have the following estimation.

2RPD(E1, E2) 
kE1ET

1 k
2
+ kE2ET

2 k
2

kE1ET
1 kkE2ET

2 k

=
kE1ET

1 k

kE2ET
2 k

+
kE2ET

2 k

kE1ET
1 k

(2)

By the law of large numbers, we can prove that
limn!1 kEET

k = n
p
d (Appendix A). Then,

we can tell from (2) that RPD is bounded by 1
when n ! 1. In practice, the number of words
n is large enough to let the maximum of RPD
stay around 1, which means RPD is well-defined
numerically.

Normality For RPD(E1, E2), if E1 is independent
of E2, we can prove that RPD distributes normally
from both an empirical and a theoretical perspec-
tive. Theoretically, by applying the central limit
theorem to the numerator and the law of large num-
bers to the denominator of RPD, we can get the
normality of RPD under the condition n ! 1,
d
n = c, where c remains constant (Appendix B).
Empirically, we can use Monte Carlo simulation to
show the normality and estimate the mean and vari-
ance of RPD (Appendix C). With the help of RPD,
we can perform hypothesis test (z-test) to evaluate
the independence of two embedding spaces.

2The inner product of matrix A and B is defined as
hA,Bi = trace(ATB)

3.3 Geometric Interpretation of RPD
From equation (1), we can tell that the first term
goes to 1 when n ! 1. So we only need to discuss
the second term.

hE1ET
1 , E2ET

2 i

kE1ET
1 kkE2ET

2 k

For the ith row in EET , we have vector v̂i =
(vivT1 , viv

T
2 , ..., viv

T
n ), where vi is the word i’s vec-

tor in embedding E, n is the number of words. We
can interpret v̂i as another representation of word i
projected onto the space spanned by v1, v2, ..., vn.
So for convenience, we denote Ê = EET with its
ith row as v̂i.

We can prove that limn!1 RPD(E1, E2) =

1 �
1
n

Pn
i=1 cos(✓i). The ✓i 2 (0, ⇡2 ) is the angle

between v̂(1)i (ith row vector of Ê1) and v̂(2)i (ith

row vector of Ê2) (Appendix D). Therefore, we can
understand the value of RPD from the perspective
of cosine similarity between vectors.

Figure 1: The plot shows the difference in performance
as a function of RPD score. The x-axis for each point
represents the RPD between word embeddings pro-
duced by SGNS (with NS 15, 5, 1), GloVe, SVDPMI,
SVDLC and word embeddings produced by SGNS25.
The y-axis for each point represents the sum of abso-
lute variation in the performance (word similarity and
word analogy).

3.4 RPD and Performance
As Yin and Shen (2018) discussed, usability of
word embeddings, such as using them to solve anal-
ogy and relatedness tasks, is important to practition-
ers. Through applying different sets of word em-
beddings to word similarity and word analogy tasks
(Mikolov et al., 2013), we study the relationship
between RPD and word embeddings’ performance.
Specifically, we set the word embeddings produced
by SGNS with 25 NS as a starting point and use
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other word embeddings, for example, GloVe as an
end point. Then we get a two dimensional point
with x as their RPD, y as their absolute perfor-
mance change in word similarity3 and analogy4

tasks.
By putting those points in Figure 1, we can tell

in a certain range of RPD, the larger RPD between
the two sets of word embedding means the bigger
gap in their absolute performance. Intuitively, RPD
is strongly related to cosine similarity, which is the
measure of word similarity. RPD also shares the
same property of PIP loss, where a small RPD leads
to a small difference in relatedness and analogy
tasks. We obtain similar results when the starting
point is a different embedding space.

Note that this section serves to demonstrate the
performance (at least in word similarity and anal-
ogy tasks) variation of different embedding spaces
is correlated with their RPD. While we are aware
of the relevance of other downstream tasks, we do
not explore further since our focus lies in investi-
gating the intrinsic geometry relation of embedding
spaces.

4 Experiment

The following experiments serve to apply RPD
to explore some questions of interest and further
demonstrate that RPD is suitable for investigat-
ing the relations between embedding spaces. We
leave applying RPD to help improve specific NLP
tasks to future research. For example, RPD could
be used for combining different embeddings to-
gether, which could help us produce better meta-
embeddings (Kiela et al., 2018).

4.1 Setup

If not explicitly stated, the experiments are per-
formed on Text8 corpus (Mahoney, 2011), a stan-
dard benchmark corpus used for various natural
language tasks (Yin and Shen, 2018). For all meth-
ods we experiment, we train 300 dimension embed-
dings, with window size of 10, and normalize the
embedding matrices with their standard deviation5.
The default NS for SGNS is 15.

3Our word similarity task can be found here: https:
//aclweb.org/aclwiki/WordSimilarity-353_
Test_Collection_(State_of_the_art)

4Our word analogy task can be found here:
https://aclweb.org/aclwiki/Google_
analogy_test_set_(State_of_the_art)

5The code can be found on Bitbucket: https://
bitbucket.org/omerlevy/hyperwords

Methods GloVe SVDPMI SVDLC

SGNS25 0.792 0.609 0.847
SGNS15 0.773 0.594 0.837
SGNS5 0.725 0.550 0.805
SGNS1 0.719 0.511 0.799

Table 1: RPDs of SGNS vs other methods

4.2 Different Algorithms Produce Different
Embeddings

Dependence of SGNS and SVDPMI

As discussed in the introduction, the relation-
ship between embeddings trained with SGNS and
SVDPMI remains controversial (Arora et al., 2016;
Mimno and Thompson, 2017). We use the results
we obtain in Section 3.2 to test their dependence.
For example, if one believes that E1 trained with
SGNS and E2 trained with SVDPMI have no rela-
tionship, then the null hypothesis H0 would be: E1

and E2 are independent.
Under H0, RPD(E1, E2) asymptotically follows

N (µ,�2
). Then the test statistic z is calculated as

follows.

z =
RPD(E1, E2)� µ

�

In our case, we estimate µ = 0.953 and
� = 0.001 with Monte Carlo simulation
with randomly initialized embeddings. Take
RPD(ESGNS1 ,ESVDPMI) = 0.511 from Table 1 as
an example, the statistic z = 442, which means the
p-value ⌧ 0.01. Thus, we can confidently reject
H0. Notice that we can test any two sets of word
embeddings with this method. It is not hard to see
that no pair of word embeddings in Table 1 are
independent, which suggests that there exists an
unified theory behind these methods.

SGNS is Closest to SVDPMI

With the help of RPD, it is also interesting to in-
vestigate distances between embeddings produced
by different methods. Here, we calculate the RPDs
among SGNS (with negative sampling 25, 15, 5,
1), GloVe, SVDPMI, SVDLC.

Table 1 shows the RPDs between SGNS with dif-
ferent negative sampling numbers and other meth-
ods. From the table, we can tell that SGNS stays
close to SVDPMI, which confirms Levy and Gold-
berg (2014b)’s theory.
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Figure 2: Plot of different methods. We create the plot
by fixing the position of SVDLC and SVDPMI. We then
derive the position of other word embeddings accord-
ing to their RPD with existing points on the plot.

Hyper-parameters Have Influence on
Embeddings
From Table 1, an interesting phenomenon is that
SGNS becomes closer to other methods with the
decrease of negative samples, which suggests that
negative sampling is one of the factors driving
SGNS away from matrix factorization methods.

With RPDs between different sets of word em-
beddings, we plot the embeddings in 2D by treat-
ing each embedding space as a single point. We
first fix point SVDPMI and SVDLC, then we draw
other points according to their RPDs with the other
methods. Figure 2 helps us see how negative sam-
pling affects the embedding intuitively. Increasing
the number of negative samples pulls SGNS away
from SVDPMI. Combining Table 1 and Figure 2,
we can tell that although the hyper-parameters can
influence the embeddings to some extent, the main
difference comes from the algorithms.

4.3 Different Initializations Barely Influence
Embeddings

Random initializations produce different embed-
dings with the same algorithms and hyperparame-
ters. While those embeddings usually get similar
performance on the downstream tasks, people are
still concerned about their effects. We investigate
the influence of random initializations for GloVe
and SGNS.

We train the embedding in the same setting mul-
tiple times and get the average RPDs for each
method. For SGNS, the average RPDs of ran-
dom initialization is 0.027. For GloVe, the value is
0.059.

We can tell that different random initializations
produce essentially the same embeddings. Neither

SGNS GloVe

Text8-WMT14 0.168 0.686
Text8-TED 0.119 0.758
WMT14-TED 0.175 0.716

Table 2: RPDs between same method trained from dif-
ferent corpora

SGNS or GloVe has a significant RPD in differ-
ent initializations, which suggests random initial-
ization has little influence over word embeddings’
performance (Section 3.4). However, SGNS seems
to be more stable in this setting.

4.4 Different Corpora Produce Different
Embeddings

It is well known that different corpora produce dif-
ferent word embeddings. However, it is hard for
us to tell how different they are and whether the
difference influences downstream applications (An-
toniak and Mimno, 2018). Knowing this would
help researchers choose the algorithms in specific
scenarios, for example, evolving semantic discov-
ery (Yao et al., 2018; Kozlowski et al., 2019). They
focus on the semantic evolution of words, but cor-
pora are different in different time scales. Their
methods use word embeddings to study semantic
shift, which might be influenced by the word em-
beddings being trained on different corpora, thus
getting unreliable results. In this case, it would
be important to chose an algorithm less prone to
influences by differences in corpora.

We train word embeddings using each of
text8 (Wikipedia domain, 25097 unique words),
WMT14 news crawl6 (Newswire domain, 24359
unique words), TED speech7 (Speech domain,
7389 unique words). We compute RPD on the
intersections of their vocabulary

From Table 2, we can tell that SGNS is consis-
tently more stable than GloVe in different domains.
We suggest that this is because GloVe trains the
embedding with co-occurrence matrix, which gets
influenced more by the corpus.

5 Discussion

While our work investigates some interesting prob-
lems about word embeddings, there are many other

6http://www.statmt.org/wmt14/
7https://workshop2016.iwslt.org/
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problems about embeddings that can be demon-
strated with the help of RPD. We discuss some of
them as follows.

5.1 RPD and Crosslingual Word Embeddings
Artetxe et al. (2018) provide a framework to ob-
tain bilingual embeddings, whose the core step of
the framework is an orthogonal transformation and
other existing methods can be seen as its varia-
tions. The framework proposes to train monolin-
gual embeddings separately and then map them
into a shared-embedding space with linear transfor-
mation.

While linear transformation is no guarantee for
the alignment of two embedding spaces from dif-
ferent languages, RPD could potentially serve as a
way to indicate how different language pairs benefit
from mapping them with an orthogonal transfor-
mation. Since RPD is unitary-invariant, we can
calculate RPD between embedding spaces from
different language pairs. The smaller RPD is, the
better the framework could align this two language
embedding spaces.

5.2 RPD and Post-Processing Word
Embeddings

Post-processing word embeddings can be useful
in many ways. For example, Vulić et al. (2018)
retrofit word embeddings with external linguistic
resources, such as WordNet to obtain better embed-
dings; Rothe and Schütze (2016) decompose em-
bedding space to get better performance at special-
ized domains; and Mu and Viswanath (2018) obtain
stronger embeddings by eliminating the common
mean vector and a few top dominating directions.

RPD could serve as a metric to evaluate how the
embedding space changes intrinsically after post-
processing.

5.3 RPD and Contextualized Word
Embeddings

Contextualized embeddings are popular NLP tech-
niques which significantly improve a wide range
of NLP tasks (Bowman et al., 2015; Rajpurkar
et al., 2018). To understand why contextualized em-
beddings are beneficial to those NLP tasks, many
works investigate the the nature of syntactic (Liu
et al., 2019), semantic (Liu et al., 2019), and com-
monsense knowledge (Zhou et al., 2019) contained
in such representations.

However, we still know little about the vector
space of contextualized embeddings and their rela-

tionship with traditional word embeddings, which
is important to further apply contextualized embed-
dings in various scenarios (Lin and Smith, 2019).
RPD can potentially serve to help us better un-
derstand contextualized embeddings in future re-
search.

6 Conclusion

In this paper, we propose RPD, a metric to quantify
the distance between embedding spaces (i.e differ-
ent sets of word embeddings). With the help of
RPD and its properties, we verify some intuitions
and answer some questions. Justifying RPD theo-
retically and empirically, we believe RPD can offer
us a new perspective to understand and compare
word embeddings.
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A Appendix A. Limitation of ||EET
||

As discuss before, in our case, we can assume
i.i.d. vij ⇠ N (0, 1), where vij is the jth entry in
the ith word vector vi of E.

||EET
|| = n

sPn
i,j(viv
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T
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By the assumption, we know that vivTj identi-
cally distributes for any i 6= j, 1 � i  n, 1 �

j  n. By applying the law of large numbers,

the term
Pn

i 6=j(viv
T
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2
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n2 goes to zero as n
goes to 1. Then, we know that ||EET
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q
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We only need to calculate E((vivTj )
2
).

E((viv
T
j )

2
) = V ar(viv

T
j ) + (E(viv

T
j ))

2 (4)

Simple calculation shows that V ar(vivTj ) = d,
E(vivTj ) = 0. Then E((vivTj )

2
) = d, d is

the dimension of word embedding here. Thus,
||EET

|| ! n
p
d, n ! 1.

B Appendix B. Normality of RPD

Let’s review the form of RPD.

RPD(E1, E2) =
1

2

||E1ET
1 � E2ET

2 ||
2

||E1ET
1 ||||E2ET

2 ||
(5)

As we discuss in A, ||E1ET
1 ||||E2ET

2 ||

n2 ! d, as

n ! 1. We only have to prove ||E1ET
1 �E2ET

2 ||
2

n2

distributes normally. The key is how to apply the
central limit theorem (CLT).

We denote as follows.

Hn =
||E1ET

1 � E2ET
2 ||

2

n2

=
||E1ET

1 ||
2
+ ||E2ET

2 ||
2
� 2hE1ET

1 , E2ET
2 i

n2

(6)

Notice that the term hE1ET
1 , E2ET

2 i does not
contribute to the variance if we analyze the sec-
ond moment of the numerator. So it is equivalent

to prove Tn =
||E1ET

1 ||
2+||E2ET

2 ||
2

n2 distributes nor-
mally.

We project the Tn to
Sn =

Pn
i,j E(Tn|vij)� (n� 1)E(Tn)

Simple calculation would show that V ar(Tn)
V ar(Sn)

!

1, n ! 1, nd = c. Then by the Hajek projection
theorem, we get Tn has the same distribution as
Sn. It is not hard to see that each random variable
E(Tn|vij) in Sn is independent of others. This al-
lows us to apply CLT to Sn and get Sn ⇠ N (µ,�2

).
Thus, Hn ⇠ N (µ,�2

).

C Appendix C. Monte Carlo Simulation

Here is how we perform Monte Carlo simulation.
We independently produce two matrix E1, E2 2

R
n⇥d with each entry i.i.d as N (0, 1). Then we

calculate RPD(E1, E2) and get the first RPD value.
Repeat the process for 5000 times, we get a vector
of RPDs. Drawing the histogram of this vector
yields a normal distribution and we can estimate the
mean and variance of the distribution by calculating
the mean and variance of the vector of RPDs.

D Appendix D. Geometry Interpretation
of RPD

Now we consider a general case, where Ê1 and Ê2

are embeddings with n words.
2

66664

v(1)1

v(1)2
...

v(1)n

3

77775
,

2

66664

v(2)1

v(2)2
...

v(2)n

3

77775

Then

h Ê1, Ê2i

||Ê1||||Ê2||
=

Pn
i=1 v

(1)T
i v(2)i

||Ê1||||Ê2||

=

nX

i=1

v(1)Ti v(2)i

||v1i ||||v
(2)
i ||

||v1i ||||v
(2)
i ||

||Ê1||||Ê2||

(7)

We denote ||v1i ||||v
(2)
i ||

||Ê1||||Ê2||
as wi,

v
(1)T
i v

(2)
i

||v1i ||||v
(2)
i ||

as

cos(✓i)
It is not hard to see that the wi ⇡

1
n , when n

is large enough. Then we get RPD(E1, E2) ⇡

1�

Pn
i=1 cos(✓i)

n . Considering the isotropic assump-
tion again, another observation is that the cos(✓i)
distributes normally.
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Abstract

Word embeddings, which often represent such
analogic relations as

��!
king���!man+�����!woman ⇡

���!queen, can be used to change a word’s at-
tribute, including its gender. For transferring
king into queen in this analogy-based manner,
we subtract a difference vector ��!man������!woman
based on the knowledge that king is male.
However, developing such knowledge is very
costly for words and attributes. In this work,
we propose a novel method for word attribute
transfer based on reflection mappings without
such an analogy operation. Experimental re-
sults show that our proposed method can trans-
fer the word attributes of the given words with-
out changing the words that do not have the
target attributes.

1 Introduction

Word-embedding methods handle word semantics
in natural language processing (Mikolov et al.,
2013a,b; Pennington et al., 2014; Vilnis and McCal-
lum, 2015; Bojanowski et al., 2017). Such word-
embedding models as skip-gram with negative sam-
pling (SGNS; Mikolov et al., 2013b) or GloVe (Pen-
nington et al., 2014) capture such analogic relations
as

��!
king���!man+�����!woman ⇡

���!queen. Previous work
(Levy and Goldberg, 2014b; Arora et al., 2016; Git-
tens et al., 2017; Ethayarajh et al., 2019; Allen
and Hospedales, 2019) offers theoretical explana-
tion based on Pointwise Mutual Information (PMI;
Church and Hanks, 1990) for maintaining analogic
relations in word vectors.

These relations can be used to transfer a cer-
tain attribute of a word, such as changing king into
queen by transferring its gender. This transfer can
be applied to perform data augmentation; for ex-
ample, rewriting He is a boy to She is a girl. It can
be used to generate negative examples for natural
language inference, for example. We tackle a novel

father　
mother

Invert gender

fathers
Invert singular/plural

z

x t

Figure 1: Examples of word attribute transfer

task that transfers any word associated with certain
attributes: word attribute transfer.

A naive way for word attribute transfer is to use a
difference vector based on analogic relations, such
as adding �����!woman���!man to

��!
king to obtain ���!queen.

This requires explicit knowledge whether an input
word is male or female; we have to add a difference
vector to a male word and subtract it from a female
word for the gender transfer. We also have to avoid
changing words without gender attributes, such
as is and a in the example above, since they are
non-attribute words. Developing such knowledge
is very costly for words and attributes in practice.
In this work, we propose a novel framework for a
word attribute transfer based on reflection that does
not require explicit knowledge of the given words
in its prediction.

The contribution of this work is two-fold: (1) We
propose a word attribute transfer method that ob-
tains a vector with an inverted binary attribute with-
out explicit knowledge. (2) The proposed method
demonstrates more accurate word attribute trans-
fer for words that have target attributes than other
baselines without changing the words that do not
have the target attributes.

2 Word Attribute Transfer Task

In this task, we focus on modeling the binary at-
tributes (e.g. male and female1). Let x denote
a word and let vx denote its vector representa-
tion. We assume that vx is learned in advance

1Gender-specific words are sometimes considered socially
problematic. Here we use this as an example from the man-
woman relation.

51



with an embedding model, such as skip-gram. In
this task, we have two inputs, word x and vec-
tor z, which represent a certain target attribute,
and output word t with the inverted attribute of
x for z. In this paper, z is a 300-dimensional
vector embedded from a target attribute ID us-
ing an embedding function of a deep learning
framework. For example, given a set of attributes
Z = {gender, antonym}, we assign different ran-
dom vectors zgender for gender and zantonym for
antonym, respectively. Let A denote a set of triplets
(x, t, z), e.g., (man,woman, zgender) 2 A, and
N denote a set of words without attribute z, e.g.,
(person, zgender) 2 N . This task transfers input
word vector vx to target word vector vt by transfer
function fz that inverts attribute z of vx:

vt ⇡ vy = fz(vx). (1)

The following property must be satisfied: (1) at-
tribute words {x|(x, t, z) 2 A} are transferred
to their counterparts and (2) non-attribute words
{x|(x, z) 2 N} are not changed (transferred
back into themselves). For instance with zgender,
given input word man, gender attribute transfer
fzgender(vman) should result in a vector close to
vwoman. Given another input word person as x,
the results should be vperson.

3 Analogy-based Word Attribute
Transfer

Analogy is a general idea that can be used for word
attribute transfer. PMI-based word embedding,
such as SGNS and GloVe, captures analogic re-
lations, including Eq. 2 (Mikolov et al., 2013c;
Levy and Goldberg, 2014a; Linzen, 2016). By re-
arranging Eq. 2, Eq. 3 is obtained:

vqueen ⇡ vking � vman + vwoman, (2)
⇡ vking � (vman � vwoman). (3)

The analogy-based transfer function is

fz(vx) =

(
vx � d if x 2 M,

vx + d if x 2 F ,
(4)

where M is a set of words with a target attribute
(e.g., male) and F is a set of words with an inverse
attribute (e.g., female). d is a difference vector,
such as vman � vwoman. Eq. 4 indicates that
the operation changes depending on whether input
word x belongs to M or F . However, to transfer

the word attribute by analogy, we need such explicit
knowledge as attribute value (M, F or others) that
is contained by the input word.

4 Reflection-based Word Attribute
Transfer

4.1 Ideal Transfer without Knowledge
What is ideal transfer function fz for a word at-
tribute transfer? The following are the ideal natures
of such a transfer function:

8(m,w, z) 2 A, vm = fz(vw), (5)
8(m,w, z) 2 A, vw = fz(vm), (6)

8(u, z) 2 N , vu = fz(vu). (7)

This function fz enables a word to be transferred
without explicit knowledge because operation fz
does not change depending on whether input word
belongs to M or F . By combining Eqs. 5, 6 and 7,
we obtain the following formulas:

8(m,w, z) 2 A, vm = fz( fz(vm) ), (8)
8(m,w, z) 2 A, vw = fz( fz(vw) ), (9)

8(u, z) 2 N , vu = fz( fz(vu) ). (10)

Hence, the ideal transfer function is a mapping that
becomes an identity mapping when we apply it
twice for any v. Such a mapping is called involu-
tion in geometry. For example, f : v 7! �v is one
example of an involution.

4.2 Reflection
Reflection Refa,c is an ideal function because this
mapping is an involution:

8v 2 Rn, v = Refa,c( Refa,c(v) ). (11)

Reflection reverses the location between two vec-
tors in a Euclidean space through an hyperplane
called a mirror. Reflection is different from inverse
mapping. When m and w are paired words, re-
flection can transfer vm and vw each other with
identical reflection mapping as in Eqs. 5 and 6,
but an inverse mapping cannot. Given vector v in
Euclidean space Rn, the formula for the reflection
in the mirror is given:

Refa,c(v) = v � 2
(v � c) · a

a · a
a, (12)

where a 2 Rn is a vector orthogonal to the mirror
and c 2 Rn is a point through which the mirror
passes. a and c are parameters that determine the
mirror.
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4.3 Proposed method: Reflection-based
Word Attribute Transfer

a
c

Mirror

Vector

Refa,c(v)

king

queen

man

woman

Figure 2: Reflection-based word attribute transfer with
a single mirror

We apply reflection to the word attribute transfer.
We learn a mirror (hyperplane) in a pre-trained
embedding space using training word pairs with
binary attribute z (Fig. 2). Since the mirror is
uniquely determined by two parameter vectors, a
and c, we estimate a and c from target attribute z

using fully connected multi-layer perceptrons:

a = MLP✓1(z), (13)
c = MLP✓2(z), (14)

where ✓ is a set of trainable parameters of MLP✓.
Here, ✓1 and ✓2 are optimized for each attribute
dataset. Transferred vector vy is obtained by in-
verting attribute z of vx by reflection:

vy = Refa,c(vx). (15)

Mirrors

king

queen

man

woman

actor
hero

heroine
actress

father

mothersister

brother

Reflection

person

Figure 3: Reflection with parameterized mirrors

Reflection with a mirror by Eqs. 13 and 14 as-
sumes a single mirror that only depends on z. Pre-
vious discussion assumed pairs that share a stable
pair, such as king and queen. However, since gen-
dered words often do not come in pairs, gender is
not stable enough to be modeled by a single mir-
ror. For example, although actress is exclusively
feminine, actor is clearly neutral in many cases.
Thus, actor is not obviously a masculine counter-
part like king. In fact, bias exists in gender words
in the embedding space (Zhao et al., 2018; Kaneko
and Bollegala, 2019). This phenomenon can occur
not only with gender attributes but also with other
attributes. The single mirror assumption forces the

mirror to be a hyperplane that goes through the
midpoints for all the word vector pairs. However,
the vector pair actor-actress shown on the right in
Fig. 3 cannot be transferred well since the single
mirror (the green line) does not satisfy this con-
straint due to the bias of the embedding space. To
solve this problem, we propose parameterized mir-
rors, based on the idea of using different mirrors
for different words. We define mirror parameters
a and c using word vector vx to be transferred in
addition to attribute vector z:

a = MLP✓1([z;vx]), (16)
c = MLP✓2([z;vx]), (17)

where [·; ·] indicates the vector concatenation in the
column. The parameterized mirrors are expected to
work more flexibly on different words than a single
mirror because parameterized mirrors dynamically
determine similar mirrors for similar words. For
instance, as shown in Fig. 3, suppose we learned
the mirror (the blue line) that transfers vhero to
vheroine in advance. If input word vector vactor

resembles vhero, a mirror that resembles the one for
vhero should be derived and used for the transfer.

On the other hand, the reflection works as an
identity mapping for a vector on the mirror (e.g.,
vperson in Fig 3). That is, the proposed method
assumes that non-attribute word vectors are located
on the mirror. Since we used a 300-dimensional
embedded space in the experiment, we assume
that the non-attribute word vector exists in a 299-
dimensional subspace.

Here, it should be noted that Eq. 11 may not hold
for parameterized mirrors. In reflection with a sin-
gle mirror, it is true that v = Refa,c( Refa,c(v)).
However, with the v-parameterized reflection
Refav,cv(v), this is not guaranteed. Because mir-
ror parameters av and cv depend on an input word
vector as Eqs. 16 and 17. Thus, we exclude this
constraint and employ the constraints given by Eqs.
5-7 for our loss function.

The following property must be satisfied in word
attribute transfer: (1) words with attribute z are
transferred and (2) words without it are not trans-
ferred. Thus, loss L(✓1, ✓2) is defined:

L(✓1, ✓2) =
1

|A|

X

(x,t,z)2A

(vy � vt)
2 (18)

+
1

|N |

X

(x,z)2N

(vy � vx)
2, (19)
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where Eq. 18 is a term that draws target word vector
vti closer to corresponding transferred vector vyi

and Eq. 19 is a term that prevents words without
a target attribute from being moved by transfer
function. vy is the output of a reflection (Eq. 15).

5 Experiment

We evaluated the performance of the word attribute
transfer using data with four different attributes.
We used 300-dimensional word2vec and GloVe as
the pre-trained word embedding. We used four
different datasets of word pairs with four binary
attributes: Male-Female, Singular-Plural, Capital-
Country, and Antonym (Table 1). These word pairs
were collected from analogy test sets (Mikolov
et al., 2013a; Gladkova et al., 2016) and the Inter-
net. Noun antonyms were taken from the literature
(Nguyen et al., 2017). For non-attribute dataset N ,
we sampled words from the vocabulary of word
embedding. We sampled from 4 to 50 words for
training and 1000 for the test (|Ntest| = 1000).

Table 1: Statistics of binary attribute word pair datasets
(in number of word pairs)

Dataset A Train Val Test Total

Male-Female (MF) 29 12 12 53
Singular-Plural (SP) 90 25 25 140

Capital-Country (CC) 59 25 25 109
Antonym (AN) 1354 290 290 1934

5.1 Evaluation Metrics

We measured the accuracy and stability perfor-
mances of the word attribute transfer. The accuracy
measures how many input words in Atest were
transferred correctly to the corresponding target
words. The stability score measures how many
words in Ntest were not mapped to other words.
For example, in the Male-Female transfer, given
man, the transfer is regarded as correct if woman
is the closest word to the transferred vector; oth-
erwise it is incorrect. Given person, the transfer
is regarded as correct if person is the closest word
to the transferred vector; otherwise it is incorrect.
The accuracy and stability scores are calculated by
the following formula:

�(vy, t) =

8
<

:
1 if arg max

k2V
(cos(vy,vk)) = t

0 otherwise,
(20)

Accuracy =
1

|Atest|

X

(x,t,z)2Atest

�(vy, t), (21)

Stability =
1

|Ntest|

X

(x,z)2Ntest

�(vy, x), (22)

where V is the vocabulary of the word embedding
model and cos(vy,vk) is the cosine similarity mea-
sure, defined as: cos(vy,vk) =

vy ·vk

kvykkvkk
.

5.2 Methods and Configurations
In our experiment, we compared our proposed
method with the following baseline methods2:

REF Reflection-based word attribute transfer with
a single mirror. We used a fully connected
2-layer MLP with 300 hidden units and ReLU
(Glorot et al., 2011) to estimate a and c.

REF+PM Reflection-based word attribute trans-
fer with parameterized mirrors. We used the
same architecture of MLP as the REF.

MLP Fully connected MLP with 300 hidden units
and ReLU: vy = MLP([vx; z]). The highest
accuracy models in SGNS are a 2-layer MLP
for Capital-Country and 3-layer MLP for the
other datasets. The highest accuracy mod-
els in GloVe are a 2-layer MLP for Singular-
Plural and 3-layer MLP for the other datasets.

DIFF Analogy-based word attribute transfer with
a difference vector: d = vm � vw, where m
and w are in the training data of A. We chose
d that achieved the best accuracy in the vali-
dation data of A. We determined whether to
add or subtract d to vx based on the explicit
knowledge (Eq. 4). DIFF+ and DIFF� trans-
fer with a difference vector regardless of the
explicit knowledge. + and � add or subtract
the difference vector to any input word vector.

MEANDIFF Analogy-based word attribute trans-
fer with a mean difference vector d̄: d̄ =

1
|Atrain|

P
(mi,wi,z)2Atrain

(vmi�vwi). We de-
termined whether to add or subtract d̄ to vx

based on the explicit knowledge (Eq. 4).

For proposed methods, we used the Adam opti-
mizer (Kingma and Ba, 2015) with ↵ = 10

�4 for
Male-Female, Singular-Plural and Capital-Country,

2Our code and datasets are available at: https://
github.com/ahclab/reflection
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and ↵ = 15
�3 for Antonym (the other hyperparam-

eters were the same as the original one (Kingma
and Ba, 2015)). We did not use such regulariza-
tion methods as dropout (Srivastava et al., 2014)
or batch normalization (Ioffe and Szegedy, 2015)
because they did not show any improvement in our
pilot test. We implemented REF, REF+PM and
MLP with Chainer (Tokui et al., 2019), which is
one of the best deep learning frameworks.

5.3 Evaluation in Accuracy and Stability

Table 2 shows the accuracy and stability results.
Different pre-trained word embeddings GloVe or
word2vec gave similar results. REF+PM achieved
the best accuracy among the methods that did not
use explicit attribute knowledge. For example, the
accuracy of REF+PM was 76% in Capital-Country,
but the accuracy of DIFF+ was 26%. For stability,
reflection-based transfers achieved outstanding sta-
bility scores that exceeded 99%. The results show
that our proposed method transfers an input word
if it has a target attribute and does not transfer an
input word with better score than the baselines oth-
erwise, even though the proposed method does not
use attribute knowledge of the input words. MLP
worked poorly both in accuracy and stability. On
the antonym dataset, although the transfer accuracy
by the proposed method was a bit lower than that
by MLP, the proposed methods stability was 100%
and that of MLP was extremely poor: about 1%.

We investigated the relation between the training
data size of the non-attribute words, and the stabil-
ity of the learning-based methods by conducting
an additional experiment that varied |Ntrain|. The
stability scores by MLP did not improve (Table 3).
On the other hand, REF+PM achieved high sta-
bility scores with |Ntrain| = 0 and maintained the
accuracy. We hypothesized that the high stability
came from the distance between the word and its
mirror. If non-attribute words are distributed on
the mirror, they will not be transferred. We inves-
tigated the distance between input word vector vx

and its mirror (Fig. 4). The result shows that non-
attribute words are close to the mirror, and attribute
words are distributed away from it. In Male-Female
and Singular-Plural, the distance is not significantly
farther than Antonym and Capital-Country. If the
distance between paired words is very small, the
distance between the word and its mirror is also
small. Fig. 5 shows the distribution of the dis-
tance between input vx and target word vector vt.

The distance of Male-Female and Singular-Plural is
much smaller than Capital-Country and Antonym.

5.4 Visualization of Parameterized Mirrors
Figure 6 shows the t-SNE results of mirror param-
eter a obtained for the test words. Paired mirror,
(ax,at), is connected by a line segment. Fig. 6
suggests that the mirror parameters of the paired
words are similar to each other and that those with
the attribute form a cluster; words with the same
attribute have similar mirror parameters a.

Figure 4: Distribution of distance between input word
vector and its mirror |(vx�c)·a|

kak learned by REF+PM.
Non-attribute words are close to the mirror, and at-
tribute words are distributed away from it.

Figure 5: Distribution of distance between input word
vector vx and target word vector vt

Figure 6: Two-dimensional t-SNE projection of a
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Table 2: Results in accuracy and stability scores: MF, SP, CC, and AN are datasets.

Method Knowledge
word2vec GloVe

Accuracy (%) Stability (%) Accuracy (%) Stability (%)
MF SP CC AN MF SP CC AN MF SP CC AN MF SP CC AN

REF 20.8 0.0 36.0 0.0 99.8 100.0 99.8 100.0 12.5 2.0 26.0 0.0 100.0 100.0 100.0 100.0
REF+PM 41.7 22.0 58.0 28.8 99.9 99.4 99.4 100.0 45.8 50.0 76.0 33.5 99.7 99.1 99.2 100.0
MLP 8.3 4.0 12.0 35.9 2.2 0.0 2.7 1.9 4.2 10.0 18.0 36.7 5.1 7.0 5.2 1.2
DIFF + 25.0 2.0 32.0 - 72.1 77.9 53.9 - 25.0 2.0 26.0 - 99.3 94.2 99.3 -
DIFF � 25.0 2.0 30.0 - 49.6 78.2 56.3 - 25.0 2.0 24.0 - 100.0 99.9 99.5 -
MEANDIFF + 4.2 0.0 22.0 - 98.6 99.4 87.6 - 0.0 0.0 22.0 - 100.0 100.0 100.0 -
MEANDIFF � 8.3 0.0 14.0 - 97.2 99.3 92.4 - 0.0 0.0 0.0 - 100.0 100.0 100.0 -

DIFF X 62.5 4.0 64.0 - - - - - 50.0 4.0 44.0 - - - - -
MEANDIFF X 12.5 0.0 36.0 - - - - - 0.0 0.0 0.0 - - - - -

Table 3: Relation among size of |Ntrain| and stability
of learning-based methods

Accuracy (%) Stability (%)

|Ntrain| |Ntrain|

0 4 10 50 0 4 10 50

MF
REF 12.5 12.5 12.5 12.5 100.0 100.0 100.0 100.0
REF+PM 45.8 41.7 37.5 41.7 99.7 99.9 99.9 99.9
MLP 0.0 4.2 0.0 4.2 0.0 0.4 1.0 5.0

SP
REF 0.0 0.0 2.0 0.0 100.0 100.0 100.0 100.0
REF+PM 48.0 40.0 50.0 46.0 53.3 99.1 99.1 99.8
MLP 4.0 6.0 6.0 10.0 0.0 0.5 1.7 7.0

CC
REF 24.0 26.0 24.0 20.0 100.0 100.0 100.0 100.0
REF+PM 76.0 72.0 74.0 74.0 99.2 100.0 99.9 99.9
MLP 16.0 10.0 14.0 18.0 0.0 0.4 1.0 5.2

AN
REF 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0
REF+PM 26.9 26.7 33.5 25.7 100.0 100.0 100.0 100.0
MLP 29.5 29.7 36.7 36.6 0.1 0.5 1.2 4.6

5.5 Transfer Example

Table 4 shows the gender transfer results for a tiny
example sentence. Here the attribute transfer was
applied to every word in the sentence. MLP made
many wrong transfers. Analogy-based transfers
can transfer only in one direction. REF+PM can
transfer only attribute words. Table 5 shows that
words with different target attributes were trans-
ferred by each reflection-based transfer.

Table 4: Comparison of gender transfers. Each method
transfers words in a sentence one by one.

X the woman got married when you were a boy.

REF the woman got married when you were a boy.
REF+PM the man got married when you were a girl.
DIFF + the man got married when you were a boy.
DIFF � she woman got married she you were a girl.

MLP
By Katie Klingsporn girlfriend Valerie Glodowski
fiancee Doughty Evening Chronicle ma’am
Bob Grossweiner & a mother.

Table 5: Transfer of different attributes with REF+PM
X the rich actor wants to visit the beautiful city in tokyo.

+ MF the rich actress wants to visit the beautiful city in tokyo.
+ SP the rich actresses wants to visit the beautiful cities in tokyo.
+ CC the rich actresses wants to visit the beautiful cities in japan.
+ AN the poor actresses wants to visit the beautiful cities in japan.

6 Related Work

The theory of analogic relations in word embed-
dings has been widely discussed (Levy and Gold-
berg, 2014b; Arora et al., 2016; Gittens et al., 2017;
Ethayarajh et al., 2019; Allen and Hospedales,
2019; Linzen, 2016). In our work, we focus on the
analogic relations in a word embedding space and
propose a novel framework to obtain a word vector
with inverted attributes. The style transfer task (Niu
et al., 2018; Prabhumoye et al., 2018; Logeswaran
et al., 2018; Jain et al., 2019; Dai et al., 2019; Lam-
ple et al., 2019) resembles ours. In style transfer,
the text style of the input sentences is changed.
For instance, Jain et al. (2019) transferred from
formal to informal sentences. These style transfer
tasks use sentence pairs; our word attribute trans-
fer task uses word pairs. Style transfer changes
sentence styles, but our task changes the word at-
tributes. Soricut and Och (2015) studied morpho-
logical transformation based on character informa-
tion. Our work aims for more general attribute
transfer, such as gender transfer and antonym, and
is not limited to morphological transformation.

7 Conclusion

This research aims to transfer word binary at-
tributes (e.g., gender) for applications such as data
augmentation of a sentence. We can transfer the
word attribute with analogy of word vectors, but it
requires explicit knowledge whether the input word
has the attribute or not (e.g., man 2 gender, woman
2 gender, person /2 gender). The proposed method
transfers binary word attributes using reflection-
based mappings and keeps non-attribute words un-
changed, without attribute knowledge in inference
time. The experimental results showed that the
proposed method outperforms analogy-based and
MLP baselines in transfer accuracy for attribute
words and stability for non-attribute words.
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Abstract

This article proposes a new approach for build-
ing topic models on unbalanced collections in
topic modelling, based on the existing meth-
ods and our experiments with such methods.
Real-world data collections contain topics in
various proportions, and often documents of
the relatively small theme become distributed
all over the larger topics instead of being
grouped into one topic. To address this issue,
we design a new regularizer for ⇥ and � matri-
ces in probabilistic Latent Semantic Analysis
(pLSA) model. We make sure this regularizer
increases the quality of topic models, trained
on unbalanced collections. Besides, we con-
ceptually support this regularizer by our exper-
iments.

1 Introduction

Topic modelling is a widespread approach to un-
supervised text analysis and clustering. Given
the number of latent variables — topics —
topic models extract hidden word⇥topic and
topic⇥document probability distributions from text
corpora. Topic models have proven to be relevant
in a wide range of contexts and uni- and multilin-
gual tasks (Uys et al., 2008; De Smet and Moens,
2009; Boyd-Graber et al., 2017).

Two fundamental topic models are probabilis-
tic Latent Semantic Analysis — pLSA (Hofmann,
1999) and Latent Dirichlet Allocation — LDA (Blei
et al., 2003). Various extensions of pLSA and
LDA models have emerged over the past years, e.g.
Additive Regularization of Topic Models (ARTM)
(Vorontsov and Potapenko, 2015) modification of
pLSA, where required solution properties are in-
duced by the additional regularizer part in the
model. Through regularizers one can take into
consideration various problem-specific features of
data, and this is a reason why we apply ARTM-
framework in our work.

Despite almost 30 years of model development
history, lots of problems and issues were raised in
the topic modelling field. Problem of the “order
effect” in LDA (Agrawal et al., 2018), for exam-
ple. It consists in converging to the different topics
set while during training on the unstructured data.
Even with the structured data solution in the pLSA
or LDA model is non-unique and unstable. Such un-
stability may be reduced by tuning the model with
regularizers, as in the ARTM model. Inserting �

and ⇥ prior distribution into the model, according
to the (Wallach et al., 2009), promotes convergence
to the better and stable solution along with regu-
larization. However, many problems with models
itself and with quality metrics remain unsolved.

In this article, we point out the topic balancing
problem. At this moment problem of training topic
models on the unbalanced collections is not studied
thoroughly and is far from the comprehensive solu-
tion. We examine previously suggested approach
to the topic balancing and propose a balancing pro-
cedure, based on the a priori ratio between topic
capacities.

2 Problem statement

2.1 Topic modelling introduction

Let D denote the text corpora, W denote the set
of words in the corpora, or the corpora vocabu-
lary, and T denote the set of the topics. Every
document d 2 D is presented as a token sequence
(w1, w2, . . . , wnd) of length nd from the vocabu-
lary of size n. In the models, based on the “bag-
of-words” hypothesis, the more compact way to
represent a document is to consider the document
as a vocabulary multiset, where each token w 2 d
occurs ndw times in the document.

Topic model describes conditional probabilities
p(w|d) of the appearance of the tokens w in the
documents d through the probabilities of the to-
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kens in the topics 'wt = p(w|t) and topics in the
documents ✓td = p(t|d). To build a probabilistic
generative model, we consider further hypotheses
fulfilled:

• conditional independence hypothesis: each
topic generates tokens regardless of the docu-
ment;

p(w|d, t) = p(w|t)

• “bag-of-words” hypothesis: words order in
the document does not affect desired distribu-
tions;

• a finite set of topics T exist in the corpora,
and each token occurrence in each document
refers to some latent topic from T .

According to the law of total probability and the
assumption of conditional independence

p(w|d) =
X

t2T

'wt✓td

This probabilistic model describes how the col-
lection D is generated from the known distributions
p(w|t) and p(t|d). Learning a topic model is an in-
verse problem: obtaining tokens–topics and topics–
documents distributions p(w|t) and p(t|d) given a
corpora D. This problem is equivalent to finding a
stochastic matrix decomposition of counter matrix
as a product F ⇡ �⇥, where matrix � represents
tokens probabilities for the topics and ⇥ represents
topic probabilities for the documents:

F = (p̂(w|d))W⇥D, p̂(w|d) =
nwd

nd

� = ('wt)W⇥T , 'wt = p(w|t)

⇥ = (✓td)T⇥D, ✓td = p(t|d)

In pLSA the topic model is learned by log-
likelihood maximization through EM-algorithm

L(�,⇥) =

X

d2D,w2d

ndw log

X

t2T

'wt✓td ! max
�,⇥

(1)
Further details can be found in the Appendix A.

Since the matrix product �⇥ is defined up to
a linear transformation, solution of the problem
is not unique and, therefore, is unstable. Addi-
tional objectives called regularizers, depending on
the ⇥ and � matrices, can be included in the log-
likelihood along with their non-negative regular-
ization coefficients ⌧ to reduce the solution domain.

Likelihood maximization problem (1) with r regu-
larizers then takes the following form:

L(�,⇥) +

rX

i=1

⌧iRi(�,⇥) ! max
�,⇥

(2)

Solution of the problem therefore transforms to

pt̂dw =
'wt̂✓t̂dP

t2T
'wt✓td

'wt = norm
w2W

✓
nwt + 'wt

@R

@'wt

◆

✓wt = norm
t2T

✓
ntd + ✓td

@R

@✓td

◆

where

nwt =
X

d2D

ndwptdw, ntd =

X

w2d

ndwptdw

Regularization approach and theorem proofs can
be found in (Vorontsov and Potapenko, 2015)

2.2 Topic balancing problem statement
Let nt =

P
d2D

p(t|d)nd denote the topic capacity

of the topic t. Let k =
ntmax
ntmin

denote the imbal-
ance degree of the model; with p(t) =

nt
n de-

noting the topic probability and N(t̂) = |{d 2

D|argmax
t

✓td = t̂}|, we can denote documents

imbalance degree k =
Ntmax
Ntmin

too. Probabilistic
topic models, based on the matrix factorization,
tend to spread documents by topics uniformly and
extract topics with the equal capacity. In order to
maximize log-likelihood, model should engage all
inner parameters for data description. Reducing the
topics number, meaning reducing the number of
available parameters, is unprofitable for the model
in terms of EM-algorithm optimization, therefore
strong proportion reduction of the particular topic
is unprofitable too. Experiments show that in the
pLSA and LDA models imbalance degree rarely
exceeds 3-4.

Similar problem arises in the multiclass classi-
fication with imbalanced data, where classifying
model prefers predicting the label of the most com-
mon class for every object to reduce the number of
errors in classification. The standard approach to
imbalanced data problem is a class weighting. It
can help to provide some bias towards the minority
classes while training the model, and thus help in
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improving performance of the model while classi-
fying various classes. Documents imbalance leads
to overweight of the vocabulary of predominant
topics in the collection. This effect exaggerates
”word burstiness“ in the model (Doyle and Elkan,
2009; Lei et al., 2011) in terms of documents: if a
collection has disproportion of topics, a document
is likely to belong to the widely represented topic.

Let us call the model imbalanced if it can extract
and maintain topics with the imbalance degree k
up to 10. In this article, we examine different ways
of balancing topics in topic models and building
imbalanced models.

3 Topic balancing hypotheses

3.1 Iterative renormalization of parameter in
the Dirichlet distribution

While formulating the probabilistic generative
model in terms of LDA, topic distributions over
words and document distributions over topics are
generated from prior Dirichlet distributions. A
learning algorithm for LDA can also be consid-
ered as an EM-like algorithm with modified M-
step (Asuncion et al., 2009). The most simple and
frequently used modification is the following:

'wt / nwt + �w, ✓td / ntd + ↵t

Thus probabilities of words in topics and proba-
bilities of topics in documents are estimated with
apriori shift. This LDA modification is covered by
the ARTM framework through the LDA regularizer

R(�,⇥) =

X

t

X

w

(�w � 1) log'wt+

+

X

d

X

t

(↵t � 1) log ✓td

and parameters of Dirichlet distributions can be
manually adjusted.

We put forward a hypothesis that increasing
Dirichlet parameters in proportion to the topic ca-
pacities similar to the classes weighing in unbal-
anced classification can countervail tendency of the
EM-algorithm to decrease the capacity of the big
topics and increase the capacity of the small topics.

For the modelling experiment we chose synthetic
collection which consists of the two themes — busi-
ness and music — with 1000 and 150 documents
respectively. Two pairs of models were built to
compare modelling results and evaluate balancing
opportunity. First models were trained with two

topics with and without renormalization, second —
with six topics. In the second pair, the separation
of topics was evident through each topic size and
top-tokens: five topics had top-tokens from a big
theme (with ⇠ 200 documents in each topic), the
last one topic had top-tokens from a small theme.
However, better topics were obtained with balanced
Dirichlet parameters. In the first pair of models we
implied that through the process of rebalancing
Dirichlet parameters we could obtain two topics
with ⇠ 150 and ⇠ 1000 documents each and dif-
ferent top-tokens. This hypothesis was not fully
confirmed in the experiment: without the parame-
ter renormalization EM-algorithm had converged
to the topics with almost similar topic capacities,
with parameter renormalization model maintained
documents imbalance degree equal 2 instead of 7.
Results of the experiment can be seen in Figure 1.

Figure 1: Results of LDA renormalization.
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3.2 Rebalancing p(t|d, w)

Referring a weighting classes approach in the un-
balanced classification task, we considered pos-
sibility to rebalance p(t|d, w) (4). We proposed
dividing ntdw by nt. However, the same experi-
ment as with LDA model gave no positive results,
and later, in the subsection, we are going to prove
this hypothesis failure.

We show that dividing p(t|d, w) by any value
Zt, which depends on t only, does not change �,
but only leads to minor the topics redistribution in
documents. Proof can be found in the Appendix
B. We prove that during renormalization in the
EM-algorithm, M-step formulas for � does not
change, because normalizing multiplier Zt is re-
duced. Therefore, pLSA renormalization does not
influence the topics.

3.3 � initialization

According to the (Wallach et al., 2009), � and ⇥

prior distribution, inserted into the model, could
promote stability of the solution. We followed this
assumption and conducted an experiment, in which
� matrix was initialized not randomly, as in the
unmodified topic models, but with the previously
calculated probabilities according to the foregone
distribution of documents by topics. We suppose
that the “real” � initialization along with the ⇥,
calculated from �, are the optimal factorization
of the counter matrix F in terms of log-likelihood.
Therefore, the overall topic balance and relative
change of � matrix value must not be small enough
(⇠ 1� 3%).

For this experiment chose four synthetic collec-
tions with two themes about business and music:
first collection consisted of 1000 and 10 documents
per theme respectively, second consisted of 1000
and 100 documents, third consisted of 1000 and
300 documents, and fourth consisted of 1000 and
600 documents respectively.

The experiment was split into two levels: at the
first level, we trained models without a priori �
initialization, at the second level, beforehand cal-
culated � matrix was used as an initial tokens–
topics distribution for each model. All zero a priori
probabilities in the calculated � matrix were re-
placed with the minimal possible probability value
/ 10

�5. Zero probabilities emerge when a word
does not occur in any document of the foregone
topic; hence we are not artificially limiting topic vo-
cabularies by preserving zeroes. We were training

Figure 2: Results of a priori � initialization in pLSA
model.

and comparing pairs of basic model with two topics
and model with the initialization of the � matrix
with two topics for each collection, eight models in
sum. Regardless of the data collection, after first 10
training iterations, uninitialized models converged
to the balanced solutions with almost equal N(t),
though initial initialization supported documents
imbalance degree up to 6. This result is represented
in Figure 2 through the topic’s N(t). The left col-
umn represents the model without initialization, the
right column represents the model with initializa-
tion with true topic’s balance [10:1000, 100:1000,
300:1000, 600:1000] respectively.

4 Topic prior regularizer

4.1 Description of the regularizer
According to our experiments and modelling expe-
rience, log-likelihood functional optimization does
not preserve topic balance in models and does not
converge to the optimal solution from the user’s
point of view. We want an optimal solution to al-
low topics with relatively small topic capacities
or topics with relatively small p(t|d) for the most
of corpora documents. Optimality in such terms
can be achieved in a solution, where some topic
variables, or degrees of freedom, are not fully uti-
lized. Current functional during the optimization
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via EM-algorithm tends to redistribute p(t|d) in
the most efficient way, without degenerate distribu-
tions. Thus topic capacities obtain similar values
during the training process.

We formed the hypothesis from our experiments,
that additional shift in tokens–topics � may in-
fluence the EM-algorithm as a restriction of the
degrees of freedom, supporting topics imbalance.
By setting relative collection balance in � in ad-
vance, we can control possible collection balance
after the training process. During the optimiza-
tion, all 'wt are specified according to the tokens
distribution in documents. We implemented this
hypothesis in a new ARTM regularizer RTopicPrior

called TopicPriorRegularizer with the parameter �
to describe a priori topic balance in the collection.

RTopicPrior(�,⇥) =

X

t

X

w

�t log �wt

To better understand the RTopicPrior influ-
ence on the EM-algorithm, we calculated the
RTopicPrior partial derivative:

@R

@�wt
=

�t
'wt

and modified log-likelihood in case of one addi-
tional regularizer with regularization coefficient ⌧ ,
determining regularizing strength:

'wt / nwt + ⌧�t

In most of the cases, we lack knowledge about
topic capacities in the researched data collection,
therefore we cannot set precise � value. We gen-
eralize our regularization approach and propose
RTopicPriorSampled regularizer, where � parameter
is being sampled from the Dirichlet distribution
with the parameter � 2 R1. � is responsible for the
estimated data sparsity, thus � = 1 stands for the
random topic capacities in a model, � ⌧ 1 stands
for the equal topic capacities, � � 1 stands for the
significantly uneven topic capacities.

� ⇠ Dir(�), � 2 R1

4.2 Modelling experiments
For the first modelling experiment we chose syn-
thetic collection with the two themes — business
and music — with 1000 and 100 documents re-
spectively. We build two models with two topics in

Figure 3: Results of unregularized and regularized
pLSA model training with 2 topics.

Figure 4: Results (N(t)) of unregularized and regular-
ized pLSA model training with 8 topics.

each and train them for 15 epochs, however, the sec-
ond model is trained with the RTopicPrior, where
� = [0.1, 0.9]. After training we evaluate both
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models by their perplexity, top-tokens and n(t) for
every topic in the model. The second model had
extracted a small theme as a distinct topic, while
the first unregularized model has two similar top-
ics. Training results are presented in Figure 3: the
first row represents model without regularizer, the
second row represents regularized model; the left
column represents N(t) of the topics, the right col-
umn represents n(t) of the topics.

For the second modelling experiment we choose
collection with the eight themes, balanced with
the following documents proportion: doc prop =

[3000, 2000, 1500, 1000, 1000, 1000, 700, 350].
Two models were trained on this collection:
unregularized and regularized model, where
regularizer was initialized with � =

doc prop
sum(doc prop) .

Figure Figure 4 and Figure 5 show better topics
composition in the second model, compared to the
first model results.

5 Discussion and conclusion
Learning an unbalanced topic model from unbal-
anced text collection is a non-trivial task for all of
the existing modelling methods. In this paper we
discussed the problem of training topic models with
unbalanced text collections. No previous research
provides a thorough analysis of this problem or an
efficient training procedure for unbalanced models.
After reviewing the problem, we proposed an ap-
proach to building topic models, able to maintain
relatively high imbalance degree. We described
our approach in terms of pLSA regularization and
brought theoretical justification for the RTopicPrior

regularizer.
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A pLSA and ARTM model optimization
problem

In pLSA the topic model is learned by log-
likelihood maximization through EM-algorithm

L(�,⇥) =

X

d2D,w2d

ndw log

X

t2T

'wt✓td ! max
�,⇥

(3)
with linear constraints of non-negativity and nor-
malization:
X

w2W

'wt = 1, 'wt � 1;

X

t2T

✓td = 1, ✓td � 1

Solution of the pLSA problem satisfies the fol-
lowing system of equations with auxiliary variables
ptdw:

pt̂dw =
'wt̂✓t̂dP

t2T
'wt✓td

'wt = norm
w2W

(nwt) , nwt =
X

d2D

ndwptdw
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w2d
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(4)

Process of the calculation auxiliary variables
ptdw is an E-step, while model parameters elab-
oration by the calculated ptdw is an M-step in the
EM-algorithm.

B Proof of rebalancing failure

We considered possibility to rebalance p(t|d, w) in
accordance with weighting classes approach. We
proposed dividing ntdw by nt.

We show that dividing p(t|d, w) by any value
Zt, which depends on t only, doesn’t change �,
but only leads to minor the topics redistribution in
documents. We put R = 0 in (2) for the sake of
simplicity.

Investigating M-step of the EM-algorithm, we
write down log-likelihood with renormalizing fac-
tor 1

Zt
:

1
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To solve this linear programming task, we ap-
ply Karush–Kuhn–Takker conditions. We write
Lagrangian:
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and equate its derivations to zero:
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M-step formulas for � does not change, because
normalizing multiplier Zt is reduced. Therefore,
pLSA renormalization has no influence on the top-
ics.
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Abstract

In Neural Machine Translation, using word-
level tokens leads to degradation in transla-
tion quality. The dominant approaches use
subword-level tokens, but this increases the
length of the sequences and makes it difficult
to profit from word-level information such as
POS tags or semantic dependencies.

We propose a modification to the Transformer
model to combine subword-level representa-
tions into word-level ones in the first layers
of the encoder, reducing the effective length
of the sequences in the following layers and
providing a natural point to incorporate extra
word-level information.

Our experiments show that this approach main-
tains the translation quality with respect to
the normal Transformer model when no extra
word-level information is injected and that it
is superior to the currently dominant method
for incorporating word-level source language
information to models based on subword-level
vocabularies.

1 Introduction

Currently dominant Neural Machine Translation
(NMT) architectures receive as input sequences of
discrete tokens taken from fixed-size source and
target token vocabularies defined a priori. Before
being fed to the network, the input text is tokenized
and the positions of those tokens within the vo-
cabulary table are the actual network inputs. The
granularity of the tokens in those vocabularies can
range from character-level, to subword-level, to
word-level.

Character-level token granularity, while allow-
ing maximum representation ability with minimal
vocabulary size for alphabet-based scripts, also del-
egates word formation modeling to the network
and makes token sequences to be much longer than
with word-based tokens.

Using word-level tokens leads to very large vo-
cabulary sizes, especially for morphologically rich
languages, where the number of surface forms per
lemma is high. Large token vocabularies are im-
practical for the current neural architectures and
hardware. It is frequent to constrain the vocabu-
lary size to a few tens of thousand tokens, which
is hardly enough to fit the number of symbols in a
complete word-based vocabulary. Compositional
word structures like numbers pose further problems
with such a granularity level, as well as proper
nouns. When word-based vocabularies are used,
the vocabulary is built with the most frequent sur-
face forms in the training data, which normally
leads to degradation of translation quality.

Subword-level token granularity offers a com-
promise between representational power and vo-
cabulary size, especially statistically extracted sub-
word vocabulary strategies like Byte Pair Encoding
(BPE) (Sennrich et al., 2016b).

Models with word-level token vocabularies can
incorporate word-level information as extra input to
the model by combining it one-to-one with the to-
ken representations. Some examples of word-level
information are Part of Speech (POS) tags, syntac-
tic dependency relationships or lemmas. In order
to make use of word-level information in models
with subword-level token vocabularies, a usual ap-
proach is to assign the word information to all its
subwords (Sennrich and Haddow, 2016). This ap-
proach, despite improving the translation quality,
introduces an information assignment mismatch.

We propose to modify the Transformer architec-
ture (Vaswani et al., 2017) to combine the learned
subword representations into word representations
in the encoder block. This allows to naturally in-
corporate any extra word-level information directly
at the level of word-level representations.

This work is structured as follows: the relevant
related work is described in section 2; the proposed
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approach is described in section 3, while the ex-
perimental setup is presented in section 4 and the
results are described and discussed in section 5.
Finally, the conclusions are drawn in section 6.

2 Related Work

The main difficulty in profiting from word-level
information in subword-based NMT architectures
is the word-subword token level mismatch.

Several lines of research have studied how to
combine subword-level representations into word-
level information in a task-agnostic way. While
the approaches by Bojanowski et al. (2017), Zhao
et al. (2018) and Li et al. (2018) aim at computing
pre-trained word representations, other proposals
integrate the computation of the word representa-
tion in the overall NMT model, either combining
information from character level, like those by Lu-
ong and Manning (2016) Costa-jussà and Fonollosa
(2016), from n-gram level, like the one by Ataman
and Federico (2018), or from multiple granulari-
ties like the work by Chen et al. (2018). Some
other approaches like those by Wang et al. (2019)
and Gu et al. (2018b) try to extend this idea to ob-
tain multilingual conceptual representations from
character-level representations.

Nevertheless, in all those approaches, the de-
coder only has access to the aggregated word-
level information and not to the original subword-
level information. This, while mitigating the un-
known word problem, cannot handle the scenario
where copying from source to target is necessary,
like with unseen proper names or with composi-
tional structures like numbers. To the best of our
knowledge, this type of neural architectures that
condense subword/character-level information into
word-level representations have not been used for
integrating extra word-level information as an ad-
ditional input to the model in a translation task.

On the other hand, word level information has
been injected to subword-based NMT models: Sen-
nrich and Haddow (2016) copy the word-level lin-
guistic information (e.g. lemma, POS tag) to each
of the subwords in a word. Such information is
used in an embedding and is concatenated with the
subword token embedding. In this method, the sub-
words are also injected information about whether
they are the leading subword in a word or they ap-
pear in the middle of a sequence of subwords or
they are the last subword.

3 Subword to Word Transformer

In the standard Transformer architecture from
Vaswani et al. (2017), the encoder applies a se-
ries of self-attention layers to the input token em-
beddings. The output of the encoder is then used
at every layer of the decoder as key and value
of the multi-head attention. In these operations,
the token representations in the sequences in the
source batch are masked according to the original
sequence lengths in tokens.

subw input embedding

subword-to-word 
combination

output embedding

source attention

add & norm

add & norm

self-attention

feed forward

add & norm

� N (d)
w

N (e)
sw �

N (e)
w � � N (d)

swsource attention

add & norm

add & norm

self-attention

feed forward

add & norm

word-level extra info 
(e.g. lemmas)

subword-word 
mapping

word-level self-attention

add & norm

feed forward

add & norm

subw-level self-attention

add & norm

feed forward

add & norm

Figure 1: Subword to Word Transformer model.

We propose to divide the encoder into two blocks
of self-attention layers. The first block receives
the embedded subword-level token representations
and processes them through N (e)

sw layers of self-
attention like those from the nominal Transformer.
The subword-level representations obtained as re-
sult of the first block are then combined into word
level representations. A second block of N (e)

w self-
attention layers processes these word-level repre-
sentations. The output of the second encoder block
is then fed to the first N (d)

w layers of the decoder,
while the following N (d)

sw decoder layers are fed
with the output of the first block of the encoder.
The appropriate padding masks are used in the de-
coder depending on whether the encoder output
used is subword or word-level. This architecture is
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shown in Figure 1.

In our first tests we directly used the encoder
word representations as keys and values to every de-
coder layer (instead of using the encoder subword
representations in the last layers of the decoder).
This, however, led to poor results. We understand
that such a configuration made it impossible for
the network to properly handle token copying from
source to target, which is usually needed in cases
of proper nouns or compositional structures like
numbers. Other possible causes for this degrada-
tion could be some mismatch on the encoder side
e.g. positional embeddings being subword-based
but encoder embeddings being word-level. To test
this hypothesis, we added positional encodings af-
ter the point where subword representations are
combined into word-level representations. This led
to no improvement, indicating that the inability to
copy was certainly the cause of the degradation.

The specific approach chosen to combine sub-
word representations into word representations is a
layer of Gated Recurrent Units (GRU) (Cho et al.,
2014), which receives as input the output of the
first encoder block. We take the output of the GRU
at the positions of the last subword tokens in each
word, providing the appropriate padding positions
to handle the minibatch sequences. This way, the
lengths of the sequences in the batch are now the
number of word tokens in each sentence.

Other subword-to-word combination approaches
tested during the early stages of this work in-
cluded using Long-Short Term Memories (LSTM)
(Hochreiter and Schmidhuber, 1997) and simply
adding all subwords within each word.

The proposed approach provides a natural point
to incorporate word-level information: after the
subword-level representations have been combined
into word-level ones. This way, as shown in Figure
1, the extra word-level information is embedded
into a vector space and added to the word-level
representations of the source sentence, after the
word-to-subword combination.

Note that, while applying this approach to the
encoder part is straightforward, applying it to the
decoder presents a key challenge: at inference time,
the target side tokens are generated one by one,
which implies that it is not possible to combine all
of the subword tokens of a word until they have all
been generated.

4 Experimental Setup

We understand that there are two desirable proper-
ties for the proposed word-subword combination
model: to be able to retain the translation quality
obtained with the analogous subword-based model
and to be able to better profit from word-level in-
formation than other approaches.

In order to verify that the translation quality is re-
tained, we performed experiments on the IWSLT14
English-German data, both in English!German
and German!English translation directions, with
a BPE shared subword vocabulary with 10K merge
operations. We studied the resulting translation
quality with different hyperparameter sets in order
to understand their effect on the model.

In order to study the effectiveness of the pro-
posed model with other approaches to incorpo-
rate word-level information into a subword-based
model, we used the WMT16 English-Romanian
data with the back-translated synthetic data from
(Sennrich et al., 2016a), using a shared subword
vocabulary of 40k merge operations.

We used the proposal by (Sennrich and Haddow,
2016) as baseline, and compared it to a vanilla
Transformer baseline and to our proposed method.

For all experiments, we used the fairseq li-
brary (Ott et al., 2019), either with its built-in mod-
els for the baselines or with custom model imple-
mentations for the approach by Sennrich and Had-
dow (2016) and for our own proposed architecture.

For the IWSLT14 de-en and en-de baselines we
used the Transformer architecture (Vaswani et al.,
2017) with the hyperparameters proposed by the
fairseq authors1, namely 6 layers in encoder
and decoder, 4 attention heads, embedding size
of 512 and 1024 for the feedforward expansion
size, together with dropout of 0.3 and a total batch
size of 4000 tokens, using label smoothing of 0.1.
For the WMT16 en-ro baseline we used the base
configuration of the Transformer model offered in
fairseq, that is, 6 layers in encoder and decoder,
8 attention heads, embedding size of 512 and 2048
for the feedforward expansion size, together with
dropout of 0.1 and total batch size of 32000 tokens,
without label smoothing (following the baseline
used by Gu et al. (2018a)).

All reported BLEU scores are computed with
the model weights averaged over the last 10 check-
points after training until convergence.

1https://github.com/pytorch/fairseq/
tree/master/examples/translation
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5 Results

We studied the effect of different hyperparameter
values over translation quality. We measured the re-
sults obtained on the IWSLT14 de-en data by using
different types of subword combination strategies,
as well as combining subwords at different layer
levels, chosen arbitrarily. Table 1 shows how the
subword combination strategy that obtains best re-
sults is to use GRU units that receive the subwords
as input and return the outputs at the positions of
the final subword in each word. The difference
with the other alternatives is minimal, though. The
rest of the hyperparameters are the same as the
IWSLT14 baseline, with a total batch size of 12000
and the subword merging layers being N (e)

sw = 3

and N (d)
sw = 3.

Combination BLEU
Addition 33.93
GRU 34.02
LSTM 33.92

Table 1: BLEU scores on IWSLT14 German-English
for different subword combination strategies.

Regarding the influence over the translation qual-
ity of the level at which subword representations
are merged, Table 2 shows that the best results are
obtained when merging subwords after the fifth en-
coder layer, and using again the subword represen-
tations in the decoder after the third layer. The rest
of hyperparameters are the same as the IWSLT14
baseline, with a total batch size of 12000 and GRU
as subword combination strategy.

N (e)
sw N (d)

sw BLEU
3 5 33.53
3 3 34.02
5 3 34.46

Table 2: BLEU scores on the IWSLT14 German-
English test set for different values of N (e)

sw and N (d)
sw ,

using GRU as subword combination strategy.

Once determined that using GRU as subword
combination and setting N (e)

sw = 5 and N (d)
sw = 3 is

the hyperparameter configuration that gives the best
results, we checked whether the proposed architec-
ture maintains the translation quality with respect
to a vanilla Transformer baseline. As shown in
Table 3, the BLEU scores are practically the same
for both architectures and both German!English

while for English!German there is a small de-
crease. As commented in section 4, the baseline
uses a batch size of 4000 while our approach uses
12000. Note that for the baseline architecture,
larger batch sizes actually decrease the resulting
translation quality.

en-de de-en
Base Transformer 28.75 34.44
Word-subword model 28.29 34.46

Table 3: BLEU scores on the IWSLT14 German-
English data, using no extra word-level information.

Finally, in order to assess our proposed approach
at incorporating extra word-level information, we
compared it against the approach by Sennrich and
Haddow (2016) (with the Transformer as base ar-
chitecture), which copies the word level informa-
tion to each of the subwords in the word; in our im-
plementation, the subword embedding and the lin-
guistic information are combined by adding them
together, which is analogous to the original alterna-
tive that concatenates them. For the vanilla Trans-
former and the approach by Sennrich and Haddow
(2016) we used a total batch size of 32000 while
for the word-subword model (our proposal), we
used a total batch size of 40000, GRU as subword
combination strategy and N (e)

sw = 5 and N (d)
sw = 3.

en-ro
Base Transformer 27.02
Word-level info copied to subwords 27.29
Word-subword model + word-level info 27.82

Table 4: BLEU scores measured on the WMT16
English-Romanian data, with lemmas as linguistic info.

The word-level linguistic information used was
only the lemma (using a vocabulary of 40k lem-
mas), which is the feature that should provide the
largest improvement according to Sennrich and
Haddow (2016). We used Stanford CoreNLP (Man-
ning et al., 2014) to annotate the corpus with the
English lemmas. The obtained results are shown in
Table 4, where our proposed approach obtains the
best BLEU score compared to the base Transformer
model (Vaswani et al., 2017) without any word-
level information, and to copying the word-level
info to subwords (Sennrich and Haddow, 2016).
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6 Conclusion

In this work, we proposed a modification to the
Transformer architecture to merge the subword rep-
resentations from the first layers of the encoder
into word-level representations. Merging word-
level representations inside the model allows it to
use the subword-level representations in the final
decoder layers so that it can handle compositional
structures and other situations where copying from
source is needed. This approach provided an ap-
propriate point to incorporate linguistic word-level
information and it is superior at doing so compared
with the reference approach by Sennrich and Had-
dow (2016).

Future extensions to this work may include ap-
plying it to character-level instead of subword
representations, and using it for morphologically
richer languages, especially low-resourced agglu-
tinative ones, where our approach, together with
the incorporation of linguistic information, may
provide larger improvements in translation qual-
ity. Further extensions may include studying the
behavior of more powerful subword combination
strategies (e.g. convolutions, self-attention) and the
application of subword merging to the target side.
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Abstract

The primary limitation of North Korean to En-
glish translation is the lack of a parallel corpus;
therefore, high translation accuracy cannot be
achieved. To address this problem, we pro-
pose a zero-shot approach using South Korean
data, which are remarkably similar to North
Korean data. We train a neural machine trans-
lation model after tokenizing a South Korean
text at the character level and decomposing
characters into phonemes. We demonstrate that
our method can e�ectively learn North Korean
to English translation and improve the BLEU
scores by +1.01 points in comparison with the
baseline.

1 Introduction

Neural machine translation (NMT) has been
adapted to many languages; however, machine
translation of the North Korean language1 has sel-
dom been performed. One of the reasons is the lack
of large-scale bilingual data for training North Ko-
rean neural models. It is known that large-scale
bilingual data are required to improve the transla-
tion accuracy of an NMT model. For example, one
of the previous works suggests that an NMT sys-
tem is less accurate than a phrase-based statistical
machine translation system if there are no more
than 100 million words in the bilingual training
data (Koehn and Knowles, 2017).

There are three approaches to solve low language
resource bottleneck. First, Wang et al. (2006) pro-
posed a method to train a translation model using a
pivot language as an intermediate language. This
approach translates from the source language to

1Korean is a language mainly used in the Korean peninsula;
however, there are some grammatical di�erences between the
Republic of Korea and the Democratic People’s Republic of
Korea. In this study, we refer to the Korean language used
in the Republic of Korea as “South Korean,” and the Korean
language used in the Democratic People’s Republic of Korea
as “North Korean.”

the pivot language and from the pivot language
to the target language. However, there is no good
pivot language between North Korean and English.
Second, Johnson et al. (2017) proposed a many-to-
many translation model, where multiple languages
are translated into other languages using a single
shared encoder and decoder. They demonstrated
that this model can translate a language pair that
is unseen in training data. However, North Korean
does not have any bilingual data between any lan-
guages. Third, Marujo et al. (2011) proposed a rule-
based method to convert similar languages into a
target language, such as Brazilian Portuguese to
European Portuguese, and extended the target lan-
guage resources. North Korean is a language re-
markably similar to South Korean, but conversion
from South Korean to North Korean needs to be
determined considering the context, which makes
rule-based conversion di�cult.

Therefore, in this study, we propose a method
to tokenize South Korean input sentences at the
character level and decompose them into phonemes
to mitigate the grammatical di�erences between
South Korean and North Korean, and demonstrate
that the translation model from North Korean to
English can be e�ectively learned using bilingual
South Korean-English data. The main contributions
of this study are as follows.

• Because there is no evaluation dataset between
North Korean and English, we create a North
Korean-English evaluation dataset by man-
ually translating the South Korean-English
bilingual evaluation dataset into a North Ko-
rean one.

• We demonstrate that the North Korean-
English translation model can be trained e�ec-
tively on bilingual South Korean-English data
by character-level tokenization and phoneme-
level decomposition.
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Grammar di�erences SK NK EN Percentage
Word segmentation Œ@É Œ@É many things 86.9
Initial sound rule çl ql basketball 19.6

tâ
¨â fulfillment
tâ move

Compound word ˜� ‰� beach 0.3

Table 1: Grammatical di�erences between South Korean (SK) and North Korean (NK), and the percentage of
sentences with grammatical di�erences in South Korean evaluation data.

2 Related Work

The pivot language approach increases the trans-
lation error between the source language and the
target language, because the translation model of
each language is independently trained. Cheng et al.
(2017) addressed this problem by allowing interac-
tion during the translation model training. More-
over, Chen et al. (2017) proposed a method to train
a source-to-target model using a pretrained teacher
model as its guide.

Marujo et al. (2011) proposed a rule-based
method to convert similar languages into a target
language to extend the language resources of the
target side. Wang et al. (2016) presented a method
to extract the conversion rules between similar lan-
guages.

Firat et al. (2016) proposed a many-to-many
translation model with several encoders and de-
coders. However, the accuracy of a many-to-many
translation model with a single shared encoder and
decoder was found to be higher (Johnson et al.,
2017).

Finally, the translation accuracy was improved
by preprocessing of the bilingual data. Zhang and
Komachi (2018) demonstrated that higher trans-
lation accuracy can be obtained by decomposing
Kanji into ideographic characters and strokes in
Japanese-Chinese NMT. Stratos (2017) proposed
a speech-parsing model for South Korean with
character-level tokenization and decomposition into
phonemes, demonstrating an improvement in the
speech-parsing accuracy.

3 South-North Di�erences in the Korean
Language

3.1 Grammatical di�erences
The two Korean languages have grammatical dif-
ferences, including di�erences in word segmenta-
tion (WS), initial sound rule (ISR), and compound
words. Table 1 presents examples of grammatical

di�erences between South Korean and North Ko-
rean words or phrases that have the same meaning.
We only consider the di�erences in the WS and ISR
in our study, as di�erences in compound words in
the evaluation data rarely appear.

Word segmentation. South Korean and North
Korean di�er in the way to tokenize words contain-
ing formal and proper nouns and in quantitative
expressions. For example, words are separated in
both South Korean and North Korean when par-
ticles appear; however, they are not separated in
North Korean if the next word after a particle is a
formal noun. In Table 1, the word meaning “many
things” is written as “Œ@É” in South Korean and
is separated because “@” is a particle. However,
since “É” is a formal noun, it is written consec-
utively in North Korean as “Œ@É.” To convert
WS from South Korean grammar to North Korean
grammar, it is necessary to consider the context.

Initial sound rule. In South Korean, a consonant
“⇧” changes into “↵” or “⇥” when it is combined
with “c,g,m,n,r,u,h,” or other vowels,
whereas it does not change in North Korean. For
example, the word that means “basketball” in Table
1 is represented as “çl” in South Korean because
of the ISR, but is represented as “ql” in North
Korean. Additionally, some South Korean words
become polysemous owing to the ISR. In Table
1, the words that mean “fulfillment” and “move”
both become “tâ” in South Korean, but remain
“¨â” and “tâ” in North Korean, respectively.
It is di�cult to mitigate the di�erence in the ISR
without considering the context.

3.2 Creating North Korean Evaluation Data
We created the North Korean to English translation
evaluation dataset by having a North Korean native
speaker manually convert the evaluation dataset
in the News Korean-English parallel corpus2 into

2https://github.com/jungyeul/korean-parallel-corpora
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Hyperparameter Value
Embedding size 512
Hidden layer size 1,024
Enc./Dec. depth 1
Enc./Dec. recurrence transition depth 2
Tie decoder embeddings yes
Layer normalization yes
Hidden/Embedding dropout 0.5
Source/Target Word dropout 0.3
Label smoothing 0.2
Optimizer adam
Learning rate 0.0005
Batch size (tokens) 1,000
Early stopping patience 10
Validation interval 8,000

Table 2: Hyperparameters.

North Korean grammar. This North Korean-English
evaluation dataset will be published at the same ad-
dress 2. Table 1 presents the percentage of sentences
with grammatical di�erences between North Ko-
rean and South Korean evaluation data. From this
table, we can see that the WS and ISR are the main
grammatical di�erences between South Korean and
North Korean.

4 Korean Neural Machine Translation
using Character Tokenization and
Phoneme Decomposition

We propose a method to tokenize input sentences
into characters or decompose them into phonemes.
Using this method, it is possible to reduce the in-
fluence of grammatical di�erences between South
Korean and North Korean to train a machine trans-
lation model in North Korean using bilingual South
Korean data. In the following South Korean or
North Korean sentences, we indicate the word
boundary as ’ for better understanding.

Character model. In character level tokeniza-
tion, we split each word into characters. For exam-
ple, the word that means “many things” in Table 1 is
written as “Œ@’É” in South Korean and “Œ@
É” in North Korean, but when we tokenize it at the
character level, it becomes “Œ’@’É,” and there
is no di�erence between the two languages. There-
fore, character level tokenization can overcome the
di�erence in WS to some extent.

Word (phoneme BPE) model. In word level
(phoneme BPE) tokenization, we decompose the

Words
Sent. EN SK NK

train 93,975 2,297,744 1,567,469 -
dev 1,000 25,804 18,126 15,613
test 2,000 53,904 36,641 31,645
WS 1,733 48,720 33,574 28,578
ISR 350 10,766 7,283 6,184

Table 3: Statistics of News Korean-English parallel cor-
pus and North Korean-English evaluation data.

characters in a word into phonemes (vowels and
consonants). As a result, we can reduce the e�ect of
ISR. For example, the word “basketball” is written
as “çl” in South Korean and “ql” in North Ko-
rean; therefore, only one out of two tokens are com-
mon at the character level. When they are decom-
posed into phonemes, the former is “⇥i↵�n”
in South Korean, and the latter is “⇧i↵�n” in
North Korean, resulting in four out of five tokens
being common. In this way, decomposition into
phonemes can reduce the e�ect of ISR.

In addition, we retain the word or phrase bound-
ary in the input sentence in this model. For ex-
ample, when decomposing the sentence “ql
î’¥Ÿ” into phonemes, it is decomposed as
“⇧i↵�n⇥s⇥’↵n⇥⇤i↵.” By apply-
ing byte-pair encoding (BPE, Sennrich et al., 2016)
to the sentence that has been decomposed into
phonemes, it is possible to segment the sentence
at the phoneme level while considering word or
phrase boundaries.

Character (phoneme BPE) model. In charac-
ter (phoneme BPE) tokenization, we tokenize a
sentence at the character level and decompose it
into phonemes. Tokenization at the character level
and decomposition into phonemes can mitigate
the di�erences in WS and ISR, and it is possi-
ble to combine both. For example, when the sen-
tence “qlî’¥Ÿ” is tokenized at the character
level and decomposed into phonemes, it becomes
“⇧i↵’�n’⇥s⇥’↵n⇥’⇤i↵.” By
applying BPE to this sentence, it is possible to seg-
ment the sentence at the phoneme level while con-
sidering character boundaries.
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South Korean North Korean
Model dev test WS ISR dev test WS ISR
S&Z (2019) - 10.37 - - - - - -
word 6.96 7.40 7.61 8.22 5.54±.22 5.32±.03 5.34±.03 5.53±.05
word (charBPE) 9.09 9.38 9.59 10.01 8.54±.32 9.02±.22 9.18±.21 9.28±.30
char 10.26 9.89 10.17 10.49 10.15±.07 9.84±.20 10.12±.22 10.32±.31
word (phonBPE) 9.38 9.67 9.71 10.67 8.87±.11 9.10±.06 9.21±.06 9.62±.37
char (phonBPE) 10.28 10.05 10.30 10.69 10.20±.16 10.03±.21 10.29±.19 10.60±.16

Table 4: Evaluation of each model in South Korean / North Korean to English translation. These are BLEU scores
of evaluation data set and WS and ISR subsets. These BLEU scores are the average of three models. The char
(phonBPE) model achieved the highest scores in dev, test and two subsets.

Types Tokens

SK

word 213,552 1,567,469
word (charBPE) 32,083 2,057,155
char 15,372 4,231,099
word (phonBPE) 29,442 2,091,575
char (phonBPE) 1,736 4,316,529

EN word 53,222 2,297,744
word (charBPE) 16,024 2,494,763

Table 5: Data statistics after each preprocessing.

5 Experiment

5.1 Settings

We train a BiDeep recurrent neural network using
Nematus3 for implementation. We adjust the hyper-
parameters as in Sennrich and Zhang (2019) (Table
2). We use a News Korean-English parallel corpus
for training the model and convert it into North Ko-
rean grammar (3.2) for evaluating the model. We
perform tokenization and truecasing using Moses
scripts for all the input sentence pairs. We delete
sentences with more than 200 words from the train-
ing data. Table 3 presents the training, development,
and test data statistics. In the evaluation, we perform
detruecasing and detokenization for the translation
outputs using Moses script and evaluate the bilin-
gual evaluation understudy (BLEU) score using
sacreBLEU (Post, 2018). We select the model us-
ing South Korean and North Korean development
data.

In this study, in addition to the word level data of
South Korean and North Korean as input languages,
we use the four preprocessing methods, which are
described in the following paragraphs and presented
in Table 5.

3https://github.com/EdinburghNLP/nematus

Word (character BPE) model. According to
Sennrich and Zhang (2019), we apply character
level BPE to each of the South Korean, North Ko-
rean, and English sides that had been split with
words. We set the merge operation to 30k and the
frequency threshold to 10. For the following South
Korean and North Korean preprocessing steps, the
English side used only the word (character BPE)
model. In addition to our re-implementation of Sen-
nrich and Zhang (2019), we cite the BLEU score
reported in their paper.

Character model. We perform character level
tokenization. As for English and Hanja included
in the South Korean and North Korean data, we
treat them as words without further tokenization.
In addition, we limit the token types to a maximum
frequency of 1,700.

Word (phoneme BPE) model. We decompose
the words into phonemes and apply BPE. We set the
merge operation to 30k and the frequency thresh-
old to 10. We use hgtk (Hangul toolkit)4 for the
decomposition into phonemes.

Character (phoneme BPE) model. We perform
the character level tokenization, decomposition into
phonemes, and application of BPE. We set the
merge operation to 1k.

5.2 Results
Table 4 presents the BLEU scores for the evalua-
tion data. In the cases of both the South Korean and
North Korean languages, the char (phonBPE) mod-
els achieved the highest scores in the dev data. The
test data reveals an improvement of +0.67 points
for South Korean and +1.01 points for North Ko-
rean in comparison with the word (charBPE) model,
respectively.

4https://github.com/bluedisk/hangul-toolkit
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Reference A division of General Motors is getting some financial help from the Federal Reserve:
Source GMXêå¨�)�D⌧ƒ\Ä0¨��¿–D�å⇠»µ»‰.
word (charBPE) GM’s job company is getting financial assistance from the Federal Reserve.
char GM’s automaker has been receiving financial assistance from the Federal Reserve.
word (phonBPE) GM’s company has received financial assistance from the Federal Reserve.
char (phonBPE) GM’s company has been receiving financial assistance from the Federal Reserve.
Source GMXêå¨�()�D⌧ƒ\Ä0¨��¿–D�å⇠»µ»‰.
word (charBPE) GM’s own company is getting money from a scusty system.
char GM’s automaker has been receiving financial assistance from the Federal Reserve.
word (phonBPE) GM’s ZGM company gets financial assistance from the getaway.
char (phonBPE) GM has received financial assistance from the Federal Reserve.

Table 6: Translation examples that di�er in the WS and ISR (upper: South Korean, lower: North Korean). The
word that means “financial help” is written as “¨��¿–” in South Korean, and in North Korean, it is written
consecutively as “¨��¿–.” Additionally, in South Korean, the word that means “federal” becomes “)”
because of the head ISR but remains “()” in North Korean.

Reference It added that it was consulting with the Ministry of Unification on the plan.
Source të⇠∞Äît)H–�tµ|Ä@|X⌘t|‡gô�‰.
char The Ministry ··· said it is discussing the plan.
char (phonBPE) The Ministry ··· said it was discussing the plan.
Source të⇠∞Äît)H–�tµ|Ä@`X⌘t|‡gô�‰.
char The Ministry ··· said the plan is under way with the Unification Ministry.
char (phonBPE) The Ministry ··· said the plan would be discussed with the Unification Ministry.

Table 7: The word that means “consulting” becomes “|X ⌘” in South Korean owing to the ISR, but remains
“`X⌘” in North Korean.

Model Fluency Adequacy
word (charBPE) 2.71 1.91
char 2.82 1.91
word (phonBPE) 2.67 1.90
char (phonBPE) 2.82 1.93

Table 8: Human evaluation of each model for North Ko-
rean to English translation. These scores are the aver-
age of the those assigned by three evaluators. In human
evaluation, also, the char (phonBPE) model achieved
the highest scores.

6 Discussion

We extract two subsets that have di�erences in the
WS or ISR in the test data to test the hypothesis that
each preprocessing step can absorb the grammatical
di�erences. Table 3 presents the WS and ISR subset
data statistics.

Word segmentation. Table 4 presents the results
of a test with a subset of WS. The char (phonBPE)
model exhibits the highest BLEU score in the North
Korean test. In addition, the BLEU di�erence be-
tween South Korean and North Korean is 0.01
point, indicating that the di�erence in WS is well-

absorbed.

Initial sound rule. Table 4 presents the results
of a test with a subset of the ISR. Even for a sub-
set of the ISR, the char (phonBPE) model exhibits
the highest BLEU score in the North Korean test,
and the BLEU di�erence between South Korean
and North Korean is 0.09 point, indicating that the
di�erence in ISR is well-absorbed.

Output of each model. Table 6 presents the out-
puts of each model. The words that include gram-
matical di�erences, such as “¨��¿–” and “(
),” are not well-translated in the word-based mod-
els. However, the character-based models can trans-
late them correctly. Character-level tokenization
can mitigate both grammatical di�erences as shown
in the example of Table 6; however, character-level
tokenization cannot solve all the grammatical dif-
ferences. For example, Table 7 presents an example,
wherein the word “`X⌘” is a�ected by the ISR,
and only the char (phonBPE) model can translate
it in North Korean translation. Therefore, tokeniza-
tion at the character level and decomposition into
phonemes are necessary to reduce the di�erences
of the WS and ISR.
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Human evaluation We randomly extracted 50
lines from each model output in the North Ko-
rean to English test. Three evaluators evaluated
the fluency and adequacy on a scale of 1–5. Ta-
ble 8 presents the results of the human evaluation.
The char (phonBPE) model exhibits the highest
scores in both metrics, with an improvement of
+0.11 points in the fluency evaluation and +0.02
points in the adequacy evaluation in comparison
with the word (charBPE) model. Additionally, the
human evaluation results indicate that character tok-
enization and phoneme decomposition can improve
the accuracy of the North Korean to English trans-
lation.

7 Conclusions and Future Work

In this study, to solve the language resource bottle-
neck in North Korean translation, we proposed a
method to tokenize input sentences in South Korean
and North Korean at the character level and decom-
pose them into phonemes. This method is simple
and mitigates the grammatical di�erences between
South Korean and North Korean; moreover, the
method demonstrates improvement in translation
accuracy for North Korean to English translation.

However, the di�erences that exist between
South Korean and North Korean are not only gram-
matical ones. There are some words that have the
same pronunciation and notation but di�erent mean-
ings. For example, the meaning of “ô¿” is “squid”
in South Korean, but “octopus” in North Korean.
Therefore, the di�erences in word meanings are a
major challenge. In the future, we intend to use the
English translation data of North Korean news arti-
cles to create an evaluation dataset that considers
di�erences in words, and attempt to develop a trans-
lation method using a language model with context,
such as BERT (Devlin et al., 2019).
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Abstract

Media bias can strongly impact the public per-
ception of topics reported in the news. A dif-
ficult to detect, yet powerful form of slanted
news coverage is called bias by word choice
and labeling (WCL). WCL bias can occur, for
example, when journalists refer to the same
semantic concept by using different terms
that frame the concept differently and conse-
quently may lead to different assessments by
readers, such as the terms “freedom fighters”
and “terrorists,” or “gun rights” and “gun con-
trol.” In this research project, I aim to devise
methods that identify instances of WCL bias
and estimate the frames they induce, e.g., not
only is “terrorists” of negative polarity but also
ascribes to aggression and fear. To achieve
this, I plan to research methods using natural
language processing and deep learning while
employing models and using analysis concepts
from the social sciences, where researchers
have studied media bias for decades. The first
results indicate the effectiveness of this inter-
disciplinary research approach. My vision is
to devise a system that helps news readers to
become aware of the differences in media cov-
erage caused by bias.

1 Introduction

Media bias describes differences in the content or
presentation of news (Hamborg et al., 2018). It is a
ubiquitous phenomenon in news coverage that can
have severely negative effects on individuals and so-
ciety, e.g., when slanted news coverage influences
voters and, in turn, also election outcomes (Alsem
et al., 2008; DellaVigna and Kaplan, 2007). Po-
tential issues of biased coverage, whether through
the selection of topics or how they are covered, are
compounded by the fact that in many countries only
a few corporations control large parts of the media
landscape–in the US, for example, six corporations
control 90% of the media (Business Insider, 2014).

Even subtle changes in the words used in a news
text can strongly impact readers’ opinions (Pa-
pacharissi and de Fatima Oliveira, 2008; Price et al.,
2005; Rugg, 1941; Schuldt et al., 2011). When re-
ferring to a semantic concept, such as a politician
or other named entities (NEs), authors can label
the concept, e.g., “illegal aliens,” and choose from
various words to refer to it, e.g., “immigrants” or
“aliens.” Instances of bias by word choice and label-
ing (WCL) frame the referred concept differently
(Entman, 1993, 2007), whereby a broad spectrum
of effects occurs. For example, the frame may
change the polarity of the concept, i.e., positively
or negatively, or the frame may emphasize specific
parts of an issue, such as the economic or cultural
effects of immigration (Entman, 1993).

In the social sciences, research over the past
decades has resulted in comprehensive models to
describe media bias as well as effective methods
for the analysis of media bias, such as content anal-
ysis (McCarthy et al., 2008) and frame analysis
(Entman, 1993). Because researchers need to con-
duct these analyses mostly manually, the analyses
do not scale with the vast amount of news that is
published nowadays (Hamborg et al., 2019a). In
turn, such studies are always conducted for topics
in the past and do not deliver insights for the cur-
rent day (McCarthy et al., 2008; Oliver and Maney,
2000); this would, however, be of primary interest
to people reading the news. Revealing media bias
to news consumers would also help to mitigate bias
effects and, for example, support them in making
more informed choices (Baumer et al., 2017).

In contrast, in computational linguistics and com-
puter science, fewer approaches systematically an-
alyze media bias (Hamborg et al., 2019a). The
models used to analyze media bias tend to be sim-
pler (Hamborg et al., 2018; Park et al., 2009) com-
pared to previously mentioned models. Many ap-
proaches analyze media bias from the perspective
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of news consumers while neglecting both the es-
tablished approaches and the comprehensive mod-
els that have already been developed in the social
sciences (Evans et al., 2004; Mehler et al., 2006;
Munson et al., 2013, 2009; Oelke et al., 2012; Park
et al., 2009; Smith et al., 2014). Correspondingly,
their results are often inconclusive or superficial,
despite the approaches being technically superior.

2 Research Question, Tasks, and
Contributions

To address the issues described in Section 1, I de-
fine the following research question for my Ph.D.
research: How can an automated approach identify
instances of bias by word choice and labeling in a
set of English news articles reporting on the same
event? To address this research question, I derive
the following research tasks:

T1. Identify the strengths and weaknesses of man-
ual and of automated methods used to identify
media bias.

T2. Research NLP techniques and required
datasets to address these weaknesses. To do
so, use established bias models and (semi-)
automate currently manual analysis methods.

T3. Implement a prototype of a media bias iden-
tification system that employs the developed
methods to demonstrate the applicability of
the approach in real-world news article collec-
tions. The target group of the prototype are
non-expert people.

T4. Evaluate the effectiveness of the bias identifi-
cation methods with a test corpus and evaluate
the effectiveness of using the prototype in a
user study.

Combining the expertise of the social sciences
and computational linguistics appears beneficial for
research on media bias. Thus, the main contribu-
tion of my Ph.D. research will be an approach that
combines models and methods from multiple disci-
plines. On the one hand, it will leverage established
models from the social sciences to describe media
bias and will follow currently manual methods to
analyze media bias. On the other hand, it will take
advantage of scalable methods for text analysis de-
veloped and used in computational linguistics. I
need to employ and extend the state-of-the-art in
two closely related NLP fields (cf. Section 4): (1)
cross-document coreference resolution (CDCR) as

well as (2) target-dependent sentiment classifica-
tion (TSC) including “sentiment shift” and iden-
tification of framing effects and causes (see Sec-
tion 4.2). I plan to embed both techniques into
an approach that is inspired by the procedure of
manually conducted, inductive frame analyses (cf.
Section 3.1).

For the first technical contribution, a sieve-based
CDCR approach was already devised that addresses
characteristics of coreferences as they often occur
in bias by WCL. The examples in the Abstract
show that even phrases that are usually considered
contrary may be coreferential in a set of articles
reporting on a specific event. For the second tech-
nical contribution, i.e., to estimate how a semantic
concept may be perceived by people when read-
ing a news article, I primarily plan to devise and
test neural models that I will design specifically
for the task. I also plan to implement a prototype
that includes visualizations to reveal the identified
instances of bias by WCL to users of the system.

In the remainder of this document, I will give a
brief overview of manual techniques for the anal-
ysis of bias by WCL and exemplary results from
the social sciences as well as related, automated
approaches (Section 3). Section 3 concludes with
the current research gap, which motivates my Ph.D.
research. Section 4 describes the tasks that I have
already conducted as well as current and future
tasks to complete my Ph.D. research. Section 5
describes a preliminary evaluation, which I already
completed, as well as remaining tasks.

3 Related Work

The following summarizes an interdisciplinary lit-
erature review that I conducted as part of my Ph.D.
research (T1) (Hamborg et al., 2019a).

3.1 Manual Approaches

In the social sciences, the news production pro-
cess is an established model that defines nine forms
of media bias and describes where these forms
originate from (Baker et al., 1994; Hamborg et al.,
2019a, 2018; Park et al., 2009). For example,
journalists select events, sources, and from these
sources the information they want to publish in a
news article. While these initial selections are nec-
essary due to the multitude of real-world events,
they may also introduce bias to the resulting story.
While writing an article, authors can affect readers’
perception of a topic through word choice (cf. Sec-
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tion 1, Baker et al., 1994; Gentzkow and Shapiro,
2006; Oelke et al., 2012). Lastly, for example, the
placement and size of an article on a website deter-
mine how much attention the article will receive.

Researchers in the social sciences primarily con-
duct frame analyses or, more generally, content
analyses to identify instances of bias by WCL (Mc-
Carthy et al., 2008; Oliver and Maney, 2000). In
content analysis, researchers first define one or
more analysis questions or hypotheses. Then, they
gather the relevant news data, and coders system-
atically read the texts, annotating parts of the texts
that indicate instances of bias relevant to the anal-
ysis question, e.g., phrases that change readers’
perception of a specific person or topic. In induc-
tive content analysis, coders read and annotate the
texts without prior knowledge other than the analy-
sis question. In deductive content analysis, coders
must adhere to a set of coding rules defined in a
codebook, which is usually created using the find-
ings from an earlier inductive content analysis. Af-
ter the coding, researchers quantify the annotated
instances to lastly accept or reject their hypotheses.

Content analyses conducted for WCL bias are
typically either topic-oriented or person-oriented.
Annotations range from basic forms, e.g., targeted
sentiment (Niven, 2002), to fine-grained “percep-
tion” categories, causes thereof, or other features,
e.g., Papacharissi and de Fatima Oliveira (2008) in-
vestigated WCL in the coverage of different news
outlets on topics related to terrorism. One high-
level finding was that the New York Times used
more dramatic tones than the Washington Post,
e.g., news articles dehumanized terrorists by not
ascribing any motive to terrorist attacks or use of
metaphors, such as “David and Goliath.” Both the
Financial Times and the Guardian focused their
articles on factual reporting.

3.2 (Semi-)Automated Approaches

Many automated approaches treat media bias
vaguely and view it only as “differences of [news]
coverage” (Park et al., 2011b), “diverse opinions”
(Munson and Resnick, 2010), “different perspec-
tives” (Hamborg et al., 2018), or “topic diversity”
(Munson et al., 2009), resulting in inconclusive or
superficial findings (Hamborg et al., 2019a). Only
a few approaches use comprehensive bias mod-
els or focus on a specific form of media bias (cf.
Section 3.1). Likewise, few approaches aim to
specifically identify instances of WCL bias. For

example, Lim et al. (2018); Spinde et al. (2020b)
propose to investigate words with a low document
frequency in a set of news articles reporting on the
same event, to find potentially biasing words that
are characteristic for a single article. NewsCube
2.0 employs crowdsourcing to estimate the bias of
articles reporting on a topic. The system allows
users to annotate WCL in news articles collabora-
tively (Park et al., 2011a).

The most related, fully automated field of meth-
ods is TSC, which aims to find the connotation of
a phrase regarding a given target. On news texts,
however, to-date TSC methods perform poorly for
at least three reasons. First, news texts have rather
subtle connotations due to the expected journalistic
objectivity (Gauthier, 1993; Hamborg et al., 2018).
Second, to my knowledge, no news-tailored TSC
approaches, dictionaries, nor annotated datasets ex-
ist; generic approaches tend to perform poorly on
news texts (Balahur et al., 2010; Kaya et al., 2012;
Oelke et al., 2012). Third, the one-dimensional po-
larity scale used by all mature TSC methods may
fall short of representing complex news frames
(cf. Section 1). To avoid the difficulties of highly
context-dependent connotations in news texts, re-
searchers have proposed to perform TSC only on
quotes (Balahur et al., 2010) or on the readers’
comments (Park et al., 2011b), which more likely
contain explicit connotations. Researchers also
suggested to investigate emotions induced by head-
lines, but they achieved mixed results (Strapparava
and Mihalcea, 2007).

3.3 Research Gap

To my knowledge, there are currently no automated
approaches that identify or compare instances of
WCL bias, despite reliable analysis concepts used
in the social sciences and automated text analysis
methods in related fields, such as CDCR and TSC.

To address the difficulties due to the expected
objectivity of news texts and other previously men-
tioned factors, I plan to follow two main ideas: first,
the use of knowledge and models from sciences
that have long studied media bias. Second, I expect
the recent advent of word embeddings and deep
learning, including neural language models, such
as BERT (Devlin et al., 2018), to be strongly bene-
ficial to the outcome of this project. The advance-
ments in these fields have led to a performance
leap in many NLP disciplines, including corefer-
ence resolution and TSC, where, e.g., in the latter
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macro F1 gained from F1m = 63.3 (Kiritchenko
et al., 2014) to F1m = 75.8 on the Twitter set
(Zeng et al., 2019).

4 Methodology

Research task T2 will be the main contribution of
my Ph.D. research; hence, this section focuses on
completed and future tasks related to T2. Techni-
cally, addressing the research question represents
two main challenges. First, resolving coreferences
of semantic concepts across a set of news articles.
In bias by WCL, journalists often use coreferences
in a broader, sometimes even contradictory, sense
than the state-of-the-art in coreference resolution
and CDCR is capable of (Balahur et al., 2010;
Baumer et al., 2017; Hamborg et al., 2019b). Sec-
ond, classifying how actors and other semantic con-
cepts are framed due to their mentions and their
mentions’ contexts, for which I will use TSC.

I plan to integrate the two tasks into the analysis
shown in Figure 1 (RT3). Given a set of news
articles reporting on the same event, the analysis
will find subsets of articles and in-text phrases that
similarly frame the concepts involved in the event.
Lastly, the system will visualize the results to news
consumers. Because RT3 is not directly related to
NLP, it is described only briefly in Section 4.3.

4.1 Broad Cross-doc. Coreference Resolution

After the system has completed state-of-the-art
preprocessing (Manning et al., 2014), the second
phase in the analysis is broad CDCR, which aims
to resolve coreferences as they occur in WCL bias
(Hamborg et al., 2019b). The first task within this
phase is candidate extraction. Relevant phrases
containing bias by WCL commonly are noun
phrases (NPs), e.g., NEs such as politicians, or
verb phrases (VPs), i.e., describing an action, such
as “cross the border” or “invade the country.” The
approach currently focuses only on NPs and ex-
tracts mentions from two sources. First, mentions
from coreference chains identified by coreference
resolution, and second, NPs identified by parsing.

The second task, candidate merging, addresses
the main difficulty of broad CDCR. Journalists of-
ten use divergent terms to refer to the same seman-
tic concept (Hamborg et al., 2019a), sometimes
even terms that typically have opposing meanings,
such as “intervene” vs. “invade,” “coalition forces”
vs. “invading forces.” Such coreferences are highly
context-dependent and may only be valid in a sin-

gle news article or across related articles (Ham-
borg et al., 2019b,c). Related state-of-the-art tech-
niques for coreference resolution capably resolve
generally valid synonyms, nominal and pronom-
inal coreferences, such as “Donald Trump,” “US
president,” and “he.” However, they cannot reliably
resolve the previously mentioned, broader exam-
ples of coreferences, which often occur in bias by
WCL (Hamborg et al., 2019a).

The candidate merging task uses a series of
sieves, where each analyzes specific characteris-
tics of two candidates to determine whether they
should be merged (see Figure 1). For example, the
first sieve merges candidates if they have similar
core meanings, specifically, if the head of each
candidate’s representative phrase is identical (Ham-
borg et al., 2019b). For a given coreference chain,
the representative phrase is defined as the mention
that best represents the chain’s meaning (Manning
et al., 2014). This way, the first sieve merges cases
such as “Donald Trump” and “President Trump.”
The second sieve merges candidates if most of their
mentions are semantically similar. The sieve cur-
rently uses non-contextualized word embeddings,
specifically word2vec (Mikolov et al., 2013), to
vectorize each mention. Then, it calculates the
unweighted mean of all vectorized mentions of a
candidate. Lastly, the sieve will merge two candi-
dates if their mean vectors are similar by cosine
similarity. Analogously, the remaining sieves ad-
dress specific characteristics, e.g., using word em-
beddings (Le and Mikolov, 2014) and clustering
methods, such as affinity propagation (Frey and
Dueck, 2007). More information on the approach
is described by Hamborg et al. (2019b).

Future research directions for the CDCR task
most importantly include extending the capabilities
of the approach and improving its performance. For
the former, we want to investigate how coreferen-
tial mentions of activities (VPs) can be resolved. To
improve the CDCR performance, we plan to devise
a method that uses a language model to resolve
coreferential mentions. For example, BERT in-
creased the performance on single-document coref-
erence resolution from F1=73.0 to F1=77.1. Using
SpanBERT, a pre-training method focused on spans
rather than tokens, the performance is increased to
F1=79.6 (Joshi et al., 2019). We expect that using
a language model can yield similar improvements
for CDCR.
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Figure 1: Shown is the plan for the three-phase analysis pipeline as it preprocesses news articles reporting on the
same event, resolves coreferential mentions of semantic concepts across documents, and groups articles framing
these concepts similarly. Source: (Hamborg et al., 2019b)

4.2 Frame Identification

Approaches aiming to estimate how semantic con-
cepts are perceived, e.g., in the closely related field
of TSC by classifying the concepts’ polarity, or,
more broadly, approaches to identify bias, tradi-
tionally employ manually created dictionaries or
manually engineered features for machine learning
(ML). Such approaches can achieve high perfor-
mances in various domains, e.g., Recasens et al.
(2013) propose an approach that capably identifies
single bias-words in Wikipedia articles by using
dictionaries and further, non-complex features.

In news texts, however, such approaches fall
short. Since neutral language is expected (cf. Sec-
tion 3), token-based and ML methods fail to catch
the “meaning between the lines” (Hamborg et al.,
2019a,b; Balahur et al., 2010; Godbole et al., 2007).
Yet, recent NLP advancements, most importantly
language models, have proven to be very effective
in the news domain as in various other domains
and tasks (see Section 3.3).

I plan to devise a neural model that will, in part,
be inspired by state-of-the-art TSC approaches
such as LCF-BERT (Zeng et al., 2019) and domain-
adapted SPC-BERT (Rietzler et al., 2019), with
three main differences. First, the model will need
to consider characteristics specific to news articles.
For example, in news articles, sentiment may more
strongly depend on global context compared to
TSC prime domains, e.g., because the latter are
typically shorter texts (Adhikari et al., 2019).

Second, besides “absolute” sentiment polarity,
the model needs to consider the “sentiment shift”
induced by the context of a target mention. For
example, while TSC traditionally focuses on the
event’s or text’s sentiment regarding a target (cf.

“text-level” as defined by Balahur et al. (2010)), bias
by WCL is concerned explicitly with the language,
e.g., words, used in the sentence. So, given a target
mention, I am interested in whether the mention
or its context sway the perception more positively
or negatively, also in relation to the sentiment at
event- or text-level (Balahur et al., 2010).

Third, for an identified non-neutral polarity, the
approach should be able to find in-text causes and
potential effects thereof. Causes include the use
of emotional words, loaded language, or aggres-
sive repetition of specific facts. Effects include
particularly how the target is framed (cf. “frame
properties” as defined by Hamborg et al. (2019b)
or “frames types” by Card et al. (2015)). Resolving
the dependencies of a target and its context is an
issue that is subject of current TSC research (Zeng
et al., 2019; Rietzler et al., 2019), which I expect
to be important in the proposed project as well.

4.3 System and Visualization
A system will integrate the previously described
analysis workflow and will visualize the results to
non-expert users (RT3). I devised visualizations
that are similar to UIs of popular news aggregators,
such as Google News, and bias-aware aggregators,
such as AllSides. In contrast to these, the system
will be able to identify in-text instances of bias
(Hamborg et al., 2017, 2020; Spinde et al., 2020a).
Hence, the system will not only give a bias-aware
overview of current topics but also will have a vi-
sualization for single articles, which will highlight
identified instances of WCL bias.

For research and evaluation of the previously
described system and its analysis methods, I cur-
rently use the datasets AllSides (Chen et al., 2018),
NewsWCL50 (Hamborg et al., 2019c), and PO-
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LUSA (Gebhard and Hamborg, 2020), which have
high diversity concerning outlets’ political slant.

I plan to publish the code of the system and meth-
ods. Due to the system’s modularity, researchers
can extend it to support further forms of bias, e.g.,
commission and omission of information or picture
selection (Torres, 2018; Hamborg et al., 2019a).

5 Evaluation

I conducted preliminary evaluations of the two
main methods described in Section 4 (RT4). To
measure the CDCR performance on broad coref-
erences as they occur in WCL bias (Section 4.1),
I created a test dataset named NewsWCL50. The
dataset was created by manually annotating coref-
erential mentions of persons, actions, and also
vaguely defined, abstract concepts across 50 news
articles (Hamborg et al., 2019b). The evaluation
seems to confirm the research direction for this
task. The approach currently achieves F1 = 45.7,
or 84.4 if evaluated only on technically feasible an-
notations, compared to 29.8, or 42.1, respectively,
achieved by the best baseline. Technically feasible
refers to only comparing to annotations that the
approach theoretically should be able to resolve,
e.g., currently only NPs while excluding VPs.

A future evaluation will include a comparison
to state-of-the-art CDCR methods (Barhom et al.,
2019; Intel AI Lab, 2018). For improved sound-
ness, we plan to create a second dataset similar to
the NewsWCL50 dataset but with more coders and
more articles. To do so, we will crowdsource the
annotations of concept mentions on MTurk and use
an improved codebook. The improvements will ad-
dress issues of NewsWCL50’s codebook, e.g., by
making annotation types less ambiguous (Hamborg
et al., 2019b). Further, we plan to use two addi-
tional datasets: ECB+ (Cybulska and Vossen, 2014)
and NIdent (Recasens et al., 2012). Both datasets
are commonly used to evaluate CDCR approaches
and contain cross-document coreferences.

To evaluate the second task, frame identification,
I plan to create a comprehensive training and test
set for the TSC method described in Section 4.2.
I already created a preliminary dataset of 3000
sentences, each including a target mention and a
sentiment label agreed on by three coders. The
dataset was created analogously to established TSC
datasets (Dong et al., 2014; Pontiki et al., 2014;
Nakov et al., 2016; Rosenthal et al., 2017).

Preliminary results seem to indicate that TSC

on the news domain is in part more difficult than
on TSC prime domains, such as product reviews,
where authors often express their opinion explic-
itly. State-of-the-art TSC achieves average recall
AvgRec = 70.0 on news articles, whereas perfor-
mances on common TSC test datasets range from
AvgRec = 75.6 (Twitter dataset) to 82.2 (Restau-
rant). Other baselines, e.g., using dictionaries and
semantic networks, such as ConceptNet, perform
very poorly (F1 < 15.0), which seems to confirm
that token-based approaches fail to catch the sub-
tlety common to WCL bias.

Finally, we plan to evaluate the system’s effec-
tiveness regarding visualization of the identified
biases to non-expert users. An already conducted
pre-study confirmed the study design (Spinde et al.,
2020a). I will revisit this task once the classifica-
tion methods described in Section 4 can be used
within the study.

6 Conclusion and Implications

In summary, both everyday news consumers, as
well as researchers in the social sciences, could ben-
efit strongly from the automated identification of
bias by word choice and labeling (WCL) in news ar-
ticles. Devising suitable methods to resolve broad
coreferences across news articles reporting on the
same event and estimating the frames of the found
instances of WCL bias are at the heart of this re-
search project. One primary result of the project
will be the first automated approach capable of
identifying instances of bias by WCL in a set of
news articles reporting on the same event or topic.

My vision is that at a later point in time, such
methods might be integrated into popular news ag-
gregators, such as Google News, helping news read-
ers to explore and understand media bias through
their daily news consumption. Also, I think that
these methods could be integrated into the analysis
workflow of content analyses and frame analyses,
helping to automate further these currently mostly
manual and thus time-consuming analysis concepts
prevalent in the social sciences.
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Abstract

Sentence compression is the task of shortening
a sentence while retaining its meaning. Most
methods proposed for this task rely on labeled
or paired corpora (containing pairs of verbose
and compressed sentences), which is often ex-
pensive to collect. To overcome this limitation,
we present a novel unsupervised deep learn-
ing framework (SCAR) for deletion-based sen-
tence compression. SCAR is primarily com-
posed of two encoder-decoder pairs: a com-
pressor and a reconstructor. The compressor
masks the input, and the reconstructor tries to
regenerate it. The model is entirely trained
on unlabeled data and does not require addi-
tional inputs such as explicit syntactic informa-
tion or optimal compression length. SCAR’s
merit lies in the novel Linkage Loss function,
which correlates the compressor and its effect
on reconstruction, guiding it to drop inferable
tokens. SCAR achieves higher ROUGE scores
on benchmark datasets than the existing state-
of-the-art methods and baselines. We also con-
duct a user study to demonstrate the applica-
tion of our model as a text highlighting system.
Using our model to underscore salient informa-
tion facilitates speed-reading and reduces the
time required to skim a document.

1 Introduction

Our fast-paced lifestyle precludes us from reading
verbose and lengthy documents. How about a sys-
tem that highlights the salient content for us (as
shown in Fig.1)? We model this problem as the
well-known sentence compression task. Sentence
compression aims to generate a shorter representa-
tion of the input that captures its gist and preserves
its intent. Compression algorithms are broadly clas-
sified as abstractive and extractive. Extractive com-
pression or deletion-based algorithms only select
relevant words from the input, whereas abstractive
compression algorithms also allow paraphrasing.

Figure 1: An example of a system that highlights the
salient content, allowing the user to skim through the
document quickly.

In the past, compression approaches have re-
volved around statistical methods (Knight and
Marcu, 2000) and syntactic rules (McDonald,
2006). Current state-of-the-art methods model
the problem as a sequence-to-sequence learning
task (Filippova et al., 2015). Although these meth-
ods perform well, they require massive parallel
training datasets that are difficult to collect (Fil-
ippova and Altun, 2013). Recently, unsupervised
approaches have been explored to overcome this
limitation. Fevry and Phang (2018) model com-
pression as a denoising task but barely reach the
baselines. Baziotis et al. (2019) propose SEQ3, an
autoencoder which uses a Gumbel-softmax to rep-
resent the distribution over summaries. But a qual-
itative analysis of their outputs shows that SEQ3

mimics the lead baseline.
In this work, we present an unsupervised deep

learning framework (SCAR) for deletion-based sen-
tence compression. SCAR is composed of a com-
pressor and a reconstructor. For each word in the
input, the compressor determines whether or not
to include it in the compression. A length loss
restricts the compression length. The reconstruc-
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tor tries to regenerate the input using the words
retained by the compressor. A reconstruction loss
motivates the compressor to include words that aid
in reconstruction. However, without an additional
loss to govern word masking, the network fails to
converge. We introduce a novel linkage loss that
ties together the compressor and the reconstructor.
It penalizes the network if a) it decides to drop a
word but is unable to reconstruct it or b) it decides
to include a word which it could reconstruct easily.

2 Related Work

Early compression algorithms were formulated us-
ing strong linguistic priors and language heuris-
tics (Jing, 2000; Knight and Marcu, 2002; Dorr
et al., 2003; Cohn and Lapata, 2008). McDonald
(2006) use syntactical evidence to condition the
output of the model. Berg-Kirkpatrick et al. (2011)
prune dependency edges to remove constituents for
compression.

Deep learning-based approaches have gained
popularity owing to their success in core NLP
tasks such as machine translation (Bahdanau et al.,
2014). Filippova et al. (2015) propose an RNN
based encoder-decoder network for deletion based
compression. Although this approach achieves su-
perior performance over metric-based approaches,
a large amount of paired sentences are needed to
train the network.

The first attempt to reduce the dependence on
paired corpora for deletion based deep learning
compression models was made by Miao and Blun-
som (2016). They train separate compressor and
reconstruction models, to allow for both supervised
and unsupervised training. The compressor con-
sists of a discrete variational autoencoder. The
model is trained end-to-end using the REINFORCE
algorithm. However, the reported results still use a
sizeable amount of labeled data.

Recent approaches have sought completely un-
supervised solutions. Fevry and Phang (2018) use
a denoising autoencoder (DAE) for sentence com-
pression. The input sentence is shuffled and ex-
tended to add noise. DAE tries to reconstruct the
original denoised sentence from the noisy input.
An additional signal is needed to specify the out-
put length. At test time, the sentence is fed to the
model without any noise. In an attempt to denoise
the input, the network generates a compressed out-
put. However, the model often fails to capture the
information present in the input and is barely able

to reach the baselines.
SEQ3 (Baziotis et al., 2019) proposes an au-

toencoder using a Gumbel-softmax to represent the
distribution over summaries. A compressor gener-
ates a summary, and a reconstructor tries to recon-
struct the input using the summary. A pre-trained
language model acts as a prior, to incentivize the
compressor to produce human-readable summaries.
An additional topic loss is required to ensure that
the summary contains relevant words, making the
model non-generic and fine-tuned to the domain.
A qualitative analysis of the outputs shows that
SEQ3 merely mimics the lead baseline and gener-
ates compressions by blindly copying a prefix of
the input.

3 SCAR

SCAR is composed of two encoder-decoder pairs:
compressor C and reconstructor R, as shown in
Fig. 2. Given an input sentence s = w1, w2 ...,
wk containing k words, C generates an indicator
vector Iv = Iv1, Iv2, ..., Ivk which indicates the
presence/absence of each word in the summary.
The summary is represented as s0 = s � Iv, where
� represents element-wise multiplication. There-
fore, words corresponding to Ivi⇡ 0 are effectively
skipped. The network tries to reconstruct the input
sentence from s0.

Formally, the network tries to find an I⇤v such
that the probability p(s|s � Iv) is maximized andPk

t=1 Ivt is minimized, jointly. The probability
p(s|s � Iv) can be decomposed further as shown in
Eq.(1)

I⇤v = argmax

Iv

kY

t=1

p(wt|(w1 ⇥ Iv1),

..., (wk�1 ⇥ Ivk�1)) (1)

For every word in the sentence, we learn
a 300-dimensional embedding initialized with
GloVe (Pennington et al., 2014). These embed-
dings are sequentially fed as input to the Sentence
Encoder (Es), composed of a bi-LSTM. The input
is fed forwards and backward. The hidden states
are a concatenation of the forward and backward
states. The sentence representation is obtained
from the final hidden state of Es(i.e., he1). The
Indicator Extraction Module (IEM), a bi-LSTM
decoder, is initialized using he1. The output of
this decoder at each time step is passed through a
network of two fully connected layers to generate
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Figure 2: The figure shows the proposed SCAR architecture (details are described in Section 3)

a single indicator value. We intend this value to
be close to either one or zero, denoting the pres-
ence/absence of each word from the summary.

The masked sentence, s0 = s � Iv, is encoded
using the Summary Encoder (E

s0
), composed of

a bi-LSTM. The Summary Decoder (D
s0

), also a
bi-LSTM, is initialized using the final hidden state
of E

s0
(he2). This decoder aims to regenerate the

input sentence s from s0. This motivates IEM to
generate Iv such that s can be easily reconstructed.
The output at each time step in D

s0
is fed to a dense

layer, Ws, which computes a distribution over the
vocabulary from the decoder’s hidden states.

3.1 Loss functions
Compression Length loss (Llen) is used to con-
strain the summary length. It is calculated from
the output of IEM as shown in Eq. (2). Len(s0) is
the sum of elements of Iv. We set r = 0.4 in our
experiments.

Llen =

⇣Len(s0)
Len(s)

� r
⌘2

(2)

Sentence Reconstruction loss (Lrec) is applied
to ensure s0 contains enough information to recon-
struct s. It is calculated from the output of D

s0
as

shown in Eq. (3).

Lrec = �

Len(s)X

i=1

logP (wi|w0
<i, he2) (3)

To help ease reconstruction, Lrec steers the
network to keep larger summaries, whereas Llen

forces it to it cut down. This makes it hard for the

model to converge optimally. We introduce a novel
Linkage loss (Llnk), which correlates the indicator
vector and its effect on reconstruction. It penalizes
the network if a) it decides to mask a word but is
unable to reconstruct it or b) it decides to include a
word which it could reconstruct easily. It is applied
to the outputs of IEM and D

s0
, as shown in Eq. (4).

Ref: the olympic village for the winter

games in turin was officially

opened on tuesday

Summ: olympic village winter turin
opened

Recon: the olympic village of the winter olympics a
turin was officially opened here wednesday

Figure 3: Linkage loss guides the model to drop words
that can be inferred during reconstruction (light green)
and retain words that are harder to infer (dark green).

Llnk =

Len(s)X

i=1

⇣
Ivie

(1��i)+(1�Ivi)e
�i �1

⌘
(4)

The variable �i 2 [0, 1], in Eq. (5), is the nor-
malized value of a word’s logit in a sentence. It
denotes the relative difficulty of decoding word wi,
given w0

<i and he2. Llnk is minimized when either
a) �i = 0 and Ivi = 0 (signifying that wi is easy
to decode and should be dropped) or b) �i = 1

and Ivi = 1 (signifying that hard-to-decode words
should be retained). The effect of Llnk can be seen
in Fig. 3. The model retains words with a higher �i

(dark green), whereas words with a lower �i (light
green) can be inferred during reconstruction and
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therefore dropped.

�i =
|logP (wi|w0

<i, he2)|

max1jLen(s)|logP (wj |w<j , he2)|
(5)

Binarization loss (Lbin) is applied to the output
of IEM, as shown in Eq. (6), to push the values of
Iv close to 0 and 1 (since setting them to these hard
values directly introduces non-differentiability). In
our experiments, b is set to 5 and a is such that Lbin

is always non-negative. At test time, only the words
with Ivi > 0.5 are included in the compression.

Lbin =
1

Len(s)

Len(s)X

i=1

(a� b(Ivi � 0.5)2) (6)

3.2 Re-weighting Vocabulary Distribution
Due to the nature of Zipf’s law (Zipf, 1949), most
of the probability mass in the vocabulary distribu-
tion output by the Summary Decoder is retained
by stopwords. As a result, �i corresponding to
stopwords is much lower compared to content
words. This causes the network to blindly drop
stopwords and retain most content words. In this
case, many content words that may be inferable
are not dropped. To remedy this, we introduce
Stop Predictor (Dstop), which assigns a score to
the next word based on whether it is a stopword
or not. When the network believes that the next
word is not a stopword, it re-distributes the proba-
bility mass from stopwords proportionally among
content words and vice-versa.

The word embeddings’ of s are sequentially fed
as input to Dstop, a bi-LSTM decoder. The out-
put of Dstop at each time step is passed through a
network of two fully connected layers to generate
a single score, ystop,i 2 [0, 1]. In order to train
Dstop we apply Lstp (mean-square-error loss with
the ground truth) as shown in Eq.(7). The ground
truth is obtained from the stopword-list, defined as
the collection of 50 most frequent words (0.25%
of the vocabulary size) found in the dataset.

We re-weight the vocabulary distribution using
ystop,i, similar to pgen in (See et al., 2017), as
shown in Eq. (8). Is is a vocabulary sized vec-
tor with the 50 elements of stopword-list set to 1
and the rest to 0.

Lstp =
1

Len(s)

Len(s)X

i=1

(ystop,i � ygtstop,i)
2 (7)

P 0
(wi|w0

<i, he2) = softmax(Is ·ystop,i ·P (wi)

+ (1� Is) · (1� ystop,i) · P (wi)) (8)

This re-weighted distribution is plugged into
Eq.(5) and used to calculate Llnk.

The final loss function (L) is a linear combi-
nation of the above losses. Since this is an unsu-
pervised approach, currently, the weights are ex-
perimentally determined. Initial weights for each
loss were selected to normalize the output range
of all loss functions. We performed a grid search
in the neighborhood of these initial weight values
to determine optimal weights that maximized the
ROUGE scores on the validation set. The weights
have been set to 8 (Llen), 1 (Lrec), 5 (Llnk), 100
(Lbin) and 10 (Lstp) in our experiments.

3.3 Training
In our experiments, we used the annotated Giga-
word corpus (Rush et al., 2015). The model is
trained only on the reference section. We only con-
sidered sentences where the length was between
15 and 40 words (3.5M samples). A small por-
tion of the training set (200k samples) was held
out for validation. The batch size is set to 128.
Vocabulary is restricted to 20000 most frequent
words from the dataset. All bi-LSTM cells are
of size 600 and weights are initialized normally
N (µ = 0, � = 0.1). The output from IEM and
Dstop is passed through a hidden layer (150 units)
and an output layer with ReLU and sigmoid ac-
tivations, respectively. We use Adam optimizer
(Kingma and Ba) (lr=0.001, �1=0.9 and �2=0.999).
Gradients larger than 1.0 are clipped. The model is
trained for 5 epochs using early stopping by moni-
toring the performance on the validation set.1

4 Experiments

Since the test set of the Gigaword corpus is small
(1.9k samples) and does not capture the true be-
havior of the models, we report our results on the
significantly larger validation set (189k samples).
Note that SCAR does not make use of the valida-
tion set during training, and it can be treated as a
test set. We also test (without retraining) SCAR
on DUC-2003 and DUC-2004 shared tasks (Over
et al., 2007), containing 624/500 news articles each,
paired with 4 reference summaries capped at 75

1https://github.com/m-chanakya/scar
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Gigaword DUC-2003 DUC-2004
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Baselines
All-Text 28.07 10.02 24.49 - - - - - -
Prefix 26.28 9.54 24.73 20.82 6.14 18.44 22.18 6.30 19.33

Lead50 30.22 10.99 27.40 20.92 6.22 18.59 22.26 6.33 19.38
Unsupervised

SEQ3 30.23 10.24 27.26 20.89 6.07 18.54 22.12 6.17 19.29
DAE 26.84 7.35 23.15 18.45 3.94 15.79 20.06 4.73 17.03

SCAR 29.80 7.52 26.10 21.71 4.73 18.81 22.92 5.52 19.85
Supervised

Seq2Seq 33.72 14.18 30.65 26.12 9.67 23.37 27.31 10.43 24.18
Ablation
w/o Llnk 27.24 5.16 23.87 20.31 3.41 17.60 19.94 3.25 17.07
w/o Dstop 28.86 7.02 25.29 21.46 4.66 18.62 21.94 4.70 19.10
r = 0.3 27.80 5.07 24.39 20.25 3.16 17.46 20.28 3.09 17.53
r = 0.2 25.36 3.36 22.38 18.97 2.31 16.23 18.43 2.20 15.90

Table 1: Average ROUGE scores on Gigaword and DUC datasets.

bytes. We report average ROUGE (1,2,L) F1 scores
(Lin, 2004) obtained by all the models in Table 1.

We compare our model with three standard base-
lines - Prefix (first 8 words for Gigaword/first 75
bytes for DUC), Lead50 (50% tokens) and All-
Text (entire input). To compare with supervised
approaches, we train a baseline Seq2Seq model,
similar to (Fevry and Phang, 2018). Finally, we
compare our model with the recent unsupervised
approaches, DAE (Fevry and Phang, 2018) 2, and
SEQ

3 (Baziotis et al., 2019) 3.

4.1 Pitfalls of SEQ
3

Lead50 achieves the highest ROUGE scores, but it
does not make for a viable compression method as
it blindly drops the latter half of the sentence. The
scores obtained by SEQ3 are strikingly similar
to Lead50. The authors of SEQ3 note that “the
model tends to copy the first words of the input
sentence in the compressed text”. We observed that
SEQ3 introduces very little abstractiveness (only
0.001% of the words are different from the input)
and copies the first half of the sentence.

To corroborate our findings, we introduce the
notion of summary coverage. It is a measure of
how well each position of the input is represented
in the compression. We divide the input sentence
into equal-sized segments and measure how often

2https://github.com/zphang/usc dae
3https://github.com/cbaziotis/seq3.git

Figure 4: We divide the input sentence into equal-sized
segments and measure how often each segment (x-axis)
is included in the compression (y-axis).

each segment is included in the compression. We
plot the summary coverage for Lead50, SEQ3, and
SCAR, as shown in Fig.4. A visualization is shown
in Fig.5. Lead50 and SEQ3 only cover the first
half (initial segments) of the input, leading to in-
complete/incorrect compressions. SCAR has more
uniform coverage and represents all segments of
the input well, leading to more informative com-
pressions.

4.2 Quantitative evaluation
Given the pitfalls of SEQ3, SCAR achieves state-
of-the-art performance in unsupervised sentence
compression on Gigaword and DUC datasets.
SCAR’s R-2 scores on both benchmark sets are
low because it tends to drop the inferable portion
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LEAD50: malaysia ’s government on monday announced an immediate ##-million dollar plan to expand roads , build
underground bypasses and overhead bridges to ease kuala lumpur ’s traffic jams .

SEQ3: malaysia ’s government on monday announced an immediate ##-million dollar plan to expand roads ,

build underground bypasses and overhead bridges to ease kuala lumpur ’s traffic jams .
SCAR malaysia ’s government on monday announced an immediate ##-million dollar plan to expand roads ,

build underground bypasses and overhead bridges to ease kuala lumpur ’s traffic jams .

Headline: malaysia announces ##-million dollar plan to ease kuala lumpur traffic woes

Figure 5: Visualization of summary coverage by overlaying the compressions onto the reference.

Ref (SCAR
Highlight)

president bill clinton this week unveils a budget proposal offering nearly ### billion dollars in

tax relief over the next six years and calling for the elimination of the federal deficit by #### .

SEQ3 president bill clinton this week unveils a budget proposal offering nearly ### billion dollars in tax relief
deficit (Wrong content retained)

DAE president bill clinton unveils the federal budget deficit this week by offering nearly ### billion dollars
(Wrong content retained)

SCAR bill this budget proposal nearly billion tax relief next six calling elimination federal deficit
Headline clinton calls for elimination of the federal deficit by ####

Figure 6: An example of the reference (with SCAR highlight), compressions, and headline.

Correct Unsure Time
Reference 93.4% 6.6% 2m 31s

SCAR (Highlight) 93.4% 6.6% 1m 54s
Compressions

SEQ3 53.3% 46.67% 2m 13s
DAE 26.67% 73.34% 2m 29s

SCAR 66.67% 33.33% 2m 42s

Table 2: Average correctness and time scores.

of a bi-gram. Without Linkage loss (Llnk), SCAR
loses its ability to drop inferable portions of the
input. Without Dstop, a mechanism to re-distribute
probability mass from stop words, SCAR tends
only to drop stopwords. Lower values of r, cause
the model to generate smaller compressions. As
expected, all of the above factors cause a dip in
performance.

4.3 Qualitative evaluation
ROUGE only measures the content overlap and
does not account for coherence. We conduct a
Qualitative study to address the known issues with
ROUGE (Schluter, 2017) and evaluate SCAR’s
effectiveness as a speed reading system.

Human evaluators are asked to match the ref-
erence/compression that they are shown with the
correct headline from a set of 5 options. 3 incor-
rect options are generated by selecting Gigaword
headlines that share tokens with the reference. The

fifth option is ”unsure.” Fifteen English speaking
participants were divided into 5 sets. They were
shown the reference (1), the reference with SCAR
highlighting (2), compressions generated by SCAR
(3), SEQ3 (4), and DAE (5), respectively. Each
user was asked to match 10 samples.

An example is shown in Fig.6. Compressions
generated by DAE fail to preserve the meaning and
intent of the reference. SEQ3 habitually retains
the first half of the input, and the evaluators fail to
match the headline if it corresponds to the latter
half. Due to collocation, SCAR tends to drop the
inferable portion of a bi-gram. For example, ”Bill”
is retained, and ”Clinton” is dropped. The average
correctness and time scores are reported in Table
2. Compared to other compressions, SCAR has the
highest score in terms of correctness. Using SCAR
to highlight, reduces reading time by 25%.

5 Conclusion and Future Work

SCAR addresses a significant limitation of the un-
availability of labeled data for sentence compres-
sion. It outperforms the existing state-of-the-art
unsupervised models. Since SCAR learns to drop
inferable components of the input and therefore
reduces noise, it can be used as a preprocessing
step for machine translation and other information
retrieval tasks.
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Abstract 

Medical image captioning can reduce the 
workload of physicians and save time and 
expense by automatically generating 
reports. However, current datasets are 
small and limited, creating additional 
challenges for researchers. In this study, we 
propose a feature difference and tag 
information combined long short-term 
memory (LSTM) model for chest x-ray 
report generation. A feature vector 
extracted from the image conveys visual 
information, but its ability to describe the 
image is limited. Other image captioning 
studies exhibited improved performance by 
exploiting feature differences, so the 
proposed model also utilizes them. First, 
we propose a difference and tag (DiTag) 
model containing the difference between 
the patient and normal images. Then, we 
propose a multi-difference and tag 
(mDiTag) model that also contains 
information about low-level differences, 
such as contrast, texture, and localized area. 
Evaluation of the proposed models 
demonstrates that the mDiTag model 
provides more information to generate 
captions and outperforms all other models. 

1 Introduction 

Image captioning is a research area that generates 
text describing natural images, representing a 
convergence of computer vision and natural 
language processing. There are several existing 
methods for image captioning. One way involves 
filling up templates with detected objects or 
properties (Li et al., 2011; Yang et al., 2011), but 
this has limitations about diversity. Especially, 
sentences describing abnormal findings in medical 
images are relatively diverse and rare. Another 
involves retrieving the captions of images that are 
similar to the query image and selecting relevant 

phrases from those captions to generate new 
captions (Gupta et al., 2012; Kuznetsova et al., 
2014). However, this method does not generalize 
well when applied to unfamiliar images. 

To overcome the weaknesses of current 
methods, we adopted the encoder-decoder 
architecture with an attention mechanism. The 
encoder encodes an image into a feature vector, 
and the decoder decodes the feature vector into 
text. The encoder-decoder is one of the neural 
networks successfully used in other recent image 
captioning studies (Vinyals et al., 2015; Xu et al., 
2015; Karpathy and Fei-Fei, 2015; You et al., 2016; 
Zhou et al., 2017; Anderson et al., 2018). 

Medical image captioning is the field of 
generating medical reports that describe medical 
images, as shown in Figure 1. The first challenge 
in medical image captioning is the lack of quality 
in training sets. Researchers have difficulty 
accessing chest x-ray datasets, which slows the 
development of related technologies. There are 
publicly available datasets that have images and 
reports: IU X-RAY, PEIR GROSS, and ICLEF-
CAPTION (Kougia et al., 2019). Using only these 
datasets, state-of-the-art caption generation 
models do not generate medical reports correctly. 
Recently, MIMIC-CXR (Johnson et al., 2019), the 
largest dataset with images, reports, and labels, is 
released. The second challenge is that there are too 
many normal descriptions in the dataset, which 
creates a skewed dataset that poses problems for 
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Figure 1: An example of a medical image 
captioning system that generates a report given a 
chest x-ray image. 
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supervised learning. Besides, some types of 
significant abnormal findings appear too rarely in 
the dataset to appropriately train the model. 

In this study, we propose a model that can 
identify and focus on abnormal findings more 
specifically and precisely, similar to the way that 
physicians would typically read, interpret, and 
write chest x-ray reports. Since physicians look for 
the differences between the normal group and the 
disease group, we also focus on image feature 
differences. Therefore, the proposed model sets the 
criteria based on a normal x-ray image and creates 
a feature difference vector that explains the 
difference between a normal x-ray image and a 
patient’s x-ray image. This feature difference 
vector is a subtraction of visual feature vectors 
extracted from the two images. To improve the 
model, we also exploit tag information obtained 
from the medical report. Tags provide important 
information about the images and also convey 
meaningful semantics to the decoder. Several 
previous studies (Jhamtani and Berg-Kirkpatrick, 
2018; Tan et al., 2019; Forbes et al., 2019) show 
methods that leverage feature vectors of images to 
account for differences between two images. 

Next, since physicians obtain information not 
only from the overall image but also from the 
localized lesion areas, we consider that each 
convolutional level would also convey meaningful 
details such as contrast, texture, and localized area. 
Therefore, another proposed model fully exploits 
information contained in each layer. Previous 
studies (Darlow et al., 2018; Bau et al., 2017; Zhou 
et al., 2018) analyze and interpret convolutional 
neural networks (CNNs) utilizing feature vectors 
extracted from lower convolutional layers. 

The following section describes the organization 
of the dataset, and section 3 introduces the baseline 
and our proposed models. Section 4 provides the 
experimental settings and results with analysis, and 
draws some conclusions in Section 5. 

2 Dataset 

This study uses IU X-RAY, which consists of a 
series of image-text-tag triplets. This dataset is 
anonymous and is from the Open Access 

                                                           
1 https://openi.nlm.nih.gov/ 
2 https://ii.nlm.nih.gov/MTI/ 
3 https://www.nlm.nih.gov/mesh/meshhome.html 
 

Biomedical Image Search Engine (OpenI) 1 
(Demner-Fushman et al., 2016).  

The 7,470 chest x-ray images have two views: 
posteroanterior (PA) and lateral. The baseline 
model uses all images, but the proposed model uses 
only 3,821 images, which are PA views. The report 
corresponding to each image has four sections: 
comparison, indication, findings, and impression. 
The output of the model is a concatenation of the 
findings and the impression section (Jing et al., 
2018). The findings section describes observations 
in each area of the body, and the most crucial 
impression section explains the problem and then 
provides a diagnosis. The output excludes the 
comparison and indication sections, which contain 
patient information and symptoms. 

One or more tags are automatically extracted 
from each report using the Medical Text Indexer 
(MTI)2 program (Jing et al., 2018). MTI produces 
index recommendations based on Medical Subject 
Heading (MeSH)3 terms. There are a total of 210 
unique tags, with an average of 2 tags per image. 
Without the normal tag, there is an average of 25 
images per tag. Class imbalance arises because 
1,502 images contain normal tag, so we randomly 
sample 75 images for a better balance between tags. 
The tags still have a class imbalance because the 
scope is too broad, making the term rare. 

The prepared datasets are 3,821 image-text-tag 
triplets, all PA view images. After adjusting the 
number of images with the normal tag, we use 
random selection to get 1,911, 238, and 245 
triplets for the training, validation, and test sets. 

3 Models 

3.1 Baseline Model 

Among the recent models, the basis is the Jing 
(2018) model4 . Our baseline model is similar to 
this model, which includes a CNN-RNN (encoder-
decoder) with an attention mechanism. The Jing 
(2018) model’s encoder part utilizes VGG-19 
(Simonyan and Zisserman, 2014) for the visual 
feature extractor, multi-label classification (MLC) 
for tag classification, and decoder part uses 
Hierarchical LSTM (Hochreiter and Schmidhuber, 

 

4 Reference code available at 
https://github.com/ZexinYan/Medical-Report-Generation 
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1997) with a co-attention mechanism. The only 
difference between the Jing (2018) model and our 
baseline model is that we use ResNet-152 (He et 
al., 2016) instead of VGG-19 to extract the visual 
feature vector. MLC uses the visual feature vector 
to predict one or more tags and generates semantic 
feature vectors that are word embedding of the 
predicted tags. To obtain an embedding vector of 
each tag, we train an embedding layer from the 
training data. Hierarchical LSTM combines 
sentence LSTM with co-attention and word LSTM. 
Sentence LSTM creates a topic vector and a stop 
vector by independently attending to the visual 
feature vector and semantic feature vector using 
co-attention. The word LSTM concatenates the 
topic vector and previous word embedding for a 
new embedding as input to generate words. The 
way to get a word embedding vector is the same as 
the tag, but the embedding matrix is different. 

The overall loss is the sum of tag loss, stop loss, 
and word loss. First, tag loss Ltag is a cross-entropy 
loss between predicted tag distributions by MLC 
and the normalized real tag distributions. Second, 
stop loss ܮ௦௧௢௣  is a cross-entropy loss between 
predicted stop distributions by Sentence LSTM 
and ground truth distributions. The stop loss is 
binary cross-entropy, and the class is stop or 
continue. Third, word loss ܮ௪௢௥ௗ  is a cross-entropy 
loss between predicted word distribution by Word 
LSTM and real word distribution. ߣ௧௔௚ ,   ߣ௦௧௢௣ , 
௪௢௥ௗߣ  scale all the losses. The report consists of ܵ 
sentences, with each sentence having ௦ܹ  words. 
Total loss for the baseline model is: 

௕௔௦௘ܮ  = ௧௔௚ܮ௧௔௚ߣ + ௦௧௢௣෌ߣ ௦௦௧௢௣ܮ
ௌ
௦ୀଵ +

௪௢௥ௗߣ                                    σ σ ௦,௪ܮ
௪௢௥ௗ

ௐೞ
௪ୀଵ

ௌ
௦ୀଵ   (1) 

3.2 Difference and Tag Model 

The weakness of our baseline model is that it 
mainly generates general content (such as “the 
heart is normal in size” and “the lungs are clear”) 
and does not correctly describe the aspects of the 
patient image associated with the disease. The 
model does not adequately capture the differences 
between the images because the chest x-ray images 
are similar. Also, when clinicians diagnose patients, 
they look for the differences between the patient 
group and the normal group. 

Therefore, the first goal of this study was to 
provide the model with more information about 
these differences. Our difference and tag (DiTag) 
model creates a feature difference vector that 
contains the differences between the patient image 
and the normal image. The feature difference 
vector is the result of subtracting the visual feature 
vector of the normal image from the visual feature 
vector of the patient image extracted through 
ResNet-152. The visual feature vector is a global 
average pooling of feature map produced by the 
last convolution layer. 

We experimented with this feature difference 
vector using two model structures, as shown in 
Figure 2. The first structure, the DiTag model, 
passes the feature difference vector directly to the 
MLC and the co-attention and does not use the 
combined feature vector. Co-attention allows the 
model to attend to the feature difference vector 
{݀௡}௡ୀଵே  and the semantic feature vector {ݐ௠}௠ୀଵ

ெ  
independently to create a context vector, which is 
then passed to the sentence LSTM to generate topic 
vector and stop vector, as shown in Figure 3. The 
co-attention is only associated with the sentence 
LSTM, not the word LSTM. The co-attention 

 

Figure 2: Two difference and tag (DiTag) model structures. The DiTag model uses only feature difference vector 
and sends it to MLC and co-attention. The combined DiTag (cDiTag) model uses a combined feature vector (*), 
which is a concatenation of patient visual feature vector and feature difference vector. 
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computes attention score Ƚ independently to create 
a feature difference context vector ݀௦ and a 
semantic context vector ݐ௦ at time step s: 

 ݀௦ = ෌ ௗ,௡݀௡ߙ
ே
௡ୀଵ , ௦ݐ = ෌ ௠ݐ௧,௠ߙ

ெ
௠ୀଵ    (2) 

Concatenate these context vectors, then use a fully 
connected layer W  to obtain the final context 
vector ܿௌ at time step s: 

 ܿ௦ = ܹ[݀௦;  ௦]  (3)ݐ

A topic vector contains context information by 
combining the current hidden state of the sentence 
LSTM and the context vector of the current step. A 
stop vector decides to stop or continue generating 
the topic vector and words by combining the 
previous and current hidden state of sentence 
LSTM to calculate the probability of stopping. 
Figure 3 also shows how the word LSTM works. 

The second structure is the combined DiTag 
(cDiTag) model, which sends the combined feature 
vector that represents the concatenation of the 
feature difference vector and the patient visual 
feature vector to the MLC and the co-attention. Co-
attention is the same as DiTag model, except that it 
attends to the combined feature vector rather than 
the feature difference vector. The overall loss of 
both structures is the same as the baseline model. 

3.3 Multi-Difference and Tag Model 

Physicians provide diagnoses using information 
obtained not only from the overall image but also 
from localized lesion areas. Therefore, the second 
goal of this study was to offer lower-level 
differences to the model, such as the contrast, 

texture, and localized area. The DiTag model 
extracts the visual feature vector from the last 
convolutional layer of ResNet-152, while the 
mDiTag model further extracts additional visual 
feature vectors from three lower convolutional 
layers. Using four visual features from the patient 
images and four from the normal images, we 
experimented with the three model structures to 
compare the effects of model components, as 
shown in Figure 4. 
The mDiTag(-) model subtracts the normal visual 
feature vector from the patient visual feature vector 
obtained in each layer to generate four feature 
difference vectors and then sends all four vectors 
to the co-attention. The model excludes the MLC, 
and co-attention attends to the four feature 
difference vectors and creates a context vector and 
sends it to the LSTM. Total loss for the mDiTag(-) 
model is: 

஽௜்௔௚ܮ = ௦௧௢௣෌ߣ ௦௦௧௢௣ܮ
ௌ
௦ୀଵ +

௪௢௥ௗߣ                             σ σ ௦,௪ܮ
௪௢௥ௗ

ௐ
௪ୀଵ

ௌ
௦ୀଵ

  (4) 

 The mDiTag(+) model obtains new visual 
feature vectors by sending the visual feature 
vectors of each layer into four different MLCs, one 
for each layer. The co-attention is identical to that 
of the mDiTag(-) model. The total loss is the sum 
of the four tag losses, each occurring in four layers, 
stop loss and word loss. The model is 
backpropagated based on the previous four tag 
losses and then backpropagated based on the 
overall loss. 

 

Figure 4: Three mDiTag model structures. The 
mDiTag(-) model excludes MLC and semantic 
feature vectors. The mDiTag(+) model excludes 
only the semantic feature vectors. The whole 
structure is mDiTag(s) model. 

 

Figure 3: An example of generating a second 
sentence. For each sentence LSTM step, the co-
attention creates a context vector, and the sentence 
LSTM outputs a topic vector and a stop vector. The 
word LSTM generates words based on the topic 
vector and embedding of the previous word. 
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The mDiTag(s) model is similar to the mDiTag(+) 
model, but MLC obtains a new visual feature 
vector and a semantic feature vector. The model 
sends four feature difference vectors and four 
semantic feature vectors to the decoder. Co-
attention attends to the four feature difference 
vectors and four semantic feature vectors to create 
a context vector, and then sends it to the LSTM. 
The loss function and backpropagation method of 
this model is the same as that of the mDiTag(+) 
model. There are four tag losses in each 
intermediate convolutional layer of mDiTag(+) and 
mDiTag(s) model. Total loss for these models is: 

௠஽௜்௔௚ܮ = ௧௔௚_ଵܮ௧௔௚_ଵߣ + ௧௔௚_ଶܮ௧௔௚_ଶߣ +
௧௔௚_ଷܮ௧௔௚_ଷߣ                      + ௧௔௚_ସܮ௧௔௚_ସߣ +

௦௧௢௣ߣ     ෌ ௦௦௧௢௣ܮ
ௌ
௦ୀଵ +

௪௢௥ௗߣ               σ σ ௦,௪ܮ
௪௢௥ௗ

ௐ
௪ୀଵ

ௌ
௦ୀଵ

  (5) 

4 Experimental Settings and Results 

4.1 Experimental Settings 

All model experiments use the same parameters 
and hyperparameters. For MLC, the number of 
classes corresponding is 210, the number of classes 
to predict is 10, and the generated semantic feature 
vector dimension is 512. In the decoder, the 
Sentence LSTM is 1 layer, the Word LSTM is 1 
layer, the hidden vector dimension is 512, the 
maximum number of sentences generated is 6, and 
the maximum number of words created is 30. The 
learning rate starts from 1Ⴭ í�� and is optimized by 
Adam optimizer. Total epoch is 1,000 but tested 
with a model of minimum loss. It took four days to 
train with a 1080Ti GPU with 11G Memory. 

4.2 Metric Evaluation 

Table 1 provides information on the performance 
of the models evaluated for the test dataset. We use 
BLEU score (Papineni et al., 2002), ROUGE-L 

(Lin, 2004), and CIDEr (Vedantam et al., 2015) for 
the metrics. The DiTag model has higher metric 
scores than the baseline model, and for cDiTag 
model, only the ROUGE-L score increases. Since 
the DiTag model structure is more suitable, 
mDiTag model structures also only utilizes the 
feature difference vector. 

Next, based on all metric scores, the best model 
is the mDiTag(-) model. When the model includes 
MLC, the metric score reduces. Since there are two 
tags per image on average, when predicting 10 tags, 
there are wrong tag information. Also, the 

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L CIDEr 
Baseline model 0.2738 0.1585 0.1045 0.0682 0.2099 0.1226 
DiTag model 0.3015 0.1795 0.1204 0.0811 0.2438 0.1939 
cDiTag model 0.2501 0.1413 0.0913 0.0597 0.2177 0.0903 

mDiTag(-) model 0.3293 0.1985 0.1354 0.0945 0.2731 0.1944 
mDiTag(+) model 0.3227 0.1919 0.1271 0.0852 0.2575 0.1829 
mDiTag(s) model 0.2086 0.1225 0.0795 0.0566 0.1719 0.1252 

Table 1: Metric Evaluation for all models. The DiTag model utilizes feature difference vector, the cDiTag model 
uses combined feature vector, and the mDiTag models use multiple feature difference vectors. The mDiTag(-) 
model excludes MLC and semantic feature vectors, the mDiTag(+) model excludes semantic feature vectors, 
and the mDiTag(s) model uses all. The best model for all metric scores is the mDiTag(-) model.  

Model generation result 

Baseline 
Model 

no acute cardiopulmonary 
abnormality the heart is normal in 
size the heart and lungs have in 
the interval 

mDiTag(-) 
Model 

<num> no acute cardiopulmonary 
abnormality <num> chronic 
changes consistent with 
emphysema the heart is normal in 
size the lungs are clear no pleural 
effusion or pneumothorax is seen  

mDiTag(+) 
Model 

no acute cardiopulmonary 
abnormality the heart is normal in 
size the lungs are clear there is no 
focal air space opacity to suggest a 
pneumonia 

Ground 
Truth 

Report 

left base atelectasis lungs 
otherwise clear there is minimal 
opacity in the left lung base 
representing atelectasis the lungs 
are otherwise clear heart size is 
normal no <unk> 

Image 

 
Table 2: The first example of the models' outputs 
with corresponding ground truth report, and image.  
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significant class imbalance makes MLC 
challenging to train. Further, when the model uses 
the semantic feature vector, metric scores reduce. 
The semantic feature vector is word embedding of 
the top 10 tags predicted by MLC. However, the 
semantic feature vector provides incorrect 
information because of the wrong tags among the 
10 predicted tags. 

4.3 Analysis of Model Output 

Table 2 and Table 3 show examples of the models’ 
output. To make the model outputs easier to see, we 
eliminate the repeated sentences in the table. The 
mDiTag(-) model generates more detailed reports 
than the other models. There are some abnormal 
findings in the images and ground truth reports in 
Table 2 and Table 3. The baseline model only 
explains about the normal findings, while the 
mDiTag(-) model produces some disease-related 
sentences, but is not accurate. The outputs show 

that exploiting multiple feature differences allows 
the model to generate a relatively diverse 
explanation of the patient’s disease. However, the 
output still produces general description and does 
not present enough information about specific 
features of the disease. As expected, there are 
incorrect disease descriptions because the tag 
prediction is not accurate. In addition, as there are 
too many types of abnormal findings, the terms 
become too rare to train the model adequately. The 
components of the text generation part should be 
modified to resolve the issue of the repeated 
sentence. Another limitation of this paper is the 
lack of human evaluation. 

5 Conclusion 

We propose models that exploit feature differences 
and tag information. As expected, the model that 
uses low-level convolutional features from the 
CNN model can convey low-level details, such as 
contrast, texture, and localized area. Some of our 
models outperform the conventional image 
captioning models in terms of BLEU score, 
ROUGE-L, and CIDEr. The mDiTag(-) model 
performs best according to every metric. Based on 
these experiments, we can conclude that the feature 
differences between images and semantic tags are 
crucial elements necessary for training. In the 
future, we will strengthen tags that contain 
semantic information to extract keywords for more 
accurate information, such as disease information, 
location, and size. Furthermore, improving the 
accuracy of multiple tag prediction is crucial to 
deliver semantic facts accurately. We are also 
considering obtaining more images from hospitals 
to reduce the proportion of abnormal images in the 
datasets. 
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Model generation result 

Baseline 
Model 

no acute cardiopulmonary 
abnormality the heart is normal in 
size the lungs are clear 

mDiTag(-) 
Model 

<num> no acute cardiopulmonary 
abnormality <num> left midlung 
subsegmental atelectasis versus 
scar the heart is normal in size the 
mediastinum is unremarkable no 
pleural effusion or pneumothorax 
no acute bony abnormality 

mDiTag(+) 
Model 

no acute cardiopulmonary 
abnormality the heart is normal in 
size the lungs are clear no focal 
airspace consolidation or pleural 
<unk> 

Ground 
Truth 

Report 

low lung volumes no acute 
cardiopulmonary findings the 
cardiomediastinal silhouette is 
stable lung volumes remain low 
there is no pleural line to suggest 
pneumothorax or costophrenic 
blunting to suggest large pleural 
effusion bony structures are 
within normal <unk> 

Image 

 
Table 3. The second example of the models' 
outputs with corresponding ground truth report, 
and image. 
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Abstract 

Neural machine translation (NMT) has 
achieved impressive performance recently 
by using large-scale parallel corpora. 
However, it struggles in the low-resource 
and morphologically-rich scenarios of 
agglutinative language translation task. 
Inspired by the finding that monolingual 
data can greatly improve the NMT 
performance, we propose a multi-task 
neural model that jointly learns to perform 
bi-directional translation and agglutinative 
language stemming. Our approach employs 
the shared encoder and decoder to train a 
single model without changing the standard 
NMT architecture but instead adding a 
token before each source-side sentence to 
specify the desired target outputs of the two 
different tasks. Experimental results on 
Turkish-English and Uyghur-Chinese 
show that our proposed approach can 
significantly improve the translation 
performance on agglutinative languages by 
using a small amount of monolingual data. 

1 Introduction 

Neural machine translation (NMT) has achieved 
impressive performance on many high-resource 
machine translation tasks (Bahdanau et al., 2015; 
Luong et al., 2015a; Vaswani et al., 2017). The 
standard NMT model uses the encoder to map the 
source sentence to a continuous representation 
vector, and then it feeds the resulting vector to the 
decoder to produce the target sentence. 

However, the NMT model still suffers from the 
low-resource and morphologically-rich scenarios 
of agglutinative language translation tasks, such as 
Turkish-English and Uyghur-Chinese. Both 
Turkish and Uyghur are agglutinative languages 
with complex morphology. The morpheme 
structure of the word can be denoted as: prefix1 
+ … + prefixN + stem + suffix1 + … + suffixN 

(Ablimit et al., 2010). Since the suffixes have 
many inflected and morphological variants, the 
vocabulary size of an agglutinative language is 
considerable even in small-scale training data. 
Moreover, many words have different morphemes 
and meanings in different context, which leads to 
inaccurate translation results. 

Recently, researchers show their great interest 
in utilizing monolingual data to further improve 
the NMT model performance (Cheng et al., 2016; 
Ramachandran et al., 2017; Currey et al., 2017). 
Sennrich et al. (2016) pair the target-side 
monolingual data with automatic back-translation 
as additional training data to train the NMT model. 
Zhang and Zong (2016) use the source-side 
monolingual data and employ the multi-task 
learning framework for translation and source 
sentence reordering. Domhan and Hieber (2017) 
modify the decoder to enable multi-task learning 
for translation and language modeling. However, 
the above works mainly focus on boosting the 
translation fluency, and lack the consideration of 
morphological and linguistic knowledge. 

Stemming is a morphological analysis method, 
which is widely used for information retrieval tasks 
(Kishida, 2005). By removing the suffixes in the 
word, stemming allows the variants of the same 
word to share representations and reduces data 
sparseness. We consider that stemming can lead to 
better generalization on agglutinative languages, 
which helps NMT to capture the in-depth semantic 
information. Thus we use stemming as an auxiliary 
task for agglutinative language translation. 

In this paper, we investigate a method to exploit 
the monolingual data of the agglutinative language 
to enhance the representation ability of the encoder. 
This is achieved by training a multi-task neural 
model to jointly perform bi-directional translation 
and agglutinative language stemming, which 
utilizes the shared encoder and decoder. We treat 
stemming as a sequence generation task. 

Multi-Task Neural Model for Agglutinative Language Translation 
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Encoder-Decoder 
Framework

Bilingual Data Monolingual DataTraining data

<MT> + English sentence

<MT> + Turkish sentence

<ST> + Turkish sentence

Turkish sentence

English sentence

stem sequence  
Figure 1: The architecture of the multi-task neural model 
that jointly learns to perform bi-directional translation 
between Turkish and English, and stemming for Turkish 
sentence. 

2 Related Work 

Multi-task learning (MTL) aims to improve the 
generalization performance of a main task by using 
the other related tasks, which has been successfully 
applied to various research fields ranging from 
language (Liu et al., 2015; Luong et al., 2015a), 
vision (Yim et al., 2015; Misra et al., 2016), and 
speech (Chen and Mak, 2015; Kim et al., 2016). 
Many natural language processing (NLP) tasks 
have been chosen as auxiliary task to deal with the 
increasingly complex tasks. Luong et al. (2015b) 
employ a small amount of data of syntactic parsing 
and image caption for English-German translation. 
Hashimoto et al. (2017) present a joint MTL model 
to handle the tasks of part-of-speech (POS) tagging, 
dependency parsing, semantic relatedness, and 
textual entailment for English. Kiperwasser and 
Ballesteros (2018) utilize the POS tagging and 
dependency parsing for English-German machine 
translation. To the best of our knowledge, we are 
the first to incorporate stemming task into MTL 
framework to further improve the translation 
performance on agglutinative languages. 

Recently, several works have combined the 
MTL method with sequence-to-sequence NMT 
model for machine translation tasks. Dong et al. 
(2015) follow a one-to-many setting that utilizes a 
shared encoder for all the source languages with 
respective attention mechanisms and multiple 
decoders for the different target languages. Luong 
et al. (2015b) follow a many-to-many setting that 
uses multiple encoders and decoders with two 
separate unsupervised objective functions. Zoph 
and Knight (2016) follow a many-to-one setting 
that employs multiple encoders for all the source 
languages and one decoder for the desired target 
language. Johnson et al. (2017) propose a more 
simple method in one-to-one setting, which trains 
a single NMT model with the shared encoder and 
decoder in order to enable multilingual translation. 

The method requires no changes to the standard 
NMT architecture but instead requires adding a 
token at the beginning of each source sentence to 
specify the desired target sentence. Inspired by 
their work, we employ the standard NMT model 
with one encoder and one decoder for parameter 
sharing and model generalization. In addition, we 
build a joint vocabulary on the concatenation of the 
source-side and target-side words. 

Several works on morphologically-rich NMT 
have focused on using morphological analysis to 
pre-process the training data (Luong et al., 2016; 
Huck et al., 2017; Tawfik et al., 2019). Gulcehre et 
al. (2015) segment each Turkish sentence into a 
sequence of morpheme units and remove any non-
surface morphemes for Turkish-English translation. 
Ataman et al. (2017) propose a vocabulary 
reduction method that considers the morphological 
properties of the agglutinative language, which is 
based on the unsupervised morphology learning. 
This work takes inspiration from our previously 
proposed segmentation method (Pan et al., 2020) 
that segments the word into a sequence of sub-
word units with morpheme structure, which can 
effectively reduce language complexity. 

3 Multi-Task Neural Model 

3.1 Overview 

We propose a multi-task neural model for machine 
translation from and into a low-resource and 
morphologically-rich agglutinative language. We 
train the model to jointly learn to perform both the 
bi-directional translation task and the stemming 
task on an agglutinative language by using the 
standard NMT framework. Moreover, we add an 
artificial token before each source sentence to 
specify the desired target outputs for different tasks. 
The architecture of the proposed model is shown in 
Figure 1. We take the Turkish-English translation 
task as example. The “<MT>” token denotes the 
bilingual translation task and the “<ST>” token 
denotes the stemming task on Turkish sentence. 

3.2 Neural Machine Translation (NMT) 

Our proposed multi-task neural model on using the 
source-side monolingual data for agglutinative 
language translation task can be applied in any 
NMT structures with encoder-decoder framework. 
In this work, we follow the NMT model proposed 
by Vaswani et al. (2017), which is implemented as 
Transformer. We will briefly summarize it here. 
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Task Data # Sent # Src # Trg 
Tr-En train 355,251 6,356,767 8,021,161 

valid 2,455 37,153 52,125 
test 4,962 69,006 96,291 

Uy-
Ch 

train 333,097 6,026,953 5,748,298 
valid 700 17,821 17,085 
test 1,000 20,580 18,179 

Table 1:  The statistics of the training, validation, and 
test datasets on Turkish-English and Uyghur-Chinese 
machine translation tasks. The “# Src” denotes the 
number of the source tokens, and the “# Trg” denotes 
the numbers of the target tokens. 

bir dilin son hecelerini kendisiyle birlikte mezara
Morpheme Segmentation

hece+ler+i+ni

hece+lerini

he@@+ce@@+lerini
Apply BPE on Stem

Stem+Combined Suffix

 
Figure 2: The example of morphological segmentation 
method for the word in Turkish. 

Firstly, the Transformer model maps the source 
sequence 𝒙 = (𝑥ଵ,… , 𝑥௠) and the target sentence 
𝒚 = (𝑦ଵ,… , 𝑦௡)  into a word embedding matrix, 
respectively. Secondly, in order to make use of the 
word order in the sequence, the above word 
embedding matrices sum with their positional 
encoding matrices to generate the source-side and 
target-side positional embedding matrices. The 
encoder is composed of a stack of N identical 
layers. Each layer has two sub-layers consisting of 
the multi-head self-attention and the fully 
connected feed-forward network, which maps the 
source-side positional embedding matrix into a 
representation vector. 

The decoder is also composed of a stack of N 
identical layers. Each layer has three sub-layers: 
the multi-head self-attention, the multi-head 
attention, and the fully connected feed-forward 
network. The multi-head attention attends to the 
outputs of the encoder and decoder to generate a 
context vector. The feed-forward network followed 
by a linear layer maps the context vector into a 
vector with the original space dimension. Finally, 
the softmax function is applied on the vector to 
predict the target word sequence. 

                                                           
1 https://wit3.fbk.eu/archive/2018-01/additional_TED_xml/ 
2 http://data.statmt.org/wmt18/translation-task/ 
3 http://uy.ts.cn/ 

4 Experiment 

4.1 Dataset 

The statistics of the training, validation, and test 
datasets on Turkish-English and Uyghur-Chinese 
machine translation tasks are shown in Table 1. 

For the Turkish-English machine translation, 
following (Sennrich et al., 2015a), we use the WIT 
corpus (Cettolo et al., 2012) and the SETimes 
corpus (Tyers and Alperen, 2010) as the training 
dataset, merge the dev2010 and tst2010 as the 
validation dataset, and use tst2011, tst2012, tst2013, 
tst2014 from the IWSLT as the test datasets. We 
also use the talks data from the IWSLT evaluation 
campaign1 in 2018 and the news data from News 
Crawl corpora2  in 2017 as external monolingual 
data for the stemming task on Turkish sentences. 

For the Uyghur-Chinese machine translation, we 
use the news data from the China Workshop on 
Machine Translation in 2017 (CWMT2017) as the 
training dataset and validation dataset, use the 
news data from CWMT2015 as the test dataset. 
Each Uyghur sentence has four Chinese reference 
sentences. Moreover, we use the news data from 
the Tianshan website3 as external monolingual data 
for the stemming task on Uyghur sentences. 

4.2 Data Preprocessing 

We normalize and tokenize the experimental data. 
We utilize the jieba toolkit4 to segment the Chinese 
sentences, we utilize the Zemberek toolkit5  with 
morphological disambiguation (Sak et al., 2007) 
and the morphological analysis tool (Tursun et al., 
2016) to annotate the morpheme structure of the 
words in Turkish and Uyghur, respectively. 

We use our previously proposed morphological 
segmentation method (Pan et al., 2020), which 
segments the word into smaller subword units with 
morpheme structure. Since Turkish and Uyghur 
only have a few prefixes, we combine the prefixes 
with stem into the stem unit. As shown in Figure 2, 
the morpheme structure of the Turkish word 
“hecelerini” (syllables) is: hece + lerini. Then the 
byte pair encoding (BPE) technique (Sennrich et 
al., 2015b) is applied on the stem unit “hece” to 
segment it into “he@@” and “ce@@”. Thus the 
Turkish word is segmented into a sequence of sub-
word units: he@@ + ce@@ + lerini. 

4 https://github.com/fxsjy/jieba 
5 https://github.com/ahmetaa/zemberek-nlp 
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Task Training Sentence Samples 
En-Tr 
Translation 

<MT> We go through initiation 
rit@@ es. 
Başla@@ ma ritüel@@ lerini 
yaş@@ ıyoruz. 

Tr-En 
Translation 

<MT> Başla@@ ma ritüel@@ 
lerini yaş@@ ıyoruz. 
We go through initiation rit@@ es. 

Turkish 
Stemming 

<ST> Başla@@ ma ritüel@@ lerini 
yaş@@ ıyoruz. 
Başla@@ ritüel@@ yaş@@ 

Table 2:  The training sentence samples for multi-task 
neural model on Turkish-English machine translation 
task. We add “<MT>” and “<ST>” before each source 
sentence to specify the desired target outputs for 
different tasks. 

Lang Method # Merge Vocab Avg.Len 
Tr Morph 15K 36,468 28 
Tr BPE 36K 36,040 22 
En BPE 32K 31,306 25 
Uy Morph 10K 38,164 28 
Uy BPE 38K 38,292 21 
Ch BPE 32K 40,835 19 

Table 3:  The detailed statistics of using different word 
segmentation methods on Turkish, English, Uyghur, 
and Chinese. 

In this paper, we utilize the above morphological 
segmentation method for our experiments by 
applying BPE on the stem units with 15K merge 
operations for the Turkish words and 10K merge 
operations for the Uyghur words. The standard 
NMT model trained on this experimental data is 
denoted as “baseline NMT model”. Moreover, we 
employ BPE to segment the words in English and 
Chinese by learning separate vocabulary with 32K 
merge operations. Table 2 shows the training 
sentence samples for multi-task neural model on 
Turkish-English machine translation task. 

In addition, to certify the effectiveness of the 
morphological segmentation method, we employ 
the pure BPE to segment the words in Turkish and 
Uyghur by learning a separate vocabulary with 
36K and 38K merge operations, respectively. The 
standard NMT model trained on this experimental 
data is denoted as “general NMT model”. Table 3 
shows the detailed statistics of using different word 
segmentation methods on Turkish, English, 
Uyghur, and Chinese. The “Vocab” token denotes 
the vocabulary size after data preprocessing. The 
“Avg.Len” token denotes the average sentence 
length. 

4.3 Training and Evaluation Details 

We employ the Transformer model implemented in 
the Sockeye toolkit (Hieber et al., 2017). The 
number of layer in both the encoder and decoder is 
set to N=6, the number of head is set to 8, and the 
number of hidden unit in the feed-forward network 
is set to 1024. We use an embedding size of both 
the source and target words of 512 dimension, and 
use a batch size of 128 sentences. The maximum 
sentence length is set to 100 tokens with 0.1 label 
smoothing. We apply layer normalization and add 
dropout to the embedding and transformer layers 
with 0.1 probability. Moreover, we use the Adam 
optimizer (Kingma and Ba, 2015) with an initial 
learning rate of 0.0002, and save the checkpoint 
every 1500 updates. 

Model training process stops after 8 checkpoints 
without improvements on the validation perplexity. 
Following Niu et al. (2018a), we select the 4 best 
checkpoint based on the validation perplexity 
values and combine them in a linear ensemble for 
decoding. Decoding is performed by using beam 
search with a beam size of 5. We evaluate the 
machine translation performance by using the 
case-sensitive BLEU score (Papineni et al., 2002) 
with standard tokenization. 

4.4 Neural Translation Models 

In this paper, we select 4 neural translation models 
for comparison. More details about the models are 
shown below: 
General NMT Model: The standard NMT model 
trained on the experimental data segmented by 
BPE. 
Baseline NMT Model: The standard NMT model 
trained on the experimental data segmented by 
morphological segmentation. The following 
models also use this word segmentation method. 
Bi-Directional NMT Model: Following Niu et al. 
(2018b), we train a single NMT model to perform 
bi-directional machine translation. We concatenate 
the bilingual parallel sentences in both directions. 
Since the source and target sentences come from 
the same language pairs, we share the source and 
target vocabulary, and tie their word embedding 
during model training. 
Multi-Task Neural Model: We simply use the 
monolingual data of the agglutinative language 
from the bilingual parallel sentences. We use a joint 
vocabulary, tie the word embedding as well as the 
output layer’s weight matrix. 

106



 
 

5 
 
 

Task Model tst11 tst12 tst13 tst14 
Tr-
En 

general 25.92 26.55 27.34 26.35 
baseline 26.48 27.02 27.91 26.33 

En-
Tr 

general 13.73 14.68 13.84 14.65 
baseline 14.85 15.93 15.45 15.93 

Table 4:  The BLEU scores of the general NMT model 
and baseline NMT model on the machine translation 
task between Turkish and English. 

Task Model tst11 tst12 tst13 tst14 
Tr-
En 

baseline 26.48 27.02 27.91 26.33 
bi-
directional 

26.21 27.17 28.68 26.90 

multi-task 26.82 27.96 29.16 27.98 
En-
Tr 

baseline 14.85 15.93 15.45 15.93 
bi-
directional 

15.08 16.20 16.25 16.56 

multi-task 15.65 17.10 16.35 16.41 

Table 5:  The BLEU scores of the baseline NMT model, 
bi-directional NMT model, and multi-task neural 
model on the machine translation task between Turkish 
and English. 

5 Results and Discussion 

Table 4 shows the BLEU scores of the general 
NMT model and baseline NMT model on machine 
translation task. We can observe that the baseline 
NMT model is comparable to the general NMT 
model, and it achieves the highest BLEU scores on 
almost all the test datasets in both directions, which 
indicates that the NMT baseline based on our 
proposed segmentation method is competitive. 

5.1 Using Original Monolingual Data 

Table 5 shows the BLEU scores of the baseline 
NMT model, bi-directional NMT model, and 
multi-task neural model on the machine translation 
task between Turkish and English. The table shows 
that the multi-task neural model outperforms both 
the baseline NMT model and bi-directional NMT 
model, and it achieves the highest BLEU scores on 
almost all the test datasets in both directions, which 
suggests that the multi-task neural model is capable 
of improving the bi-directional translation quality 
on agglutinative languages. The main reason is that 
compared with the bi-directional NMT model, our 
proposed multi-task neural model additionally 
employs the stemming task for the agglutinative 
language, which is effective for the NMT model to 
learn both the source-side semantic information 
and the target-side language modeling. 

 
Figure 3: The function of epochs (x-axis) and perplexity 
(y-axis) values on the validation dataset in different 
neural translation models for the translation task. 

Translation Examples 
source üniversite hayatı taklit ediyordu. 
reference College was imitating life. 
baseline It was emulating a university life. 
bi-
directional 

The university was emulating its 
lives. 

multi-task The university was imitating life. 

Table 6:  A translation example for the different NMT 
models on Turkish-English. 

The function of epochs and perplexity values on 
the validation dataset in different neural translation 
models are shown in Figure 3. We can see that the 
perplexity values are consistently lower on the 
multi-task neural model, and it converges rapidly. 

Table 6 shows a translation example for the 
different models on Turkish-English. We can see 
that the translation result of the multi-task neural 
model is more accurate. The Turkish word “taklit” 
means “imitate” in English, both the baseline NMT 
and bi-directional NMT translate it into a synonym 
“emulate”. However, they are not able to express 
the meaning of the sentence correctly. The main 
reason is that the auxiliary task of stemming forces 
the proposed model to focus more strongly on the 
core meaning of each word (or stem), therefore 
helping the model make the correct lexical choices 
and capture the in-depth semantic information. 

5.2 Using External Monolingual Data 

Moreover, we evaluate the multi-task neural model 
on using external monolingual data for Turkish 
stemming task. We employ the parallel sentences 
and the monolingual data in a 1-1 ratio, and shuffle 
them randomly before each training epoch. More 
details about the data are shown below: 
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Task Data tst11 tst12 tst13 tst14 
Tr-En original 26.82 27.96 29.16 27.98 

talks 26.55 27.94 29.13 28.02 
news 26.47 28.18 28.89 27.40 
mixed 26.60 27.93 29.58 27.32 

En-Tr original 15.65 17.10 16.35 16.41 
talks 15.57 16.97 16.22 16.91 
news 15.67 17.19 16.26 16.69 
mixed 15.96 17.35 16.55 16.89 

Table 7:  The BLEU scores of the multi-task neural 
model on using external monolingual data of talks data, 
news data, and mixed data. 

Task Model BLEU 
Uy-Ch general NMT model 35.12 

baseline NMT model 35.46 
multi-task neural model with 
external monolingual data 

36.47 

Ch-Uy general NMT model 21.00 
baseline NMT model 21.57 
multi-task neural model with 
external monolingual data 

23.02 

Table 8:  The BLEU scores of the general NMT model, 
baseline NMT model, and the multi-task neural model 
with external monolingual data on Uyghur-Chinese 
and Chinese-Uyghur machine translation tasks. 

Original Data: The monolingual data comes from 
the original bilingual parallel sentences. 
Talks Data: The monolingual data contains talks. 
News Data: The monolingual data contains news. 
Talks and News Mixed Data: The monolingual 
data contains talks and news in a 3:4 ratio as the 
same with the original bilingual parallel sentences. 

Table 7 shows the BLEU scores of the proposed 
multi-task neural model on using different external 
monolingual data. We can see that there is no 
obvious difference on Turkish-English translation 
performance by using different monolingual data, 
whether the data is in-domain or out-of-domain to 
the test dataset. However, for the English-Turkish 
machine translation task, which can be seen as 
agglutinative language generation task, using the 
mixed data of talks and news achieves further 
improvements of the BLEU scores on almost all 
the test datasets. The main reason is that the 
proposed multi-task neural model incorporates 
many morphological and linguistic information of 
Turkish rather than that of English, which mainly 
pays attention to the source-side representation 
ability on agglutinative languages rather than the 
target-side language modeling. 

We also evaluate the translation performance of 
the general NMT model, baseline NMT model, and 
multi-task neural model with external news data on 
the machine translation task between Uyghur and 
Chinese. The experimental results are shown in 
Table 8. The results indicate that the multi-task 
neural model achieves the highest BLEU scores on 
the test dataset by utilizing external monolingual 
data for the stemming task on Uyghur sentences. 

6 Conclusions 

In this paper, we propose a multi-task neural model 
for translation task from and into a low-resource 
and morphologically-rich agglutinative language. 
The model jointly learns to perform bi-directional 
translation and agglutinative language stemming 
by utilizing the shared encoder and decoder under 
standard NMT framework. Extensive experimental 
results show that the proposed model is beneficial 
for the agglutinative language machine translation, 
and only a small amount of the agglutinative data 
can improve the translation performance in both 
directions. Moreover, the proposed approach with 
external monolingual data is more useful for 
translating into the agglutinative language, which 
achieves an improvement of +1.42 BLEU points 
for translation from English into Turkish and +1.45 
BLEU points from Chinese into Uyghur. 

In future work, we plan to utilize other word 
segmentation methods for model training. We also 
plan to combine the proposed multi-task neural 
model with back-translation method to enhance the 
ability of the NMT model on target-side language 
modeling. 
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Abstract

Recently, state-of-the-art NLP models gained
an increasing syntactic and semantic under-
standing of language, and explanation meth-
ods are crucial to understand their decisions.
Occlusion is a well established method that
provides explanations on discrete language
data, e.g. by removing a language unit from an
input and measuring the impact on a model’s
decision. We argue that current occlusion-
based methods often produce invalid or syntac-
tically incorrect language data, neglecting the
improved abilities of recent NLP models. Fur-
thermore, gradient-based explanation methods
disregard the discrete distribution of data in
NLP. Thus, we propose OLM: a novel expla-
nation method that combines occlusion and
language models to sample valid and syntac-
tically correct replacements with high likeli-
hood, given the context of the original input.
We lay out a theoretical foundation that alle-
viates these weaknesses of other explanation
methods in NLP and provide results that under-
line the importance of considering data likeli-
hood in occlusion-based explanation.1

1 Introduction

Explanation methods are a useful tool to analyze
and understand the decisions made by complex non-
linear models, e.g. neural networks. For example,
they can attribute relevance scores to input features
(e.g. word or sub-word units in NLP). Nevertheless,
explanation methods can be misleading (Adebayo
et al., 2018) and they need to be analyzed for their
well-foundedness.

Gradient-based methods provide explanations by
analyzing local infinitesimal changes to determine
the shape of a network’s function. The implicit
assumption is that the local shape of a function is

1Our experiments are available at https://github.
com/DFKI-NLP/OLM

Figure 1: Schematic display of data likelihood in NLP.
There are discrete inputs, i.e. combination of tokens,
with a data likelihood greater than zero. All other in-
puts in the embedding space have likelihood zero be-
cause they have no corresponding tokens. Occlusion
methods (green) create unlikely input. Gradient-based
explanation methods (red arrow) consider infinitesimal
changes to the input and thus data with no likelihood.

indicative or useful to calculate the relevance of an
input feature for a model’s prediction. In computer
vision, for example, infinitesimal changes to an
input image still produce another valid image and
the change in prediction is a valid tool to analyze
what led to it (e.g., Zintgraf et al., 2017). The same
applies to methods that analyze the function’s gradi-
ent at multiple points, such as Integrated Gradients
(Sundararajan et al., 2017).

In NLP, however, the input consists of natural
language, which is discrete, i.e., the data that has
positive likelihood is a discrete distribution (see
Figure 1). This means that local neighborhoods
need not be indicative of the model’s prediction be-
haviour and a model’s prediction function at points
with zero likelihood need not be relevant to the
model’s decision. Thus, we argue that black-box
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Method Relevances Max. value
OLM (ours) forced , familiar and thoroughly condescending . 0.76

OLM-S (ours) forced , familiar and thoroughly condescending . 0.47

Delete forced , familiar and thoroughly condescending . 1

UNK forced , familiar and thoroughly condescending . 0.35

Sensitivity Analysis forced , familiar and thoroughly condescending . 0.025

Gradient*Input forced , familiar and thoroughly condescending . 0.00011

Integrated Gradients forced , familiar and thoroughly condescending . 0.68

Table 1: Relevance scores of different gradient- and occlusion-based explanation methods for a sentence from
the SST-2 dataset, correctly classified as negative sentiment by RoBERTa. Red indicates an input token, with a
contribution to the true label (negative sentiment), blue indicates a detraction from the true label. Coloring are
normalized for each method for visibility, the maximum value of each method is indicated in the last column. The
relevances of the first four and last method can be interpreted as prediction difference if that token is missing
(see Sensitivity-1 in 2.1). The first token “forced” only has high relevance for our methods, the most commonly
resampled tokens can be found in Table 2. Punctuation marks have less relevance than words for our method
compared to gradient methods.

models in NLP should be analyzed only at inputs
of non-zero likelihood and explanation methods
should not rely on gradients.

Occlusion is a well suited method due to its abil-
ity to produce explanations on data with discrete
likelihood. For example, by replacing or deleting a
language unit in the original input and measuring
the impact on the model’s prediction. However, the
likelihood of the replacement data is usually low.
Consider, for example, a sentiment classification
task and assume a model that assigns syntactically
incorrect inputs a negative sentiment. It correctly
predicts “It ’s a masterpiece .” as positive, but as-
signs negative sentiment to syntactically incorrect
inputs produced by occlusion, e.g. “It ’s a .” or

“It ’s a <UNK> .”, which have low data likelihood
(see Figure 1). This may result in a large prediction
difference for many tokens in a positive sentiment
example and no prediction difference for many to-
kens in a negative sentiment example (see Table 1),
independent of whether they carry any sentiment
information and thus may be relevant to the model.
This example shows that the relevance attributed
by current occlusion-based methods may depend
solely on the model’s syntactic understanding in-
stead of the input feature’s information regarding
the task.

We argue that current NLP state-of-the-art mod-
els have increasing syntactic (Hewitt and Manning,
2019) and hierarchical (Liu et al., 2019a) under-
standing. Therefore, methods that explain these

models should consider syntactically correct re-
placement that is likely given the unit’s context,
e.g. in Figure 1 “classic” or “failure” as replace-
ments for “masterpiece” in “It ’s a masterpiece .”
Our experiments show that presenting these models
with perturbed ungrammatical input changes the
explanations.

1.1 Contributions
• We present OLM, a novel black-box relevance

explanation method which considers syntactic
understanding. It is suitable for any model that
performs an NLP classification task and we an-
alyze which axioms for explanation methods it
fulfills.

• We introduce the class zero-sum axiom for ex-
planation methods.

• We experimentally compare the relevances pro-
duced by our method to those of other black-box
and gradient-based explanation approaches.

2 Methods

In this section, we introduce our novel explana-
tion method that combines occlusion with language
modeling. Instead of deleting or replacing a linguis-
tic unit in the input with an unlikely replacement,
OLM substitutes it with one generated by a lan-
guage model. This produces a contextualized dis-
tribution of valid and syntactically likely reference
inputs and allows a more faithful analysis of mod-
els with increasing syntactic capabilities. This is
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followed by an axiomatic analysis of OLM’s prop-
erties. Finally, we introduce OLM-S, an extension
that measures sensitivity of a model at a feature’s
position.

For our approach we employ the difference of
probabilities formula from Robnik-Šikonja and
Kononenko (2008). Let xi be an attribute of in-
put x and x\i the incomplete input without this
attribute. Then the relevance r given the prediction
function f and class c is

rf,c(xi) = fc(x)� fc(x\i). (1)

Note that fc(x\i) is not accurately defined and
needs to be approximated, as x\i is an incomplete
input. For vision, Zintgraf et al. (2017) approxi-
mate fc(x\i) by using the input data distribution
pdata to sample x̂i independently of x or use a
Gaussian distribution for x̂i conditioned on sur-
rounding pixels. We argue sampling should be
conditioned on the whole input and depend on the
probability of the data distribution. We argue that
in NLP a language model pLM generates input that
is as natural as possible for the model and thus
approximate

fc(x\i) ⇡
X

x̂i

pLM (x̂i|x\i)fc(x\i, x̂i). (2)

In general, xi should be units of interest such as
phrases, words or subword tokens. Thus, OLM’s
relevance for a language unit is the difference in
prediction between the original input and inputs
with the unit resampled by conditioning on infor-
mation in its context. The relevance of every lan-
guage unit is in the interval [�1, 1], with the sign
indicating contradiction or support, and can be in-
terpreted as the value of information added by the
unit for the model.

2.1 Axiomatic Analysis
Sundararajan et al. (2017) introduced axiomatic
development and analysis of explanation meth-
ods. We follow their argument that an explanation
method should be derived theoretically, not experi-
mentally, as we want to analyze a model, not our
understanding of it. First, we introduce a new ax-
iom. Then we discuss which existing axioms our
method fulfills.2

Class Zero-Sum Axiom. We introduce an ax-
iom that follows from the intuition that for a nor-
malized DNN every input feature contributes as

2Proofs for the following analysis can be found in Ap-
pendix A.

token freq. pred. token freq. pred.
familiar 9 1 old 2 1
warm 4 7e-4 perfect 2 3.9e-4
ancient 3 0.074 quiet 2 1
cold 3 1 real 2 6.5e-3
beautiful 2 1.4e-4 sweet 2 1.9e-4
bold 2 0.63 wonderful 2 3.1e-4
low 2 1 yes 2 1
nice 2 8.3e-4 young 2 0.99

Table 2: Most frequently resampled words for “forced”
in “forced , familiar and thoroughly condescending .”
from Table 1. The last column indicates the prediction
of the negative sentiment neuron, which is the true la-
bel. We sample 100 times per token, the prediction
is rounded to two significant digits. Many resampled
words (pred. < 0.5) lead to a positive sentiment classi-
fication. The high variance of the model prediction for
replacements of this token is not captured by another
method.

much to a specific class as it detracts from all other
classes. Let f be a prediction function where the
output is normalized over all classes C. Every
input feature contributes as much to the classifi-
cation of a specific class as it detracts from other
classes. A relevance method that gives a feature
positive relevance for every class is not helpful in
understanding the model. An explanation method
satisfies Class Zero-Sum if the summed relevance
of each input feature xi over all classes is zero.

X

c2C

rf,c(xi) = 0 (3)

This axiom can be seen as an alternative to the
Completeness axiom given by Bach et al. (2015).
Completeness states that the sum of the relevances
of an input is equal to its prediction. They can not
be fulfilled simultaneously. Gosiewska and Biecek
(2019) show that a linear distribution of relevance
as with Completeness is not necessarily desirable
for non-linear models. They argue that explana-
tions that force the sum of relevances to be equal
to the prediction do not capture the interaction of
features faithfully. OLM fulfills Class Zero-Sum, as
do other occlusion methods and gradient methods.
Other axioms OLM fulfills are:

Implementation Invariance. Two neural net-
works that represent the same function, i.e. give the
same output for each possible input, should receive
the same relevances for every input (Sundararajan
et al., 2017).

Linearity. A network, which is a linear com-
bination of other networks, should have explana-
tions which are the same linear combination of the

113



original networks explanations (Sundararajan et al.,
2017).

Sensitivity-1. The relevance of an input variable
should be the difference of prediction when the
input variable is occluded (Ancona et al., 2018).

2.2 OLM-S
From our approach we can also deduce a method
that describes the sensitivity of the classification
at the position of an input feature. To this end,
we compute the standard deviation of the language
model predictions.

sf,c(xi) =

sX

x̂i

pLM (x̂i|x\i)
�
fc(x\i, x̂i)� µ

�2
,

(4)
where µ is the mean value from equation 2. We
call this OLM-S(ensitivity). Note that this measure
is independent of xi and only describes the sen-
sitivity of the feature’s position. This means that
it measures a model’s sensitivity at a given lan-
guage unit’s position given the context. OLM and
OLM-S are thus using mean and standard deviation,
respectively, of the prediction when resampling a
token.

3 Experiments

In our experiments, we aim to answer the following
question: Do relevances produced by our method
differ from those that either ignore the discrete
structure of language data or produce syntactically
incorrect input, and if so, how?

We first train a state-of-the-art NLP model
(RoBERTa, Liu et al., 2019b) on three sentence
classification tasks (Section 3.2). We then compare
the explanations produced by OLM and OLM-S to
five occlusion and gradient-based methods (Sec-
tion 3.1). To this end, we calculate the relevances
of words over a whole input regarding the true label.
We calculate the Pearson correlation coefficients
of these relevances for every sentence and average
this over the whole development set of each task. In
our experiments we use BERT base (Devlin et al.,
2019) for OLM resampling.

3.1 Baseline Methods
We compare OLM with occlusion (Robnik-Šikonja
and Kononenko, 2008; Zintgraf et al., 2017) in
two variants. One method of occlusion is deletion
of the word. The other method is replacing the
word with the <UNK> token for unknown words.

These methods can produce ungrammatical input,
as we argue in Section 1.

Furthermore, we compare with the following
gradient-based methods. Sensitivity Analysis (Si-
monyan et al., 2013) is the absolute value of the
gradient. Gradient*Input (Shrikumar et al., 2016)
is simple component-wise multiplication of an in-
put with its gradient. Integrated Gradients (Sun-
dararajan et al., 2017) integrate the gradients from
a reference input to the current input. As these
gradient-based methods provide relevance for ev-
ery word vector value, we sum up all vector values
belonging to a word. Gradient-based methods do
not consider likelihood in NLP (see Section 1) and
are thus also merely a comparison and not a gold
standard.

3.2 Tasks

We select a representative set of NLP sentence clas-
sification tasks that focus on different aspects of
context and linguistic properties:

MNLI (matched) The Multi-Genre Natural
Language Inference Corpus (Williams et al., 2018)
contains 400k pairs of premise and hypothesis sen-
tences and the task is to predict whether the premise
entails the hypothesis. We re-use the RoBERTa
large model fine-tuned on MNLI (Liu et al., 2019b),
with a dev set accuracy of 90.2.

SST-2 The Stanford Sentiment Treebank
(Socher et al., 2013) contains 70k sentences labeled
with positive or negative sentiment. We fine-tune
the pre-trained RoBERTa base to the classification
task and achieve an accuracy of 94.5 on the dev set.

CoLA The Corpus of Linguistic Acceptability
(Warstadt et al., 2018) contains 10k sentences la-
beled as grammatical or ungrammatical, e.g. ‘They
can sing.’ (acceptable) vs. ‘many evidence was
provided.’ (unacceptable). Similar to SST-2, we
fine-tune RoBERTa base to the task and achieve a
Matthew’s corr. of 61.3 on the dev set.

3.3 Results

Table 3 shows the correlation of our two proposed
occlusion methods (OLM and OLM-S) with other
explanation methods on three NLP tasks. For
OLM-S we only report correlation to Sensitivity
because both inform about the magnitude of possi-
ble change. They both provide non-negative values
and therefore are not necessarily comparable to the
other methods. We find that across all tasks OLM
correlates the most with the two occlusion-based
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MNLI SST-2 CoLA
OLM OLM-S OLM OLM-S OLM OLM-S

Delete 0.60 - 0.52 - 0.25 -
UNK 0.58 - 0.47 - 0.21 -
Sensitivity Analysis 0.27 0.35 0.30 0.37 0.20 0.29
Gradient*Input -0.03 - 0.02 - 0.02 -
Integrated Gradients 0.28 - 0.35 - 0.15 -

Table 3: Correlation between explanation methods on MNLI, SST-2, and CoLA development sets. OLM correlates
with every method except for Gradient*Input. The correlation is highest with the other Occlusion methods for
MNLI and SST-2 but not close to 1. For all methods, the correlation is lowest on CoLA.

methods (Unk and Delete) but the overall corre-
lation is low, with a maximum of 0.6 on MNLI.
Also the level differs greatly between tasks, rang-
ing from 0.21 and 0.25 (Unk, Delete) on CoLA
to 0.58 and 0.6 on MNLI. As this is an average
of correlations, this shows that resampling creates
distinctive explanations that can not be approxi-
mated by other occlusion methods. An example
input from SST-2 can be found in Table 1, which
clearly highlights the difference in explanations.
Table 2 shows the corresponding tokens resampled
by OLM, using BERT base as the language model.
For gradient-based methods the correlation with
OLM is even lower, ranging from -0.03 for Gradi-
ent*Input on MNLI to 0.35 for Integrated Gradi-
ents on SST-2. For OLM-S we observe a correlation
between 0.29 (CoLA) and 0.35 (MNLI), which is
still low. Gradient*Input shows almost no corre-
lation to OLM across tasks. The overall low cor-
relation of gradient-based methods with OLM and
OLM-S suggests that ignoring the discrete structure
of language data might be problematic in NLP.

4 Related Work

There exist many other popular black-box expla-
nation methods for DNNs. SHAP (Lundberg and
Lee, 2017) is a framework that uses Shapley Values
which are a game-theoretic black-box approach to
determining relevance by occluding subsets of all
features. They do not necessarily consider the like-
lihood of data. The occlusion SHAP employs may
be combined with OLM but the approximation er-
ror of the language model could increase with more
features occluded. LIME (Ribeiro et al., 2016) ex-
plains by learning a local explainable model. LIME
tries to be locally faithful to a model, which is,
as we argue, not as important as likely data for
explanations in NLP.

There are also explanation methods for DNNs
which give layer-specific rules to retrieve relevance.
LRP (Bach et al., 2015) propagates relevance from
the output to the input such that Completeness is sat-
isfied for every layer. DeepLIFT (Shrikumar et al.,
2017) compares the activations of an input with
activations reference inputs. In contrast to OLM,
these layer-specific explanation methods have been
shown not to satisfy Implementation Invariance
(Sundararajan et al., 2017).

Most state-of-the-art models in NLP are trans-
formers which use attention. There is a discus-
sion on whether attention weights (Bahdanau et al.,
2015; Vaswani et al., 2017) should be considered
as explanation method in Jain and Wallace (2019)
and Wiegreffe and Pinter (2019). They are not
based on an axiomatic attribution of relevances.
It is unclear whether they satisfy any axiom. An
advantage to analyzing attention weights is that
attention weights naturally show what the model
does. Thus, even if they do not always provide a
faithful explanation, their analysis might be helpful
for a specific input.

5 Conclusion

We argue that current black-box and gradient-based
explanation methods do not yet consider the like-
lihood of data and present OLM, a novel expla-
nation method, which uses a language model to
resample occluded words. It is especially suited for
word-level relevance of sentence classification with
state-of-the-art NLP models. We also introduce the
Class Zero-Sum Axiom for explanation methods,
compare it with an existing axiom. Furthermore,
we show other axioms that OLM satisfies. We ar-
gue that with this more solid theoretical foundation
OLM can be regarded as an improvement over ex-
isting NLP classification explanation methods. In
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our experiments, we compare our methods to other
occlusion and gradient explanation methods. We
do not consider these experiments to be exhaustive.
Unfortunately, there is no general evaluation for
explanation methods.

We show that our method adds value by showing
distinctive results and better founded theory. A
practical difficulty of OLM is the approximation
with a language model. First, a language model
can create syntactically correct data, that does not
make sense for the task. Second, even state-of-
the-art language models do not always produce
syntactically correct data. However, we argue that
using a language model is a suitable way for finding
reference inputs.

In the future, we want to extend this method to
language features other than words. NLP tasks
with longer input are probably not very sensitive to
single word occlusion, which could be measured
with OLM-S.
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A Proof Appendix

Let f be a neural network that predicts a probability
distribution over classes C, i.e.

P
c2C fc(x) = 1.

Let x = (x1, ..., xn) be a input split into n input
features.

1. Class Zero-Sum and Completeness rule
each other out. Assume rf,c fulfills both, then we
have

nX

i=1

X

c2C

rf,c(xi) = 0 (5)

from Class Zero-Sum and

X

c2C

nX

i=1

rf,c(xi) = 1 (6)

from Completeness. Contradiction.
2. OLM satisfies Class Zero-Sum. Let rf,c

now be the OLM relevance method from equations
(1) and (2) in the paper.

X

c2C

rf,c(xi)

=

X

c2C

0

@fc(x)�
X

x̂i

pLM (x̂i|x\i)fc(x\i, x̂i)

1

A

=

X

c2C

fc(x)�
X

x̂i

pLM (x̂i|x\i)
X

c2C

fc(x\i, x̂i)

=1�

X

x̂i

pLM (x̂i|x\i) = 0.

(7)

3. OLM satisfies Implementation Invariance.
OLM is a black box method and only evaluates
the function of the neural network. Thus, it has to
satisfy Implementation Invariance.

4. OLM satisfies Sensitivity-1. OLM is defined
as an Occlusion method, so it necessarily gives the
difference of prediction when an input variable is
occluded.

5. OLM satisfies Linearity. Let f =Pn
j=1 ↵jgj be a linear combination of models.

Then we have

rf,c(xi) =fc(x)�
X

x̂i

pLM (x̂i|x\i)fc(x\i, x̂i)

=

nX

j=1

↵jg
j
c(x)�

X

x̂i

pLM (x̂i|x\i)
nX

j=1

↵jg
j
c(x\i, x̂i)

=

nX

j=1

↵jrgj ,c(xi).

(8)
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Abstract
Current models of dialogue mainly focus on
utterances within a topically coherent dis-
course segment, rather than new-topic utter-
ances (NTUs), which begin a new topic not
correlating with the content of prior discourse.
As a result, these models may sufficiently ac-
count for discourse context of task-oriented
but not social conversations. We conduct a
pilot annotation study of NTUs as a first step
towards a model capable of rationalizing con-
versational coherence in social talk. We start
with the naturally occurring social dialogues in
the Disco-SPICE corpus, annotated with dis-
course relations in the Penn Discourse Tree-
bank (PDTB) and Cognitive approach to Co-
herence Relations (CCR) frameworks. We
first annotate content-based coherence rela-
tions that are not available in Disco-SPICE,
and then heuristically identify NTUs, which
lack a coherence relation to prior discourse.
Based on the interaction between NTUs and
their discourse context, we construct a clas-
sification for NTUs that actually convey cer-
tain non-topical coherence in social talk. This
classification introduces new sequence-based
social intents that traditional taxonomies of
speech acts do not capture. The new find-
ings advocates the development of a Bayesian
game-theoretic model for social talk.1

1 Introduction and Background
Social talk or casual conversation, one of the most
popular instances of spontaneous discourse, is com-
monly defined as the speech event type in which
“all participants have the same role: to be “equals;”
no purposes are pre-established; and the range of
possible topics is open-ended, although convention-
ally constrained” (Scha et al., 1986). Even though
we do not establish any purposes in terms of infor-
mation exchange or practical tasks, we do share

1The live version of this publication is located at
https://osf.io/nvtkq/.

certain social goal from the back of our mind when
deciding to engage in a casual conversation. This
work rests upon the assumption that casual con-
versations can be modeled as goal-directed ratio-
nal interactions, similar to task-oriented conversa-
tions, and therefore both of these types demonstrate
Grice’s Cooperative Principle, i.e. conversational
moves are constrained by “a common purpose or
set of purposes, or at least a mutually accepted di-
rection” which “may be fixed from the start” or
“evolve during the exchange”, “may be fairly defi-
nite” or “so indefinite as to leave very considerable
latitude to the participant” (Grice, 1975). A similar
assumption is made in Grosz and Sidner (1986)’s
discourse structure framework as it affirms the pri-
mary role of speakers’ intentions in “explaining
discourse structure, defining discourse coherence,
and providing a coherent conceptualization of the
term “discourse” itself.” We adopt the following
terminology from Grosz and Sidner (1986):

• utterances – basic discourse units.
• discourse segments – functional sequences of

naturally aggregated utterances (not necessar-
ily consecutive), each corresponding to a dis-
course segment purpose (DSP) – an extension
of Gricean utterance-level intentions.

To account for conversational coherence, cur-
rent models2 of dialogue mainly focus on utter-
ances within a topically coherent discourse seg-
ment, rather than new-topic utterances (NTUs),
which begin a new topic not linguistically3 cor-
relating with the content of prior discourse. For
example, the excerpt shown in Table 1 has two
NTUs, utterances 119 and 123.

In terms of theoretical models, Asher and Las-

2Here we only consider the dialogue models that involve
symbolic representation of discourse context (in comparison
with, for example, end-to-end trained neural dialogue models).

3“Linguistically” means “via linguistic calculation at the
meaning levels such as semantic or pragmatic.”
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Utt. Simplified transcript
104-B And what ’s the story with them
105-B Are they still separated
106-A Yes still separated
107-A And Mummy was going she can’t

have children
108-A Why Mummy it ’s not her fault she

can’t have children
109-A If he love her they could adopt
110-A If he really wanted children of his

own they [unclear speech]
111-B I know
112-B Sure he ’s what forty odd five
113-B Isn’t he
114-A Aye
115-B Fucking hell
116-B
...

If he really wanted children
he could ’ve had them long ago

117-A That ’s what I say
118-B So uhm
119-A Uh uh hold on
120-A [unclear speech]
121-A Think my mobile ’s about to go
122-A Ah it ’s only John
123-A Alright so how was your day
124-B Not bad

Table 1: An except, with indexed utterances, from di-
alogue P1A-095 in the SPICE-Ireland corpus (Kallen
and Kirk, 2012) between two interlocutors A and B.

carides (2003)’s Segmented Discourse Represen-
tation Theory attributes conversational coherence
to the existence of rhetorical relations between
utterances, while Ginzburg (2012) and (Roberts,
1996/2012) propose that a conversational move
is coherent if it is relevant to the Question Un-
der Discussion. Computational models such as
Belief-Desire-Intention (Allen, 1995, chapter 17)
and Information State Update (Larsson and Traum,
2000) assume coherence to be a natural property
of dialogues within a specific task domain. These
models, both theoretical and computational, may
adequately account for discourse dynamics of task-
oriented conversations, where adjacent utterances
tend to share a lot of linguistic material and speak-
ers’ intents are drawn from a narrow set of task-
related goals. However, without any enrichment,
they are not capable of handling the complexity of
conversational coherence in social talk in which
both speaker goals and utterances are less con-

strained. Specifically, all of these models treat
NTUs as incoherent conversational moves.

This work, therefore, seeks to identify the con-
straints on new topics in casual conversations as a
first step towards a model which is capable of ratio-
nalizing NTUs and accounting for conversational
coherence in social talk. The main contributions of
this paper are as follows. We introduce NTUs as a
novel research object that is capable of advancing
our understanding of the interactive and rational
aspects of social talk. We propose an annotation
strategy for exploring NTUs in naturally occurring
dialogues. A pilot annotation study of NTUs in a
significant amount of spoken conversation text led
us to amend the available taxonomies of speech
acts with new sequence-based social intents that
shed light on non-topical coherence in social talk.
These new findings feed into a framework for the
Bayesian game-theoretic models that are capable
of predicting the emergence of the newly identified
intents and accounting for conversational coher-
ence in social talk.

2 Methodology Overview

Before studying the interaction between NTUs and
their discourse context, we need to locate them
in instances of social talk. Riou (2015) handles a
similar task by annotating every turn-constructional
unit (TCU) in casual conversations with two topic-
related variables:

• topic transition vs. topic continuity.
• stepwise vs. disjunctive transition (Jefferson,

1984) if the TCU is annotated as a transition.
The TCUs triggering disjunctive transitions are

intentionally equivalent to NTUs and the corre-
sponding transitions can also be called disjunctive
topic changes4 (DTCs), i.e. conversational moves
whose linguistic representation is an NTU. To per-
form the annotation task in Riou (2015), the anno-
tators completely rely on their own intuition rather
than guidelines.5 This negatively affects annota-
tion reliability, especially for topic transition cases,
which are much less frequent in the studied data.

4Sharing Jefferson’s characterization of troubles-telling
exit devices in that the new topic “does not emerge from [prior
talk], is not topically coherent with it, but constitutes a break
from it” (Jefferson, 1984), and comparable to TOPIC-SHIFT
(Carlson and Marcu, 2001) in RST Discourse Treebank.

5This is because the author aims to investigate the lin-
guistic design of topic transitions and therefore cannot give
the annotators the linguistic description of these transitions.
Otherwise, she would face the risk of circularity in her study.
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To improve the reliability and rigor of NTU de-
tection, we approach the task reversely: we first an-
notate content-based coherence relations between
utterances and then identify NTUs as those utter-
ances that bear no coherence relation to the content
of prior discourse. This approach shares certain fea-
tures with the integration of new utterances in free
dialogues presented in Reichman (1978): if a new
utterance is not covered by the current conversa-
tional topic, the hearer can expand the current topic
to cover it, or connect its topic with the current
topic using a semantic relation from a predefined
set. This similarity reflects the following view of
discourse coherence: “[a discourse is] coherent
just in case (a) every proposition (and question and
request) that’s introduced in the discourse is rhetor-
ically connected to another bit of information in the
discourse, resulting in a ‘single’ connected struc-
ture for the whole discourse; and (b) all anaphoric
expressions can be resolved”; and therefore, “[a]
discourse is incoherent whenever there’s a propo-
sition introduced in the discourse which doesn’t
seem to be connected to any of the other bits of
the discourse in any meaningful way.” (Asher and
Lascarides, 2003, p. 4).

The main difference between Reichman (1978)’s
model of topic shift and our work is that the former
allows the total shift relation, the succeeding topic
of which is totally new, only when all of the preced-
ing topics have been exhausted and closed, while
we do not impose any constraints on the nature of
DTCs. We assume that interlocutors are coherent in
naturally occurring conversations (wherein incoher-
ent moves need convincing evidence). Analyzing
the coherence of a conversation, we put ourselves
in conversational participants’ shoes and rely on
our communicative competence to identify all pos-
sible DSPs that account for the relevance of each
conversational move. We are interested in the cases
where an identified DSP cannot be assigned to a
pre-existing coherence relation. We hypothesize
that the pre-existing coherence relations account
for topical coherence (i.e. talk-about), but not non-
topical coherence such as interactional coherence
(i.e. talk-that-does) (Clift, 2016, p.92).

3 Annotating Coherence Relations

We start with the casual telephone dialogues in
the Disco-SPICE corpus6 (Rehbein et al., 2016),

6This corpus is unique as it is publicly accessible, and
highly relevant to our work in that the discourse relations are

based on the SPICE-Ireland corpus7 (Kallen and
Kirk, 2012), in which discourse relations – triples
consisting of a discourse-level predicate and its two
arguments – are annotated with the CCR (Sanders
et al., 1992) and the early version of the PDTB
3.0 (Webber et al., 2016) schemes. We ignore the
CCR annotations in favour of the PDTB 3.0-based
annotation because the latter covers more discourse
relations in the corpus, including:

• explicit discourse relations between any two
discourse segments (whose predicate is an ex-
plicit discourse connective such as “because”
or “however”).

• implicit/AltLex relations between utterances
given by the same speaker (whose predicate is
not represented by an explicit discourse con-
nective but can be inferred or alternatively lex-
icalized by some non-connective expression,
respectively).8

• entity-based coherence relations (EntRel) be-
tween adjacent utterances given by the same
speaker (whose predicate is an abstract place-
holder linking two arguments that mention the
same entity).

In the excerpt shown in Table 1, utterances 104
and 105 are two arguments of an implicit relation
that can be realized by a connective “in particular”,
while 121 and 122 are the arguments of an entity-
based relation that is signaled by the pronoun “it”.

We enrich Disco-SPICE with SPICE-Ireland’s
original pragmatic annotation, consisting of Sear-
lean speech acts (Searle, 1976), prosody, and quo-
tatives among others. This information is helpful
in identifying, for example, the quote content, or
speech act query, i.e. asking for information, even
in declarative clauses.

We use the latest version of the PDTB 3.0 taxon-
omy of discourse relations (Webber et al., 2019),
and annotate the instances which are not covered
in the Disco-SPICE corpus, such as:

• implicit/AltLex discourse relations between
utterances given by different speakers.

• entity-based coherence relations between ad-
jacent utterances given by different speakers.

• entity-based coherence relations between non-
adjacent utterances.

annotated in a significant amount of spoken conversation text.
7This corpus can be obtained upon request to its directors.
8Here we make an assumption that the same annotation

strategy is applied to both implicit and AltLex discourse rela-
tions, since AltLex relations must first be identified as implicit
ones (Webber et al., 2016).
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Specifically, if a relation is not entity-based, it
will be labeled with a sense in the PDTB 3.0 sense
hierarchy. Annotators are encouraged to choose
the most fine-grained labels. For example, expan-
sion.equivalence is preferred over expansion for
an expansion.equivalence relation, although both
are acceptable. In total, there are 53 sense labels
available for explicit/implicit/AltLex discourse re-
lations.

We also enrich our repertory of content-based
coherence relations with additional semantic rela-
tions from ISO 24617-8 and ISO 24617-2, which
take care of the interactive nature of dialogue:

• functional dependence relations characteriz-
ing the semantic dependence between two di-
alogue acts due to their communicative func-
tions (cf. adjacency pairs in Conversation
Analysis)9, named after the first pair part:

– information-seeking: propositionalQ,
checkQ, setQ, choiceQ.

– directive: request, instruct, suggest.
– commissive: promise, offer.
– social obligation management: apology,

thanking, greeting, goodbye.
• feedback dependence relations connecting a

stretch of discourse and a response utterance
that provides or elicits information about the
success in processing that stretch.

• additional entity-based coherence relations re-
lating to other communicative functions such
as topic closing (as a discourse structuring
function) and completion (as a partner com-
munication management function).

In Table 1, utterances 105 and 106 are two argu-
ments of a propositionalQ functional dependence
relation, while 109 and 111 are the arguments of a
feedback relation.

It is worth noting that the argument order of
annotated coherence relations is chronological, i.e.
the second argument always appears after the first
argument in the conversational flow.

We aim at annotating coherence relations that
cover as many utterances as possible (rather than
exhaustively annotating every relation), adding
notes to the ones that are not very clear and there-
fore can be considered non-existent in the next step
– NTU identification. In case of multiple relations
available to the same pair of arguments, annotating
just one relation is sufficient. Table 2 shows the key

9Examples of adjacency pairs are greeting - greeting, ques-
tion - answer, request - grant/refuse, etc.

10 dialogues - 2,719 utterances
Inherited from Disco-SPICE:
1,273 coherence relations (158 entity-based)
Newly annotated:

1,870 coherence relations
implicit discourse relations 10
entity-based discourse relations 1,490
functional dependence relations 324
• information seeking 291
• directive 4
• commissive 1
• social obligation management 28
feedback dependence relations 487

Table 2: Statistics of coherence relation annotation.

statistics of the annotation in this work, performed
solely by the student author (see further details of
the annotation in Appendix A).

As seen in Table 2, the ratio of the coherence rela-
tions inherited from Disco-SPICE to the newly an-
notated ones is 1, 273/1, 870 ⇡ 2/3, which means
that using Disco-SPICE saves us a considerable por-
tion of annotation workload. While this efficiency
is optimal for a pilot study, it does not provide the
full picture of our proposed annotation task. We
plan to use this study’s annotation guidelines to
conduct a full-blown annotation project on the data
set10 composed by Riou (2015), aiming at (1) per-
forming in-depth empirical studies such as detailed
analyses of the distribution of annotated relations
and annotation disagreements, and (2) enriching
the linguistic resources for studying dialogue co-
herence. In addition, the results of this study can
serve as an assessment of the reliability of Riou
(2015)’s annotation methodology.

4 Identifying NTU Candidates

Based on both inherited and newly annotated re-
lations described in Section 3, excluding those re-
lations noted as “not very clear”, which account
for less than 3% of the newly annotated relations,
we heuristically identified 72 candidates for NTUs,
each of which is:

• not the first utterance of a dialogue,
• the first utterance token of the first argument

of some coherence relation,
10This data set includes 15-min extracts of 8 conversations

from the Santa Barbara Corpus of Spoken American English
(Du Bois et al., 2000). The advantage of this data set over
Disco-SPICE is that its audio files are publicly accessible,
which is invaluable for our annotation.
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• not part of 2nd argument of another relation,
• not in the dialogue span of another relation.

5 Identifying NTUs and Patterns of
DTCs

An NTU candidate identified in Section 4 is valid
only if there is no a content-based coherence rela-
tion with respect to prior discourse, which can be
missed or annotated as “not very clear” in Section
3. To separate genuine NTUs from other NTU can-
didates, we carry out a more detailed inspection.
Specifically, the following pieces of information
are further annotated for each NTU candidate:

• the immediately preceding topic.
• the current topic, its focused entity11, and its

information status, i.e. given-new w.r.t. dis-
course/hearer (Prince, 1992; Birner, 2006).

• the interlocutors involved in content, if any,
and their roles (speaker/hearer).

• the links between the current topic and:
– the pre-dialogue common ground.
– the utterance situation (time and space).
– the content of prior discourse.

We were able to single out 38 true cases of
NTUs, roughly 50% of NTU candidates, which
contain discourse-new topics and new focused en-
tities. Based on the annotated information about
the interaction between the NTUs and their dis-
course context, we identified the following patterns
of DTCs (see detailed examples in Appendix B):

• Grosz and Sidner (1986)’s true interruption.
• forgotten topic (when the speaker cannot ar-

ticulate the topic she intents to talk about).
• the first topic after greeting.
• goodbye-initialized topic (when saying good-

bye opens a new discussion thread).
• interlocutor-decentric move (from a topic fo-

cusing on one of the interlocutors).
• interlocutor-centric move:

– interlocutor-centric return (from a topic
not focusing on the interlocutors).

– interlocutor-centric switching (from a
topic focusing on one interlocutor to a
topic focusing on the other).

– urgent interlocutor-centric topic in extra-
linguistic utterance situation (when the
speaker suddenly prioritizes an urgent
topic related to one of the interlocutors).

11Inspired by the ideas of focus of attention and local co-
herence in Grosz et al. (1995).

– speaker-centric distraction (an off-track
topic focusing on the speaker).

– speaker-centric wrap-up (when the at-
tempt to wrap up the conversation opens
a new discussion thread).

– hearer-centric related topic (from a topic
not focusing on interlocutors).

• cushioning topic (from interlocutor-decentric
to interlocutor-centric) - topic immediately
relevant to an interlocutor’s life.

The presence of cushioning topics implies that
the speaker may plan, at least, “two steps ahead”,
including:

• the interpretation the hearer may have, and
• the potential of topic extension based on that

interpretation.
In addition, the patterns of goodbye-initialized

topic and speaker-centric wrap-up can elicit better
insight into the findings in Gilmartin et al. (2018)
about the extended leave-taking sequences.

6 Classifying NTUs

The patterns of DTCs identified in Section 5 (ex-
cept for Grosz and Sidner (1986)’s true interrup-
tion and the forgotten topic, covering 7 identified
instances of NTUs) show that non-topical coher-
ence, sustained or built by DTCs, is created via
sequential adjustment of the distances between the
active conversational topic and each interlocutor.
This adjustment seems to be constrained by the
relational work between the interlocutors, i.e. the
social aspect of the conversations, rather than the
content-based relevance.

Based on the interlocutors’ intents, a simple ver-
sion of the classification of NTUs in social dia-
logues, covering 31 identified instances of NTUs,
can be proposed as below:

• socially initialized topic (the first topic after
greeting) - 2 instances.

• topic merely motivated by changing social fo-
cus (urgent interlocutor-centric topic in extra-
linguistic utterance situation, speaker-centric
distraction) - 3 instances.

• topic merely motivated by changing the
degree of relevance of social domains
(interlocutor-decentric move, cushioning
topic, interlocutor-centric return) - 9 in-
stances.

• topic motivated by changing both social focus
and the degree of relevance of social domains
(generally embodied in the other patterns of
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DTCs) - 17 instances.
This classification introduces new sequence-

based social intents12 that traditional taxonomies
of speech acts do not capture as the social intents
proposed in these taxonomies, if any, do not demon-
strate the sequential dynamics of the relational
work between the interlocutors (e.g. ISO 24617-2’s
social obligation management functions, Klüwer
(2011)’s dialogue acts for social talk, or van der
Zwaan et al. (2012)’s social support categories).

These newly found intents, characterizing non-
topical coherence in social talk, convincingly
demonstrate social talk as a sophisticated form of
goal-directed rational interactions rather than a ran-
dom walk through loosely connected topics. This
shows real promise and new perspectives for re-
search in dialogue modeling. We hypothesize that
a workable dialogue model for social talk needs
to explicitly handle all of the key aspects of goal-
directed rational interactions.

7 Toward a Game-theoretic Model

To formally capture the interactive and rational
aspects of social conditioned language use in
conversation, recent work such as Iterated Best
Response (Franke, 2009), Rational Speech Act
(Frank and Goodman, 2012), and Social Meaning
Game (Burnett, 2019) pairs Lewis (1969/2002)’s
signaling games with the Bayesian approach to
speaker/listener reasoning. In essence, these mod-
els formalize Gricean inference by predicting:

Speaker behavior: the probability Ps(o|h,Cs)

that the speaker uses the observed linguistic value
o to convey hidden meaning h in the speaker’s
context model Cs is a function of Us(o, h, Cs)),
the utility of o in Cs given the speaker’s desire to
communicate h.

• Ps(o|h,Cs) / exp(↵⇥ Us(o, h, Cs))

(where ↵ is a normalizing constant)
Listener behavior: the probability Pl(h|o, Cl)

that the listener interprets the meaning of o as h in
the listener’s context model Cl depends on the prior
probability P (h) of the speaker having h in mind
(e.g. based on certain sociocultural convention)
and on the probability Ps(o|h,Cl) that the speaker
uses o to convey h in Cl, estimated by the listener.

• Pl(h|o, Cl) / P (h)⇥ Ps(o|h,Cl)

Based on this framework, we can develop a min-
imally workable model that accounts for the emer-

12These intents should be taken with the caveat concerning
the cross-cultural generalization about their validity.

gence of sequence-based social intents in marked
linguistic environments where NTUs occur (cf. Ac-
ton and Burnett (2019) for social meaning):

• Hidden: the speaker’s social intents.
• Observed: Topics chosen / topic transitions.
• Cost: content-based complexity of the topic

transitions (e.g. from the perspective of cog-
nitive processing).

• Utility: subtraction of the cost from the co-
herence measure (which reflects both types of
coherence: topical and non-topical).

However, this model design is not robust enough
to predict the emergence of the newly classified
sequence-based social intents due to the simplicity
of the utility function. Specifically, the forthright
division of labor between the cost and coherence
measure does not capture the real interactions be-
tween the components of these metric concepts,
such as multiple sociolinguistic dimensions of the
discourse context. We will address this challenge
in our further work.

8 Conclusion and Future Work

In this paper, we present a pilot annotation study13

as a first step towards a dialogue model which is
capable of rationalizing NTUs and conversational
coherence in social talk. Analyzing the interaction
between the identified NTUs and their discourse
context, we discover a set of patterns of DTCs, rep-
resented by the NTUs. Based on these patterns, we
propose a simple classification of NTUs in social
talk, yet introducing new sequence-based social
intents that traditional taxonomies of speech acts
do not capture. These intents not only adequately
account for non-topical coherence in social talk
but also convincingly demonstrate social talk as a
sophisticated form of goal-directed rational inter-
actions. We hypothesize that the Bayesian game-
theoretic framework, which explicitly models the
interactive and rational aspects of social interaction,
is a sensible architecture for handling social talk.

Next, we aim to develop an actionable Bayesian
game-theoretic model for social talk, focusing on
decomposing its utility function. Particularly, we
seek to learn from social interaction work such
as Stevanovic and Koski (2018) for designing the
goal-directedness aspect of the model.

13The annotation results can be accessible upon the evi-
dence of the possession of SPICE-Ireland corpus.
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A Coherence relation annotation in
practice

As the input data of this annotation task includes
different useful information layers, namely the
PDTB 3.0 discourse relations of Disco-SPICE and
pragmatic annotation of SPICE-Ireland, the FoLiA
format is selected for data representation because
this rich XML-based annotation format accommo-
dates multiple linguistic annotation types with arbi-
trary tagsets and is accompanied by FLAT, a mod-
ern web-based annotation tool whose user-interface
can show different linguistic annotation layers at
the same time (van Gompel et al., 2017). Specifi-
cally, each dialogue is a sequence of utterances, as
shown in Figure 1, each of which includes:

• the ‘speaker’ token (highlighted in green),
combining the dialogue ID and the speaker ID,
whose “Description” field contains SPICE-
Ireland pragmatic annotations (see Figure 3
for an example of an utterance annotated as
a directive, i.e. <dir>, and a complete into-
national unit, i.e. ended with %, whose final
token them is spoken in a rising tone, i.e. 2),

• the tokenized content, which may consist of:

– explicit discourse connectives or AltLex
expressions, i.e. non-connective expres-
sions which lexicalize the corresponding
discourse relations, (highlighted in vari-
ous colors).

– implicit discourse connective tokens (in
gray).

– real [None] tokens (in black), equiva-
lent to empty event tokens in the original
Disco-SPICE .xml file.

– hidden [None] tokens (in gray), place-
holders of EntRel discourse relations.
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Figure 2 shows that when a token is hovered
over, it is highlighted in black while its text turns
yellow, and its annotation layers are displayed in a
pop-up box.

Figure 3 shows that when a token is clicked, it
is highlighted in yellow, and its annotation layers
become editable in the Annotation Editor.

The annotation of one coherence relation is
treated as the annotation of one ‘connective’ en-
tity and two ‘argument’ chunks. Each ‘connective’
entity has its co-index with its ‘argument’ chunks
in its “Description” field. Figure 4 shows that the
‘connective’ entity in_particular has its co-index
72 with its ‘argument’ chunks, namely ARG1-72
and ARG2-72. This is an example of an implicit
relation inherited from Disco-SPICE.

Figures 5, 6 and 7 show several newly anno-
tated relations, namely propositionalQ, EntRel, and
feedback respectively. Notice that the ‘argument’
chunks only need associating with the ‘speaker’ to-
kens of the utterances containing the actual chunks.
To annotate a ‘connective’ entity that does not con-
nect to any real text token, we create a hidden token
[None] right before the ‘speaker’ token of the ‘2nd

argument’ chunk in the corresponding relation.

B Examples of DTCs

Table 3 displays the DTCs, corresponding to the
NTUs of the excerpt shown in Table 1. ICP and
OCP stand for initiating conversational participant
and other conversational participant(s) respectively
(Grosz and Sidner, 1986).
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Figure 1: FLAT-based representation of the excerpt shown in Table 1.

Utt. Preceding topic Current topic Involved CPs Topic change type
119 Jamie’s husband hav-

ing another woman
Reaction to an event in the utter-
ance situation - Discourse New

ICP (A) as the
speaker

Grosz and Sidner’s
true interruption

123 An event happening
in ICP’s place

New focused entity: OCP’s day
- Discourse New

OCP (B) as
the hearer

Hearer-centric re-
lated topic

Table 3: Examples of DTC patterns in the excerpt shown in Table 1.
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Figure 2: Quick access to the annotation of a token in FLAT.
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Figure 3: Annotation Editor for a token in FLAT.
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Figure 4: FLAT-based representation of a coherence relation inherited from Disco-SPICE.
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Figure 5: FLAT-based representation of a propositionalQ relation.
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Figure 6: FLAT-based representation of an EntRel relation.
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Figure 7: FLAT-based representation of a feedback relation.
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Abstract

What do powerful models of word mean-
ing created from distributional data (e.g.
Word2vec (Mikolov et al., 2013) BERT (De-
vlin et al., 2019) and ELMO (Peters et al.,
2018)) represent? What causes words to be
similar in the semantic space? What type of
information is lacking? This thesis proposal
presents a framework for investigating the in-
formation encoded in distributional semantic
models. Several analysis methods have been
suggested, but they have been shown to be
limited and are not well understood. This ap-
proach pairs observations made on actual cor-
pora with insights obtained from data manipu-
lation experiments. The expected outcome is a
better understanding of (1) the semantic infor-
mation we can infer purely based on linguistic
co-occurrence patterns and (2) the potential of
distributional semantic models to pick up lin-
guistic evidence.

1 Introduction

Distributional semantic representations capture se-
mantic similarity and relatedness and, perhaps
more importantly, enable machine learning-based
Natural Language Processing models to abstract
over lexical representations. But what type of se-
mantic information do they contain? Could distri-
butional models show that the concepts lemon and
moon share shape and color, but differ with respect
to almost everything else? Understanding what se-
mantic knowledge is represented in embeddings
can not only help us improve those representations
but also shed light on questions about lexical rep-
resentation raised in cognitive linguistics (e.g. the
suitability of embeddings for models of metaphor
interpretation (Utsumi, 2011)). Understanding the
way components of meaning are represented could
eventually enable us to use data-derived, distribu-
tional representations for lexical reasoning.

While exiting model analysis methods (Hupkes
et al., 2018; Belinkov and Glass, 2019; Saphra and
Lopez, 2018) have yielded initial insights, they are
still limited when applied to distributional word
representations. Gaining insights into semantic
representations derived from massive amounts of
textual data thus entails answering two core ques-
tions: (1) What information about concepts can we
find in the linguistic data and how does it relate
to people’s knowledge about concepts? (2) What
linguistic information in the data can be picked up
by a distributional semantic model and how is it
represented? Answering these questions entails the
following four steps:

1. Formulate linguistic hypotheses about what
kind of knowledge about concepts we expect
to be reflected by linguistic corpora based on
theoretical and experimental research.

2. Build a corpus of human judgments reflecting
human knowledge about concepts suitable to
test the hypotheses.

3. Investigate the potential of distributional mod-
els and model analysis methods by simulating
different types of linguistic evidence of se-
mantic properties in text corpora.

4. Test hypotheses about what is represented in
distributional models and data and interpret
the results with respect to the potential of dis-
tributional models and analysis methods.

The core questions of this research proposal and
their interaction are illustrated in Figure 1. The
remainder of this paper is structured as follows:
After discussing related work in Section 2, I present
linguistic hypotheses in Section 3. The corpus
of human judgments of property-concept pairs for
testing these hypotheses is presented in Section
4. Section 5 outlines model analysis methods and
simulation experiments, followed by a conclusion
and reflection on possible outcomes in Section 6.
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Figure 1: Framework for investigating conceptual
knowledge in distributional models from two perspec-
tives: (1) linguistic hypotheses about semantic knowl-
edge and textual evidence and (2) the potential of
model analysis methods and models. The questions
are approached through model analysis methods on real
and simulated data.

2 Related work

Several studies investigate the relation between se-
mantic features recorded in feature norm datasets
(McRae et al., 2005; Devereux et al., 2014; Vinson
and Vigliocco, 2008; Vigliocco et al., 2004) and em-
bedding vectors (Fagarasan et al., 2015; Tsvetkov
et al., 2015, 2016; Herbelot and Vecchi, 2015; Her-
belot, 2013; Riordan and Jones, 2011; Glenberg
and Robertson, 2000; Derby et al., 2018; Forbes
et al., 2019; Rubinstein et al., 2015). These studies
indicate that (at least partial) mappings between
distributional and conceptual spaces are possible
and that conceptual knowledge can complement
distributional representations. Erk (2016) shows
that distributional similarity can indicate property-
overlap. Gupta et al. (2015) show that attributes
of the type of knowledge recorded in knowledge
bases can, to some extent, be learned from word
embeddings. Herbelot (2013) hypothesizes that
Gricean maxims determine what is mentioned in
text, based on limited datasets. These studies pro-
vide partial evidence for conceptual knowledge in
distributional data, but they do not provide a sys-
tematic account of the underlying factors at play.

A major reason for this gap is the difficulty
of interpreting representations resulting from ma-

chine learning models. Diagnostic classification
has proven successful in the analysis of such rep-
resentations (Hupkes et al., 2018; Belinkov and
Glass, 2019) and word embedding representations
(Yaghoobzadeh and Schütze, 2016; Sommerauer
and Fokkens, 2018; Yaghoobzadeh et al., 2019).
However, the results of these experiments provide
limited insights.

Unverified negative examples. For instance, in
the CSLB norms (Devereux et al., 2014), has legs
is listed for several birds, but not for owl, duck,
and eagle. This introduces noise to already rather
small datasets used to investigate property knowl-
edge in distributional data (Derby et al., 2018).
Yaghoobzadeh et al. (2019) apply diagnostic clas-
sification to investigate semantic classes using a
large, automatically generated dataset derived from
Wikipedia, which is likely to contain noise. Som-
merauer and Fokkens (2018) and Herbelot and Vec-
chi (2015) have provided small sets of verified ex-
amples to combat this issue.

Distribution of examples. A classifier is likely
to be able to separate words which are located in
entirely different areas of the semantic space, but
this does not mean it has recognized a specific prop-
erty. For instance, the ability to separate red fruits
(e.g. strawberry) from furniture (e.g. table) does
not indicate that the property red was recognized.
Sommerauer and Fokkens (2018) provide a small,
qualitative analysis with respect to example dis-
tribution, but to the best of my knowledge, this
has not been investigated systematically. Rubin-
stein et al. (2015) show that taxonomic properties
yield higher performance in diagnostic classifica-
tion experiments than (mostly physical) attributes.
A possible explanation for this could be that taxo-
nomic properties (e.g. is animal are much easier
to detect because of many correlating properties
resulting in high general similarity in the semantic
space.

Interpretation of performance. Saphra and
Lopez (2018) point out that diagnostic classifiers
can achieve high performance purely based in noise
in the data instead of meaningful signals (Zhang
and Bowman, 2018; Wieting and Kiela, 2018). To
the best of my knowledge, this has not been taken
into account yet in studies on embeddings.

The research proposed here is the first attempt to
combine a systematic analysis in terms of linguistic
hypotheses with with a methodological investiga-
tion addressing these limitations.
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3 Linguistic hypotheses

This sections presents hypotheses about (a) what
aspects of conceptual information people mention
in texts (Section 3.1) and (b) how they mention it
(Section 3.2).

3.1 Semantic relations
I define semantic relations representative of four
major factors: impliedness, typicality, affordedness
and variability. The factors are based on theoreti-
cal and empirical accounts in cognitive and com-
putational linguistics (Grice, 1975; Gibson, 1954;
Glenberg, 1997; Dale and Reiter, 1995; Sommer-
auer et al., 2019). The relations are used to label
a corpus of property-concept pairs. To test the
hypotheses by means of model analysis methods,
it is necessary to have reliable information about
negative examples of properties. I distinguish sev-
eral negative relations (e.g. it can be impossible or
unusual that a property applies to instances of a
concept) to facilitate the annotation task.

Impliedness. Most conceptual knowledge can
be seen as highly implied. Mentioning it would con-
stitute a violation of the Gricean maxim of quantity.
This is likely to be particularly relevant for proper-
ties which are inherited from lexical categories. For
instance, the knowledge that a dog is an animate
being with a heartbeat is unlikely to be mentioned
explicitly. This tendency could be connected to
claims about lexical retrieval (Collins and Quillian,
1970). Whether this is indeed the case is a question
for further research.

Typicality. Corpus research has shown that peo-
ple tend to express property-concept relations ex-
plicitly for cases in which a concept is a particularly
good example of a property (Veale and Hao, 2007;
Veale, 2011, 2013). For instance, colors tend to be
described in terms of things which illustrate them
particularly well (e.g. as white as snow, as red as
blood, as black as ebony wood1). In contrast, prop-
erties which are typical of a concept (and evoked
in many participants in elicitation tasks such as
the CSLB norms (Devereux et al., 2014)) are most
likely strongly implied conceptual knowledge and
not mentioned explicitly (e.g. green - broccoli).

Affordedness. According to research in cogni-
tive linguistics, a central component of semantic
knowledge consists of the actions which are avail-
able to a person in a particular situation (called

1https://www.pitt.edu/˜dash/grimm053.
html (last accessed 2020-02-18)

afforded actions) (Gibson, 1954; Glenberg, 1997;
Glenberg and Robertson, 2000). For instance, you
can do several things with a rock, such as throw
or drop it (Fulda et al., 2017). Many texts refer
to events, which consist of actions involving par-
ticipants. From this perspective, it is very likely
that activities in which instances of concepts are
involved are also mentioned in natural language.
Glenberg and Robertson (2000) show that distri-
butional models give good indications of activi-
ties usually associated with concepts, but cannot
distinguish possible but unusual from impossible
activities. Fulda et al. (2017) show that embed-
ding models are helpful in affordance extraction. It
can thus be expected that frequently performed ac-
tions are mentioned in text and can give indications
about other properties (e.g. round objects such as
bowling balls tend to roll). Possible but unusual
activities are unlikely to be mentioned consistently.

Variability. Instances of concepts can vary with
respect to a particular property. For instance, bell
peppers can be red, green or yellow. Since neither
of the colors is implied by the concept, informa-
tion about it is more likely to be mentioned. In
some cases, the property can even indicate an im-
portant distinction between different sub-concepts
(e.g. brown, black and grey can distinguish differ-
ent types of bears). In such cases, important and
potentially distinguishing information is expressed
via the property.

Negative relations. Several relations with no
or only a loose association between property and
concept can be distinguished. Linguistic corpora
are unlikely to contain consistent evidence of such
cases. The main reason for defining different types
of negative relations is to facilitate the annotation
task. Furthermore, they can be informative for fur-
ther analysis. The relations include: properties
which apply to concepts in rare cases, properties
which can apply in unusual (such as fictional) cases
and impossible combinations. We also include
properties which can apply in creative, figurative
expressions.

3.2 Linguistic evidence

Linguistic evidence of a semantic property can ap-
pear in different forms:

Direct. A property is expressed by its corre-
sponding lexical form. For instance, a direct expres-
sion of the semantic property red is the adjective
red and its morphological variants (if they exist),
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for instance reddish.

Indirect. Semantic properties can be expressed
indirectly in terms of a logical consequence or be-
havior that is tied to a property. For instance, things
which have the semantic property round usually
roll. Words such as roll and their morphological
variants act as indirect evidence.

Property-preserving. Words can express prop-
erties which partially overlap with the semantic
property in question. For instance, the semantic
property swim can be expressed by float or glide
in some contexts. Those expressions can also ex-
press other semantic properties and are thus not
exclusively tied to the target property.

Related. Semantic properties can be related to
other properties of concepts. For instance, the se-
mantic property swim is closely related to different
kinds of water, such as sea, river or pond and pos-
sibly also beach or sand. These expressions are
related to a wide variety of properties and most cer-
tainly not exclusively tied to instances of concepts
which swim.

Correlation. Properties which are not expressed
can correlate strongly with an entire category of
concepts. For instance, all birds lay eggs. While
this is something chickens usually do/are used for,
the activity is less prominent for canaries and thus
unlikely to be mentioned in texts. However, it is
likely that something like belonging to the cate-
gory of birds is apparent from linguistic context,
as indicated by Hearst patterns (Hearst, 1992) and
research about predicting hyponymy relations from
embeddings (Fu et al., 2014). Thus, the close con-
nection between category and property may result
in a form of linguistic evidence indicating a cate-
gory which is very closely tied to a semantic prop-
erty.

Property-category. Expressions of properties
belonging to the same category (e.g. red, yellow
and green express colors) in the context of a con-
cept can indicate an entire property-category. This
is likely to be the case if instances of a concept can
have one of a variety of properties that belong to
the same category (e.g. color) and the properties
occur with similar frequencies (e.g. white, red, blue
(etc.) t-shirts).

Table 1 shows the specific semantic relations
with respect to the (sub-)set of instances of a con-
cept they apply to and the type of corpus evidence
we expect to find for property-concept pair.

4 Dataset design and crowd annotation

The dataset for this thesis should contain concept-
property pairs annotated with the fine-grained se-
mantic relations introduced in Section 3.1. The
dataset should contain (1) enough positive and neg-
ative examples of a property to allow for diagnostic
experiments and (2) positive and negative examples
which cannot easily be separated based on general
similarity in the semantic space (Sommerauer and
Fokkens, 2018; Sommerauer et al., 2019).

To address these aspects, the property-concept
pairs were collected following the strategy outlined
in Sommerauer et al. (2019). Firstly, properties
which are expected to apply to concepts across
different semantic categories were selected (e.g.
colors). Secondly, existing resources (the CSLB
feature norms (Devereux et al., 2014) (an extended
and improved version of the norms collected by
(McRae et al., 2005)), but also WordNet (Miller,
1995; Fellbaum, 2010), ConceptNet (Speer and
Havasi, 2012) and stereotype data (Veale, 2013)
were used to collect positive and negative example
candidates for these properties. Where possible,
candidates were selected from diverse semantic
categories. The candidates were extended by using
a large-scale distributional model (GoogleNews
Word2vec model2).

The candidate pairs are labeled with semantic
relations in a crowd task. Crowd workers are pre-
sented with natural language statements about a
specific pair illustrating a semantic relation and
asked to indicate whether they agree or disagree.3

Test runs indicate that workers can complete around
70 questions in about 10 minutes.4

Each property-concept pair should have at least
one relation which is perceived as appropriate
by most participants (and is thus labeled with
‘agree’).5 However, it has been shown that am-
biguity is inherent to many semantic annotation
tasks (Dumitrache et al., 2018), leading to disagree-
ments. Disagreement in this task is likely to arise

2Downloaded from https://code.google.com/
archive/p/word2vec/

3An example of such a statement illustrating
typical of concept would be: “Fly” is one for
the first things which come to mind when I hear “stork’
because flying is one of the typical movements of (a/an)
stork’. The full set of statements can be found at
https://github.com/cltl/SPT_annotation

4The task was set up using the Lingoturk framework (Pusse
et al., 2016) and is being distributed via the platform Prolific
https://www.prolific.co/.

5More than one relation can apply (e.g. both typicality
relations).
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set of instances factor relation evidence

most - all

impliedness implied correlation

typicality typical of concept sparse - none
typical of property direct, property-preserving, re-

lated

affordedness
affording activity indirect, property-preserving, re-

lated
afforded usual direct, property-preserving, re-

lated
afforded unusual sparse to none

some variability variability limited direct, property-category
variability open property-category

few-none negative cases

rare sparse - none
unusual sparse - none
impossible sparse - none
creative sparse - none

Table 1: Summary of linguistic hypotheses about semantic relations and types of evidence.
.

from two factors: (1) ambiguity in the interpreta-
tion of the concept, property, relation or combina-
tion and (2) different levels of knowledge about
the world. Disagreement caused by interpretation
differences is particularly relevant for this dataset,
as this is can indicate polysemy, which has been
shown to have an impact on embedding represen-
tations (Del Tredici and Bel, 2015; Yaghoobzadeh
et al., 2019, e.g.). It is, however, still an open ques-
tion how exactly it relates to the representation of
semantic properties. Table 2 shows the answers
collected for a clear pair, an ambiguous pair and an
ambiguous pair additionally perceived as difficult.

relation p1 p2 p3

typical of property 10 3 3
typical of concept 10 5 5
affording activity 10 4 5
implied category 8 6 4
variability limited 7 7 3
variability open 2 3 7
rare 1 2 5
unusual 0 4 4
impossible 0 3 0
creative 0 4 3

Table 2: Number of annotators (out of 10) who selected
‘agree’ for a semantic relation shown for three pairs of
varying difficulties: sweet-honey (p1) (clear), made of
wood - beam (p2) (ambiguous) and hot-chutney (p3)
(not well known according to a worker).

.

Inter-annotator agreement alone cannot be used
to evaluate the quality of the dataset. Disagreement
is not only an expected, but a desired and meaning-
ful outcome. Instead, I consider the quality of the
annotations from multiple perspectives: (1) As a

basis for comparison, I apply IAA metrics to the
entire dataset and portions of the dataset which I
expect to trigger high or low agreement. These por-
tions have been selected in advance. (2) I consider
the quality of the workers in terms of whether they
contradict themselves in their answers (e.g. label a
single pair as typical and impossible). A low num-
ber of contradictions can be seen as an indication
of a clear task. Workers with high contradiction
rates can be excluded, which should increase the
IAA on the remaining annotations.(3) I analyze the
data with the crowd-truth framework (Dumitrache
et al., 2018), which provides a fine-grained analysis
of workers, annotation units and labels. (4) A sub-
set of pairs is being annotated by trained experts.
These annotations serve as a gold standard and
can provide more insights into disagreements and
worker behavior. They can help to reveal additional,
possibly unexpected factors causing disagreement.

5 Method

Various analysis methods have been suggested to
interpret latent representations resulting from ma-
chine learning (particularly deep learning) mod-
els. While they have yielded important insights,
they still struggle with a number of limitations (Be-
linkov and Glass, 2019; Saphra and Lopez, 2018).
I plan to approach these limitations by pairing anal-
ysis methods (described in Section 5.1) with data
simulation experiments (described in Section 5.2).
This combination is expected to yield insights into
(1) the analysis methods and their potential and (2)
the representation of linguistic evidence in a text
corpus in distributional models.
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5.1 Analyzing latent representations
I plan to use diagnostic classification (Hupkes et al.,
2018; Belinkov and Glass, 2019) and SVCCA
(Singular Vector Canonical Correlation Analysis)
(Raghu et al., 2017). SVCCA has been suggested
to address some of the limitations of diagnostic
classification (Saphra and Lopez, 2018).

Both methods require a specific distribution of
positive and negative examples. Distributional
models place generally similar concepts in similar
areas in the embedding space because they occur
in similar contexts. This means that positive exam-
ples which are similar to one another, but dissimilar
from the negative examples will be easily recog-
nizable (e.g. fly: seagull vs table). Distinguishing
them, however, does not mean that evidence of
the particular property was discovered. If however,
a diverse group of positive examples can be dis-
tinguished from negative examples similar to the
positive ones (e.g. fly: seagull vs penguin), we con-
clude that the property has actually been identified
with higher confidence. While this type of dataset
control cannot eliminate all possible correlations,
it is a first step towards more solid evidence.

5.2 Simulation experiments
The following questions should be answered be-
fore we can draw conclusions from the analysis
of embedding models trained on natural language
corpora:

1. How much evidence in the context of a con-
cept is necessary to have an impact on the
representation in an embedding model?

2. How do embedding models represent different
kinds of evidence? Can they abstract over mor-
phological variants or synonyms of a word?

3. What is the performance of a model analysis
methods if there is very clear evidence of a
property? What is the difference between em-
beddings with clear evidence and embeddings
without clear evidence?

I approach these questions by introducing arti-
ficial evidence to text corpora and training distri-
butional models on these corpora. In the case of
distributional models and linguistic evidence, it is
challenging to design small and controlled experi-
ments, as the models rely on a substantial amount
of data. Building an entirely artificial corpus (as
for instance done by Yaghoobzadeh and Schütze
(2016)) would entail the risk of losing information

responsible for the general structure of a semantic
space. Therefore, I will simulate textual evidence
of a property by introducing artificial ‘evidence
words’ to the contexts of a random set of words
in an otherwise unchanged corpus. Embeddings
resulting from this manipulated corpus can then be
used to test how much evidence is sufficient for in-
formation to be recognized by analysis methods. I
expect this approach to show how the performance
of diagnostic methods relates to the presence or
absence of textual evidence. These insights are
crucial form the interpretation of analysis methods
applied to a natural corpus.

6 Conclusion

This proposal presents a framework for investigat-
ing the semantic content of distributional word
representations from two perspectives: Firstly, I
propose to test linguistic hypotheses about what
aspects of conceptual knowledge are represented in
natural language. Secondly, I propose to interpret
the results against the background of a methodolog-
ical investigation of model analysis methods and
the potential of distributional models.

The linguistic hypotheses to be tested may be
falsified. While this would be a negative result,
it is still a relevant insight and can be used as a
basis for new predictions. Furthermore, it can be
expected that the methodological insights gained
in the simulation experiments can inform other ap-
proaches investigating non-transparent embedding
representations and yield important insights about
the behavior of distributional models.

I expect that the corpus and insights gathered in
this project can be complementary to resources cap-
turing common-sense knowledge explicitly, such
as Conceptnet (Speer et al., 2017) and common
sense challenges (e.g. (Talmor et al., 2019)).
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Abstract
We present a simple and effective dependency
parser for Telugu, a morphologically rich, free
word order language. We propose to replace
the rich linguistic feature templates used in
the past approaches with a minimal feature
function using contextual vector representa-
tions. We train a BERT model on the Telugu
Wikipedia data and use vector representations
from this model to train the parser. Each sen-
tence token is associated with a vector repre-
senting the token in the context of that sen-
tence and the feature vectors are constructed
by concatenating two token representations
from the stack and one from the buffer. We
put the feature representations through a feed
forward network and train with a greedy transi-
tion based approach. The resulting parser has
a very simple architecture with minimal fea-
ture engineering and achieves state-of-the-art
results for Telugu.

1 Introduction
Dependency parsing is extremely useful for many
downstream tasks. However, robust dependency
parsers are not available for several Indian lan-
guages. One reason is the unavailability of an-
notated treebanks. Another reason is that most
of the existing dependency parsers for Indian lan-
guages use hand-crafted features using linguistic
information like part-of-speech and morphology
(Kosaraju et al., 2010; Bharati et al., 2008; Jain
et al., 2012) which are very expensive to annotate.
Telugu is a low resource language and there hasn’t
been much recent work done on parsing. Most of
the previous work on Telugu dependency parsing
has been focused on rule based systems or data-
driven transition based systems. This paper focuses
on improving feature representations for a low re-
source, agglutinative language like Telugu using
the latest developments in the field of NLP such as
contextual vector representations.

Contextual word representations (Howard and
Ruder, 2018; Peters et al., 2018; Devlin et al., 2019)
are derived from a language model and each word
can be uniquely represented based on its context.
One such model is BERT (Devlin et al., 2019).
BERT vectors are deep bidirectional representa-
tions pre-trained by jointly conditioning on both
left and right context of a word and have been
shown to perform better on variety of NLP tasks.

In this paper, we use BERT representations for
parsing Telugu. We replace the rich hand-crafted
linguistic features with a minimal feature function
using a small number of contextual word represen-
tations. We show that for a morphologically rich,
agglutinative language like Telugu, just three word
features with good quality vector representations
can effectively capture the information required for
parsing. We put the feature representations through
a feed forward network and train using a greedy
transition based parser (Nivre, 2004, 2008).

Past work on Telugu dependency parsing has
only been focused on predicting inter-chunk de-
pendency relations (Kosaraju et al., 2010; Kesidi
et al., 2011; Kanneganti et al., 2016, 2017; Tandon
and Sharma, 2017). In this paper, we also report
parser accuracies on intra-chunk annotated Telugu
treebank for the first time.

2 Related Work

Extensive work has been done on dependency pars-
ing in the last decade, especially due to the CoNLL
shared tasks on dependency parsing. Creation of
Universal Dependencies (Nivre et al., 2016) led
to an increased focus on common approaches to
parsing several different languages. There were
new transition based approaches making use of
more robust input representations (Chen and Man-
ning, 2014; Kiperwasser and Goldberg, 2016) and
improved network architectures (Ma et al., 2018).
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Graph based approaches to dependency parsing
have also become more common over the last few
years (Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2017, inter alia).

However, there hasn’t been much recent work on
parsing Indian languages and much less on Telugu.
Most of the previous work on Telugu dependency
parsing has been focused on rule based systems
(Kesidi et al., 2011) or data-driven transition based
systems (Kanneganti et al., 2016) using Malt parser
(Nivre et al., 2006). The Malt parser uses a clas-
sifier to predict the transition operations taking a
feature template as input. The feature templates
used in Telugu parsers commonly consist of sev-
eral hand-crafted features like words, their part-
of-speech tags, gender, number and other morpho-
logical features (Kosaraju et al., 2010; Kanneganti
et al., 2016). There has been some work done on
representing these linguistic features using dense
vector representations in a neural network based
parser (Tandon and Sharma, 2017).

Recent developments in the field of NLP led to
the arrival of contextual word vectors (Howard and
Ruder, 2018; Peters et al., 2018; Devlin et al., 2019)
and their extensive use in downstream NLP tasks,
from POS tagging (Peters et al., 2018) to more
complex tasks like Question Answering and Natu-
ral Language Inference tasks (Devlin et al., 2019).
Contextual vectors have also been applied to de-
pendency parsing systems. The top-ranked system
in CoNLL-2018 shared task on Dependency Pars-
ing(Che et al., 2018) used ELMo representations
along with conventional word vectors in a graph
based parser. Kulmizev et al. (2019); Kondratyuk
and Straka (2019) use contextual vector representa-
tions for multilingual dependency parsing.

In this paper, we train a BERT-baseline model
(Devlin et al., 2019) on Telugu Wikipedia data and
use these vector representations to improve Telugu
dependency parsing.

3 Telugu Dependency Treebank

We use the Telugu treebank made available for
ICON 2010 tools contest. We extend this treebank
by another 900 sentences from the HCU Telugu
treebank. The size of the combined treebank is
around 2400 sentences. The treebank is annotated
using Computational Paninian grammar (Bharati
et al., 1995; Begum et al., 2008) proposed for In-
dian languages. The treebank is annotated at inter-
chunk level (Bharati et al., 2009) in SSF (Bharati

et al., 2007) format. Only chunk heads in a sen-
tence are annotated with dependency labels.

Figure 1: Inter-chunk dependency tree. B ⇤ denotes
the beginning of a new chunk.

We automatically annotate the intra-chunk de-
pendencies (Bhat, 2017) using a Shift-Reduce
parser based on Context Free Grammar rules within
a chunk, written for Telugu1. Annotating the intra-
chunk dependencies provides a complete parse tree
for each sentence.

Figure 2: Intra-chunk dependency tree

The treebank is converted from SSF to CoNLL-
X format (Buchholz and Marsi, 2006)2.

4 Our Approach

We propose to replace the rich hand-crafted feature
templates used in Malt parser systems with a mini-
mally defined feature set which uses automatically
learned word representations from BERT. We do
not make use of any additional pipeline features
like POS or morphological information assuming
this information is captured within the vectors. We
train a BERT baseline model (Devlin et al., 2019)
on the Telugu wikipedia data, which comprises
71289 articles. We use the ILMT tokenizer in-
cluded in the Telugu shallow parser 3 to segment
the data into sentences. The sentence segmented
data consists of approximately 2.6M sentences. We
convert all of the data from UTF to WX4 notation
for faster processing. We use byte-pair encoding
(Sennrich et al., 2016) to tokenize the data and gen-
erate a vocabulary file. We pass this vocabulary

1https://github.com/ltrc/
Shift-Reduce-Chunk-Expander

2https://github.com/ltrc/
SSF-to-CONLL-Convertor

3https://ltrc.iiit.ac.in/showfile.php?
filename=downloads/shallow_parser.php

4https://en.wikipedia.org/wiki/WX_
notation
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file to BERT 5 for pre-training. After pre-training,
we extract contextual token representations for all
the sentences in the treebank from the pre-trained
BERT model. In case a single word is split into
multiple tokens, we treat these tokens as continuous
bag of words and add the representations of all the
tokens in a word to obtain the word representation.
We find that this approach works better than con-
sidering only the first word-piece vector (Kulmizev
et al., 2019; Kondratyuk and Straka, 2019). We use
these word representations as input features to the
parser. Our feature function is a concatenation of a
small number of BERT vectors and we integrate it
into a transition based parser. The specific details
are mentioned in Section 4.2

4.1 Transition based Dependency Parsing

Transition based parsers process a sentence sequen-
tially and treat parsing as a sequence of actions that
produce a parse tree. They predict a sequence of
transition operations starting from an initial config-
uration to a terminal configuration, and construct
a dependency parse tree in the process. A configu-
ration consists of a stack, an input buffer of words,
and a set of relations representing a dependency
tree. They make use of a classifier to predict the
next transition operation based on a set of features
derived from the current configuration. A couple
of widely used transition systems are Arc-standard
(Nivre, 2004) and Arc-eager (Nivre, 2008). We
make use of the Arc-standard transition system in
our parser and briefly describe it here.

4.1.1 Arc-standard Transition System
In the arc-standard system, a configuration con-
sists of a stack, a buffer, and a set of depen-
dency arcs. The initial configuration for a sentence
s = w1, ..., wn consists of stack = [ROOT ], buffer
= [w1, ..., wn] and dependencies = []. In the termi-
nal configuration, buffer = [] and stack = [ROOT ],
and the parse tree is given by dependencies. The
root node of the parse tree is attached as the child
of ROOT .
The arc-standard system defines three types of tran-
sitions that operate on the top two elements of the
stack and first element of the buffer:

• LEFT-ARC: Adds a head-dependent relation
between the word at the top of stack and the

5 https://github.com/google-research/
bert

word below it and removes the lower word
from the stack.

• RIGHT-ARC: Adds a head-dependent relation
between the second word on the stack and the
top word and removes the top word from the
stack.

• SHIFT: Moves the word from the front of the
buffer onto the stack.

In the labeled version of parsing, there are a to-
tal of 2`+ 1 transitions, where ` is the number of
different dependency labels. There is a left-arc and
a right-arc transition corresponding to each label.
The label left-arc vmod adds a head-dependent rela-
tion between the top two words of the stack (s0, s1)
with label vmod, dependencies=[(s0, s1, vmod),...]

4.2 Feature Function

We use a minimally defined feature set consisting
solely of word representations obtained from BERT.
We do not incorporate any part-of-speech or mor-
phological information separately. The intuition
is that such information is already captured within
the BERT representations. Our feature set consists
of word representations of the top two elements of
the stack (s0, s1) and the first element of the buffer
(b0). We compute a feature vector,

F = vs0 � vs1 � vb0

by concatenating (�) the vector representations of
all the words in the feature set, where vi is the
vector representation of the word i,

4.3 Classifier

We use a fully connected Feed Forward Network
with one hidden layer with ReLU activation to
score all the possible parser transitions. The next
transition is predicted based on the features ex-
tracted from the current configuration. We compute
the scores of all transitions,

transition scores(f) = W 2
·relu(W 1

·f+b1)+b2

where f is the feature vector obtained from the cur-
rent configuration. A softmax layer is applied over
the transition scores to get the probability distribu-
tion. We pick a valid transition with the highest
probability. We use a dropout layer with probability
0.2 for regularization.
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Intra-chunk UAS LS LAS

Max 95.43 83.05 81.81
Min 85.04 67.09 64.17
Average 90.92 71.95 70.49

Table 1: Parser 10-fold cross-validation results on
intra-chunk annotated treebank.

Inter-chunk UAS LS LAS

Max 94.50 78.90 77.20
Min 78.16 56.14 52.14
Average 90.37 67.57 65.74

Table 2: Parser 10-fold cross-validation results on
inter-chunk annotated treebank.

5 Experiments and Results

The Telugu dependency treebank is quite small in
size consisting of only 2400 sentences. We also
observe that the sentence length and quality of an-
notation in the treebank is not uniform and has a
high amount of variation. We therefore evaluate
our parser on the treebank using ten-fold cross-
validation. We report the cross-validation accura-
cies on both inter-chunk (Table 2) and intra-chunk
(Table 1) annotated treebanks. Parser accuracies on
intra-chunk annotated Telugu treebank are reported
for the first time in this paper. The overall parser
accuracies improve on the intra-chunk annotated
treebank.

We compare these results with a baseline us-
ing only word2vec word representations and sub-
sequently adding Part-of-speech (POS) and suffix
representations described in (Tandon and Sharma,
2017). We also try to reproduce Tandon and
Sharma (2017) experiments on both inter-chunk
and intra-chunk annotated treebanks. Tandon and
Sharma (2017) report their best results for Telugu
on the inter-chunk annotated treebank using word,
POS and suffix representations. Their results are
reported on a test set and since their exact dataset
is not available, we report average 10-fold cross
validation accuracies. The reproduced results are
listed in Table 3. As can be seen from the table the
average cross-validation accuracies are lower. The
discrepancy between rows 3 and 4 is because of a
larger feature set and a different optimizer. Tandon
and Sharma (2017) use 13 features from the parse
configuration instead of our three features which

introduce unnecessary noise, when the average sen-
tence length is as small as five. We also find that
Adam optimizer performs better than the Adagard
optimizer used in their setup.

Implementation details: The parser comprises
of simple feed forward neural network with one
hidden layer consisting of 1024 hidden units and
a relu activation function and a dropout layer with
dropout probability of 0.2. We use xavier uniform
initialization (Glorot and Bengio, 2010) to initial-
ize the network parameters and Adam optimizer
(Diederik P. Kingma, 2015) with default momen-
tum and learning rates provided by PyTorch. We
use BERT baseline model for pre-training and each
BERT token representation is of dimension 768.

Arc-standard vs Arc-eager: We experiment
with both Arc-standard (Nivre, 2004) and Arc-
Eager (Nivre, 2008) transition systems and find
that Arc-standard works better in our case (Table 4).
We use Arc-standard transition system in all further
experiments.

Feature Function: We experiment with different
feature sets and find that using just three features,
the top two elements of the stack and the top-most
element of the buffer result in the highest accura-
cies. Extending the feature set to include more
elements from the stack or buffer causes the ac-
curacies to fall. Parser accuracies using different
feature sets are reported in Table 5.

Peters et al. (2018) and Che et al. (2018) suggest
that concatenating conventional word vectors with
contextual word vectors could result in a boost in
accuracies. We try out the same by concatenating
word2vec vectors with BERT vectors and observe
some improvement in label scores. The results are
mentioned in Table 6.

BERT layers: We also experiment with vector
representations from different layers of BERT. The
results are mentioned in Table 7. We find that the
4th layer from the top of our BERT baseline model
results in the highest accuracy for the parser. This
finding is consistent with the work of Tenney et al.
(2019) which suggests that dependencies are better
captured between layers 6 and 9. We use the vector
representations from 4th layer from the top in all
our experiments.

BPE vs Inverse-BPE: Byte-pair encoding (Sen-
nrich et al., 2016) segments words from left to
right. In Telugu, most grammatical information
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System Annotation Method UAS LS LAS

Baseline Intra-chunk MLP with word 84.56 65.87 63.39
Baseline + POS Intra-chunk MLP with word, POS 88.90 68.99 67.46
Baseline + POS + suffix Intra-chunk MLP with word, POS, suffix 89.93 71.97 70.38
Tandon et al, 2017 re-impl Intra-chunk MLP with word, POS, suffix 88.67 67.27 65.29
This work Intra-chunk MLP using BERT 90.92 71.95 70.49

Tandon et al, 2017 Inter-chunk MLP with word, POS, suffix 94.11† 74.32† 73.14†

Tandon et al, 2017 re-impl Inter-chunk MLP with word, POS, suffix 88.13 61.48 59.54
This work Inter-chunk MLP using BERT 90.37 67.57 65.74

Table 3: Parsing results on Telugu treebank. The results with † are reported test-set accuracies and the rest are
10-fold cross-validation accuracies.

Transition System UAS LS LAS

Arc-Standard 90.92 71.95 70.49
Arc-Eager 89.91 71.15 69.52

Table 4: Cross-validation results for arc-standard and
arc-eager transition systems using features (s0, s1, b0)

Feature set UAS LS LAS

(s0, s1, b0) 90.92 71.95 70.49
(s0, s1, b0,
lc1s0, rc1s0)

90.85 71.57 70.08

(s0, s1, s2, b0,
lc1s0, rc1s0)

90.91 71.50 70.13

(s0, s1, s2, b0,
lc1s0, rc1s0,
lc1s1, rc1s1)

90.76 71.25 69.86

Table 5: Parser cross-validation results using different
feature sets. (lc1, rc1) refer to the left-most and right-
most children.

Vector representa-
tion

UAS LS LAS

BERTvector 90.92 71.95 70.49
BERTvector�
wordvector

90.89 72.11 70.60

Table 6: Parser cross-validation results with and with-
out concatenating word vectors with BERT vectors for
the feature set (s0, s1, b0)

BERT Layers UAS LS LAS

Layer -1 90.21 71.22 69.59
Layer -2 90.58 71.63 69.99
Layer -3 90.19 71.20 69.65
Layer -4 90.92 71.95 70.49
Layer -5 90.31 71.52 69.99
Layer -6 90.22 71.70 70.20

Table 7: Parser cross-validation results using represen-
tations from different layers of BERT. Layer �n repre-
sents the nth layer from the top.

Tokenization UAS LS LAS

BPE 90.92 71.95 70.49
Inverse-BPE 91.06 71.71 70.22

Table 8: Parser cross-validation results on BERT mod-
els trained with BPE and Inverse-BPE.

is encoded in the suffixes. Intuitively, segmenting
the words from right to left (inverse-BPE) could
lead to linguistically better word segments. We
test out this assumption (Table 8). We use 60k
merge operations in both cases. Inverse-BPE leads
to slightly better unlabeled attachment scores but
causes a slight drop in label scores.

6 Error Analysis

In this section we look at some of the most common
errors made by this parser and try to understand
why those errors might be occurring. We evaluate
the parser on a test-set of 240 sentences. The most
frequently occurring errors are k1(agent/subject)
and k2(object/patient) mismatch, k1 is labeled
as k2 and vice versa. k1 and k2 are the most fre-
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quently occurring labels after ROOT . 78% sen-
tences in the test-set contain k1 dependency and
50% sentences contain k2 dependency. k1 is la-
beled as k2 15% of the time and k2 is labeled as
k1 18% of the time. These errors are usually seen
when the words occur without case-markers. In
these cases, k1 and k2 can be distinguished by
looking at the verb agreement. Fixing these two
errors would greatly improve the parser.

Other frequently occurring errors are confu-
sion between k2 and k4(recipient) since they
sometimes take the same case-markers, nmod and
nmod adj, vmod and adv , sent adv labels. The
label vmod is ambiguous in general and can be
easily confused with adverbs.

7 Conclusion and Future Work

We present a simple yet effective dependency
parser for Telugu using contextual word represen-
tations. We demonstrate that even with vectors
trained on a small corpus of 2.6M sentences, we
can reduce the need for explicit linguistic features
in deep learning based models. We show based on
the results of the parser that BERT vectors effec-
tively capture much of the linguistic information
required for parsing. We also show that with good
vector representations, a small feature set is more
effective for a morphologically rich, agglutinative
language like Telugu.

Future work could include finding a way to incor-
porate other linguistic features like case-markers,
gender, number, person, tense, aspect and verb
agreement information into the parser.
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Abstract
The prevailing approach for training and eval-
uating paraphrase identification models is con-
structed as a binary classification problem: the
model is given a pair of sentences, and is
judged by how accurately it classifies pairs as
either paraphrases or non-paraphrases. This
pointwise-based evaluation method does not
match well the objective of most real world ap-
plications, so the goal of our work is to under-
stand how models which perform well under
pointwise evaluation may fail in practice and
find better methods for evaluating paraphrase
identification models. As a first step towards
that goal, we show that although the standard
way of fine-tuning BERT for paraphrase iden-
tification by pairing two sentences as one se-
quence results in a model with state-of-the-art
performance, that model may perform poorly
on simple tasks like identifying pairs with
two identical sentences. Moreover, we show
that these models may even predict a pair of
randomly-selected sentences with higher para-
phrase score than a pair of identical ones.

1 Introduction

Paraphrase identification is a well-studied sentence
pair modeling task that refers to the problem of
determining whether two sentences are semanti-
cally equivalent. Detecting paraphrases can be very
useful for many NLP applications such as machine
translation (MT), question answering (QA), and in-
formation retrieval (IR). In a QA system, we would
like to find the most probable question paraphrases
from a database of question answer pairs for a given
input question (Rinaldi et al., 2003; Dong et al.,
2017). In a MT model, we would like to obtain the
best translation by comparing the target sentence
to a list of translated sentences. Even though pre-
trained language models have reached state-of-the-
art performance on paraphrase identification tasks,
the current problem setup is insufficient to produce

models with consistent and robust performance on
unseen samples and real world problems.

The typical current problem setup for paraphrase
identification is different from intended uses in
real world applications. They often involve find-
ing best paraphrases from a group of documents
given a particular query, rather than just determin-
ing whether two sentences are paraphrases of each
other. Besides, getting the order and identifying the
most relevant documents is usually more important
than getting the binary decision of a pair of sen-
tences (Zuccon et al., 2012). However, to make the
task simpler, current methods and existing datasets
such as Quora Question Pairs (QQP) (Iyer et al.,
2017) and Microsoft Research Paraphrase Corpus
(MRPC) (Lan et al., 2017) are all framed as a binary
classification problem at the sentence pair level.

Contributions As a first step to improve the way
paraphrase identification is evaluated for ranking
tasks, we analyze some of the anomalies found in
the current pointwise task setting. We first demon-
strate the standard way of fine-tuning BERT for
pointwise paraphrase evaluation makes the model
sometimes fails on simple problems including rec-
ognizing two identical sentences and reversing the
order of two sentences in a pair (Section 3). We find
that it performs worse than a bag-of-words model
due to its asymmetrical model architecture. Lastly,
we show that the model may fail to capture the cor-
rect relative order of two sentence pairs using the
pointwise approach, sometimes even predicting a
pair of random sentences with a higher paraphrase
score than a pair of identical ones (Section 4).

2 Background

This section provides background on the para-
phrase identification task, evaluation methods, and
the datasets and models we use in our experiments.
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2.1 Paraphrase Identification

We consider the general definition of paraphrase as
sentences having the same meaning. In addition,
paraphrase requires a symmetric relation. Para-
phrase identification originates from the real-world
applications such as machine translation (Dolan
et al., 2004; Quirk et al., 2004) and document sum-
marization (Barzilay and McKeown, 2001), where
an essential task is to evaluate the semantic related-
ness of translated sentences or generated texts.

2.2 Evaluation Methods

The current problem setting for paraphrase iden-
tification is similar to the pointwise method
for learning-to-rank problems in information re-
trieval (Li, 2011). There are three types of ap-
proaches to solve learning-to-rank: pointwise, pair-
wise, and listwise (Liu, 2009). The pointwise ap-
proach learns to predict a binary relevance judge-
ment for a single document given a specific query.
It retrieves the most relevant document by comput-
ing the relevance score between each candidate doc-
ument and the query and returning the document
with the maximum score. The pairwise approach
learns to predict the relative order of a pair of docu-
ments, (d1, d2), for a given query q. This is closer
to the nature of ranking than the pointwise ap-
proach. However, both the pointwise and pairwise
approaches neglect the fact that some documents
are related to the same query. The listwise approach
directly optimizes the model on the permutations
of a list of documents D = {d1, d2, ..., dn} (Cao
et al., 2007), and hence it most closely matches the
objective of ranking.

2.3 Datasets

For our experiments, we use four datasets designed
for evaluating paraphrase identification models.

Quora Question Pairs (QQP) consists of 400k
question pairs from Quora (Iyer et al., 2017). The
goal is to reduce the number of duplicate questions
on the platform. Each question pair is either labeled
as duplicate or non-duplicate. Recently, it has been
shown to have selection bias, where models can
simply rely on the frequency of the sentences or
the intersection of the neighbor sentences to make
predictions (Zhang et al., 2019a).

Paraphrase Adversaries from Word Scram-
bling (PAWS) contains two datasets constructed
from Wikipedia and QQP (Zhang et al., 2019b). To

BERT BOW
Dataset Acc F1 Acc F1

QQP 90.10 86.7 64.75 51.56
QQP+PAWSQQP 90.69 87.48 64.13 51.28
MRPC 83.65 87.97 68.12 79.45
Twitter URL 89.98 76.75 84.32 50.44

Table 1: Model accuracy and F1 scores trained on dif-
ferent datasets. Both metrics are scaled by 100. QQP
+ PAWSQQP indicates models are trained and evaluated
on both datasets.

compare with the original QQP dataset, we only
tested PAWSQQP. The sentence pairs are created by
swapping words that have the same part-of-speech
or named entity tags to construct higher lexical
overlap sentences. The training set contains 11,988
sentence pairs, and the testing set contains 667.

Microsoft Research Paraphrase Corpus
(MRPC) contains 5801 sentence pairs extracted
from online news articles (Dolan and Brockett,
2005). The sentence pairs are created with very
similar syntactic features and high n-gram overlap
causing the model to make skewed decisions based
on these shallow features (Das and Smith, 2009).

Twitter URL Paraphrase Corpus is extracted
from tweets posted by 22 English news accounts
on Twitter (Lan et al., 2017). Relevant tweets are
paired up based on the same embedded URLs, and
each pair is then labeled by 6 human annotators. Af-
ter discarding sentence pairs with neutral decisions
(3 out of 6 annotators labeled it as paraphrase), the
dataset consists of 42k sentence pairs for training
and 9k pairs for testing.

2.4 Models

We fine-tuned the BERTBASE model on different
paraphrase datasets with the default configura-
tion (Devlin et al., 2018). We also implemented
early stopping during the training process. For
baseline comparison, we trained a bag-of-words
(BOW) model with unigram and bigram encodings.
The model makes predictions based on the con-
sine similarity between the encodings of the two
sentences. A consine similarity value above 0.5 is
considered a paraphrase. The performance of both
models for each task is shown in Table 1.

We include the results for testing QQP model
on its adversarial set, PAWSQQP, in Table 2, and it
shows BERT performing as poorly as BOW of this
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Models QQP ! PAWSQQP
Acc F1

BERT 32.94 42.68
BOW 28.21 44.01

Table 2: Model accuracy and F1 score tested in the ad-
versarial setting, where models are trained on QQP and
evaluated on PAWSQQP development set.

dataset. We also report the results of models that
trained and tested on a concatenated set of QQP
and PAWSQQP in Table 1.

3 Asymmetry

For semantic matching tasks, the BERT para-
phrase identification model considers two sen-
tences (s1, s2) as a single sequence by concatenat-
ing them with a separator token. However, due to
this asymmetrical approach, the sequence represen-
tations before the final classification layer would
be entirely different if we permute the order of the
two input sentences. We explore two implications
of this method for identifying paraphrases: sensi-
tivity to input order (Section 3.1) and possibility
of considering identical sentences non-paraphrases
(Section 3.2).

3.1 Sensitivity to Sentence Order
In the original datasets, each sentence pair is only
concatenated in one way as (s1, s2) and a label y
will be predicted by the model. We constructed
new sentence pairs in the reverse order as (s2, s1),
and tested the model on these sentence pairs and
got their predicted labels y0. To find out how much
it would affect the prediction results, we computed
the ratio of sentence pairs that are predicted with a
different label (y 6= y0). The results for BERT and
BOW models are shown in the second and third
column of Table 3.

In normal setting (model is trained and evaluated
on the the same dataset), there are more than 3% of
sentence pairs that are predicted with an opposite la-
bel by BERT. The ratio decreases on PAWSQQP, but
it increases when the model includes adversarial
examples in the training data. The percentages are
even higher on MRPC and Twitter corpus. BOW,
trivially, has zero disagreement since the order does
not effect the bag-of-words model.

We reproduced the same experiment in sec-
tion 3.1 on the RoBERTaBASE model (Liu et al.,
2019), and found that the model also has inherent

asymmetry issue as BERT. The ratio of sentence
pairs from the QQP development set with opposite
labels is around 4.7% (But it performs well on iden-
tifying identical sentences with an error rate less
than 1%). We further tried fine-tuning BERT on
the augmented QQP dataset that includes sentence
pairs in both original and reverse order. Although
the ratio of sentence pairs with opposite predicted
labels decreases about half, the asymmetrical is-
sue is not completely eliminated. These results
suggest that these pre-trained language model do
not really understand the symmetric relation within
paraphrases. One possible reason is combining two
sentences as a single input encourages the model
to learn paraphrase as an asymmetric relation.

Datasets Reverse Order Identical
BERT BOW BERT BOW

QQP!QQP 3.70 0.0 2.40 0.0
QQP!PAWSQQP 2.66 0.0 7.36 0.0
QQP+PAWSQQP 4.0 0.0 0.54 0.0
MRPC 8.46 0.0 0.0 0.0
Twitter URL 7.08 0.0 0.0 0.0

Table 3: The percentage (%) of sentence pairs with
asymmetrical prediction results. Reverse Order: sen-
tence pairs predicted with different labels when revers-
ing the order of the sentences. Identical: identical pairs
that are predicted as non-paraphrases. (Please see Sec-
tion 2.3 for actual data sizes.)

3.2 Inability to Recognize Identical Sentences
We would like to know if the asymmetrical struc-
ture also affect BERT’s ability to identify identical
sentences as paraphrases. We collected distinct sen-
tences for each dataset and constructed a new set of
sentence pairs by pairing each one with itself. Each
pair is labeled as paraphrase. We calculated the
ratio of pairs that are predicted as non-paraphrase
by the model. As shown in Table 3, BERT trained
on QQP recognizes 2.4% of identical pairs as non-
paraphrases and the ratio increases about 5% when
tested on PAWSQQP. BOW trivially achieves per-
fect accuracy on pairs of identical sentences, since
they have exactly the same bags of words.

The models trained on MRPC and Twitter corpus
do recognize all the identical pairs as paraphrases.
This may be the fact that many sentences appear
in Twitter corpus multiple times pairing with dif-
ferent sentence each time. Thus, the model may
better capture the difference between a variety of
sentences. As for MRPC, many sentence pairs look
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QQP ! QQP QQP ! PAWSQQP QQP + PAWSQQP MRPC Twitter URL

Paraphrase > Identical 30.51 41.88 21.27 4.18 1.76
Avg Score Difference 5.09 3.07 2.58 0.12 0.60

Non-paraphrase > Identical 0.97 43.21 0.41 0.0 0.03
Avg Score Difference 6.28 2.53 3.01 0.0 1.52

Table 4: Percentage of paraphrase and non-paraphrase pairs with higher paraphrase score (%) than a pair of
identical sentences given the same query sentence. Avg Score Differences: average score difference between
paraphrase/non-paraphrase and identical pairs. (Only pairs with higher scores than the identical ones are included.)

quite alike, and hence the model can better identify
small differences between sentences even though
most sentences only appear once. Since PAWSQQP
contains higher lexical overlap sentence pairs, the
model trained on both QQP and PAWSQQP de-
creases the error rate to less than 1%.

We also fine-tuned a BERT model on the aug-
mented QQP training set with identical sentence
pairs, and it can correctly identify every identical
pairs as paraphrases. This suggests that the amount
of lexical overlap in the dataset would affect the
model’s ability to identify identical sentences.

4 Problems with Pointwise Evaluation

For a given query sentence, we assume that a
well-generalized paraphrase identification model
should output a higher paraphrase score to the
query sentence itself than a randomly-selected sen-
tence. However, models trained with pointwise
evaluation cannot learn the relative order based on
the degree of semantic equivalence. We test this by
considering how often models recognize a random
sentence as more similar than the query sentence
itself, and looking at the distribution of paraphrase
scores across a dataset.

4.1 Random Sentences
We augmented the original datasets with sentence
pairs concatenated in opposite order, as in Sec-
tion 3.1, and labeled them same as their origi-
nal pairs. We then compared each sentence pair,
(s, s0), to a pair of identical sentences, (s, s), given
the same query sentence s. We fine-tuned BERT
on each dataset to learn a paraphrase score func-
tion f , and computed the fraction of tests where
a randomly-selected pair gets a higher paraphrase
score than an identical pair, f(s, s0) > f(s, s). Ta-
ble 4 shows the results, revealing a similar pattern
as in Section 3.2. The model trained on QQP con-
siders more than 30% of randomly-selected para-
phrase sentence pairs to be more similar than the

identical pairs, but the ratio decreases to 21% when
adding the adversarial set into training. For MRPC
and Twitter URL corpus, less than 5% of para-
phrase pairs are considered to be more similar than
the identical pairs.

For a randomly-selected sentence pair, (s, s0),
and a pair of identical sentences, (s, s), given the
same query s sentence, we computed the score dif-
ference as f(s, s0)� f(s, s). The distributions of
the score differences are shown in Figure 1a. We
filtered out the pairs that have lower paraphrase
score than the identical pairs, and report the av-
erage score difference in Table 4. In Figure 1a,
the model trained on QQP has the largest score
difference between paraphrase and identical pairs.
After augmenting the training set with PAWSQQP,
the right tail of the distribution for paraphrase pairs
diminishes. This indicates that the model considers
fewer non-identical sentences as more similar to
the query sentence than itself.

4.2 Paraphrase Score Distribution
To better understand how the scores are distributed,
we plot the histograms of paraphrase score for ran-
dom, paraphrase, non-paraphrase, and identical
sentence pairs in Figure 1b. In the normal set-
ting, there are two peaks in the distributions of
randomly-selected pairs since they include both
paraphrase and non-paraphrase pairs. On the other
hand, the sentence pairs from PAWSQQP all seem
very similar to the model. The distributions clearly
show the model cannot distinguish them. Com-
pared with the distribution for the Twitter corpus,
the distribution of paraphrase pairs from QQP is
more spread out, and it has slightly larger gap be-
tween the distribution of paraphrase and identical
pairs.

5 Discussion

Defining Paraphrases. Our experiments assume
that the “best” paraphrase for a given sentence s
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(a)

(b)

Figure 1: Histograms of (a) the score difference between randomly-selected and identical pairs and (b) paraphrase
score for sentence pairs. Randomly-selected pairs contain the sentence pairs their original and reverse order. (We
do not include the plot for MRPC since most paraphrase pairs from the dataset look alike, and it is hard to distin-
guish the distributions from the graph.)

is s itself. This assumes an equivalent in meaning
definition of paraphrase, but other definitions may
be appropriate. Bhagat and Hovy (2013) defined
paraphrases as “sentences that convey the same
meaning using different wording”. By this defini-
tion, identical sentences are not paraphrases. Of
course, we do not need a complex model to identify
identical sentences when a simple equality test will
do. However, when considering paraphrase detec-
tion as a test for how well language models can un-
derstand meaning, it would be counterproductive to
consider identical sentences non-paraphrases, and
require a trivial modification to consider them per-
fect paraphrases. Thus, we would expect a model
to be able to identify sentence pairs with the same
meaning as paraphrases regardless of whether they
are the same in their surface forms.

Our experiments also assume that the paraphrase
relationship should be symmetrical. This is con-
sistent with the notion that the paraphrase identi-
fication task is meant to identify sentences with
similar meaning, but not consistent with the pur-
pose of many uses of paraphrase identification (e.g.,
in some real world question retrieval tasks, finding
questions that contain the query, or that have the
opposite meaning, would still be useful). This sug-
gests the importance of a clear notion of what a
paraphrase is, in both constructing test datasets and
in determining how a given application can use a
paraphrase detection model.

Selection Bias in the Pointwise Setting. Previ-

ous studies have addressed the problem of selec-
tion bias when constructing the task as a pointwise
learning problem (Wang et al., 2016; Zadrozny,
2004). Datasets tend to have inconsistent frequency
of sentences causing the model biased towards the
dominating sentences. For instance, we found that
some sentences from the Twitter corpus are re-
peated almost a hundred times as the first input
sentence. This is part of the reason that the model
gets more asymmetrical prediction results for sen-
tences in reverse order (Table 3).

6 Conclusion

Although the state-of-art paraphrase identification
models can achieve impressive performance under
the pointwise evaluation method, they cannot han-
dle real-world problems and unseen data well and
even have worse results than a BOW model on sim-
ple tasks. We show that the asymmetry in BERT
can produce inconsistent prediction results when
reversing the order of the two sentences. We exam-
ined the relation of semantic equivalence learned
by models trained with pointwise approach, and
found that they may consider a random sentence
as more similar to the query sentence itself. This
suggests future work to reconsider how to match
the training and evaluation to the actual objective
of downstream applications, and thus create more
reliable evaluation metrics and benchmarks.

154



References
Regina Barzilay and Kathleen McKeown. 2001. Ex-

tracting paraphrases from a parallel corpus. In Pro-
ceedings of the 39th annual meeting of the Associa-
tion for Computational Linguistics, pages 50–57.

Rahul Bhagat and Eduard Hovy. 2013. What is a para-
phrase? Computational Linguistics, 39(3):463–472.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: From pairwise ap-
proach to listwise approach. In Proceedings of the
24th International Conference on Machine Learn-
ing, ICML 07, page 129136, New York, NY, USA.
Association for Computing Machinery.

Dipanjan Das and Noah Smith. 2009. Paraphrase iden-
tification as probabilistic quasi-synchronous recog-
nition. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 468–476. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005). Asia Federation of Natural Language
Processing.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources.
In Proceedings of the 20th International Conference
on Computational Linguistics, COLING 04, page
350es, USA. Association for Computational Lin-
guistics.

Li Dong, Jonathan Mallinson, Siva Reddy, and Mirella
Lapata. 2017. Learning to paraphrase for question
answering. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 875–886, Copenhagen, Denmark. Associ-
ation for Computational Linguistics.

Shankar Iyer, Nikhil Dandekar, and Kornl Cser-
nai. 2017. First quora dataset release: Question
pairs. https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs.

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017.
A continuously growing dataset of sentential para-
phrases. CoRR, abs/1708.00391.

Hang Li. 2011. A short introduction to learning to rank.
IEICE Transactions, 94-D:1854–1862.

Tie-Yan Liu. 2009. Learning to rank for information
retrieval. Found. Trends Inf. Retr., 3(3):225331.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Chris Quirk, Chris Brockett, and William B Dolan.
2004. Monolingual machine translation for para-
phrase generation. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 142–149.

Fabio Rinaldi, James Dowdall, Kaarel Kaljurand,
Michael Hess, and Diego Mollá. 2003. Exploiting
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Abstract

A large percentage of the world’s population
speaks a language of the Indian subcontinent,
comprising languages from both Indo-Aryan
(e.g. Hindi, Punjabi, Gujarati, etc.) and
Dravidian (e.g. Tamil, Telugu, Malayalam,
etc.) families. A universal characteristic of In-
dian languages is their complex morphology,
which, when combined with the general lack
of sufficient quantities of high-quality paral-
lel data, can make developing machine trans-
lation (MT) systems for these languages dif-
ficult. Neural Machine Translation (NMT)
is a rapidly advancing MT paradigm and has
shown promising results for many language
pairs, especially in large training data sce-
narios. Since the condition of large paral-
lel corpora is not met for Indian-English lan-
guage pairs, we present our efforts towards
building efficient NMT systems between In-
dian languages (specifically Indo-Aryan lan-
guages) and English via efficiently exploiting
parallel data from the related languages. We
propose a technique called Unified Transliter-
ation and Subword Segmentation to leverage
language similarity while exploiting parallel
data from related language pairs. We also
propose a Multilingual Transfer Learning tech-
nique to leverage parallel data from multiple
related languages to assist translation for low-
resource language pair of interest. Our ex-
periments demonstrate an overall average im-
provement of 5 BLEU points over the standard
Transformer-based NMT baselines.

1 Introduction

In recent years, Neural Machine Translation (Lu-
ong et al., 2015; Bahdanau et al., 2014; Johnson
et al., 2017; Wu et al., 2017; Vaswani et al., 2017)
(NMT) has become the most prominent approach
to Machine Translation (MT) due to its simplicity,
generality and effectiveness. In NMT, a single neu-
ral network often consisting of an encoder and a de-

coder is used to directly maximize the conditional
probabilities of target sentences given the source
sentences in an end-to-end paradigm. NMT mod-
els have been shown to surpass the performance of
previously dominant statistical machine translation
(SMT) (Koehn, 2009) on many well-established
translation tasks.

However, in order to reach high accuracies,
NMT systems tend to require very large parallel
training corpora (Koehn and Knowles, 2017). As
a matter of fact, such corpora are not yet available
for many language pairs. Indian languages are not
an exception to this; however they are extremely
diverse, belonging to different language families,
employing various scripts and spanning a multi-
tude of dialects. The majority of Indian languages
are morphologically rich and depict unique char-
acteristics, which are significantly different from
languages such as English.

Since NMT models learn poorly from small cor-
pora, building effective NMT systems for low-
resource languages (e.g. Indian languages) be-
comes a primary challenge. The bulk of research
on low-resource NMT has focused on exploiting
monolingual data, or parallel data involving other
language pairs. Some of the most well-known
methods to improve NMT models with monolin-
gual data range from backtranslation (Sennrich
et al., 2016), dual learning (He et al., 2016) to Un-
supervised MT (Artetxe et al., 2017; Lample et al.,
2017, 2018). Similarly, parallel data from other
languages can be exploited to either pretrain the
network or jointly learn the representations (Zoph
et al., 2016; Firat et al., 2017; Johnson et al., 2017;
Kocmi and Bojar, 2018).

Currently, Transfer Learning (TL) is being
widely used for low-resource language translation
because it is one of the vital directions for address-
ing the data sparsity problem in low-resource NMT
(Zoph et al., 2016; Nguyen and Chiang, 2017; Pass-
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ban et al., 2017; Kocmi and Bojar, 2018). However,
most of the existing approaches that take advantage
of transfer learning have a major limitation: they
do not exploit multiple languages together and in
an efficient manner. The idea presented by Zoph
et al. (2016) may have the shortcoming of exploit-
ing only one high-resource model (parent) at a time
to optimize the low-resource model (child). Ac-
tually, the use of highly related multiple language
pairs might help to increase the translation quality
of the child model. The original Transfer Learning
method (Zoph et al., 2016) also makes no assump-
tion about the relatedness of the parent and child
languages. Multilingual NMT (Firat et al., 2017;
Johnson et al., 2017) approaches which also use
parallel data from different languages to improve
the translation quality of NMT models does not
exploit language relatedness either.

In this paper, we present our efforts towards
building efficient NMT systems between Indian
languages (specifically Indo-Aryan languages) and
English by exploiting parallel data from related lan-
guages. We aim to deal with the problem of how
to make full use of these corpora of highly related
languages, to increase the translation quality of
low-resource languages. To this end, we introduce
two simple and yet effective approaches:

• Multilingual Transfer Learning: to enable
the low-resource languages (child model) to
exploit parallel data from multiple related
languages which may or may not be high-
resourced, and

• Unified Transliteration and Subword Segmen-
tation: to exploit the language similarity be-
tween the related language pairs.

Experiments show that our approaches are ef-
fective and significantly outperform the state-of-
the-art Transformer (Johnson et al., 2017) base-
line. Our proposed approach of Multilingual
Transfer Learning also significantly outperforms
simple Transfer Learning (Zoph et al., 2016) ap-
proach, where NMT models are also built using
Unified Transliteration and Subword Segmentation
approach.

2 Methodology

The core idea of our method is to extend the Multi-
lingual Learning (Johnson et al., 2017) and Transfer
Learning (Zoph et al., 2016) approaches to effec-
tively exploit parallel data from multiple related

languages. In Section 2.2, we explain our Unified
Transliteration and Subword Segmentation tech-
nique to exploit language relatedness among the
parallel data of related languages. Sections 2.3
and 2.4 describe our modified Multilingual Learn-
ing and Transfer Learning techniques for NMT. In
Section 2.5, we describe our Multilingual Transfer
Learning approach.

2.1 Language Relatedness
In this work, we experiment on Indo-Aryan
languages specifically Hindi, Punjabi, Gujarati,
Marathi and Bengali. Being from one language
family, these languages are closely related to each
other and share many features. These languages
are morphologically rich and depict unique char-
acteristics, which are significantly different from
languages such as English. Some of these charac-
teristics are the relatively free word-order with a
tendency towards the Subject-Object-Verb (SOV)
construction, a high degree of inflection, usage of
reduplication and conjunct verbs. These languages
share many common words which have the same
root and meaning. They use different Indic scripts
derived from the ancient Brahmi script, but corre-
spondences can be established between equivalent
characters across scripts.

2.2 Unified Transliteration and Subword
Segmentation

Unlike the original Transfer Learning (Zoph et al.,
2016) and the Multilingual Neural MT (Johnson
et al., 2017) methods which do not exploit any lan-
guage relatedness, the basic idea of this approach
is to exploit the relationship between the related
language lexicons while using parallel data from
related languages to assist with translation of low-
resource languages. To do so, we find a represen-
tation of the data that ensures a sufficient overlap
between the vocabularies of the related languages.

Since the languages involved in the models have
different orthographies, the data processing should
help to map them into a common orthography but
here we take a minimalist approach; we translit-
erate all the Indian languages ( Hindi, Gujarati,
Bengali, Marathi and Punjabi) into a common De-
vanagari script to share the same surface form. This
unified transliteration is a string homomorphism,
replacing characters in all the languages mentioned
above with Hindi characters (script conversion to
Devanagari) or consonant clusters independent of
context.
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Figure 1: Our pipeline for building Multilingual NMT models for Indian languages.

Now, to increase the overlap between the vocab-
ularies of the languages used in a model, which
are already transliterated into a common script and
consequently share the same surface form, we use
Byte Pair Encoding (BPE) (Sennrich et al., 2015)
to break words into subwords. For the BPE merge
rules to not only find the common subwords be-
tween two related languages but also ensure con-
sistency between source and target segmentation
among each language pair, we learn the rules from
the union of source and target data of all the lan-
guage pairs involved in the model construction.
The rules are then used to segment the corpora.
It is important to note that this results in a single
vocabulary, used for both the source and target lan-
guages in all the language pairs.

2.3 Multilingual Learning for NMT
The objective of Multilingual Learning for NMT
is to construct a single model for translating to
and from multiple languages. Early work in multi-
lingual NMT utilizes a separate encoder, decoder
and an attention mechanism to support the trans-
lation of either one-to-many or many-to-one lan-
guage directions. Firat et al. (2017) introduced a
many-to-many system, which still relied upon sep-
arate encoder-decoder setup with a shared attention
mechanism. In a simplified manner and yet deliver-
ing better performance, Johnson et al. (2017) intro-
duced a “language flag”-based approach that shares
the attention mechanism and a single encoder-
decoder network to enable multilingual models.
A language flag or token is prepended to the input
sequence to indicate which direction to translate in.

The decoder learns to generate the target given this
input.

However, the Multilingual NMT approaches do
not consider the relatedness of the languages or
how many shared words there are among the dif-
ferent source and target languages. Mainly, they
aim at exploiting many different source and target
languages rather than focusing on similarities be-
tween many languages that are used in the training
and the languages that is used in testing. Accord-
ingly, we modify the Multilingual NMT approach
(Johnson et al., 2017) with Unified Transliteration
and Subword segmentation technique to exploit
the language relatedness. We experiment with this
modified approach in our work on efficient NMT
for Indian languages.

2.4 Transfer Learning for NMT
Zoph et al. (2016) proposed how Transfer Learn-
ing between two NMT models can improve a low-
resource NMT task. In their approach, a lan-
guage pair with a relatively large amount of paral-
lel data is first utilized to train a parent model in a
phase known as “pretraining”. Then the encoder-
decoder parameters are transferred to initialize a
child model for a low-resource language pair of in-
terest. After initializing, the model enters the “fine-
tuning” stage, where the child model is fine-tuned
on the low-resource language pair. This enables
the inductive transfer of knowledge from the par-
ent model to the child model. This approach does
not make any assumption between the relatedness
of the parent and child language pair. However,
in our work we use a relatively high-resource lan-
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Figure 2: Our pipeline for building Transfer Learning models for Indian languages.

guage pair as our parent model which has similar
syntactic and morphological properties as the child
language pair. We further exploit the language re-
latedness of parent and child language pairs via
our Unified Transliteration and Subword Segmen-
tation technique. We experiment with this modified
Transfer Learning technique and demonstrate huge
BLEU improvements over the Transformer NMT
baseline for low-resource Indian languages.

2.5 Multilingual Transfer Learning for NMT
In the normal Transfer Learning (Zoph et al., 2016)
approach for NMT, the parent model is trained on
a single high-resource language pair which may or
may not be related to the child language pair of
interest. Passban et al. (2017) presented a double
transfer learning technique which first trains a par-
ent model on a single high-resource language pair,
then initializes the next parent model on the same
single high-resource language pair but with differ-
ent domain and corpus size, and finally fine-tunes it
on the child task. To the best of our knowledge, pre-
vious Transfer Learning approaches do not exploit
parallel data from multiple languages. However,
learning from multiple languages can result in bet-
ter knowledge transfer.

Therefore, in this work, we propose a new Trans-
fer Learning approach called as Multilingual Trans-
fer Learning to enable the low-resource languages
to efficiently learn from multiple related languages
which may or may not be high-resourced. In this
approach, the parent model is a Multilingual NMT
model of related languages and also the child lan-
guage pair. This Multilingual parent NMT model

also uses the Unified Transliteration and Subword
Segmentation technique to exploit language relat-
edness more efficiently as discussed in Section 2.2.
After pretraining the parent model, the child model
is initialyzed with parent model parameters and is
then fine-tuned on the low-resource language pair
of interest.

The proposed approach may deliver better re-
sults than Multilingual NMT and Transfer Learn-
ing because adding more languages into one model
may result in better knowledge transfer (i.e multi-
lingual NMT) but it can also result in ambiguities
between languages at the inference time. Accord-
ingly, a multilingual NMT model fine-tuned on the
language pair of interest can potentially remove all
the inconsistencies at the inference time.

3 Experimental Settings

3.1 Dataset

In our experiments, we use the IIT-Bombay
(Kunchukuttan et al., 2017) parallel data for Hindi-
English. The training corpus consists of data from
mixed domains. We use the multilingual ILCI
(Indian Language Corpora Initiative) corpus (Jha,
2010), which contains roughly 50,000 parallel sen-
tences for each of the Indian languages ( Gujarati,
Punjabi, Marathi, Bengali) and also for English.
The ILCI data is from tourism and health domains.
For every XX-EN language pair ( where XX is Gu-
jarati, Marathi, Bengali or Punjabi), the English
side of the data is same because of the multilingual
nature of the corpus. We check and clean the ILCI
corpus manually as it contains a lot of misalign-
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ments and mistranslations.

Table 1: Statistics of our cleaned and processed par-
allel data, where XX is Gujarati, Marathi, Bengali or
Punjabi

Dataset Sentences
IITB HI-EN Train 1,528,631
ILCI XX-EN Train 46,490
ILCI XX-EN Test 2,000
ILCI XX-EN Dev 500

3.2 Data Processing
We use the Moses (Koehn et al., 2007) toolkit1

for tokenization and cleaning the English side of
the data. All the Indian language data is first nor-
malized with the Indic NLP library2 followed by
tokenization with the same library. As our prepro-
cessing step, we remove all sentences of length
greater than 80 words from our training corpus
and lowercase the English side of the data. In all
cases, we use BPE segmentation with 16k merge
operations as described in Section 2.2.

3.3 Training Details
For all of our experiments, we use the OpenNMT-
py (Klein et al., 2018) toolkit3. We use the Trans-
former model with 6 layers in both the encoder and
decoder, each with 512 hidden units. The word
embedding size is set to 512 with 8 heads. The
training is done in batches of maximum 4096 to-
kens at a time with dropout set to 0.3. We use the
Adam (Kingma and Ba, 2014) optimizer to opti-
mize model parameters. We validate the model
every 5,000 steps via BLEU (Papineni et al., 2002)
and perplexity on the development set. We train
all our NMT models for 150k steps except for fine-
tuning which is done for 10k steps. After transla-
tion at the test time, we rejoin the translated BPE
segments and convert the translated sentences back
to their original language scripts. Finally, we eval-
uate the accuracy of our translation models using
BLEU.

4 Results

We report the results of Multilingual Learning,
Transfer Learning and Multilingual Transfer Learn-
ing for Gujarati-English, Bengali-English, Marathi-

1https://github.com/moses-smt/mosesdecoder
2https://anoopkunchukuttan.github.io/indic nlp library/
3https://github.com/OpenNMT/OpenNMT-py/

English and Punjabi-English language pairs for
both translation directions (XX-EN and EN-XX).
Table 2 shows our main results for the Indian lan-
guage to English (XX-EN) translation direction.
Multilingual models for XX-EN language direc-
tion do not show any improvements. The reason
for this might be the multiparallel nature of the
ILCI data where each English sentence on the tar-
get side appears 4 times in the model, thereby creat-
ing ambiguities in the model. The transfer learning
model built using Unified Transliteration and Sub-
word Segmentation that was trained on the IITB
HI-EN data and then fine-tuned on XX-EN data
(see model no. 8 in Table 2) resulted in an average
improvement of 5 BLEU points.

Table 3 shows our main results for the English
to Indian language (EN-XX) translation direction.
In this case, the multilingual model using all ILCI
data shows significant improvements over the base-
line, unlike in the XX-EN translation direction.
The reason for this is that in the EN-XX direction,
language flags are used on the source side which
guides the decoder to which language the model
translate in, whereas the same is not possible for
the XX-EN direction as verified by our preliminary
experiments. The other two multilingual models
containing the IITB EN-HI data show performance
degradation, potentially due to the mismatch be-
tween the size of the IITB EN-HI ( 1.5M sentences)
and ILCI data ( 47k sentences). The transfer learn-
ing model that was trained on IITB EN-HI data and
then fine-tuned on EN-XX data (see model no. 8 in
Table 3) also resulted in an average improvement
of 5 BLEU points.

In both translation directions, the multilingual
models do not prove to be effective. Fine-tuning the
multilingual models (multilingual transfer learning)
on XX-EN or EN-XX data removes some ambigu-
ities in the model and shows significant improve-
ments compared to their simple multilingual model
counterparts. The best performance (almost 5-6
BLEU improvements over the baseline) is achieved
by fine-tuning the multilingual model (trained on
IITB HI-EN or EN-HI data and all the ILCI data)
on EN-XX or XX-EN outperforming all the NMT,
Multilingual NMT and Transfer Learning baselines
thus demonstrating the effectiveness of our tech-
nique.
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Table 2: BLEU scores of the contrastive experiments for Indian Language to English translation (XX to EN).

Model No. Model Description Gujarati Bengali Marathi Punjabi
1 Baseline 28.37 22.40 25.29 30.51
2 Multilingual Model of all ILCI data 25.14 21.47 23.56 25.43
3 Multilingual Model of IITB HI-EN data & all ILCI data 28.62 22.71 26.90 29.46
4 Multilingual Model of IITB HI-EN data & ILCI data of XX-EN 29.18 23.93 27.15 30.54
5 Fine-tuning model no. 2 on XX-EN 26.83 22.72 25.36 27.12
6 Fine-tuning model no. 3 on XX-EN 33.78 (+5.41) 27.55 (+5.15) 31.79 (+6.5) 34.70 (+4.19)
7 Fine-tuning model no. 4 on XX-EN 33.72 27.40 31.80 34.68
8 Fine-tuning model pretrained on IITB HI-EN data on XX-EN 33.13 27.06 31.27 34.54

Table 3: BLEU scores of the contrastive experiments for English to Indian Language translation (EN to XX).

Model No. Model Description Gujarati Bengali Marathi Punjabi
1 Baseline 20.67 16.59 15.13 25.20
2 Multilingual Model of all ILCI data 24.61 19.81 17.92 28.02
3 Multilingual Model of IITB EN-HI data & all ILCI data 20.63 16.51 15.05 21.76
4 Multilingual Model of IITB EN-HI data & ILCI data of EN-XX 14.30 6.38 8.88 14.54
5 Fine-tuning model no. 2 on EN-XX 24.75 20.25 18.75 28.16
6 Fine-tuning model no. 3 on EN-XX 26.22 (+5.55) 21.62 (+5.03) 19.90 (+4.77) 30.27 (+5.07)
7 Fine-tuning model no. 4 on EN-XX 25.52 20.45 19.77 29.53
8 Fine-tuning model pretrained on IITB EN-HI data on EN-XX 25.35 21.77 19.58 29.54

5 Conclusion & Future Work

In this paper, we explore effective methods
to exploit parallel data from multiple related
languages to improve the translation between
Indian languages and English. Our results show
that Multilingual Learning for translation between
Indian Languages and English is not very effective
given the set of data we have. However, the
performance of multilingual models can easily be
enhanced by fine-tuning them on the low-resource
language pairs of interest. Our experiments show
that using a Multilingual NMT model as a parent
model (consisting of multiple language pairs
with related languages either on the source side
or on the target side) and fine-tuning it on the
low-resource language pair of interest yields an
overall average improvement of 5 BLEU points
over a standard Transformer-based NMT baseline.
Our proposed Multilingual Transfer Learning
approach also outperforms the simple Transfer
Learning approach by a significant amount.
In future, we would like to work on effective
techniques to exploit monolingual data and parallel
data from other languages together to improve the
translation of low-resource languages.
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Abstract
We propose an interpretable approach for
event extraction that mitigates the tension be-
tween generalization and interpretability by
jointly training for the two goals. Our ap-
proach uses an encoder-decoder architecture,
which jointly trains a classifier for event ex-
traction, and a rule decoder that generates
syntactico-semantic rules that explain the de-
cisions of the event classifier. We evaluate
the proposed approach on three biomedical
events and show that the decoder generates
interpretable rules that serve as accurate ex-
planations for the event classifier’s decisions,
and, importantly, that the joint training gen-
erally improves the performance of the event
classifier. Lastly, we show that our approach
can be used for semi-supervised learning, and
that its performance improves when trained on
automatically-labeled data generated by a rule-
based system.

1 Introduction
Interpretability is a key requirement for machine
learning (ML) in many domains, e.g., legal, medi-
cal, finance. In the words of (Ribeiro et al., 2016),
“if users do not trust the model or a prediction, they
will not use it.” However, there is a tension between
generalization and interpretability in deep learning,
as interpretable models are often generated by “dis-
tilling” a model with good generalization, e.g., a
deep learning one that relies on distributed repre-
sentations, into models that are more interpretable
but lose some generalization, e.g., linear models or
decision trees (Craven and Shavlik, 1996; Ribeiro
et al., 2016; Frosst and Hinton, 2017). Here, we
argue that both generalization and interpretability
are equally important. For example, in the medical
space, a patient will likely reject a treatment rec-
ommended by an algorithm without an explanation.
Closer to natural language processing (NLP), a sta-
tistical information extraction method that converts

free text in a specific domain to structured knowl-
edge should also provide human-understandable
explanations of its extractions. This allows the sub-
ject matter expert to quality check such output with-
out a deep knowledge of the underlying machinery,
which is a necessity in successful inter-disciplinary
NLP collaborations.

In this work, we propose an interpretable ap-
proach for event extraction (EE) that mitigates the
tension between generalization and interpretabil-
ity through multitask learning (MTL). Our ap-
proach uses an attention-based encoder to en-
code the input text and given entities of interest
(e.g., proteins in the biomedical domain), and a
decoder that jointly trains two tasks. The first
task is event classification, which identifies which
event applies for a given entity (e.g., phosphory-
lation). The second task decodes a rule in the
Odin language (Valenzuela-Escárcega et al., 2018;
Valenzuela-Escárcega et al., 2016), which explains
the prediction of the classifier in a format that can
be read and understood by human end users. An
example of such a rule is shown in Figure 1. Im-
portantly, both tasks share the same encoder, and
are trained using a joint objective function.

Supporting earlier findings, we observe that joint
training leads to performance improvements both
within and across tasks. In our unique pairing of
tasks, however, we are able to shed light on an
opaque process by generating rules that provide
an interpretable distillation of an event classifier’s
decisions.

The major contributions of this paper are:

(1) A simple neural architecture for EE that jointly
learns to extract events and explain its decisions.
While here we investigate event extraction, we be-
lieve this approach is applicable to many other in-
formation extraction tasks.

(2) We extend a subset of the BioNLP 2013 GENIA
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label: Phosphorylation
pattern: |

trigger =

[lemma=/phosphorylation/ & !word=/(?i) (̂de|auto)/]

theme: Protein =
prep_of appos? /nn|conj_(and|or)|cc/{,2}

Label(s) to assign to a match.
Lexical constraints on the event’s predicate.
argName:ArgType, where ArgType indicates the semantic cate-
gory expected for this argument.

Figure 1: An example of an event extraction rule in
the Odin language that extracts phosphorylation events
driven by a nominal trigger (“phosphorylation”). The
event’s sole argument or theme (the phosphorylated
protein) is identified through both semantic constraints
(its type must be Protein), and syntactic ones (it
must be attached to the trigger through a certain syntac-
tic dependency pattern: a prep of followed by an op-
tional (?) appositive (appos), followed by up to two
({,2}) other dependencies, e.g., nn). This rule would
extract a Phosphorylation(PKC) event from the
text “. . . which includes the phosphorylation of PKC
by. . . ”.

event extraction (Kim et al., 2013) dataset with a
set of rules designed to extract and explain three
of the GENIA biomedical events: protein phospho-
rylation, localization, and gene expression. The
result is a parallel dataset that aligns some of the
GENIA event labels with rules that extract them.
We release this dataset1 for reproducibility.

(3) We train and evaluate our approach on this
dataset and demonstrate that: (a) our approach
achieves reasonable event classification perfor-
mance, despite the fact that it uses no syntactic or
part-of-speech information; (b) it decodes explana-
tions with high accuracy, e.g., with a BLEU overlap
score between the generated rules and hand-written
rules of up to 93%, and (c) most importantly, we
show that MTL improves performance over the
individual event classification task. To our knowl-
edge, this is the first work that demonstrates that in-
terpretability improves classification performance.

(4) Our approach can be easily extended to a semi-
supervised setting, where we use the rules associ-
ated with the events of interest to extract additional
training data with “silver” labels, i.e., where we use
the rule predictions as training labels for the classi-
fier. We show that despite the inherent noise in this
process, the performance of our approach improves
considerably in this semi-supervised setting.

1https://github.com/clulab/releases/
tree/master/aclsrw2020-edin/

2 Related Work

Interpretability in machine learning is an area of
active research involving a multitude of approaches.
In this work, we focus on post-hoc interpretations
that explain a model’s output (Lipton, 2016).

A common theme of prior research in inter-
pretable machine learning is producing a definite
decision process (e.g., a decision tree) that pre-
serves generalization. (Craven and Shavlik, 1996)
explored converting a trained network to a decision
tree. Similarly, (Frosst and Hinton, 2017) trained
soft binary decision trees using the predictions of
a neural model. These decision trees are trained
with mini-batch gradient descent using as labels a
trained network’s results. In the same vein, (Che
et al., 2016) proposed a mimic learning framework,
which trains gradient boosting trees to mimic the
soft predictions of the original neural network. One
unaddressed challenge with this direction, however,
is that a decision tree’s interpretability tends to de-
cay as the tree increases in size.

Rather than converting a statistical model into an
interpretable model such as a decision tree, other
efforts have focused on jointly learning a statistical
model with explanations for the model’s output.
Our work falls in this camp as well. (Hendricks
et al., 2016) proposed a system for image clas-
sification that generates a natural language (NL)
explanation to accompany each decision. Similarly,
(Blunsom et al., 2018) learned NL explanations for
the natural language inference (NLI) task, and (Ye
et al., 2018) applied this idea to crime case predic-
tion. Inspired by such approaches, here we learn
to generate declarative information extraction rules
that serve to explain the predictions of an event
classifier.

3 Approach

Our approach jointly addresses classification and
interpretability through an encoder-decoder archi-
tecture, where the decoder uses MTL for event
extraction (Task 1) and rule generation (Task 2). In
this paper, we apply this architecture to the extrac-
tion of unary events in the biomedical domain. The
two tasks are framed as follows:

Task 1 (T1): Given a sentence and an entity in
focus, it must identify which event applies to the
entity, and what is its trigger, i.e., the verbal or
nominal predicates that drives the lexicalization of
the event (e.g., “phosphorylation”).
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Task 2 (T2): Decode a rule in the Odin language
that explains the prediction of the event classifier.
That is, the rule should identify the lexical con-
straints on the event trigger, e.g., its lemma, the
semantic type expected of the argument, e.g., that
is must be a Protein, and the syntactic pattern
that connects the event trigger with the argument
(Figure 1 shows a complete example for such a
rule).

Consider this text as a walkthrough example:
which includes the phosphorylation of PKC by . . . ,
where the text in bold indicates the entity that is
provided in the input in this task. This follows
the settings of the standard event extraction task
of BioNLP 2013 (Kim et al., 2013). For Task 1,
we train a series of binary event classifiers (one for
each event type), which predict the position of the
event’s lexical predicate (i.e., trigger) that modifies
each given entity (phosphorylation here). Drawing
upon the state information from Task 1, we prime
our decoder in Task 2 using a contextualized repre-
sentation of the predicted event trigger to generate
an information extraction rule in the Odin language
that captures the same event (i.e., entity-predicate
structure) identified in Task 1 (see Figure 1). We
detail these two tasks next.

3.1 Task 1: Event Classifier

We train a binary event classifier for each event
type, which must identify if the corresponding
event type applies to the entity under considera-
tion, and, if so, which token in the input sentence
is the event’s trigger.

The classifier uses an encoder with entity atten-
tion to encode its input. For each sentence with
words w1, . . . , wn and a given entity z, we asso-
ciate each word i with a representation xi that con-
catenates three embeddings: xi = e(wi) � e(pi) �
char(wi), where e(wi) is the word embedding of
token i, pi is the word’s relative position to the
entity under consideration, and char(wi) is the
output of a bidirectional character-level LSTM
(charLSTM) applied over wi. e(wi) is initial-
ized with the pretrained embeddings of (Hahn-
Powell et al., 2016) using the word2vec Skip-gram
model (Mikolov et al., 2013) trained on the full
text of over 1 million biomedical papers taken
from the PubMed Central Open Access Subset.2

while e(pi) and char(wi) are initialized randomly.

2https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/

The sequence of xis serves as input to a sentence-
level bidirectional LSTM (biLSTM), whose hidden
states his serve as input to the attention layer below.

The entity-attention layer computes a sequence
of context vectors (the matrix CCC in the equations
below), which weighs the biLSTM’s hidden states
by their importance to the entity z. Our atten-
tion mechanism is inspired by the transformer net-
work (Vaswani et al., 2017). Similarly, we com-
pute the attention function on a set of keys and val-
ues that are packed together into matrices KKK and
VVV . The difference is that our approach is entity-
focused in its query, so we only compute the atten-
tion on a single query vector qqq. Further, unlike the
conventional encoder in a transformer network, we
don’t produce a single vector, but a sequence of
vectors (the matrix CCC).

qqq =WWW qhhhz (1)

KKK =WWW kHHH
E (2)

VVV =WWW vHHH
E (3)

sss = qqqKKK (4)

aaa = softmax(sss) (5)

CCC = VVV � aaa (6)

whereWWW q,WWW k,WWW v are learned matrices of dimen-
sion 200 ⇥ 200,HHHE contains the biLSTM’s hidden
states, andhhhz is the hidden state of the entity z from
HHHE . We concatenate each context vector (CCCi) with
the entity vector (HHHE

i ) and feed the concatenated
vector to two feedforward layers with a softmax
function, and use its output to predict if there is a
trigger in this position. We calculate the classifier’s
loss using the binary log loss function.

3.2 Task 2: Rule Decoder
Inspired by neural machine translation (Luong
et al., 2015), we use another LSTM with attention
as the decoder. To center rule decoding around the
trigger, which must be generated first, we first feed
the trigger vector from the encoder’s context as the
initial state in the decoder. Then, in each timestep
t, we generate the attention context vector CCCD

t by
using the current hidden state of the decoder, hhhDt :

ssst(j) = CCCE
j WWW

AhhhDt (7)
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aaat = softmax(ssst) (8)

CCCD
t =

X

j

aaat(j)hhh
E
j (9)

where WWWA is a learned matrix of dimensions 100
⇥ 200, and CCCE are the context vectors from the
previous entity-focused attention layer. Note that
the learned matrix WWWA here is distinct from the
matrices learned in the previous entity-attention
layer. We feed this CCCD

t vector to a single feed for-
ward layer that is coupled with a softmax function.
We predict the next word from a vocabulary ex-
tracted from the existing Odin rules used in our
experiments (see next section for details). During
training, we calculate the decoder’s loss using the
multiclass cross-entropy loss function.

Note that the losses corresponding to these two
tasks are jointly optimized. Formally, the loss func-
tion is defined as:

loss = lossc + lossd (10)

lossc =
X

i

�(tci log(yi) + (1� tci ) log(1� yi)) (11)

lossd =

X

i

� log(pi) (12)

where lossc is the cross-entropy loss of the event
classifier, which relies on: tc, the target label (i.e.,
1 for positive examples, 0 for negative), and y, the
likelihood predicted by the model. lossd is the
cross-entropy loss of the rule decoder, where i it-
erates over the tokens in the rule, and pi is the de-
coder’s probability of the correct token at position
i.

4 Experiments

4.1 Dataset
We train and evaluate on three events from the
BioNLP 2013 GENIA Events extraction shared
task (Kim et al., 2013): Phosphorylation (P), Local-
ization (L), and Gene Expression (GE). To facilitate
comparison with previous work, we use the stan-
dard training, development, and test partitions from
the original dataset. To generate data for the rule
decoder, we extend this dataset with rules from the
rule-based system of (Valenzuela-Escárcega et al.,
2018), which reported high-precision results for
Phosphorylation (92%). We manually added new
rules using existing syntactic templates that cover

common syntactic forms of subject-verb-object pat-
terns to cover more events. Further, because the
system of Valenzuela-Escárcega et al. (2018) did
not cover L and GE events, we extended it with
rules for these two events. All in all, we used: 32,
20, and 21 rules for P, L, and GE, respectively.
Most of these rules rely on syntactic structures de-
noted in terms of dependency paths to extract event
arguments (see Figure 1 for an example of such a
rule). From these rules, we obtained a token-level
vocabulary for the rule decoder. This poses an ad-
ditional challenge on our decoder, which must now
decode from raw text both the semantics necessary
for these events, and the syntactic patterns needed
to match event arguments. Further, note that these
rules do not have perfect recall, i.e., there are events
in the data that are not covered by rules. In other
words, the two tasks in our MTL framework are
not perfectly aligned: there are data points which
are part of the training examples of T1, but not of
T2 (for those training examples, the loss of decoder
is set to be 0).

In addition to using these rules for explainabil-
ity, we used the rule-based system to generate
additional “silver” training data for these three
events, by using its extractions from a collection of
PubMed publications. From these papers, we ex-
tracted an additional 6592, 6321, and 2056 positive
training examples for P, L, and GE, respectively. To
avoid biasing the classifier to the positive classes,
we also generated 3467, 3532, and 2876 negative
training examples for P, L, and GE by extracting en-
tities assign to extract evented to other event types
in the BioNLP data.

4.2 Evaluation Metrics

We used precision, recall, and F1 scores to measure
the performance of the event extractor (classifier),
and used the BLEU score to measure the quality
of generated rules, i.e., how close they are to the
corresponding gold rules that extracted the same
output. Note that the BLEU score provides an
incomplete evaluation of rule quality. The more
complete solution would be to evaluate these rules
by executing them over free text and verifying the
quality of the extracted output. However, this is not
a trivial process, as some of the decoded rules break
the Odin syntax, and are only executable after a
manual cleanup process. We leave this evaluation
for future work.
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Phosphorylation (P) Localization (L) Gene Expression (GE)
Precision Recall F1 Precision Recall F1 Precision Recall F1

Rule baseline 92.68 48.12 63.35 66.13 44.44 53.16 51.08 69.79 58.98
T1 87.78 49.38 63.20 100.00 4.04 7.77 89.32 64.30 74.77
T1 + Silver 62.75 82.50 71.28 54.55 34.34 42.15 68.43 74.31 71.25
T1 + Silver + T2 84.38 68.75 75.77 76.60 39.39 52.03 69.92 71.24 70.58
BioNLP best 83.95 85.62 84.78 86.21 53.54 66.05 91.29 82.55 86.70
BioNLP median 79.83 81.57 80.64 88.55 40.91 55.89 82.58 78.11 80.09

Table 1: Results for the three events in the BioNLP 2013 test partition. T1 and T2 indicate the two tasks in our
MTL approach, i.e., the event classifier and the rule decoder, respectively. Silver indicates that that configuration
used the silver data created by the rule-based system (see §4.1). BioNLP best and median indicate the best/median
results during the 2013 shared task. We do not include T1 + T2 results because in this configuration we observed
that there is not sufficient data to train the decoder.

4.3 Baseline

We compared our proposed methods with the rule-
based baseline proposed by (Valenzuela-Escárcega
et al., 2018). They used their rule-based system
to extract Phosphorylation events in BioNLP 2013
Genia Events (GE) task data using 42 manually
written rules (which we extended for our exper-
iments – see Section 4.1). On the development
partition, they reported a precision of 92.9%, a
recall of 56.0%, and an F1 score of 69.9%. We
also evaluated their system on the formal test parti-
tion and obtained a precision of 84.2%, a recall of
43.8%, and an F1 score of 57.6%. As mentioned
in Section 4.1, we adjusted the grammar in this
system to cover gene expression and localization
events. The complete results for this system are
listed in Table 1 as “Rule baseline.”

4.4 Results and Discussion

Tables 1 analyzes the performance of our approach
for the three events, compared against the rule-
based system described in §4.1. These results high-
light several important observations:

(1) T1 by itself performs generally worse than the
rule baseline and the median BioNLP result. This
is caused by: (a) the small size of this dataset,
e.g., there are only 117 training examples for P;
and (b) the fact that our approach uses no part-of-
speech (POS) or syntactic information, which have
been shown to be important for this BioNLP task
(Kim et al., 2013). However, adding the silver data
improves T1 performance considerably, e.g., 35 F1
points for Localization. This demonstrates that our
approach provides a simple but effective platform
for semi-supervised learning.

(2) Most importantly, jointly training for classifica-
tion and explainability helps the classification task
(T1) itself. As shown in the tables, combining T1

BLEU Exact
Matches

Non-exact, Explainable
Matches

P 93.80 86.11 2/15
L 83.78 84.33 1/9
GE 78.99 76.45 10/43

Table 2: Evaluation of decoded rules, on the BioNLP develop-
ment partition. BLEU measures the overlap with hand-written
rules. Exact Matches shows the percentage of decoded rules
that exactly match hand-written ones. Explainable Matches
shows the number of decoded rules that do not match exactly
hand-written ones, but were considered good explanations by
human experts.

and T2 generally improves F1 scores considerably,
e.g., 4 F1 points for Phosphorylation and 10 for Lo-
calization. To our knowledge, this is the first NLP
work to demonstrate that aiming for interpretability
also helps the main task addressed. All in all, we ap-
proach the median performance in the shared task,
a respectable result considering that our approach
uses only raw text as input, whereas all participants
in this shared task used some form of syntactic rep-
resentation. Importantly, our approach outperforms
considerably the rule-based method of (Valenzuela-
Escárcega et al., 2018), which served as the starting
point of this work (see Section 4.3).

(3) The only negative results in our experiments
are the GE results in the test partition, where T1
outperforms both T1 + Silver and T1 + Silver
+ T2. We hypothesize that this is caused by the
larger training data for this event, e.g., there are 6
times more training samples for GE than P, which
allows the T1 classifier to learn by itself, without
the scaffolding offered by MTL, and the additional
(noisy) data in the silver dataset. This suggests
that our approach is best suited for EE scenarios
with minimal training data, an important subset of
information extraction tasks.

But are the decoded rules actually interpretable?
To answer this, we compared in Table 2 the de-
coded rules against the hand-written rules that
matched in the BioNLP development partition.

173



Table 3: Examples of mistakes in the decoded rules. The first column shows hand-written rules, while the second shows
the rules decoded by our approach from sentences where the corresponding hand-written rules matched. We highlight in the
hand-written rules the tokens that were missed during decoding (false negatives) in green, and in the decoded rules we highlight
the spurious tokens (false positives) in red. The first row lists a partial mistake, which does not affect the interpretability of the
decoded rule, since it only misses one token that can be inferred by the human experts from context. The second row lists a
partial mistake, which impacts the semantics of the rule. For example, the decoder missed that the path between the trigger and
the theme argument starts with an optional prop of and appos. This rule was marked as partially correct because some
simple syntactic patterns, e.g., nn, can still be correctly matched by the decoded rule. The last row lists a larger decoding error
that was marked as completely incorrect by the annotator. For example, in the last decoded rule, the decoder generated an
incorrect cause argument, which does not exist in the data, as well as an incorrect syntactic pattern for the theme argument,
i.e., the protein being phosphorylated.

That is, we performed this analysis on the subset of
the development partition, where each data point
is accompanied by a matching hand-written rule.
This reduced this dataset to approximately 60% of
the total BioNLP development set. In particular,
we analyzed 108, 82, and 296 event instances with
matching rules for P, L, and GE events, respec-
tively. The table shows that our rules have high
BLEU overlap with hand-written rules, e.g., 93%
for P, and, by and large, they exactly match them.
We believe this is an exciting result, as it shows
that our approach is able to decode directly from
the raw text the declarative semantics necessary for
the task, as well as the syntactic patterns that match
the event arguments.

Lastly, Table 3 shows examples of typical de-
coding errors, ranging from partial mistakes that
do not affect the interpretability of rules to com-
plete decoding mistakes. As we mentioned above,
we cannot ensure the validation of the generated
rules with our current approach. Table 3 shows that
this indeed happens in our output. For example,
the decoder generates a binary operator such “!=”
without the left operand (first row in the table).

5 Conclusions

We introduced an interpretable approach for event
extraction that jointly trains an event classifier with
a component that translates the classifier’s deci-
sions into interpretable extraction rules. We im-
plemented this approach using an encoder-decoder
architecture, where the decoder jointly optimizes
the decoding of extraction rules and event clas-
sification. We evaluated the proposed approach

on three biomedical events and demonstrated that
the decoder generates interpretable rules, and that
the joint training improves the performance of the
event classifier. We also showed that the perfor-
mance of our approach further improves when
trained on automatically-labeled data generated by
a rule-based system.

In the longer term, we envision a decoder with
constraints, which enforces that the generated rules
follow correct Odin syntax. We plan to include
constraints as part of decoding to aid in rule syn-
thesis. For example, in the Odin language, brackets
must be paired to produce syntactically valid rules.
This can be enforced with different strategies in
the decoder, ranging from constrained greedy de-
coding to globally optimal solutions that could be
implemented with integer linear programming. We
suspect that including such validity constraints will
further improve the quality of the decoded rules.

Further, we plan to use this decoder in an iter-
ative, semi-supervised learning scenario akin to
co-training (Blum and Mitchell, 1998). That is,
the newly decoded, executable rules can be applied
over large, unannotated texts to generate new train-
ing examples for the event classifier.
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Abstract
Recent shared tasks in humor classification
have struggled with two issues: scope and sub-
jectivity. Regarding scope, many task datasets
either comprise a highly constrained genre of
humor which does not broadly represent the
genre, or the data collection is so indiscrimi-
nate that the inter-annotator agreement on its
comic content is drastically low. In terms
of subjectivity, these tasks typically average
over all annotators’ judgments, in spite of the
fact that humor is highly subjective and varies
both between and within cultures. We propose
a dataset which maintains a broad scope but
which addresses subjectivity. We will collect
demographic information about the data’s hu-
mor annotators in order to bin ratings more
sensibly. We also suggest the addition of an
’offensive’ label to reflect the fact a text may
be humorous to one group, but offensive to
another. This would allow for more meaning-
ful shared tasks and could lead to better per-
formance on downstream applications, such as
content moderation.

1 Introduction

Interest in computational humor (CH) is flourish-
ing, and since 2017, the proliferation of shared
humor detection tasks in NLP has attracted new re-
searchers to the field. However, leading researchers
in CH have bemoaned the fact that NLP’s contribu-
tion is not always informed by the long and inter-
disciplinary history of humor research (Taylor and
Attardo, 2016) (Davies, 2008). This may result in
the creation of humor detection systems which pro-
duce excellent evaluation results, but which may
not scale to other humor datasets, improve down-
stream tasks like content moderation, or contribute
to our understanding of humor.

A central issue is the conception of humor classi-
fication tasks as humor-or-not, similar to image
classification’s view of an image as dog-or-not.

However, while one can be an expert in whether or
not an image depicts a dog, and this is stable within
and between cultures, humor is more nuanced than
that. Unlike image classification:

• Humor differs between cultures. Even within
the same language, different nationalities per-
ceive jokes differently. This is particularly rel-
evant to stereotyped humor, which may be per-
ceived as funny to one culture, but offensive
to another. (Rosenthal and Bindman, 2015)

• Humor differs within cultures. Age, gender
and socio-economic status are known to im-
pact what is perceived as humorous. (Kuipers,
2017)

• Humor differs within the same person. Mood
is thought to impact what is considered to be
humorous or not. (Wagner and Ruch, 2020)

Currently in NLP shared tasks, there is scant
admission of these issues. Humor is treated as a
stable target, and humorous texts are subjected to
binary classification and humor score prediction,
with little recognition that gold standard labels for
these constructs simply do not exist.

1.1 Proposal
To the extent that humor is multi-faceted, and sub-
ject to multiple interpretations, incremental im-
provements to shared tasks can be made by:

• Acknowledging that texts may not be per-
ceived as humorous by all readers, and allow-
ing for a different interpretation, e.g. offen-
sive.

• Collecting demographic information about the
annotators of humor datasets to learn more
about which sectors of society find a text hu-
morous versus offensive.
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1.2 Why Offensive as an Alternative Label?

Cultural shifts in many parts of the world have seen
a decline in racist and sexist jokes, and the growth
of humor that acknowledges marginalized people.
Lockyer and Pickering (2005) argue that this is
not just a recent phenomenon, but that all pluralist
societies navigate the space between humor and
offensiveness, between ‘free speech and cultural
respect’

Despite the shift away from using racist or sex-
ist comments as humor, offensive language is still
plentiful on the internet (Davidson et al., 2017),
(Nobata et al., 2016). This can reinforce racial
stereotypes, or have a damaging impact on commu-
nities. In light of the fact that many shared tasks
source their data online, either by scraping Twitter,
Reddit, or crowdsourcing, we believe it is worth
capturing the impact of these texts on users.

1.3 Why Demographic Factors?

Studies as far back as 1937 demonstrate gender
and age differences in the appreciation of jokes,
where young men gave higher ratings to ’shady’
(e.g. sexual) jokes than their female, and older
counterparts did (Omwake, 1937).

More recently, in the Netherlands, Kuipers
(2017) found significant differences in humor pref-
erences along the lines of gender, age, and in partic-
ular, social class or education level. An interesting
finding was that the older generation rated their
younger counterparts’ humor as offensive. This
contradicts the popular opinion that the millennial
generation is perpetually offended (Fisher, 2019).

In terms of gender-specific offensive humor, a
US study found that males tended to give higher
ratings to female-hostile jokes, and females did the
same with male-hostile jokes. Both genders found
female-hostile jokes more offensive overall (Abel
and Flick, 2012).

The body of work from CH on demographic
differences in humor perception is absent in current
work, but can be incorporated into shared tasks with
some simple adjustments.

2 Previous Work

SemEval 2017 posed two humor detection tasks.
Task 7 (Miller et al., 2017) covered puns,
which we do not include here as the identifica-
tion/interpretation of puns is less ambiguous than
other forms of humor, except in the case that the

audience does not possess the tacit linguistic knowl-
edge required to understand them (Aarons, 2017).

2.1 Limited Scope

Task 6, Hashtag Wars (Potash et al., 2017), sourced
its name and data from a segment in the Com-
edy Central Show @Midnight with Chris Hard-
wick, which solicited humorous responses to a
given hashtag from its viewers, submitted on Twit-
ter. These submissions were effectively annotated
twice: the producers selected ten tweets as most hu-
morous, and most appropriate for the show’s type
of humor. The show’s audience then voted on their
number one submission. Task 1 was to pair the
tweets, and for each pair, predict which one had
achieved a higher ranking, according to the audi-
ence. Task 2 was to predict the labels given by
this stratified annotation: submitted but not top-10,
top-10, number one in top-10.

The task’s organisers highlighted the data’s lim-
ited scope, and were keen to point out that this task
does not aim to build an all-purpose, cross-cultural
humor classifier, but rather to characterise the hu-
mor from one source - the show @Midnight. This
task’s dual annotation and ecologically valid task
make it arguably one of the most effective humor
challenges in recent years. However, it remains to
be seen how well a system built on this data would
generalize to another humor detection task.

Semeval 2020 featured another humor challenge
with two subtasks: predicting the mean funniness
rating of each humorous text, and given two hu-
morous texts, predicting which was rated as fun-
nier (Hossain et al., 2019). Instead of collecting
previously existing humorous texts, the organisers
generated them by scraping news headlines from
Reddit, and then paying crowdworkers to edit the
headlines to make them funny, and annotators to
rate the funniness of the new headlines.

Edits were defined as ‘the insertion of a single-
word noun or verb to replace an existing entity or
single-word noun or verb’. The annotators rated
the headline as funny from 0-4. An abusive/spam
option was included, but presumably to discard
ineffective edits, rather than highlight a text which
would cause offense. Nonetheless, inter-annotator
agreement between raters was moderately high,
(Krippendorff’s ↵ 0.64)

Of interest to CH research is that the authors’
analysis of the generated humor finds support for
established humor theories, such as incongruity,
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superiority and setup and punchline being central
to the this task. However, the editing rules enforced
such tight linguistic constraints that many common
features of language were not permitted, e.g. the
use of named entities with two words, phrasal verbs,
even apostrophes. This scales down the humor that
can be generated, not in terms of genre, as was
the case with the 2017 SemEval task, but rather in
terms of arbitrary linguistic constraints.

Finally we must consider that, given that the hu-
morous texts were presented alongside the original
headline, it’s possible that affirmative humor rat-
ings do not mean that the text is humorous in and of
itself, only that it is funnier than the contemporary
news — arguably a low bar in the current climate.

2.2 Unlimited Scope
The HAHA challenge (Humor Analysis based on
Human Annotation) has run in 2018 (Castro et al.,
2018) and 2019 (Chiruzzo et al., 2019) with two
subtasks: binary classification of humor, and pre-
diction of the average humor score assigned to each
text.

The data were collected from fifty Spanish-
speaking Twitter accounts which typically post hu-
morous content, representing a range of different
dialects of Spanish. These were then uploaded to
an online platform, which was open to the public
who were asked the following questions to annotate
the data:

1. Does this tweet intend to be humorous? (Yes,
or No)

2. [If yes] How humorous do you find it, from 1
to 5?

A strength of this annotation process is that the
first question allows the user to objectively identify
the genre of the text by identifying its intention,
before giving their subjective opinion of it. How-
ever, the inter-annotator agreement for the second
question was extremely low (Krippendorf’s ↵ of
0.1625). It’s possible that sourcing the texts from
fifty different accounts introduced too many genres
to gain a consensus about what was funny amongst
annotators. Similarly, the organizers targeted as
many different Spanish dialects as possible in their
data collection, which could lead to cultural and lin-
guistic differences in humor appreciation. Finally,
the annotations were sourced on an open platform,
with only three test tweets to assess whether an an-
notator provided usable ratings or not. There were

no questions as to whether the user was a Spanish
speaker, and as the task was unpaid, there may have
been little incentive to do it accurately.

3 Methodology

The datasets featured in both SemEval tasks had
tight constraints on the genre of humor involved.
This led to high inter-annotator reliability, but may
not generalize well to other forms of humor. The
Spanish tasks featured no such constraints, how-
ever, there was extremely low inter-annotator agree-
ment, suggesting that the dataset is noisy, and that
a system which is built on this may also fail to
generalize.

This proposal aims to include a wide range
of genres, and to increase the reliability of the
annotations by collecting information on well-
known latent variables in humor appreciation —
the demographic characteristics of the humor audi-
ence/annotators. This will allow for more nuanced
tasks, as an alternative to simple humor-or-not defi-
nitions.

3.1 Data Collection
We plan to follow a similar data collection pro-
tocol to (Castro et al., 2018) and collect tweets
from a wide variety of humorous Twitter accounts.
However, unlike Castro et al., we plan to limit the
dialect of the jokes collected to US English, and
use a crowdsourcing platform which allows us to
select annotators who use this dialect. This will
help us to avoid introducing confounds such as lack
of cultural knowledge, or divergent language us-
age. Furthermore, we will hand select the Twitter
accounts which typically post humorous content,
in order to ensure that the data features a wide vari-
ety of genres of humor, e.g. observational humor,
wordplay, humorous vignettes, etc.

3.2 Annotation
As mentioned above, averaging over the opinions
of the audience, similar to approaches in image
detection is not ecologically valid for humor de-
tection. For this reason, we plan to collect demo-
graphic information about the annotators, in order
to bin the ratings into groups that may perceive
humor in a similar way. In this way, we hope to
increase inter-annotator reliability. We also plan to
include a second label for each text — offensive.

Following Castro et al., annotators will be asked
the following questions for each text:
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1. Is the intention of this text to be humorous?

2. [If so] How humorous do you perceive this
text to be?

3. Is this text offensive?

4. [If so] How offensive do you perceive this text
to be?

The annotator guidelines will reflect that offen-
siveness can encompass an insult to the audience
itself, or to others who are likely to find the text
distasteful.

All annotators will be paid for their work, to
incentivize quality ratings. They will be selected
to undertake the task by virtue of fitting into the
following demographic bins:

• Age: 18-25, 26-40, 41-55, 56-70 the bins
are broadly designed to capture Generation Z,
Millenials, Generation X and Baby Boomers
respectively (Dimock, 2019).

• Gender: Male, Female, Non-binary

• Level of Education: High School, Undergrad-
uate, Postgraduate. This will be used as an
index of socioeconomic status (Mirowsky and
Ross, 2003).

Subsequent to data annotation, we will select
the demographic factor that gives the highest inter-
rater reliability for this dataset. Annotations will be
averaged by bin, rather than averaging over all of
a text’s ratings, as was the case in previous shared
tasks.

3.3 Pilot Study
To examine the integrity of our assumptions, we ran
a short pilot task in which we used the Prolific Aca-
demic platform to crowdsource annotations from
users in the youngest and oldest age groups.

We searched for texts which related to
race/origin, religion, gender, sexuality and body
type. We used keywords from Fortuna’s (2017) sub-
categories of offensive speech to source texts which
could be offensive jokes, such as ‘black’, ‘woman’,
‘girlfriend’, ‘blind’, ‘gay’, ‘Muslim’, ‘Jew’, etc.
From a readily available dataset (The Short Jokes
dataset from Kaggle), we sourced 40 jokes, 20 in
which the keyword also referred to the butt of the
joke (average number of tokens per text = 18.4),
and 20 in which it did not (average number of to-
kens = 19.1). Twenty neutral texts were selected

from Twitter, ensuring that the semantic meaning
of the keyword stayed they same, e.g. ‘black’ re-
ferred to race, and not to Black Friday, and that
the texts were not intended to be humorous. The
average number of tokens per text in this group was
20.2.

• Keyword is not target of joke: ‘What is the
Terminators Muslim name? Al Bi Baq’

• Keyword is target of joke: ‘Mattel released
a Muslim Barbie... It’s a blow-up doll.’

• Random tweet with keyword: ‘The Mosque
will close this weekend due to the pandemic’.

We asked 2 groups of annotators, aged 18-25
(n=10) or aged 55-70 (n=10) to imagine they were
social media moderators. Their task was to iden-
tify the genre of the texts as label them as ‘humor-
ous’, ‘offensive’, ‘humorous and offensive’ and
‘other’. We highlighted that they did not need to
find the text humorous, or personally offensive to
label them as such. If they identified the intent as
humorous, or the text as possibly offensive to oth-
ers, they should use the corresponding label. We
omitted the numerical rating task for reasons of
brevity.

In terms of results, the clearest trends emerge
when the groups were split by age. Both age groups
of users made use of the ’humorous and offensive’
label, suggesting that annotators could identify the
genre of the text as humorous, but found it in bad
taste. However, there was a trend for the younger
group using this label more frequently than the
older group.

Examining where differences in annotation oc-
curred, Table 1 demonstrates the disparity in la-
belling on the following gender-related text:

We should really use the blackjack scale
to rate women. For example: “Every
girl here is ugly” “Well, what about her?”
“Eh, she’s like a 15 or 16. Not sure if I’d
hit it”

Table 1: Variation in labelling between age groups

Age Humorous Offensive Humorous &
Offensive Other

18-25 3 3 3 1
56-70 2 7 0 1

As we did not have balanced groups based on
level of education, or a critical mass of non-binary
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users so we omit analysis for these. Similarly, re-
garding gender differences, there were no clear
trends in terms of labelling between females and
males, and there were no statistically significant
differences between groups.

The results of our pilot study suggest that pursu-
ing demographic differentiation in humor annota-
tion/classification is worthwhile. Specifically, we
can see that age group may be relevant as the demo-
graphic factor which most distinguishes annotators’
response to humor.

3.4 Tasks
We will ask systems to predict, given a group with
a specific set of user demographics:

• Is this text humorous to the group, and if so,
how humorous?

• Is this text offensive to the group, and if so,
how offensive?

Our data will comprise texts which are either hu-
morous and not offensive, humorous and offensive,
not humorous and offensive, and not humorous and
not-offensive.

In the case that there are no clear distinctions
between the groups in terms of labels and ratings,
we will average over these annotations, as typical
tasks have done and proceed with classification and
regression, as above.

The evaluation metrics for the classification task
will be precision, recall and F1. The metric for
predicting the humor and offensiveness scores will
be root mean squared error.

4 Contribution to Computational Humor

In line with CH research, we affirm that humor
is a moving target in terms of differing interpreta-
tions between demographic groups and across the
lifetime. Our dataset will be the first to model the
reception of a wide variety of humor genres from
Twitter, presented to users of different demograph-
ics. It will also be, to the best of our knowledge,
the first CH dataset to take into account the ratings
of non-binary annotators.

In line with Hossain (2019), we aim to use clus-
tering methods on the humor and/or offensive texts
to determine themes that evoke these classes for
different groups. We also aim to explore whether
theories of humor, such as surprisal, superiority
and incongruity are equally appreciated among dif-
ferent groups.

5 Conclusion

Humor detection and rating is a multi-faceted prob-
lem. We hope that the inclusion of demographic
information will shift the state of the art away from
objective classification, towards a more subjective
approach. Future qualitative work could also sug-
gest further variables whose inclusion would en-
hance our knowledge of humor perception. This
could set a new standard for shared tasks which
aim to model humor in future, and could outline
a methodology that can be replicated with other
cultures and languages.

6 Acknowledgements

This work was supported in part by the EPSRC Cen-
tre for Doctoral Training in Data Science, funded
by the UK Engineering and Physical Sciences Re-
search Council (grant EP/L016427/1) and the Uni-
versity of Edinburgh.

References
Debra Aarons. 2017. Puns and tacit linguistic knowl-

edge. In The Routledge handbook of language and
humor, pages 80–94. Routledge.

Millicent H Abel and Jason Flick. 2012. Mediation and
moderation in ratings of hostile jokes by men and
women.

Santiago Castro, Luis Chiruzzo, Aiala Rosá, Diego
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Abstract
Parallel corpora are key to developing good
machine translation systems. However, abun-
dant parallel data are hard to come by, es-
pecially for languages with a low number of
speakers. When rich morphology exacerbates
the data sparsity problem, it is imperative to
have accurate alignment and filtering methods
that can help make the most of what is avail-
able by maximising the number of correctly
translated segments in a corpus and minimis-
ing noise by removing incorrect translations
and segments containing extraneous data. This
paper sets out a research plan for improving
alignment and filtering methods for parallel
texts in low-resource settings. We propose
an effective unsupervised alignment method to
tackle the alignment problem. Moreover, we
propose a strategy to supplement state-of-the-
art models with automatically extracted infor-
mation using basic NLP tools to effectively
handle rich morphology.

1 Introduction
Machine translation (MT) quality has improved
substantially with the advent of neural machine
translation systems (NMT). However, while the
quality gains over statistical machine translation
(SMT) systems can be large, in low-resource and
domain mismatch settings they are significantly re-
duced (Koehn and Knowles, 2017). In recent years,
unsupervised NMT trained only on monolingual
corpora has attracted considerable attention, and
has been proposed for scenarios where there is a
lack of bilingual data (Artetxe et al., 2018b; Lam-
ple et al., 2018). These methods have been shown
to perform well for related language pairs (e.g. Wu
et al. (2019)), but as the languages differ more the
unsupervised methods become less effective (Leng
et al., 2019). Kim et al. (2020) show that super-
vised and semi-supervised baselines with only a
small parallel corpus of 50K bilingual sentences

consistently outperform the best unsupervised sys-
tems for a range of languages, similar and distant.
They also show that unsupervised NMT is very
sensitive to domain mismatch, which poses a prob-
lem to low-resource language pairs where it can be
difficult to match the data domain on both sides.
Thus, it is evident that to achieve high quality MT,
sentence aligned-texts in two or more languages
are required.

NMT systems have been shown to be sensitive
to noise in the training data (Khayrallah and Koehn,
2018), where noise is defined as segments that de-
crease output quality of systems trained on the
data. It is, therefore, important to be able to ac-
curately align multilingual texts and precisely fil-
ter out misalignments and bad translations that ad-
versely affect performance. In the study, conducted
on the impact of various types of noise on MT
quality, untranslated and misaligned segments had
the most detrimental effect. Misaligned segments
were by far the most prevalent type of noise in
the ParaCrawl1 parallel corpus they used, twice as
common as accepted segments. However, misalign-
ments vary; a segment can have one extraneous
word, it can have twice the content its counterpart
has, or anything in between. It can be very useful
to understand the intricacies of the effects different
types and levels of noise have, why it is important
not to have noise and whether some kinds of noise
are more acceptable than others. This leads us to
our first research question:

RQ1: How do different kinds of misalign-
ments in a parallel corpus affect translation
quality of an MT (SMT or NMT) system
trained on that corpus?

If we can measure the effects of various misalign-
ments, it could help us construct more effective
methods to filter parallel corpora for MT.

1https://paracrawl.eu/
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As the usefulness of parallel corpora for MT
was first becoming apparent, Harris (1988) pointed
out that aligning such texts was a serious problem.
Moreover, collecting multilingual texts is expen-
sive and time-consuming, and for some languages
it can be hard to obtain access to even small amount
of texts. Thus, we need to be able to make the most
out of what is available.

We describe a method using Bleualign (Sen-
nrich and Volk, 2011) and Monoses (Artetxe et al.,
2018b), an unsupervised SMT system, to align
parallel corpora using only monolingual texts for
training. The proposed method is language pair-
independent and only assumes unaligned bitexts
and monolingual corpora for both languages. It
is the first step towards answering our second re-
search question:

RQ2: How can we best build useful parallel
corpora from bilingual texts, having no other
resources but monolingual corpora?

In morphological typology, languages can be
classified as analytic or synthetic (see e.g. Haspel-
math and Sims (2013), Steinbergs (1996)). Ana-
lytic languages primarily rely on word order and
auxiliary words to convey meaning, while syn-
thetic languages use inflection. “Morphologically
rich” languages are synthetic languages which com-
monly have a large number of different surface
forms for any given lexeme. This can lead to a
high rate of out-of-vocabulary (OOV) words, a data
sparsity problem that machine learning algorithms
struggle with.

Icelandic is a synthetic language with relatively
few native speakers (approx. 350,000) where data
sparsity problems are prevalent in most NLP tasks.
In our work, we will focus on building a paral-
lel corpus for the English-Icelandic language pair
and confronting the issues that arise when work-
ing with a less-resourced and morphologically rich
language.

When doing sentence alignment and filtering
noise from parallel corpora, the sparsity problem
caused by rich morphology leads to lower confi-
dence scores for segment pairs resulting in lower
classification accuracy, and thus smaller or less
accurate parallel corpora. When ParIce (Barkar-
son and Steingrímsson, 2019), an English-Icelandic
parallel corpus was compiled, the filtering process
resulted in an estimated 20% reduction in corpus
size. Out of what remained, about 5% was faulty
(see Section 3). We will work with the same data

with the goal of minimising these numbers. This
leads us to the third and last research question this
research proposal centres around:

RQ3: How can we filter parallel corpora to
minimize noise, and still lose little or no useful
data from the original texts?

Our approach to try to answer these questions
is to experiment with common and recent meth-
ods from the alignment and filtering literature. We
will build a toolset that can employ various known
methods and compare and contrast them. We will
investigate how word embeddings, a lemmatizer,
a part-of-speech (PoS) tagger or a parser can help
tackle the data sparsity problem, and which known
methods benefit most from them. Evaluation data
sets will be created for the purposes of the project
and the methods evaluated according to a set of
evaluation metrics. Finally, we will train and eval-
uate our system on a different language pair with
comparable issues.

2 Related Work

Filtering parallel data is the task of removing incor-
rect translations, noise and otherwise faulty data
from a set of two (or more) aligned texts. Align-
ment is the task of finding target segments with a
corresponding meaning to that of source segments
in multilingual texts. While these may seem to
be different tasks, the same methods may apply
partly to both problems. Filtering is often done by
scoring sentences and removing the lowest-scoring
ones, whereas in alignment the highest-scoring sen-
tences can be used as anchors: elements in the data
that can reliably be aligned and thus direct further
processing. In the next subsections, we describe
alignment and filtering methods used in prior work.

2.1 Alignment

The first approaches to automatic sentence align-
ment were length-based. Gale and Church (1991)
found that “the correlation between the length of a
paragraph in characters and the length of its transla-
tion was extremely high”. Motivated by that, they
describe a method for aligning sentences based
on a simple statistical model of character lengths.
Brown et al. (1991) also describe a length-based
method, but use tokens instead of characters. In
addition, they use signals in the markup as anchor
points to segment the corpus into smaller chunks.

Kay and Röscheisen (1993) used bilingual lex-
icons induced from the corpus being aligned.
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Haruno and Yamazaki (1996) show that combin-
ing an induced lexicon with an external dictionary
yields better results. Papageorgiou et al. (1994) use
part-of-speech, commonly preserved in translation,
by computing the optimum alignment based on the
PoS-tags. Tschorn and Lüdeling (2003) use a mor-
phological analyzer to improve a dictionary-based
distance measure, and Ma (2006) increases the ro-
bustness of a lexicon-based aligner by assigning
greater weights to less frequent translated words.

Sennrich and Volk (2010) use machine transla-
tions and BLEU (Papineni et al., 2002) as a similar-
ity score to find reliable alignments to use as anchor
points. The gaps between the anchor points are
filled using BLEU-based and length-based heuris-
tics.

Thompson and Koehn (2019) describe a method
based on bilingual sentence embeddings, using the
similarity between the embeddings as the scoring
function for alignment.

2.2 Filtering

Recently, neural networks have been used to find
anchor points and detect misalignments. Many of
these methods have been devised to extract parallel
sentences from comparable corpora, by training
classifiers to determine if source and target sen-
tences are parallel.

Earlier work includes employing the IBM mod-
els (Brown et al., 1993) for word alignment.
Khadivi and Ney (2005) filter out the noisy part of
a corpus based on IBM models 1 and 4 and length-
based models, and score the alignments on a linear
combination of these. Taghipour et al. (2011) do
outlier detection and show that their filtered cor-
pus results in improved translation quality, even
though sentences have been removed. Sarikaya
et al. (2009) use context extrapolation to boost the
sentence pair coverage, checking whether the dis-
tance of the sentences from an anchor point is the
same, and whether the sentences have the highest
similarity score compared to other pairs within a
window, despite being below a defined threshold.

Crosslingual word embeddings have been used
to calculate distance between equivalences in dif-
ferent languages (Luong et al., 2015; Artetxe et al.,
2016). Defauw et al. (2019) treat filtering as a su-
pervised regression problem and show that Leven-
shtein distance (Levenshtein, 1966) between the tar-
get and MT-translated source, as well as cosine dis-
tance between sentence embeddings of the source

and target, are important features. While they use
InferSent (Conneau et al., 2017), BERT (Devlin
et al., 2019) has recently been employed for cal-
culating crosslingual semantic textual similarity
to detect misalignment with good results (Lo and
Simard, 2019).

Zipporah (Xu and Koehn, 2017) uses a logistic
regression model trained to classify sentence pairs.
Noisy data is synthesized and used as negative sam-
ples in training. BiCleaner (Sánchez-Cartagena
et al., 2018) uses a set of handcrafted hard rules to
detect flawed sentences and then proceeds to use
a random forest classifier based on lexical transla-
tions and several shallow features such as respec-
tive length, matching numbers and punctuation.
Finally, it scores sentences based on fluency using
5-gram language models.

In 2019, at the fourth Conference on Machine
Translation, WMT, the shared task on parallel cor-
pora filtering focused on low-resource conditions.
The method central to the best-performing submis-
sion was the use of crosslingual sentence embed-
dings, trained from parallel sentence pairs (Chaud-
hary et al., 2019). Artetxe and Schwenk (2019a)
devised a similar method. Both papers tackle the
inconsistencies of cosine similarity by investigating
the neighbourhood of a given sentence pair, outper-
forming systems using only cosine similarity.

3 Experimental Framework

The continuum of morphologically rich languages
is quite diverse with the one end of the continuum
being agglutinative languages, that primarily rely
on discrete particles for inflection, and the other
being fusional languages, which tend to use a sin-
gle inflectional morpheme to denote multiple fea-
tures. While it may be worthwhile to investigate if
the same unsupervised methods work across differ-
ent language categories, it can be expected that if
further processing is needed, different approaches
have to be taken. Decompounding (Alfonseca et al.,
2008) may be more useful for agglutinative lan-
guages to tackle the OOV problem, and for many
fusional languages internal change and suppletion
call for different approaches. In our study we focus
on fusional languages. English is primarily an an-
alytic language and Icelandic a fusional language
with moderately rich morphology. We will be using
the English-Icelandic language pair as a test case.
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3.1 Data

ParIce, an English-Icelandic parallel corpus, was
compiled from data consisting of 4.3 million trans-
lation segments. It was aligned with LF Aligner,
which uses Hunalign (Varga et al., 2005), and then
filtered using a sentence-scoring algorithm based
on a bilingual lexicon bag-of-words method and
a comparison between the original segment and
an MT-generated translation. The filtering process
resulted in 3.5 million translated segments. Man-
ual evaluation of approximately 2000 sample pairs
from the corpus indicate that approximately 5% are
faulty, while over 50% of the deleted segments are
estimated to be faulty using automatic methods.

From these numbers we can deduce that in the
raw 4.3 million segment ParIce corpus, there are ap-
prox. 3.7 million good segments and around 600K
faulty ones. Many of the faulty segments in the
corpus are due to misalignment. We will be work-
ing with the raw data that made up the 4.3 million
segment ParIce corpus. In order to compile a better
corpus, we need improved alignment methods to
reduce the number of faulty alignments, and we
need a classifier that is able to identify the quality
of the segments with high precision and recall in
order to build as big a corpus as possible with as
few faulty segments as possible.

3.2 Evaluation

We are building three evaluation sets, for alignment,
filtering, and MT, all sub-sampled and extracted
from the ParIce corpus. The MT evaluation set
will contain 3000 manually aligned and error-free
segments. The alignment evaluation set will have
2000 manually aligned sentences and the filtering
set 2000 automatically aligned segments, each as-
signed one of four classes: correct, partially mis-
aligned, partially incorrect translation, incorrect.

To evaluate the usefulness of our methods for
MT, we will use our aligned and filtered corpora
to train SMT and NMT systems and compare the
results to a baseline where the raw ParIce corpus is
used for training.

3.3 Tools and Models

In Section 4, we will discuss some of the methods
we will be experimenting with. These include ap-
plying a variety of available tools and models as
well as developing our own. ABLTagger (Stein-
grímsson et al., 2019) will be used for PoS-tagging
Icelandic texts. The tagger employs biLSTMs and

an external morphological lexicon (Bjarnadóttir
et al., 2019). Lemmatising will be carried out using
Nefnir (Ingólfsdóttir et al., 2019). For all English
processing we will use tools available in the NLTK
toolkit (Bird et al., 2009) or SpaCy.2

We will focus on the most common word em-
bedding models: word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), FastText (Bo-
janowski et al., 2017) and ELMo (Peters et al.,
2018). As using bilingual sentence embeddings
with BERT has been shown to be effective for filter-
ing (Lo and Simard, 2019), we want to experiment
with different contextualized embedding models.
The main hindrance with these models is the mas-
sive computational resources needed to train, which
may limit our possibilites.

For alignment and filtering we experiment with
Bleualign, Hunalign and vecalign for sentence
alignment, Giza++ (Och and Ney, 2003) for word
alignments, and Zipporah, BiCleaner and LASER
(Artetxe and Schwenk, 2019b) for filtering, and
possibly to help with anchoring the parallel texts
for more effective alignment.

Moses (Koehn et al., 2007) will be employed for
phrase-based SMT and our NMT system uses the
reference implementation of Vaswani et al. (2017)
of the transformer-base architecture that is part of
the Tensor2Tensor package (Vaswani et al., 2018).

4 Research Plan

Our first goal is to set up an unsupervised pipeline
for aligning parallel texts. While this is the first
step in tackling RQ2, it is also necessary to devise
a method to answer RQ1. We will outline how we
seek to answer these questions, as well as RQ3. A
secondary goal is to investigate methods to improve
upon the unsupervised pipeline by exploring how
basic NLP tools can help us deal with the data
sparsity problem inherent to many morphologically
rich languages. In the following subsections we
describe how we intend to research these questions.

4.1 Unsupervised Alignment
Our initial pipeline for aligning parallel texts is
trained only on monolingual corpora. While this
is a starting point for language pairs lacking pre-
existing parallel corpora or glossaries to use with
alignment, it also serves as a baseline to compare
to when additional processing modules are added,
such as a lemmatizer or other NLP tools.

2https://spacy.io/
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LF Aligner Bleualign + Monoses
Regulatory

texts
Literary

texts
Total Regulatory

texts
Literary

texts
Total

Aligned pairs 184 69 253 166 61 227
- of which correct 143 57 79.1% 154 54 91.6%
- of which faulty 41 12 20.9% 12 7 8.4%
Aligned words 2470/2485 1652/1652 4122/4137 2427/2485 1539/1652 3966/4137
- of which correct 1980 1337 80.5% 2110 1539 92.0%

Table 1: Alignment results for both systems and number of source language words in the alignments. When no
alignment was found the segments were discarded.

As stated in Section 1, we initially employ
Bleualign for unsupervised alignment, but instead
of bootstrapping an initial training set with length-
based methods like Sennrich and Volk (2011), we
train Monoses and use that to provide Bleualign
with machine translations of the sentences being
aligned. Monoses is trained by building cross-
lingual word embeddings from monolingual cor-
pora using word2vec and Vecmap (Artetxe et al.,
2018a), inducing a phrase table. An SMT system
is then trained on this data and used to translate the
monolingual corpus in one of the two languages.
The translated data is then used to train a stan-
dard SMT system in the opposite direction. A new
phrase table is built and the process iterated three
times for a final model.

To investigate the feasibility of our method we
aligned two parallel texts, selected randomly from
the ParIce data. We compared the results to LF
Aligner, which employs Hunalign. To be able to
evaluate the alignment methods accurately, evalua-
tion sets are being compiled (see Section 3.2). Here,
we present preliminary results acquired by manu-
ally evaluating the alignments. Results, given in
Table 1, show that the Bleualign + Monoses method
gives better results as measured by accuracy of the
aligned pairs, with a total of 91.6% of the result-
ing pairs correctly aligned, vs. only 79.1% of the
alignments by LF Aligner. Although our method
yields 10% fewer aligned pairs, it results in a par-
allel corpus which has substantially more correct
alignments both in terms of absolute numbers and
percentage of alignments, regardless of whether we
are looking at aligned pairs or aligned words.

There are a variety of ways to improve upon the
unsupervised method. By training larger word em-
bedding models we can increase the vocabulary.
By investigating common n-grams within word em-
bedding models we may be able to better pinpoint

phrases or multi-word expressions. By extending
the iteration process to the bitexts by selecting the
highest-scoring sentence pairs after training and
alignment, and add them to the training set of the
SMT system, we would have more accurate train-
ing data, and probably derive better translations
after each iteration. That in turn would likely raise
the confidence for selecting the best alignments.

4.2 Investigating Misalignments

After setting up alignment pipelines and creating
evaluation sets, we will initiate the filtering process
using methods and strategies that have previously
given good results for other language pairs.

One aspect of the filtering process is to decide
which noise is most important to filter out. While
Khayrallah and Koehn (2018) highlight the impor-
tance of filtering out certain types of noise in paral-
lel corpora, we want more fine-grained results. We
will conduct a similar study but investigate differ-
ent classes of misalignments especially. This will
help us decide whether to treat all misalignments
the same or if some are worse than others.

We will do this by using available tools (see
Section 3.3) to aggressively filter out possible faulty
alignments to have as clean a corpus as possible.
We will then systematically change the alignments
to introduce different types of misalignments in
the corpus. The effects of these variations will
be investigated by training both SMT and NMT
systems, and comparing the effect on changes in
resulting translations. This method is intended to
give us insight into the problem we pose in RQ1.
We will use the results to help us make decisions
on how to best set up a filtering system.

4.3 Filtering

We then start the filtering process again, with in-
formation about which type of faulty sentences
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are likely to have the worst effect on MT systems
trained by the data. To try to answer RQ3 we will
investigate the practicality of applying different
mechanisms to scoring sentences. We will look at
features such as sentence length; word similarity
based on dictionary lookup, both using an exter-
nal dictionary and an induced one from raw paral-
lel data; word similarity from word embeddings;
distance between a machine-translated source sen-
tence and the target sentence; and sentence similar-
ity scores based on bilingual sentence embeddings.

4.4 Language Independence
After studying the effects of misalignments on MT
systems and finding a good balance between the
different mechanisms used for scoring the aligned
segments, we will investigate the extent of this bal-
ance being language pair-dependent by running the
same process for other language pairs. These could
be English-Irish, Danish-Faroese or others that
have some of the same characteristics the English-
Icelandic pair has, e.g, at least one morphologically
rich language and data sparsity. This will give us
further insight to answer the three research ques-
tions posed in Section 1.

4.5 Aligning Morphologically Rich
Languages

While the first goal is to create a completely un-
supervised pipeline for building parallel corpora,
applicable to any language pair, we also want to
investigate the case of morphologically rich lan-
guages specifically by extracting latent information
in the data that can help us tackle the data sparsity
problem. This includes lemmas derived from the
word forms, PoS-tags or constituent structures as
additional features for sentence-pair scoring, and
by training embedding models, both to help with
the morphology and with semantics for unknown
words. For this we use available tools such as a
PoS-tagger and lemmatizer to try to outperform the
unsupervised method alone. For many languages
these tools are not available, as they usually rely on
training data which may not exist for low-resource
languages. Pursuing our second goal we will thus
consider the case of a low- to medium-resource lan-
guage which is morphologically rich and for which
basic NLP tools are available. For the language
pair selected as our test case, English-Icelandic,
all necessary NLP tools are available, so success-
ful methods can subsequently be tested on other
language pairs. Furthermore, the only parallel cor-

pus available for Icelandic is rather small and quite
noisy and there is a pressing need to improve on
it. For proof-of-concept we want our methods to
achieve that goal.

No machine-readable English-Icelandic dictio-
nary is available, and if we want to try to use semi-
supervised methods for the language pair we will
thus need to induce a lexicon from the parallel data,
monolingual data or both. Other methods for build-
ing a glossary may include using external data such
as Wiktionary or Wikipedia, and using available
dictionaries in different languages for pivoting.

One of the products of this research will be a
toolset to produce parallel corpora from multilin-
gual texts. The software should: align bilingual
parallel texts; filter bilingual parallel corpora; be
modular; be language-pair independent – although
optional language-specific features can be used;
use external tools for linguistic annotation: PoS-
tagging, parsing, lemmatising, machine translation
or other methods that may be beneficial; offer a
variety of strategies for aligning and filtering, de-
pending on available resources; and it should aim
at accuracy at the cost of speed.

5 Summary

We have given an overview of the literature on sen-
tence alignment and parallel corpus filtering. We
outlined challenges associated with implementing
these methods for low-resource and morphologi-
cally rich languages and proposed initial experi-
ments to tackle these challenges. The motivation
for this research is to improve the quality of ma-
chine translations by making better use of and in-
creasing the quality of parallel training data, espe-
cially in regard to sparse data scenarios. An unsu-
pervised method that effectively aligns bilingual
texts will lower the barrier for building high-quality
MT systems for low-resource languages and our
first results suggest that it may also play a role in
improving MT for morphologically rich languages.
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Abstract

Fusing sentences containing disparate content
is a remarkable human ability that helps create
informative and succinct summaries. Such a
simple task for humans has remained challeng-
ing for modern abstractive summarizers, sub-
stantially restricting their applicability in real-
world scenarios. In this paper, we present an
investigation into fusing sentences drawn from
a document by introducing the notion of points
of correspondence, which are cohesive devices
that tie any two sentences together into a co-
herent text. The types of points of correspon-
dence are delineated by text cohesion theory,
covering pronominal and nominal referencing,
repetition and beyond. We create a dataset con-
taining the documents, source and fusion sen-
tences, and human annotations of points of cor-
respondence between sentences. Our dataset
bridges the gap between coreference resolu-
tion and summarization. It is publicly shared
to serve as a basis for future work to measure
the success of sentence fusion systems.1

1 Introduction

Stitching portions of text together into a sentence
is a crucial first step in abstractive summarization.
It involves choosing which sentences to fuse, what
content from each of them to retain and how best
to present that information (Elsner and Santhanam,
2011). A major challenge in fusing sentences is
to establish correspondence between sentences. If
there exists no correspondence, it would be diffi-
cult, if not impossible, to fuse sentences. In Table 1,
we present example source and fusion sentences,
where the summarizer attempts to merge two sen-
tences into a summary sentence with improper use
of points of correspondence. In this paper, we seek
to uncover hidden correspondences between sen-

1https://github.com/ucfnlp/
points-of-correspondence

[Source Sentences]

Robert Downey Jr. is making headlines for walking out of an

interview with a British journalist who dared to veer away from the

superhero movie Downey was there to promote.

The journalist instead started asking personal questions about the

actor’s political beliefs and “dark periods” of addiction and jail time.

[Summary] Robert Downey Jr started asking personal questions

about the actor’s political beliefs.

[Source Sentences]

“Real Housewives of Beverly Hills” star and former child actress

Kim Richards is accused of kicking a police officer after being

arrested Thursday morning.

A police representative said Richards was asked to leave but

refused and then entered a restroom and wouldn’t come out.

[Summary] Kim Richards is accused of kicking a police officer

who refused to leave.

[Source Sentences]

The kind of horror represented by the Blackwater case and others

like it [...] may be largely absent from public memory in the West

these days, but it is being used by the Islamic State in Iraq and

Syria (ISIS) to support its sectarian narrative.

In its propaganda, ISIS has been using Abu Ghraib and other

cases of Western abuse to legitimize its current actions [...]

[Summary] In its propaganda, ISIS is being used by the Islamic

State in Iraq and Syria.

Table 1: Unfaithful summary sentences generated by
neural abstractive summarizers, in-house and PG (See
et al., 2017). They attempt to merge two sentences into
one sentence with improper use of points of correspon-
dence between sentences, yielding nonsensical output.
Summaries are manually re-cased for readability.

tences, which has a great potential for improving
content selection and deep sentence fusion.

Sentence fusion (or multi-sentence compression)
plays a prominent role in automated summarization
and its importance has long been recognized (Barzi-
lay et al., 1999). Early attempts to fuse sentences
build a dependency graph from sentences, then de-
code a tree from the graph using integer linear pro-
gramming, finally linearize the tree to generate a
summary sentence (Barzilay and McKeown, 2005;
Filippova and Strube, 2008; Thadani and McKe-
own, 2013a). Despite valuable insights gained from
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PoC Type Source Sentences Summary Sentence

Pronominal [S1] The bodies showed signs of torture. • The bodies of the men, which showed signs

Referencing [S2] They were left on the side of a highway in Chilpancingo, about an of torture, were left on the side of a highway

hour north of the tourist resort of Acapulco in the state of Guerrero. in Chilpancingo.

Nominal [S1] Bahamian R&B singer Johnny Kemp , best known for the 1988 party • Johnny Kemp is “believed to have drowned at

Referencing anthem “Just Got Paid,” died this week in Jamaica. a beach in Montego Bay,” police say.

[S2] The singer is believed to have drowned at a beach in Montego Bay

on Thursday, the Jamaica Constabulatory Force said in a press release.

Common-Noun [S1] A nurse confessed to killing five women and one man at hospital. • The nurse, who has been dubbed “nurse

Referencing [S2] A former nurse in the Czech Republic murdered six of her elderly death” locally, has admitted killing the victims

patients with massive doses of potassium in order to ease her workload. with massive doses of potassium.

Repetition [S1] Stewart said that she and her husband, Joseph Naaman, booked • Couple spends $1,200 to ship their cat, Felix ,

Felix on their flight from the United Arab Emirates to New York on April 1. on a flight from the United Arab Emirates.

[S2] The couple said they spent $1,200 to ship Felix on the 14-hour flight.

Event Triggers [S1] Four employees of the store have been arrested , but its manager • The four store workers arrested could spend

was still at large, said Goa police superintendent Kartik Kashyap. 3 years each in prison if convicted .

[S2] If convicted , they could spend up to three years in jail, Kashyap said.

Table 2: Types of sentence correspondences. Text cohesion can manifest itself in different forms.

these attempts, experiments are often performed on
small datasets and systems are designed to merge
sentences conveying similar information. Nonethe-
less, humans do not restrict themselves to combine
similar sentences, but also disparate sentences con-
taining fundamentally different content but remain
related to make fusion sensible (Elsner and San-
thanam, 2011). We focus specifically on analyzing
fusion of disparate sentences, which is a distinct
problem from fusing a set of similar sentences.

While fusing disparate sentences is a seemingly
simple task for humans to do, it has remained chal-
lenging for modern abstractive summarizers (See
et al., 2017; Celikyilmaz et al., 2018; Chen and
Bansal, 2018; Liu and Lapata, 2019). These sys-
tems learn to perform content selection and genera-
tion through end-to-end learning. However, such a
strategy is not consistently effective and they strug-
gle to reliably perform sentence fusion (Falke et al.,
2019; Kryściński et al., 2019). E.g., only 6% of
summary sentences generated by pointer-generator
networks (See et al., 2017) are fusion sentences;
the ratio for human abstracts is much higher (32%).
Further, Lebanoff et al. (2019a) report that 38% of
fusion sentences contain incorrect facts. There ex-
ists a pressing need for—and this paper contributes
to–broadening the understanding of points of cor-
respondence used for sentence fusion.

We present the first attempt to construct a size-
able sentence fusion dataset, where an instance in
the dataset consists of a pair of input sentences,
a fusion sentence, and human-annotated points of
correspondence between sentences. Distinguishing
our work from previous efforts (Geva et al., 2019),
our input contains disparate sentences and output is
a fusion sentence containing important, though not
equivalent information of the input sentences. Our

investigation is inspired by Halliday and Hasan’s
theory of text cohesion (1976) that covers a broad
range of points of correspondence, including en-
tity and event coreference (Ng, 2017; Lu and Ng,
2018), shared words/concepts between sentences
and more. Our contributions are as follows.

• We describe the first effort at establishing points
of correspondence between disparate sentences.
Without a clear understanding of points of corre-
spondence, sentence fusion remains a daunting
challenge that is only sparsely and sometimes in-
correctly performed by abstractive summarizers.

• We present a sizable dataset for sentence fusion
containing human-annotated corresponding re-
gions between pairs of sentences. It can be used
as a testbed for evaluating the ability of summa-
rization models to perform sentence fusion. We
report on the insights gained from annotations to
suggest important future directions for sentence
fusion. Our dataset is released publicly.

2 Annotating Points of Correspondence

We cast sentence fusion as a constrained summa-
rization task where portions of text are selected
from each source sentence and stitched together to
form a fusion sentence; rephrasing and reordering
are allowed in this process. We propose guidelines
for annotating points of correspondence (PoC) be-
tween sentences based on Halliday and Hasan’s
theory of cohesion (1976).

We consider points of correspondence as cohe-
sive phrases that tie sentences together into a coher-
ent text. Guided by text cohesion theory, we cate-
gorize PoC into five types, including pronominal
referencing (“they”), nominal referencing (“Johnny
Kemp”), common-noun referencing (“five women”),
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Figure 1: An illustration of the annotation interface. A
human annotator is asked to highlight text spans refer-
ring to the same entity, then choose one from the five
pre-defined PoC types.

repetition, and event trigger words that are related
in meaning (“died” and “drowned”). An illustration
of PoC types is provided in Table 2. Our catego-
rization emphasizes the lexical linking that holds a
text together and gives it meaning.

A human annotator is instructed to identify a text
span from each of the source sentences and sum-
mary sentence, thus establishing a point of corre-
spondence between source sentences, and between
source and summary sentences. As our goal is to
understand the role of PoC in sentence fusion, we
do not consider the case if PoC is only found in
source sentences but not summary sentence, e.g.,
“Kashyap said” and “said Goa police superinten-
dent Kartik Kashyap” in Table 2. If multiple PoC
co-exist in an example, an annotator is expected
to label them all; a separate PoC type will be as-
signed to each PoC occurrence. We are particularly
interested in annotating inter-sentence PoC. If en-
tity mentions (“John” and “he”) are found in the
same sentence, we do not explicitly label them but
assume such intra-sentence referencing can be cap-
tured by an existing coreference resolver. Instances
of source sentences and summary sentences are
obtained from the test and validation splits of the
CNN/DailyMail corpus (See et al., 2017) following
the procedure described by Lebanoff et al. (2019a).
We take a human summary sentence as an anchor
point to find two document sentences that are most
similar to it based on ROUGE. It becomes an in-
stance containing a pair of source sentences and
their summary. The method allows us to identify a
large quantity of candidate fusion instances.

Annotations are performed in two stages. Stage
one removes all spurious pairs that are generated
by the heuristic, i.e. a summary sentence that is
not a valid fusion of the corresponding two source
sentences. Human annotators are given a pair of
sentences and a summary sentence and are asked

Number of PoC Per Fusion Instance       

Distribution of PoC by Type       

Pronominal       

Nominal       

Common-Noun       

Repetition       

Event 
Triggers       

0       1       2       3       4+       

Figure 2: Statistics of PoC occurrences and types.

whether it represents a valid fusion. The pairs iden-
tified as valid fusions by a majority of annotators
move on to stage two. Stage two identifies the cor-
responding regions in the sentences. As shown in
Figure 1, annotators are given a pair of sentences
and their summary and are tasked with highlighting
the corresponding regions between each sentence.
They must also choose one of the five PoC types
(repetition, pronominal, nominal, common-noun
referencing, and event triggers) for the set of corre-
sponding regions.

We use Amazon mechanical turk, allowing only
workers with 95% approval rate and at least 5,000
accepted tasks. To ensure high quality annotations,
we first run a qualification round of 10 tasks. Work-
ers performing sufficiently on these tasks were al-
lowed to annotate the whole dataset. For task one,
2,200 instances were evaluated and 621 of them
were filtered out. In total, we annotate points of
correspondence for 1,599 instances, taken from
1,174 documents. Similar to (Hardy et al., 2019),
we report Fleiss’ Kappa judged on each word (high-
lighted or not), yielding substantial inter-annotator
agreement (=0.58) for annotating points of corre-
spondence. We include a reference to the original
article that each instance was taken from, thus pro-
viding context for each instance.

Figure 2 shows statistics of PoC occurrence fre-
quencies and the distribution of different PoC types.
A majority of sentence pairs have one or two points
of correspondence. Only a small percentage (6.5%)
do not share a PoC. A qualitatively analysis shows
that these sentences often have an implicit dis-
course relationship, e.g., “The two men speak. Scott
then gets out of the car, again, and runs away.” In
this example, there is no clear portion of text that
is shared between the sentences; rather, the connec-
tion lies in the fact that one event happens after the
other. Most of the PoC are a flavor of coreference
(pronominal, nominal, or common-noun). Few are
exact repetition. Further, we find that only 38% of
points of correspondence in the sentence pair share
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Coref Resolver P(%) R(%) F(%) Pronominal Nominal Comm.-Noun Repetition Event Trig.

SpaCy 59.2 20.1 30.0 30.8 23.3 10.4 39.9 2.6
AllenNLP 49.0 24.5 32.7 36.5 28.1 14.7 47.1 3.1
Stanford CoreNLP 54.2 26.2 35.3 40.0 27.3 17.4 55.1 2.3

Table 3: Results of various coreference resolvers on successfully identifying inter-sentence points of correspon-
dence (PoC) and recall scores of these resolvers split by PoC correspondence type.

any words (lemmatized). This makes identifying
them automatically challenging, requiring a deeper
understanding of what connects the two sentences.

3 Resolving Coreference

Coreference resolution (Ng, 2017) is similar to the
task of identifying points of correspondence. Thus,
a natural question we ask is how well state-of-the-
art coreference resolvers can be adapted to this task.
If coreference resolvers can perform reasonably
well on PoC identification, then these resolvers can
be used to extract PoC annotations to potentially
enhance sentence fusion. If they perform poorly,
coreference performance results can indicate areas
of improvement for future work on detecting points
of correspondence. In this paper, we compare three
coreference resolvers on our dataset, provided by
open-source libraries: Stanford CoreNLP (Man-
ning et al., 2014), SpaCy (Honnibal and Montani,
2017), and AllenNLP (Gardner et al., 2017).

We base our evaluation on the standard metric
used for coreference resolution, B-CUBED algo-
rithm (Bagga and Baldwin, 1998), with some mod-
ifications. Each resolver is run on an input pair
of sentences to obtain multiple clusters, each rep-
resenting an entity (e.g., Johnny Kemp) contain-
ing multiple mentions (e.g., Johnny Kemp; he; the
singer) of that entity. More than one cluster can be
detected by the coreference resolver, as additional
entities may exist in the given sentence pair (e.g.,
Johnny Kemp and the police). Similarly, in Sec-
tion §2, human annotators identified multiple PoC
clusters, each representing a point of correspon-
dence containing one mention from each sentence.
We evaluate how well the resolver-detected clus-
ters compare to the human-detected clusters (i.e.,
PoCs). If a resolver cluster overlaps both mentions
for the gold-standard PoC, then this resolver cluster
is classified as a hit. Any resolver cluster that does
not overlap both PoC mentions is a miss. Using
this metric, we can calculate precision, recall, and
F1 scores based on correctly/incorrectly identified
tokens from the outputs of each resolver.

The results are presented in Table 3. The three re-
solvers exhibit similar performance, but the scores
on identifying points of correspondence are less
than satisfying. The SpaCy resolver has the highest
precision (59.2%) and Stanford CoreNLP achieves
the highest F1-score (35.3%). We observe that ex-
isting coreference resolvers can sometimes struggle
to use the high-level reasoning that humans use to
determine what connects two sentences together.
Next, we go deeper into understanding what PoC
types these resolvers struggle with. We present the
recall scores of these resolvers split by PoC corre-
spondence type. Event coreference poses the most
difficulty by far, which is understandable as corefer-
ence resolution only focuses on entities rather than
events. More work into detecting event coreference
can bring significant improvements in PoC identi-
fication. Common-noun coreference also poses a
challenge, in part because names and pronouns give
strong clues as to the relationships between men-
tions, while common-noun relationships are more
difficult to identify since they lack these clues.

4 Sentence Fusion

Truly effective summarization will only be achiev-
able when systems have the ability to fully recog-
nize points of correspondence between sentences.
It remains to be seen whether such knowledge can
be acquired implicitly by neural abstractive sys-
tems through joint content selection and generation.
We next conduct an initial study to assess neural
abstractive summarizers on their ability to perform
sentence fusion to merge two sentences into a sum-
mary sentence. The task represents an important,
atomic unit of abstractive summarization, because
a long summary is still generated one sentence at a
time (Lebanoff et al., 2019b).

We compare two best-performing abstractive
summarizers: Pointer-Generator uses an encoder-
decoder architecture with attention and copy mech-
anism (See et al., 2017); Transformer adopts a
decoder-only Transformer architecture similar to
that of (Radford et al., 2019), where a summary is
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System R-1 R-2 R-L %Fuse

Concat-Baseline 36.13 18.64 27.79 99.7
Pointer-Generator 33.74 16.32 29.27 38.7
Transformer 38.81 20.03 33.79 50.7

Table 4: ROUGE scores of neural abstractive summa-
rizers on the sentence fusion dataset. We also report
the percentage of output sentences that are indeed fu-
sion sentences (%Fuse)

decoded one word at a time conditioned on source
sentences and the previously-generated summary
words. We use the same number of heads, layers,
and units per layer as BERT-base (Devlin et al.,
2018). In both cases, the summarizer was trained
on about 100k instances derived from the train split
of CNN/DailyMail, using the same heuristic as
described in (§2) without PoC annotations. The
summarizer is then tested on our dataset of 1,599
fusion instances and evaluated using standard met-
rics (Lin, 2004). We also report how often each
summarizer actually draws content from both sen-
tences (%Fuse), rather than taking content from
only one sentence. A generated sentence counts as
a fusion if it contains at least two non-stopword to-
kens from each sentence not already present in the
other sentence. Additionally, we include a Concat-
Baseline creating a fusion sentence by simply con-
catenating the two source sentences.

The results according to the ROUGE evaluation
(Lin, 2004) are presented in Table 4. Sentence fu-
sion appears to be a challenging task even for mod-
ern abstractive summarizers. Pointer-Generator has
been shown to perform strongly on abstractive sum-
marization, but it is less so on sentence fusion and
in other highly abstractive settings (Narayan et al.,
2018). Transformer significantly outperforms other
methods, in line with previous findings (Liu et al.,
2018). We qualitatively examine system outputs.
Table 1 presents fusions generated by these mod-
els and exemplifies the need for infusing models
with knowledge of points of correspondence. In the
first example, Pointer-Generator incorrectly con-
flates Robert Downey Jr. with the journalist asking
questions. Similarly, in the second example, Trans-
former states the police officer refused to leave
when it was actually Richards. Had the models
explicitly recognized the points of correspondence
in the sentences—that the journalist is a separate
entity from Robert Downey Jr. and that Richards is
separate from police officer—then a more accurate
summary could have been generated.

5 Related Work

Uncovering hidden correspondences between sen-
tences is essential for producing proper summary
sentences. A number of recent efforts select impor-
tant words and sentences from a given document,
then let the summarizer attend to selected content
to generate a summary (Gehrmann et al., 2018; Hsu
et al., 2018; Chen and Bansal, 2018; Putra et al.,
2018; Lebanoff et al., 2018; Liu and Lapata, 2019).
These systems are largely agnostic to sentence cor-
respondences, which can have two undesirable con-
sequences. If only a single sentence is selected, it
can be impossible for the summarizer to produce a
fusion sentence from it. Moreover, if non-fusible
textual units are selected, the summarizer is forced
to fuse them into a summary sentence, yielding out-
put summaries that often fail to keep the original
meaning intact. Therefore, in this paper we had in-
vestigated the correspondences between sentences
to gain an understanding of sentence fusion.

Establishing correspondence between sentences
goes beyond finding common words. Humans can
fuse sentences sharing few or no common words if
they can find other types of correspondence. Fusing
such disparate sentences poses a serious challenge
for automated fusion systems (Marsi and Krahmer,
2005; Filippova and Strube, 2008; McKeown et al.,
2010; Elsner and Santhanam, 2011; Thadani and
McKeown, 2013b; Mehdad et al., 2013; Nayeem
et al., 2018). These systems rely on common words
to derive a connected graph from input sentences or
subject-verb-object triples (Moryossef et al., 2019).
When there are no common words in sentences,
systems tend to break apart.

There has been a lack of annotated datasets and
guidelines for sentence fusion. Few studies have in-
vestigated the types of correspondence between
sentences such as entity and event coreference.
Evaluating sentence fusion systems requires not
only novel metrics (Zhao et al., 2019; Zhang et al.,
2020; Durmus et al., 2020; Wang et al., 2020) but
also high-quality ground-truth annotations. It is
therefore necessary to conduct a first study to look
into cues humans use to establish correspondence
between disparate sentences.

We envision sentence correspondence to be re-
lated to text cohesion and coherence, which help es-
tablish correspondences between two pieces of text.
Halliday and Hasan (1976) describe text cohesion
as cohesive devices that tie two textual elements
together. They identify five categories of cohesion:
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(McKeown et al., 2010)

[S1] Palin actually turned against the bridge project only after it became

a national symbol of wasteful spending.

[S2] Ms. Palin supported the bridge project while running for governor,

and abandoned it after it became a national scandal.

[Fusion] Palin turned against the bridge project after it became a na-

tional scandal.

DiscoFuse (Geva et al., 2019)

[S1] Melvyn Douglas originally was signed to play Sam Bailey.

[S2] The role ultimately went to Walter Pidgeon.

[Fusion] Melvyn Douglas originally was signed to play Sam Bailey, but

the role ultimately went to Walter Pidgeon.

Points of Correspondence Dataset (Our Work)

[S1] The bodies showed signs of torture.

[S2] They were left on the side of a highway in Chilpancingo, about an

hour north of the tourist resort of Acapulco in the state of Guerrero.

[Fusion] The bodies of the men, which showed signs of torture, were

left on the side of a highway in Chilpancingo.

Table 5: Comparison of sentence fusion datasets.

reference, lexical cohesion, ellipsis, substitution
and conjunction. In contrast, coherence is defined
in terms of discourse relations between textual ele-
ments, such as elaboration, cause or explanation.
Previous work studied discourse relations (Geva
et al., 2019), this paper instead focuses on text co-
hesion, which plays a crucial role in generating
proper fusion sentences. Our dataset contains pairs
of source and fusion sentences collected from news
editors in a natural environment. The work is par-
ticularly meaningful to text-to-text and data-to-text
generation (Gatt and Krahmer, 2018) that demand
robust modules to merge disparate content.

We contrast our dataset with previous sentence
fusion datasets. McKeown et al. (2010) compile
a corpus of 300 sentence fusions as a first step
toward a supervised fusion system. However, the
input sentences have very similar meaning, though
they often present lexical variations and different
details. In contrast, our proposed dataset seeks to
fuse significantly different meanings together into
a single sentence. A large-scale dataset of sentence
fusions has been recently collected (Geva et al.,
2019), where each sentence has disparate content
and are connected by various discourse connectives.
This paper instead focuses on text cohesion and on
fusing only the salient information, which are both
vital for abstractive summarization. Examples are
presented in Table 5.

6 Conclusion

In this paper, we describe a first effort at annotating
points of correspondence between disparate sen-
tences. We present a benchmark dataset comprised
of the documents, source and fusion sentences, and

human annotations of points of correspondence be-
tween sentences. The dataset fills a notable gap of
coreference resolution and summarization research.
Our findings shed light on the importance of model-
ing points of correspondence, suggesting important
future directions for sentence fusion.
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Abstract
Because open-domain dialogues allow diverse
responses, basic reference-based metrics such
as BLEU do not work well unless we pre-
pare a massive reference set of high-quality
responses for input utterances. To reduce
this burden, a human-aided, uncertainty-aware
metric, �BLEU, has been proposed; it em-
beds human judgment on the quality of refer-
ence outputs into the computation of multiple-
reference BLEU. In this study, we instead
propose a fully automatic, uncertainty-aware
evaluation method for open-domain dialogue
systems, �BLEU. This method first collects
diverse reference responses from massive di-
alogue data and then annotates their quality
judgments by using a neural network trained
on automatically collected training data. Ex-
perimental results on massive Twitter data con-
firmed that �BLEU is comparable to �BLEU in
terms of its correlation with human judgment
and that the state of the art automatic evalua-
tion method, RUBER, is improved by integrat-
ing �BLEU.

1 Introduction

There has been increasing interest in intelligent
dialogue agents such as Apple Siri, Amazon Alexa,
and Google Assistant. The key to achieving higher
user engagement with those dialogue agents is to
support open-domain non-task-oriented dialogues
to return a meaningful response for any user input.

The major challenge in developing open-domain
dialogue systems is that existing evaluation metrics
for text generation tasks, such as BLEU (Papineni
et al., 2002), correlate poorly with human judgment
on evaluating responses generated by dialogue sys-
tems (Liu et al., 2016). In open-domain dialogues,
even though responses with various contents and
styles are acceptable (Sato et al., 2017), only a
few responses, or often only one, are available as
reference responses in evaluation datasets made

from actual conversations. It is, therefore, hard for
these reference-based metrics to consider uncer-
tain responses without writing additional reference
responses by hand (§ 2).

To remedy this problem, Galley et al. (2015)
proposed �BLEU (§ 3), a human-aided evaluation
method for text generation tasks with uncertain
outputs. The key idea behind �BLEU is to con-
sider human judgments on reference responses with
diverse quality in BLEU computation. Although
�BLEU correlates more strongly with human judg-
ment than BLEU does, it still requires human inter-
vention. Therefore it cannot effectively evaluate
open-domain dialogue systems in a wide range of
domains.

To remove the human intervention in �BLEU,
we propose an automatic, uncertainty-aware evalua-
tion metric, �BLEU. This metric exploits reference
responses that are retrieved from massive dialogue
logs and rated by a neural network trained with
automatically collected training data (§ 4). We first
retrieve diverse response candidates according to
the similarity of utterances to which the responses
were directed. We then train a neural network that
judges the quality of the responses by using training
data automatically generated from utterances with
multiple responses. We also propose integrating
�BLEU into the state of the art evaluation method,
RUBER (Tao et al., 2018) (§ 2) to advance the state
of the art by replacing its reference-based scorer.

Using our method, we experimentally evaluated
responses generated by dialogue systems such as
a retrieval-based method (Liu et al., 2016) and a
generation-based method (Serban et al., 2017) us-
ing Twitter dialogues (§ 5). Our method is com-
parable to �BLEU in terms of its correlation with
human judgment, and when it is integrated into
RUBER (Tao et al., 2018), it substantially improves
that correlation (§ 6).

Our contributions are the followings:
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• We developed an uncertainty-aware automatic
evaluation method for dialogue systems. Our
method automates the human ratings required
in �BLEU while keeping the performance.

• We showed that integrating �BLEU into RU-
BER greatly improves RUBER’s performance
by providing the robustness to evaluate re-
sponses with uncertainty.

2 Related work

This section introduces recent studies on evaluating
open-domain dialogue systems. We focus here
on model-agnostic methods than can evaluate the
quality of a response for a given utterance.1

For evaluation of dialogue systems, researchers
have adopted existing evaluation metrics for other
text generation tasks such as machine transla-
tion and summarization. Unfortunately, reference-
based metrics such as BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) correlate poorly with hu-
man judgment on evaluating dialogue systems (Liu
et al., 2016). This is because only a few responses,
or often only one, can be used as reference re-
sponses when actual conversations are used as
datasets, even though responses in open-domain
dialogues can be diverse (Sato et al., 2017).

To consider uncertain responses in open-domain
dialogues, Sordoni et al. (2015) attempted to col-
lect multiple reference responses from dialogue
logs for each test utterance-response pair. Galley
et al. (2015) improved that method by manually
rating the augmented reference responses and used
the ratings to perform discriminative BLEU evalua-
tion, as detailed later in § 3.2. Gupta et al. (2019)
created multiple reference responses by hand for
the Daily Dialogue dataset (Li et al., 2017). Al-
though the last two studies empirically showed that
the use of human-rated or -created reference re-
sponses in evaluation improves the correlation with
human judgment, it is costly to create such evalua-
tion datasets for various domains.

As for evaluation methods, ADEM (Lowe et al.,
2017) learns an evaluation model that predicts hu-
man scores for given responses by using large-scale
human-rated responses that are originally generated
by humans or dialogue systems. The drawback of
that method is the cost of annotation to train the

1Perplexity is sometimes used to evaluate dialogue sys-
tems (Hashimoto et al., 2019). It is only applicable, however,
to generation-based dialogue systems, so we do not discuss it
here, like (Liu et al., 2016).

evaluation model. Moreover, the evaluation model
has been reported to overfit the dialogue systems
used for generating the training data.

RUBER (Tao et al., 2018) is an automatic eval-
uation method that combines two approaches: its
referenced scorer evaluates the similarity between
a reference and a generated response by using the
cosine similarity of their vector representations,
while its unreferenced scorer, trained by negative
sampling, evaluates the relevance between an input
utterance and a generated response. Ghazarian et al.
(2019) showed that use of BERT embedding (De-
vlin et al., 2019) in pretrained vectors improves the
unreferenced scorer but not the referenced scorer in
RUBER. the referenced scorer is similar to �BLEU
in that they both are referenced-based evaluation
metrics. We later confirm that the referenced scorer
in RUBER underperforms our method, and we thus
propose replacing it with our method (§ 5.5).

3 Preliminaries

This section reviews �BLEU (Galley et al., 2015), a
human-aided evaluation method for text generation
tasks with uncertain outputs, after explaining the
underlying metric, BLEU (Papineni et al., 2002).

3.1 BLEU

BLEU (Papineni et al., 2002) calculates an evalua-
tion score based on the number of occurrences of
n-gram tokens that appear in both reference and
generated response. Specifically, the score is cal-
culated from a modified n-gram precision pn and a
brevity penalty (BP):

BLEU = BP · exp

 
X

n

1

N
log pn

!
, (1)

BP =

⇢
1 if ⌘ > ⇢
e(1�⇢/⌘)

otherwise
, (2)

pn =

P
i

P
g2n-grams(hi)

maxj{#g(hi, ri,j)}P
i

P
g2n-grams(hi)

#g(hi)
.

(3)

Here, ⇢ and ⌘ are the average lengths of reference
and generated responses, respectively; n and N
are the n-gram length and its maximum, hi and
{ri,j} are the generated response and the jth ref-
erence response for the ith utterance, respectively;
#g(u) is the number of occurrences of n-gram to-
ken g in sentence u; and #g(u, v) is defined as
min{#g(u),#g(u)}.
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Figure 1: An overview of �BLEU: retrieving diverse reference responses from dialogue logs (§ 4.1) to augment the
reference response in each test example, followed by neural network (NN)-rater that judges the their quality (§ 4.2).

3.2 �BLEU: Discriminative BLEU

�BLEU (Galley et al., 2015) is a human-aided eval-
uation method for text generation tasks with un-
certain outputs, such as response generation in
open-domain dialogues. To augment the refer-
ence responses for each test example (an utterance-
response pair), following the work by Sordoni
et al. (2015), �BLEU first retrieves, from Twitter,
utterance-response pairs similar to the given pair.
The similarities between utterances and between re-
sponses are next calculated by using BM25 (Robert-
son et al., 1994), and they are multiplied to obtain
the similarity between the utterance-response pairs.
Then, the responses for the top-15 similar utterance-
response pairs and the utterance (as a parrot return)
are combined with the original response to form an
extended set of reference responses. Each of the ex-
tended references is then rated by humans in terms
of its appropriateness as a response to the given ut-
terance. Finally, �BLEU calculates pn (Eq. 3) with
the extended reference ri,j and its manual quality
judgment wi,j for the input utterance i:
P

i

P
g2n-grams(hi)

maxj:g2ri,j{wi,j ·#g(hi, ri,j)}P
i

P
g2n-grams(hi)

maxj{wi,j ·#g(hi)}
.

In this way, �BLEU weights the number of occur-
rence of n-gram g in Eq. 3 with manual quality
judgement wi,j .

The problem with �BLEU is the cost of manual
judgment. Although we want to evaluate open-
domain dialogue systems in various domains, the
annotation cost prevents effective evaluation.

4 Proposed method: �BLEU

This section describes our approach to the prob-
lems of �BLEU described in § 3.2. To remove the
cost of human judgments of extended references,
we propose using a neural network trained on auto-
matically collected training data to rate each of the

retrieved responses (Figure 1, § 4.2). In addition,
to diversify the extended reference responses in
terms of content and style, we propose a relaxed re-
sponse retrieval approach using continuous vector
representations of utterances only (§ 4.1).

4.1 Retrieving diverse reference responses

Given an utterance-response pair (test example),
�BLEU expands the original reference response by
retrieving utterance-response pairs, in which both
the utterance and response are similar to the test ex-
ample, from massive dialogue logs (here, Twitter).
Because using the similarity between responses pre-
vents us from retrieving diverse responses in terms
of content, we propose considering only the simi-
larity between the utterances. In addition, we use
an embedding-based similarity instead of BM25
to flexibly retrieve semantically-similar responses
with synonymous expressions (style variants).

We compute the similarity of utterances by using
the cosine similarity between utterance vectors ob-
tained from the average of pretrained embeddings
of the words in the utterances. In addition to the re-
trieved responses, we add the utterance (as a parrot
return) to the reference responses as in �BLEU.

4.2 Rating extended reference responses

�BLEU manually judges the appropriateness of the
extended reference responses for the utterance. To
remove this human intervention, we propose rating
each reference response by using a neural network
that outputs a probability for that response as a
response to the given utterance.

Specifically, our neural network (NN)-rater takes
two utterance-response pairs as inputs: a given pair
of utterance U1 and reference response R1 (test
example), and a retrieved pair of utterance U2 and
response R2. The NN-rater is trained to output
the probability that the retrieved response R2 for
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Task (method) Unit Training Validation Test

response generation utterance-response pair 2.4M (2018) 10K (2018) 100 (2019)
NN-rater, RUBER pair of utterance-response pairs 5.6M (2017) 10K (2017) n/a

reference response retrieval,
training for GloVe utterance-response pair Approximately 16M (2017)

Table 1: Statistics of the dialogue data used to run each task. The numbers in the parentheses mean year.

U2 can be a response to given utterance U1 with
response R1. This probability is then used as a
quality judgment after normalization to the interval
[�1, 1] as in �BLEU.

The key issue here is how to prepare the train-
ing data for the NN-rater. We use utterances with
multiple responses in dialogue data (here, Twitter)
as positive examples; for negative examples, we
randomly sample two utterance-response pairs.

We then train the NN-rater in Figure 1 from the
collected training data. Because the utterances in
the two utterance-response pairs in a positive exam-
ple are identical, while those in a negative example
are independent, we do not feed both utterances to
the NN-rater. This input design prevents overfitting.

Specifically, given a test example of utterance
U1 and response R1 and a retrieved utterance-
response pair of U2 and R2, we give two triplets,
hU1, R1, R2i and hU2, R2, R1i, as inputs to the
NN-rater. Next, we make two vectors by concate-
nating triplet vectors returned from bi-directional
gated recurrent unit (Bi-GRU) (Cho et al., 2014) as
the last hidden state for the utterance and the two
responses. We concatenated forward and backward
hidden states (hf , hb) in Bi-GRU to represent a ut-
terance/response vector as v = [hf , hb]. We then
feed each triplet vector to feed-forward neural net-
work (FFNN) with softmax function to obtain a pair
of probabilities that R2 can be a response to U1 or
not (similarity, another pair of probabilities that R1

can be a response to U2 or not). The maximum
of these two probabilities is used as the qualitative
judgment of the response R2 (or R1) and multi-
plied by �1 if classified as negative to normalize
into [�1, 1]. This formulation is inspired by Tao
et al. (2018) and Ghazarian et al. (2019).

5 Experimental Settings
This section describes how to evaluate our method
for evaluating open-domain dialogue systems. Us-
ing utterances from Twitter (§ 5.1), responses writ-
ten by humans, and responses obtained by dialogue
systems (§ 5.2), we evaluated our method in terms
of its correlation with human judgment (§ 5.3–5.5).

5.1 Twitter dialogue datasets
We built a large-scale Japanese dialogue dataset
from Twitter posts of 2.5 million users that have
been collected through the user timeline API since
March 2011 (Nishi et al., 2016). Posts that are
neither retweets nor mentions of other posts were
regarded as utterances, and posts mentioning these
posts were used as responses.

We use this dataset for training and testing di-
alogue systems and for training the NN-rater that
judges the quality of retrieved responses. In these
experiments, to simulate evaluating dialogue sys-
tems trained with dialogue data that are unseen by
evaluation methods, we used dialogue data posted
during 2017 for training and running the NN-rater,
and dialogue data posted during 2018 for training
and during 2019 for testing the dialogue systems
as summarized in Table 1.

5.2 Target responses for evaluation
Following Liu et al. (2016) and Lowe et al. (2017),
we adopted three methods to obtain responses for
each utterance in the test set: a retrieval-based
method C-TFIDF (Liu et al., 2016), with BM25
as the similarity function (C-BM25), a generation-
based method VHRED (Serban et al., 2017), and
HUMAN responses, which are the actual responses
except for the reference response.

Following Ritter et al. (2010) and Higashinaka
et al. (2011), to use a series of dialogues as training
data for the above methods, we recursively follow
replies from each non-reply post to obtain a dia-
logue between two users that consists of at least
three posts. We then randomly selected pairs of
the first utterances and its replies in the obtained
dialogues as our dialogue data: 2.4M pairs for train-
ing VHRED and for retrieving responses in C-BM25,
10K pairs as validation data for VHRED, and 100
pairs as test data.2 These dialogues were tokenized
with SentencePiece (Kudo and Richardson, 2018)
for VHRED and with MeCab 0.996 (ipadic 2.7.0)3

2To obtain HUMAN responses for evaluation, we only used
dialogues whose first utterances had more than one responses.

3https://taku910.github.io/mecab/
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Metric Reference retrieval method Spearman’s ⇢ Pearson’s r
Target to compute similarity Function to compute similarity max min max min

BLEU (Only one reference response) .186 .091 .276 .190
BLEU Utterance & Response BM25 .257 .138 .298 .173
BLEU Utterance only BM25 .265 .136 .296 .178
BLEU Utterance & Response Cosine similarity for GloVe vector .280 .148 .322 .177
BLEU Utterance only Cosine similarity for GloVe vector .333 .181 .366 .209

Table 2: Correlation between human judgment and BLEU with reference responses retrieved by various methods.

for C-BM25 to retrieve responses based on words
that are less ambiguous than subwords.

Finally, six Japanese native speakers in our re-
search group evaluated the 300 target responses for
the 100 test examples in terms of the appropriate-
ness as a response to a given utterance. We used
a 5-point Likert-type scale with 1 meaning inap-
propriate or unrecognizable and 5 meaning very
appropriate or seeming to be an actual response.

5.3 NN-rater to evaluate reference responses

To train the NN-rater for evaluating the extended
references (§ 4.2), we randomly extracted 5.6M and
10K utterance-response pairs for training and vali-
dation data, respectively. The number of positive
and negative examples were set equal in both data.
Before these examples were fed to the NN-rater,
they are tokenized with SentencePiece.

For the NN-rater, we used a 512-dimensional
embedding layer, one Bi-GRU layer with 512-
dimensional hidden units, five layers for the FFNN
with 1024-dimensional hidden units, and a ReLU
as the activation function. We used Adam opti-
mizer (Kingma and Ba, 2015) with an initial learn-
ing rate of 0.001 and calculated the loss by the
cross entropy. We trained the NN-rater with a batch
size of 1000 and up to 15 epochs. The model with
parameters that achieved the minimum loss on the
validation data was used for evaluating the test data.

5.4 Response retrieval and scoring

Following Galley et al. (2015), for each test exam-
ple, the 15 most similar utterance-response pairs
were retrieved to augment the reference response
in addition to the utterance (as a parrot return) to
apply �BLEU and �BLEU. We retrieved utterance-
response pairs from approximately 16M utterance-
response pairs of our dialogue data (Table 1). These
dialogue data were tokenized with MeCab for re-
sponse retrieval; we then trained GloVe embed-
dings (Pennington et al., 2014) to compute utter-
ance or response vectors (§ 4.1) from this data.

We then judged the quality of each retrieved
reference response by humans for �BLEU and by
NN-rater for �BLEU in terms of appropriateness as
a response to a given utterance. We asked four of
the six Japanese native speakers to judge the quality
of each retrieved reference response.

5.5 Compared response evaluation methods
We have so far proposed two modifications to im-
prove and automate �BLEU: more diverse refer-
ence retrieval (§ 4.1) and automatic reference qual-
ity judgment (§ 4.2). To see the impact of each
modification, we first compare BLEU with vari-
ous reference retrieval methods. We then compare
BLEU with only one reference, �BLEU, and �BLEU.
Finally, we compared �BLEU with the state of the
art evaluation method, RUBER, and examined the
performance of RUBER when its referenced scorer
was replaced with �BLEU.

Specifically, we applied each evaluation method
to the 300 responses (§ 5.2). �BLEU and �BLEU
used the extended references in evaluation. BLEU
used the original (single) references or the extended
references. The reference scorer in RUBER used
the original (single) references.

Following previous studies (Liu et al., 2016; Tao
et al., 2018), we evaluated the performance of the
evaluation methods in terms of their correlation
to human judgments on the 300 responses. To
calculate the correlation, we used Spearman’s ⇢
and Pearson’s r. To understand the stability of
the evaluation, we computed the maximum and
minimum correlation with human judgments given
by each annotator. All evaluation methods using
the modified n-gram precision were calculated with
n  2 (BLEU-2), following Galley et al. (2015).

6 Results

Table 2 lists the correlations between human judg-
ment and BLEU for each reference retrieval method.
In terms of Spearman’s ⇢, all methods using the
extended reference exhibited higher maximum and
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Metric Spearman’s ⇢ Pearson’s r
max min max min

�BLEU .366 .300 .360 .294
�BLEU .330 .281 .394 .332
RUBER
Unref. & Ref. Scorer .339 .206 .325 .193
Ref. Scorer only .188 .071 .075 .016
Unref. Scorer only .342 .225 .336 .217
Unref. & �BLEU .435 .323 .450 .338

human .773 .628 .778 .607

Table 3: Correlation between each method and human
judgment; human refers to the inter-rater correlations.

minimum correlation with human judgment than
BLEU did with only one reference. For Pearson’s r,
only the proposed retrieval method, which uses an
embedding-based similarity for utterances, showed
higher minimum correlation than BLEU did with
only one reference. This means that the proposed
retrieval method was the most appropriate way
to extend the reference responses. We, therefore,
used reference responses extended by the proposed
method for �BLEU in the following evaluation.

Next, Table 3 compares �BLEU with �BLEU
and the state of the art evaluation method, RUBER.
The comparison between �BLEU and BLEU in Ta-
ble 2 revealed that the use of our NN-rater improved
the minimum correlation with human judgment.
Here, �BLEU was comparable to �BLEU, which
implies that our method can successfully automate
�BLEU, a human-aided, uncertainty-aware evalua-
tion method. �BLEU performed better than RUBER
did (unreferenced scorer + referenced scorer) for all
correlations other than the maximum Spearman’s
⇢. We attribute the poor performance of RUBER
to the poor performance of its referenced scorer,
which was even worse than BLEU with only one
reference in Table 2. This shows that merely adopt-
ing embedding-based similarity does not address
the uncertainty of outputs. By replacing the refer-
ence scorer in RUBER with our �BLEU, however,
we obtained the best overall correlations, which
advances the state of the art.

Examples Table 4 shows examples of responses
retrieved and evaluated by our method, along with
evaluation scores for responses generated by C-
BM25. The BLEU score with a single-reference
response was almost zero. The �BLEU scores were
the closest to human judgment, multi-reference
BLEU (BLEUmulti) was the secondary closest, and
single-reference BLEU was the last.

Utterance:
pumaœDf�iLc_â’©ÌÔ¸L10∫�cf
D_ngB„o~`˝DdDfDjD
(Time has not got me, because my follower reduced by 10
on the next day after I’ve drawn puma.)

Reference response:
JÇWçYNgWá
(It’s very funny)

Extended reference responses: NN-rater
score

dåKâÇ uj\¡}W�kWf~Y 0.835
(I’m looking forward to seeing your nice work.)

�so�c_QidlgMjDng�sí
1D~W_

0.523

(I lost an interest on it since I couldn’t dl it.)

Generated response (score):
ÄWçûÅ_{FLoDngo
(You’d better to stop)
(human: 0.33, BLEU: 0.01, BLEUmulti: 0.07, �BLEU: 0.25)

Table 4: Examples of responses retrieved and evalu-
ated by our method for a given test example, along with
evaluation scores for responses generated by C-BM25.
BLEU refers to BLEU score with the original response,
while BLEUmulti refers to BLEU score with the extended
references. For comparison, we normalized all evalua-
tion scores to the interval for BLEU, i.e., [0, 1].

7 Conclusions

We have proposed a method to remove the need for
costly human judgment in �BLEU (Galley et al.,
2015) and obtain an automatic uncertainty-aware
metric for dialogue systems. Our proposed �BLEU
rates diverse reference responses retrieved from
massive dialogue logs by using a neural network
trained with automatically-collected training data,
and it uses the responses and the scores to run
�BLEU. Experimental results on massive Twitter
dialogue data revealed that �BLEU is comparable
to human-aided �BLEU, and that, by integrating it
into RUBER, the state of the art method for evalu-
ating open-domain dialogue systems, we can im-
prove the correlation with human judgment.

We will release all code and datasets (tweet IDs)
to promote the reproducibility of our experiments.4

The readers are referred to our code to evaluate
their dialogue systems for their native languages.
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Abstract

This paper describes the development of a
verbal morphological parser for an under-
resourced Papuan language, Nen. Nen ver-
bal morphology is particularly complex, with
a transitive verb taking up to 1, 740 unique fea-
tures. The structural properties exhibited by
Nen verbs raises interesting choices for analy-
sis. Here we compare two possible methods
of analysis: ‘Chunking’ and decomposition.
‘Chunking’ refers to the concept of collating
morphological segments into one, whereas the
decomposition model follows a more classical
linguistic approach. Both models are built us-
ing the Finite-State Transducer toolkit foma.
The resultant architecture shows differences in
size and structural clarity. While the ‘Chunk-
ing’ model is under half the size of the full de-
composed counterpart, the decomposition dis-
plays higher structural order. In this paper,
we describe the challenges encountered when
modelling a language exhibiting distributed ex-
ponence and present the first morphological
analyser for Nen, with an overall accuracy of
80.3%.

1 Introduction

With the advance of modern technology, collecting
data for the task of language documentation has
become easier, but methods for coping with the
influx of data have become a pressing concern. One
robust solution in the realm of morphology and
phonology has been Finite State methods.

This paper focuses on the development of Finite-
State architecture in aid of the glossing process
for building resources for Nen. Nen is a under-
resourced language of the Morehead-Maro lan-
guage family of Southern New Guinea (Evans,
2015). It is spoken by approximately 300–350
people in the village of Bimadbn in the Western

Province of Papua New Guinea. The resources
developed here feed directly into the efforts of doc-
umentation and corpus building. This effort is glob-
ally shared amongst fieldworkers and descriptive
linguistics across many languages, in response to
the estimation for half of the world’s languages to
be extinct within the next century (Krauss, 1992).
Aside from aiding the documentation process, the
linguistic property of multiple exponence (ME)
makes Nen an interesting case study for computa-
tional methods, as well as exasperating the already
present data sparsity problem.

Though much of the recent work in Natural Lan-
guage Processing (NLP) has centred around ma-
chine learning, it is still not quite feasible in low
resource problem sets. Neural networks remove
the need for incorporating detailed knowledge of
the specific context by optimizing the mapping be-
tween input/output pairs. As a consequence a large
amount of training data is required (Gorman and
Sproat, 2016). In the low resource language setting,
often linguistic insight can be exploited to help gen-
erate larger datasets, such as Finite-State methods
being used to produce labelled data for training of
neural networks (Moeller et al., 2018).

Finite-state Transducers (FSTs) are widely ac-
cepted as a standard way to computationally model
the morphological structure of words in natural
languages (Beesley and Karttunen, 2003; Kosken-
niemi, 1983). Prior works include FSTs for ag-
glutinating languages such as Turkish, Tuvan, and
Northern Haida (Çöltekin, 2014; Tyers et al., 2016;
Lachler et al., 2018), and more recently so-called
polysynthetic languages like Chukchi, Kunwin-
jku, Central Siberian Yupik, and Arapahoe (An-
driyanets and Tyers, 2018; Lane and Bird, 2019;
Chen and Schwartz, 2018; Kazeminejad et al.,
2017).
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The novel contributions of this paper are twofold:
First, we present a preliminary morphological anal-
yser for verbs in Nen. In addition to resource build-
ing for the Nen language, this work outlines a com-
putational approach for modelling the linguistic
phenomenon of distributed exponence.

2 The Nen Language

With on-going documentation efforts, the Nen
corpus is approximately 30, 000 words of natural
speech, of which there are approximately 6, 000
verbs tokens (Muradoğlu, 2017). Over a third of
these verb tokens (2, 379 tokens) are varieties of
the copula, which form a restricted paradigm of
their own. Simply put, the amount of data is scarce.
To add to this problem, Nen exhibits complex ver-
bal morphology. In fact, verbs are morphologically
the most complicated word-class in Nen (Evans,
2016, 2019). Despite this, they are often regular,
allowing for generalisation of rules to analyse them.
As outlined by Evans (2016), Nen verbs can be di-
vided into two categories: prefixing and ambifixing
verbs. Prefixing verbs mark the undergoer argu-
ment by prefix and ambifixing verbs employ both
prefixes and suffixes to index person and number
of up to two arguments. In this paper, we focus on
the more complicated case of the ambifixing verb.
The full prefix and suffixal paradigm can be found
in Evans (2016) Table 23.3 (pg 548), Table 23.14
(pg 563) and Table 23.16 (pg 565).

The undergoer prefixes are divided into arbitrar-
ily labelled series ↵, �, �, which do not corre-
spond to specific semantic values until they are
unified with other TAM (Tense, Aspect, and Mood)
markings on the verb (Evans, 2015). Following
the undergoer prefixes, a directional prefix slot is
available. This can be filled with {-n-} ‘towards’,
{-ng-} ‘away’ or left empty to convey a direction-
ally neutral semantic. Consider the verb armbs ‘to
climb’. When marked for direction the resultant
forms are as follows: n-armb-te ‘(s)he is ascending
(neutral)’, n-n-armb-te ‘(s)he is coming up (to-
wards speaker)’, and n-ng-armb-te ‘(s)he is going
up (away from speaker)’.

The middle prefixes simply mark the verb as a
member of the middle verb type; essentially dy-
namic monovalent verbs. Prefix cells with more
than one entry note possible allomorphy depend-
ing on the phonological environment within the
verb. The suffixal system applies to both middle
and transitive verb types.

Although it is convenient to segment verbs, into
prefix, stem, and suffix, the Nen verbal system dis-
tributes information in a complicated way. The
prefixes and suffixes are not independent values.
Nen exhibits a particular kind of multiple expo-
nence (ME), which requires prefixes and suffixes
to be unified before inflectional values are known
(Evans, 2016).

The possible combinatorial space for transitive
and middle verbs is determined by summing the
forms associated with each series (↵, �, and �)
and the TAM suffixes they can co-occur with. The
figure obtained is then multiplied by the possible
undergoer prefixes (with only three available to the
middle verbs). Lastly, this number is multiplied
by three for each directional prefix available. This
process yields a 1, 740 cell paradigm size for the
transitive verbs.

2.1 Distributed Exponence
One of the prime motivations for choosing Nen as
a case study is the phenomenon that gives rise to
this combinatorial power: distributed exponence.

In linguistics, the notion of extended exponence
was first introduced by Mathews (1974) and is now
commonly referred to as multiple exponence (ME).
Matthews defined ME as “a category if positively
identified at all, would have exponents in each of
two or more distinct positions” (Mathews, 1974).
Distributed exponence is a kind of ME, which in-
volves the use of more than one morphological
segment to convey meaning. It requires all rele-
vant morphs to yield a precise interpretation of the
feature value in question (Carroll, 2016; Harris,
2017).

(1) N-n-and-armb-ta-ng
M:↵-VEN-FUT.IMP-Nsg-ascend-
Ndu:IPF-NSG.IPF.IMP

‘You|they (>2) climb up later! (in the fu-
ture, said to a group of people)’

In the example above, no one marker marks the
plural person. The information of the agent being
plural is distributed across the thematic (dual/non-
dual) and the desinence (single/dual/plural). If a
non-dual thematic is present than the desinence
cannot have dual features, and so the only options
are singular or plural. Further, this is an example
of the future imperative in Nen. The future imper-
ative category is marked by an additional prefix,
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which also carries information about the agent. It
carves up the person space in a different way to
the thematic, and yet these values must be compat-
ible. The other main feature value evident in this
example is the prefix n- which serves as a dummy
variable to reduce the valency of the verb, but it
also yields information about the membership of
the class ↵. Together with the desinence (and in
this case the presence of the future imperative pre-
fix), the TAM feature can be obtained.

3 Method
Several implementations of FSM compilers were
available: XFST (Xerox Finite-State Transducer)
(Beesley and Karttunen, 2003), foma (Hulden,
2009), and HFST (Helskini Finite-State Trans-
ducer) (Lindén et al., 2011), of which the latter
two are open source. To develop a morphological
analyser for Nen, we employed the foma Finite-
State toolkit.

FSTs are an ideal tool for morphology, since they
allow for both analysis and synthesis, meaning the
user can both decompose a word and construct one,
given the desired morphological features. Addi-
tionally, given the ongoing nature of language doc-
umentation, linguistic rules are constantly being
added to, reviewed and revised. The incremental
modularisation of FSTs allows for easy testing of
set rules and addition of new rules.

FSTs are constructed in two parts: the first part
deals with morphological rules and irregularities,
as well as lexicon creation. The second component
implements morphophonological rules.

3.1 Long Distance Dependencies (LDDs)
As with most languages, there are long-distance
dependencies (LDD) that need to be resolved. This
is even more true of Nen given its distributed nature.
In FSTs, the transition from one state to another
depends on the current state and the next input
symbol. To transition to a state at time t + 1, the
only thing considered is the state at time t (i.e.,
Markov assumption). In other words, there is no
stack or other memory-like function that can be
consulted.

One way of introducing memory is through
Feature-setting and Feature-unification operations.
These are practically implemented using flag di-
acritics (Hulden, 2011). Arcs with flag diacritics
are like an epsilon transition but are conditional
on the success or failure of the operation specified
by the flag. In our setup, the operations used are

P (positive) and R (require). This process is often
repeated through the verb, where the unification of
features is required.

3.2 Future Imperative
In addition to normal imperatives, Nen has future
imperatives. This type of imperative specifies that
an action should be carried out at some later point,
and often at a different location (Evans, ms)

As seen in example 1, the TAM category of fu-
ture imperative requires another prefix. Essentially
at this point the FST has three options, {-and-}
for non-singular, {-ang} for singular and {-;-}. If
the verb is not a future imperative than the {-;-}
pathway is taken. The future imperative is only
possible if the prefix is of the ↵ class.

The Nen language distinguishes between SG,
DU, PL persons. For the decomposition model,
there needs to be restrictions for the thematic,
which splits this combinatorial space in a differ-
ent way: Dual (DU) or Non-Dual (ND). A non-
singular future imperative prefix cannot be used
with a singular actor suffix.

This licensing of information can be done in
several ways. For simplicity, the LDD is recalled
in the shortest way possible. If this prefix is present
then the system knows the series must be ↵, so
instead of propagating the series restrictions to the
end, we require the FUT.IMP (SG/NSG) feature to
be unified.

3.3 Models
In building an FST for the Nen verb, the question
of whether to ‘Chunk’ or decompose arose. By
‘Chunking’, we refer to the idea of combining mor-
phological segments rather than decomposing to
the minimal units (as briefly mentioned in Lachler
et al. (2018)).

There are several motivations for this distinction.
First, from a technical point of view, decomposing
requires more rules to govern the combinations
of even more segments. By having to block the
possibilities of certain combinations (i.e., negative
definition), this leads to more complex rules which
need to be carefully considered and tested.

Secondly, this distinction neatly parallels with
psycholinguistic theories dealing with processing
of agglutinative or polysynthetic languages. The
basic idea is that there is a dual mechanism for
processing inflected words: lexical memory and
morphological decomposition/grammatical rules
(Hahne et al., 2006; Ullman, 2004).
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Figure 1: Overall FST architecture for ‘Chunking’ model. For larger view: ‘Chunking’

Figure 2: Information flow for the ‘Chunking’ model.

Figure 3: Information flow for decomposition model.

3.3.1 ‘Chunking’ Model

As described above, ‘Chunking’ refers to the idea
of combining morphological segments. In the
case of Nen, this means treating the thematic and
desinence as one rather than two separate segments.
The thematic and desinence have the same hidden
featural restrictions. That is to say, thematics of the
same TAM feature can be unified with desinences
of the same value. In this approach, the Under-
goer prefix limits the possible allowed suffixes and
forces certain TAM interpretations. Figure 2 de-
picts the LDD resolution for this model. We impose
a prefix series restriction since the membership of
the prefix (whether ↵, �, or �) changes the inter-
pretation of the suffix. It is a much more straight-
forward model compared with the decomposition
model discussed next

3.3.2 Decomposition Model

The decomposition model follows the analysis of
Evans (2016). It segments morphemes to their min-
imal meaningful units. This approach gives a more
granular insight into the flow of information from
one segment to the next. In fact, it is simply the
uncompressed version of the ‘Chunking’ model.
Decomposing into smaller units gives rise to more
complex rules to constrain the FST to linguistically
viable forms only. For example, Nen has {-;-}
and {-ng-} as possible thematic values, but it also
has these same values in the desinence, so if no
restrictions exist the system would over-assign the
zero morphemes. The ‘ng’ suffix could be analysed
as either {-;-ng} or {-ng-;}. Both these options
are not linguistically viable because the TAM fea-
tures do not match. In the decomposition model,
we need to impose restrictions between all three:
undergoer prefix, thematic and desinence (and the
future imperative prefix). The simplest way to do
this is to plan restrictions from undergoer prefix to
thematic, and thematic into desinence (since they
adhere to the same underlying paradigmatic struc-
ture) as seen in Figure 3. Instead of enforcing the
dependency from the undergoer prefix, the range of
the LDD or feature-unification is minimised. Since
the future imperative and thematic already block
the unsatisfactory feature-holding morphemes, the
desinence only needs to be unified with the the-
matic morpheme.
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Figure 4: Overall FST architecture for decomposed model. For larger view: Decomposition model.

4 Results
The decomposition model showed a clearer level
of organization than the ‘Chunking’ model (Fig-
ures 1 and 4, both with the flags included). Note
that, one verb stem armbs ‘to ascend’ was used
in both figures, for visibility of manifestation of
morphological paradigm for one ambifixing verb.
The particular stem was chosen because we had a
full paradigm elicitation from members of the Nen
community to confirm the existence of predicted
forms. When comparing the specifications of both
models, shown in Table 1, we could see that the
decomposition was roughly double the ‘Chunking’
model in size, the number of states and arcs, and
approximately 3.5 times more pathways.

These results questioned the benefit of decom-
posing further, apart from the obvious benefit of fol-
lowing the linguistic description. Given the added
difficulty of implementing, if both yield compara-
ble results, and the end goal is to have the highest
possible accuracy of gloss than the choice of model
should not matter.

4.1 Evaluation

We evaluated our FST models by comparing the
glosses produced with those of a hand-annotated
set (Muradoğlu, 2017). The hand-annotated corpus
was derived from the Nen natural speech corpus.
This included 1, 680 unique inflected forms (with
the middle and transitive verbs making up approxi-
mately 58% of verbs observed) and 274 stems. Un-
surprisingly, the hand-annotated corpus displays

Features ‘Chunking’ Decomposition
Size 8.0kB (7.6kB) 13.7kB (15.2kB)
States 230 (197) 513 (470)
Arcs 385 (340) 709 (656)
Paths 5, 371 (26, 288) 18, 706 (811, 069)

Table 1: FST attributes for ‘Chunking’ and decompo-
sition model with diacritic flags eliminated. Figures in
brackets refer to the flag counterparts.

Zipfian properties, with the copula verb (and all of
its inflections) being the most frequently occurring
and making up 39% of the corpus. The coupla verb
in Nen takes up to 40 unique forms which can be
modelled perfectly.

During testing, we encountered an unexpected
difference between the two proposed models.The
definition of the imperfective basic non-dual the-
matic ({-taw-}|{-ta-}) required a morphophonolog-
ical rule to drop the a or aw and attach the {-e}
desinence for the 2|3sg actor. We addressed this
problem in the foma file. This again, reiterates the
notion of more rules required for further decompo-
sition.

Both ‘Chunking’ and decomposition model
showed an 80.3% accuracy (70.5% if only mid-
dle and transitive verbs are considered). The most
common errors were attributable to spelling and/or
morpholonological changes. For example, the in-
flected form näramanda, would only be recognised
by the FST as nrämnda with the stem as räm. This
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is because, exceptionally, the verb stem (w)ärama-
‘to give’ does not appear in full in the infinitive
räms, whereas other verbs with benefactives (e.g.
wabens ‘to feed for’) do include the prefix. The
verb stem for give is built by adding benefactive
{wä-} ’make’ (thus ‘giving’ is literally ‘doing for’)
to the root räm (infinitive räms) ‘to do’.

Some of the unrecognised forms can be a result
of variation in transcription. With ongoing efforts
of documentation, transcription decisions evolve,
resulting in a distribution of forms that represent
the same thing. A typical example of this variation
in the corpus is wétélés|wetls ‘to tell/say/report’,
with the epenthetic vowels either being written or-
thographically or omitted. Typically these issues
would be dealt with in the pre-processing stage
however, some of these cases are harder to recog-
nise than others, as is the case of handling natural-
istic data.

5 Conclusion
This paper explores options for modeling the
low-resource language Nen using finite-state
transducers. Nen shows distributed exponence;
multiple morphs can contribute to the specification
of a particular feature value. This property
motivates the comparison between a ‘Chunking’
model, which combines the thematic and desinence
segment, to a decomposition model which handles
the two separately at the cost of many more
parameters. Both models achieve the same
accuracy of 80.3%. The choice of model depends
on the primary concern of the user. Assuming that
either segmentation is linguistically possible, if the
size of the transducer is of concern (as a result of
the size of lexicon, complexity of rules or sheer
number of rules) a ‘Chunking’ approach can be
taken with no cost to accuracy. If the user, prefers
structural granularity or a one-to-one mapping
between the computational implementation and
the linguistic grammar then the decomposition
approach can be taken. Most often, the primary
use of FST grammars are to provide morphological
glosses, in this case there is no computational
motivation for having a high resolution description.

Future work would entail analysing and imple-
menting more detailed underlying morphonolog-
ical rules, and investigating the cross-over from
FSTs to neural models. One of the prime moti-
vations for building an FST, in the era of neural
networks is to generate enough labelled data, in the

appropriate format to enable testing across architec-
tures. Additionally, the process of building an FST
proves to be a great way to examine the validity of
the linguistic analyses.
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Abstract

Classical and some deep learning techniques
for Arabic text classification often depend
on complex morphological analysis, word
segmentation, and hand-crafted feature engi-
neering. These could be eliminated by us-
ing character-level features. We propose a
novel end-to-end Arabic document classifi-
cation framework, Arabic document image-
based classifier (AraDIC), inspired by the
work on image-based character embeddings.
AraDIC consists of an image-based charac-
ter encoder and a classifier. They are trained
in an end-to-end fashion using the class bal-
anced loss to deal with the long-tailed data
distribution problem. To evaluate the effec-
tiveness of AraDIC, we created and published
two datasets, the Arabic Wikipedia title (AWT)
dataset and the Arabic poetry (AraP) dataset.
To the best of our knowledge, this is the first
image-based character embedding framework
addressing the problem of Arabic text classifi-
cation. We also present the first deep learning-
based text classifier widely evaluated on mod-
ern standard Arabic, colloquial Arabic and
classical Arabic. AraDIC shows performance
improvement over classical and deep learning
baselines by 12.29% and 23.05% for the micro
and macro F-score, respectively.

1 Introduction

Arabic is one of the six official languages of the
United Nations and the official language of 26
states. It is spoken by as many as 420 million
people making it the fifth most popular language
worldwide. According to the Internet World Statis-
tics, as of 2017, Arab users represent 4.8% of inter-
net users1.

Arabic can be classified into three different types
each having its own purpose and morphology. The
modern standard Arabic, the colloquial or dialectal

1Arabic Speaking Internet Users and Population Statis-
tics. https://www.internet-worldstats.com/
stats19.html Accessed: 16-Dec-2018,

Arabic and the classical or old Arabic. The mod-
ern standard Arabic is the official language used in
media, government, news papers and is taught in
schools. Colloquial Arabic varies between coun-
tries and regions. Old or classical Arabic survives
nowadays in religious scriptures and old poetry.

Arabic has 28 basic letters all are consonants
except three, which are long vowels. Arabic is
written from right to left. Most Arabic letters have
more than one written form depending on their po-
sition in the word. For example, “ Ä ”. “ Å⌥ ”,

“ ⇧Ç⌥ ”, and “ ⇧É ” are all different forms of the let-

ter “ Ä ”(sı̄n). In addition, diacritical marks/short
vowels that contribute to the phonology of Arabic,
greatly alter the character shape. Example, “ ◆

H
.

”,

“ 
H
.

”, “ H
.
◆

”, “ ✏
H
.

”, “ �
H
.

”, “ �
H
.

”, “ ↵
H
.

”, and

“ H
.
↵

” are combination of the letter “ H
.

”(bā’) with
different diacritics. This visual nature of the Arabic
letters is the main motivation for us to use image
based embeddings.

The importance of text classification has in-
creased due to the increase of textual data on the
internet as a result of social networks and news
sites. Common examples of text classification are
sentiment analysis (Ibrahim et al., 2015), spam
detection (El-Halees, 2009) and news categoriza-
tion (Shehab et al., 2016). Arabic text classification
is particularly challenging because of its complex
morphological analysis.

Most research on Arabic text classification
has used classical techniques for feature extrac-
tion (Salloum et al., 2018), which require com-
plex morphological analysis, such as negation han-
dling(Al-Twairesh et al., 2016), part of speech
tagging (Khoja, 2001), stemming (Al-Kabi et al.,
2015), and segmentation (Abdelali et al., 2016).
Arabic segmentation is especially complex because
Arabic words are not always separated by white
spaces. It also includes some hand-crafted features
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like document term matrix with term frequency in-
verse document frequency (TF-IDF) scores or word
count.

Arabic text classification have been often done
using classical algorithms like support vector ma-
chines (SVMs) or Naive Bayes (Salloum et al.,
2018). Despite advances of text classification us-
ing deep learning techniques, little work has been
done on Arabic. Soliman et al. (2017) introduced
AraVec, which is a pretrained distributed word em-
beddings (Mikolov et al., 2013). They trained their
model using the skip-gram and continuous bag
of words techniques. They used data from dif-
ferent sources like Wikipedia and Twitter. More
recently, Sagheer and Sukkar (2018) used AraVec’s
pretrained word embeddings with sentence convo-
lutional neural network (CNN) originally proposed
by Kim (2014) for Arabic document classification.
This method still did not mitigate the problem of
Arabic word segmentation.

Those combinations left two major issues unad-
dressed. First, performance highly depends on mor-
phological analysis and word segmentation, which
is difficult for Arabic. The same problem has been
addressed for languages such as Japanese and Chi-
nese (Peng et al., 2003). Second, obtaining ap-
propriate embedding (i.e. building hand-crafted
features) is difficult.

To solve these problems, character-based ap-
proaches utilizing deep learning methods mainly
used in image processing have been proposed
(Zhang et al., 2015; Shimada et al., 2016; Kitada
et al., 2018).

Zhang et al. (2015) introduced a character-level
CNN (CLCNN) that treats text as a raw signal at
character level. The CNN then learns the language
morphology and extracts appropriate features for
text classification. Their method mitigated the issue
of complex morphological analysis.

After that, Shimada et al. (2016) proposed image-
based character embeddings for Japanese and Chi-
nese text classification. Their model was composed
of a convolutional auto-encoder (CAE) (Masci
et al., 2011) and a CLCNN. They were the first
to handle a character as an image and obtained
character-embedding with their CAE. They also
introduced wild card training as a data augmenta-
tion technique, which is dropout (Srivastava et al.,
2014) on the embedding space.

Later, Liu et al. (2017) used image-based char-
acter embeddings learned through a character en-

coder (CE) to train a gated recurrent unit (GRU) for
Japanese, Chinese, and Korean text classification.

Kitada et al. (2018) proposed CE-CLCNN that
concatenated Liu et al. (2017)’s CE with CLCNN
as an end-to-end system and introduced random
erasing on image domain as a data augmentation
method. These models using character-level fea-
tures learn language morphology eliminating the
need for complex morphological analysis and word
segmentation.

Another problem is that large text classification
datasets usually suffer from long tailed data distri-
bution problem. This means that few classes make
up majority of data. This problem often reduces the
model’s accuracy on the minority classes making
more biased towards majority classes.

This problem can be addressed by either re-
sampling (Chawla et al., 2002; Shen et al., 2016;
Geifman and El-Yaniv, 2017; Buda et al., 2018;
Zou et al., 2018) or re-weighting the cost func-
tion (Ting, 2000; Zhou and Liu, 2005; Huang et al.,
2016; Khan et al., 2017; Cui et al., 2019).

Cui et al. (2019) noticed that re-weighting the
cost function by inverse class frequency as used in
vanilla schemes (Huang et al., 2016, 2019; Wang
et al., 2017) could lead to poor performance on
majority classes. They proposed class-balanced
(CB) loss based on the effective number of classes
which re-weights the loss by the inverse of the
effective number of classes.

Our contributions can be summarized as follows:

• We propose AraDIC which is a framework
for Arabic text classification. AraDIC is an
end-to-end model of a character encoder and
a classifier trained using CB loss.

• CB loss was originally intended for object
detection tasks. We show that it can solve
class-imbalance problems for text classifica-
tion tasks.

• We introduce two datasets in the hope of be-
coming bench marking datasets for Arabic
text classification tasks as well. The Arabic
Wikipedia title (AWT) dataset and the the Ara-
bic poetry (AraP) dataset. These two datasets
contain the three types of Arabic language.

To the best of our knowledge, this is the first
time an image-based character embedding model
is used for Arabic text classification. Also, the
first time a deep-learning based model is tested
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(a)

(b)

Figure 1: The category distribution for the (a) AWT
and (b) AraP datasets.

on datasets containing the three types of Ara-
bic. This shows that our method could be used
to overcome Arabic’s complicated morphological
analysis and word segmentation for all types of
Arabic. The code and datasets are released at
https://github.com/mahmouddaif/AraDIC

2 Datasets

Arabic text classification lacks bench marking
datasets. This is because it is expensive and time
consuming to annotate a large dataset to be used for
text classification using deep learning algorithms.
We created two large datasets that do not require
manual annotation and can be used as benchmarks
for Arabic text classification. The AWT and the
AraP datasets. Sections 2.1 and 2.2 describe how
we constructed these datasets.

2.1 Arabic Wikipedia Title Dataset (AWT)

Liu et al. (2017) introduced the Wikipedia title
dataset for Japanese, Chinese and Korean by mak-
ing use of Wikipedia’s recursive hierarchical struc-
ture to crawl 12 different Wikipedia categories and

using the category as a label to all article titles
under this category, and its subcategories. He as-
sumed that an article only exists in one category. If
an article existed in more that one category, it was
randomly assigned to only one of them. This cre-
ated some noisy annotations, however, categories
were chosen as distinctive in nature as possible to
reduce this problem. We crawl 11 different cate-
gories from the Arabic Wikipedia using the same
method. A total of 444,911 different titles with a
total of 4,196,127 different words were crawled.
This dataset contains mostly modern standard Ara-
bic. The dataset category distribution can be found
in Figure 1a.

2.2 Arabic Poetry Dataset (AraP)
The AraP dataset was crawled from the Adab Web-
site2 It contains Arabic poetry from the 6th to 21st
centuries and consists of 41,264 poems from five
eras. This dataset contains mostly colloquial and
old Arabic. AraP’s Category distribution details
can be found in Figure 1b.

3 Methodology

AraDIC is an end-to-end framework of a charac-
ter encoder (CE) and a classifier. We choose two
classifiers for our framework. A character CNN
(CLCNN) similar to Kitada et al. (2018), but tuned
to Arabic language, and a bidirectional gated re-
current unit (BiGRU) (Chung et al., 2014) based
classifier. The outline of our framework is shown
in Figure 2. We use wildcard training introduced by
(Shimada et al., 2016) for data augmentation. Wild-
card training is dropout on the embedding space
so that the data changes a little every training iter-
ation. In that sense it acts as a data augmentation
technique. We use CB softmax loss to deal with
class imbalance problem.

3.1 Character Encoder
The CE is a CNN where convolution is performed
in a depth-wise manner. It learns to encode each
input character image of size 36 ⇥ 36 pixels into a
128-dimension vector. The architectural configura-
tion is shown in Table 1a.

3.2 Classifier
For classification we use two classifiers. The first
one is a CLCNN, and the second is a BiGRU. Input

2Adab website for Arabic poetry from 6th to 21st centuries.
http://www.adab.com/.
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Layer Configuration

Conv2D (c= 1, k = 3x3, f=32) + ReLU
Max-Pool2D (k=2x2)

Conv2D (c=32, k = 3x3, f=32) + ReLU
Max-Pool2D (k=2x2)

Conv2D (c=32, k = 3x3, f=32) + ReLU
FC (800,128) + ReLU
FC (128,128) + ReLU

(a) Character encoder architecture.

Layer Configuration

Conv1D (c= 128, k = 3, f=512) + ReLU
Max-Pool1D (k=3)

Conv1D (c=512, k=3, f=512) + ReLU
Max-Pool1D (k=3)

Conv1D (c=512, k = 3, f=512) + ReLU
Conv1D (c=512, k = 3, f=512) + ReLU

FC (1024,1024) + ReLU
FC (1024,nc) + ReLU

(b) CLCNN architecture.

Layer Configuration

BiGRU (input = 128, hidden = 128, layer = 3)
+ BN

FC (256,nc)

(c) BiGRU architecture.

Table 1: AraDIC’s architectural configuration, c is
input channels, k is kernel size, f is feature maps,
nc is number of classes and BN is Batch Normaliza-
tion (Ioffe and Szegedy, 2015).

text is represented as an array of character images
each encoded into a 128 dimension vector using
the CE. Those character embeddings are the input
features for both the CLCNN and the BiGRU.

The CLCNN is a character-level CNN whose
architectural details can be found in Table 1b.

The BiGRU takes those characters embeddings
and computes a sentence level embedding. The
sentence embedding is the average of all the hid-
den layers outputs of the BiGRU. These sentence
level features are then passed to a fully connected
layer followed by a softmax for class prediction.
Detailed architecture of the BiGRU can be found
in Table 1c.

Figure 2: AraDIC’s architecture outline.

3.3 Class-Balanced Loss

Both of our datasets suffer from the long tailed
distribution problem as shown in Figure 1a and 1b.
To deal with this problem, we use state-of-the-art
method, the class balanced loss (Cui et al., 2019).
The class-balanced loss could be applied by re-
weighting the loss function by the inverse effective
number of classes. We apply it to softmax cross
entropy loss as follows:

�
1� �

1� �ny
log

 
exp (Zy)PC
j=1 exp (Zj)

!

, (1)

where 1��
1��ny is the inverse effective number of

classes. Zj is the model output (j = 1, 2, ...C),
y is class label for the input sample, ny is num-
ber of samples per class y and � is a training hy-
per parameter. This will assign adaptive weights
to the cost function for classes with higher sam-
ples and classes with lower samples, effectively
re-weighting the cost function based on effective
number of classes. This method was originally in-
tended for object detection, we show that it can be
applied to text classification as well.
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Model F-score

Arabic Wikipedia Title Arabic Poetry

Embedding Classifier Micro [%] Macro [%] Micro [%] Macro [%]

Majority Class 21.67 2.97 47.06 5.33

Word Unigram SVM 45.47 26.60 52.80 34.83
level AraVec CNN 45.02 25.05 69.28 41.95

Character One-hot CLCNN 42.76 18.71 68.24 37.72
level AraDIC CLCNN (� CB loss) 47.47 26.85 74.86 45.61

CLCNN (+ CB loss) 49.49 30.55 74.03 48.65
BiGRU (� CB loss) 55.71 39.04 78.93 59.88
BiGRU (+ CB loss) 57.76 44.54 79.53 65.00

Table 2: Classification results of our model and other baselines. Majority Class: Due to high class-imbalance in
both of our datasets, we examine the performance of majority class classifier. CNN + AraVec: Sentence classifier
CNN (Sagheer and Sukkar, 2018; Kim, 2014) using AraVec’s word embeddings (Soliman et al., 2017). SVM: an
SVM with unigrams, stemming, and document term matrix with TF-IDF scores as features. CLCNN: character
level CNN with one hot encoding as inputs(Zhang et al., 2015). AraDIC: our proposed end-to-end framework of
character encoder, CLCNN and BiGRU classifiers, trained with and without class-balanced softmax loss (CB loss).
We report two evaluation metrics, the macro and micro F-scores.

4 Experiments

To train our classifier both datasets are divided into
80% training data and 20% testing data3.

4.1 AraDIC

The maximum character length or each document
is set to 60 characters for the AWT dataset and 128
characters for the AraP dataset. That’s for using the
CLCNN classifiers. As for the BiGRU classifier
we don’t set a maximum character length, instead
the whole text is used. Each character was encoded
into a 128 dimension vector using the CE. Adam
optimizer (Kingma and Ba, 2014) with a batch size
of 64 and a learning rate of 0.001 was chosen as
the optimization method. As for the CB loss we
set � to 0.99 for both datasets. Wildcard training
ratio is set to 10%. The training loss converged
after approximately 150 epochs for AraP dataset
and 500 epochs for AWT dataset.

4.2 Baselines

We use several word-based and character-based
baselines to evaluate our method. They include
both classical and deep learning baselines as fol-
lows:

3Hyperparameters were tuned with a validation set split
from the training set, and reported the predicted results of the
evaluation set.

• Due to high class imbalance in both our
datasets, a majority class classifier is chosen
as our first baseline.

• A classical Support Vector Machine (SVM)
with a document-term matrix (DTM) of TF-
IDF scores for unigrams as input was used as
word-based baseline. Terms occurring only
once and terms appearing in more than 90%
of documents were omitted from the DTM.
We performed preprocessing in the form of
stop words, non-Arabic characters, diacrit-
ics removal. Then, text is stemmed using
Khoja stemmer (Khoja, 2001). Farasa seg-
menter (Abdelali et al., 2016) was used for
word segmentation.

• We also used Sagheer and Sukkar (2018)’s
method of using AraVec’s word embeddings
as input features and sentence CNN originally
introduced by Kim (2014) for classification.
This is another word-based baseline.

• Another baseline is a character-level CNN
(CLCNN) introduced by Zhang et al. (2015).
In this baseline, input characters were one-hot
encoded.

.
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Figure 3: Character embeddings visualization using t-SNE (Maaten and Hinton, 2008). Sections circled in green
show clusters of related characters with similar shapes, which was the majority of cases. Sections encircled in red
show clusters of unrelated characters which was rare.

5 Results and Discussion

Classification results can be found in Table 2. It is
noted that AraDIC outperforms both word based
and character based deep learning and classical
baselines. Performance improvement is shown
over classical SVM without the need for prepro-
cessing, word segmentation, stemming and fea-
ture engineering associated with classical meth-
ods. It was also able to beat Sagheer and Sukkar
(2018) method of using sentence CNN with Ar-
aVec’s word embeddings as input features with-
out the need for word segmentation. This makes
character level representations a better choice for
Arabic language avoiding segmentation and feature
engineering problems. It’s also shown that using
AraDIC’s image-based character embeddings out-
performs CLCNN with one-hot encoded characters
as input features. Therefore, we can conclude as
well that image-based character embeddings are
useful for Arabic language due to the property of
the language as discussed in the introduction sec-
tion of this paper.

As for the classifier part of AraDIC, it can be
noticed that the BiGRU significantly outperforms
CLCNN for both classification tasks. This sug-
gests that sequence-to-sequence models are more
suitable for text classification using image-based
character-based embeddings, especially in Arabic
document classification.

Also, using CB loss improves the macro F-score
of classifiers for both datasets. It can be also
noted that the improvement in the macro F-score
is achieved when using a CLCNN and a BiGRU.
This shows that CB loss can be useful to solve class

imbalance problems for text classification tasks.

Figure 3 shows character embeddings visualiza-
tion using t-distributed stochastic neighbor embed-
ding (t-SNE) method (Maaten and Hinton, 2008).
As shown, embedding for related characters having
similar shapes like “

�

@ ”, “ @ ”, “ @ ”, and “ @
�
” are clus-

tered in the embedding space. This is the majority
of cases. Other unrelated characters are also clus-
tered which is rare. This however shows that using
image based character embeddings gives an extra
layer of visual information. Another reason why it
is useful is because both the CE and the classifier
are trained as an end-to-end system. This means
that the CE learns the best embeddings suitable for
the classifier.

6 Conclusion

In this paper, we proposed a novel end-to-end
Arabic text classification framework AraDIC. We
also published two large scale Arabic text clas-
sification datasets that contain the three types of
Arabic language, the AWT and the AraP datasets.
AraDIC’s image-based character embedding strat-
egy eliminated the need for complicated prepro-
cessing, segmentation and morphological analy-
sis, and achieved much better performance than
conventional deep and classical text classification
techniques that use word and character-based em-
beddings. We have shown also that class-balanced
loss is useful for text classification tasks with long
tailed distribution datasets.
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Abstract

In general, the labels used in sequence label-
ing consist of different types of elements. For
example, IOB-format entity labels, such as
B-Person and I-Person, can be decom-
posed into span (B and I) and type information
(Person). However, while most sequence la-
beling models do not consider such label com-
ponents, the shared components across labels,
such as Person, can be beneficial for label
prediction. In this work, we propose to in-
tegrate label component information as em-
beddings into models. Through experiments
on English and Japanese fine-grained named
entity recognition, we demonstrate that the
proposed method improves performance, espe-
cially for instances with low-frequency labels.

1 Introduction

Sequence labeling is a problem in which a label
is assigned to each word in an input sentence. In
many label sets, each label consists of different
types of elements. For example, IOB-format en-
tity labels (Ramshaw and Marcus, 1995), such
as B-Person and I-Location, can be decom-
posed into span (e.g., B, I and O) and type informa-
tion (e.g., Person and Location). Also, mor-
phological feature tags (More et al., 2018), such as
Gender=Masc|Number=Sing, can be decom-
posed into gender, number and other information.

General sequence labeling models (Ma and
Hovy, 2016; Lample et al., 2016; Chiu and Nichols,
2016), however, do not consider such components.
Specifically, the probability that each word is as-
signed a label is computed on the basis of the inner
product between word representation and label em-
bedding (see Equation 2 in Section 2.1). Here,
the label embedding is associated with each label
and independently trained without considering its
components. This means that labels are treated as
mutually exclusive. In fact, labels often share some

components. Consider the labels B-Person and
I-Person. They share the component Person,
and injecting such component information into the
label embeddings can improve the generalization
performance.

Motivated by this, we propose a method that
shares and learns the embeddings of label compo-
nents (see details in Section 2.2). Specifically, we
first decompose each label into its components. We
then assign an embedding to each component and
summarize the embeddings of all the components
into one as a label embedding used in a model.
This component-level operation enables the model
to share information on the common components
across label embeddings.

To investigate the effectiveness of our method,
we take the task of fine-grained Named Entity
Recognition (NER) as a case study. Typically, in
this task, a large number of entity-type labels are
predefined in a hierarchical structure, and interme-
diate type labels can be used as label components,
as well as leaf type labels and B/I-labels. In this
sense, the fine-grained NER can be seen as a good
example of the potential applications of the pro-
posed method. Furthermore, some entity labels
occur more frequently than others. An interesting
question is whether our method of label component
sharing exhibits an improvement in recognizing en-
tities of infrequent labels. In our experiments, we
use the English and Japanese NER corpora with the
Extended Named Entity Hierarchy (Sekine et al.,
2002) including 200 entity tags. To sum up, our
main contributions are as follows: (i) we propose a
method that shares and learns label component em-
beddings, and (ii) through experiments on English
and Japanese fine-grained NER, we demonstrate
that the proposed method achieves better perfor-
mance than a standard sequence labeling model,
especially for instances with low-frequency labels.
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Figure 1: Overview of a standard sequence labelling
model. Each label (e.g., B-Park) is annotated as a
single unit, disregarding its inner structure (“B” and
“Park”).

2 Methods
2.1 Baseline model
We describe our baseline model in Figure 1. Given
an input sentence, the encoder converts each word
into its feature vector. Then, the inner product
between each feature vector and label embedding
is calculated for computing the label distribution.
Finally, the IOB2-format label (Ramshaw and Mar-
cus, 1995) with the highest probability is assigned
to each token. The label B-Park, indicating the
leftmost token of some entity, is assigned to W
(South), and I-Park, indicating the token inside
some entity, is assigned tol✓ (Park). The label
O, indicating the token outside entities, is assigned
tok (to) andLO (go).

Formally, for each word xi in the input sentence
X = (x1, x2, . . . , xn), the model outputs the label
ŷi with the highest probability:

ŷi = arg max

y2Y
P (y|xi, X), (1)

where Y is a label set defined in each data set. The
probability distribution is calculated as

P (y|xi, X) =
exp(W[y] · f(xi, X))X

y02Y

exp(W[y0] · f(xi, X))

, (2)

where W 2 R|Y|⇥D is a weight matrix for the label
set Y .1 Each row of this matrix is associated with

1D is the number of dimensions of each weight vector.
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Figure 2: Label embedding calculation. Each label em-
bedding is calculated from its component embeddings.

each label y 2 Y , and W[y] represents the y-th
row vector. f(x,X) represents the vector encoded
by a neural-network-based encoder.

2.2 Embeddings of label components
We propose to integrate label component informa-
tion as embeddings into models. This procedure
consists of two steps: (i) label decomposition and
(ii) label embedding calculation.

Label decomposition We first decompose each
label into its components. Each label consists of
multiple types of components. Consider the follow-
ing example.

B-Park = {B,Park}

The labels defined in a general entity tag set con-
sist of the IOB (e.g., B) and entity (e.g., Park)
component types. Consider another example.

B-Facility/GOE/Park =

{B,Facility,GOE,Park}

The labels defined in the Extended Named Entity
tag set (Sekine et al., 2002) consist of the four
component types: IOB (e.g., B), top layer of the en-
tity tag hierarchy (e.g., Facility), second layer
(e.g., GOE) the third layer (e.g., Park). In this way,
we can regard each label as a set of components
(type–value pairs).

Formally, K components of each label y will
be denoted by C

y
= {ck}Kk=1, where ck is the

index associated with the value of each compo-
nent type k. The above two examples are repre-
sented as C

y=B-Park
= {c1 = B, c2 = Park}

and C
y=B-Facility/GOE/Park

= {c1 = B, c2 =

Facility, c3 = GOE, c4 = Park}. This for-
malization is applicable to arbitrary label sets
whose label consists of type-value components.
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Label embedding calculation We then assign
an embedding (i.e., trainable vector representation)
to each label component and combining the em-
beddings of all the components within a label into
one label embedding. In this study, we investigate
two types of typical summarizing techniques: (a)
summation and (b) concatenation.

(a) Summation The embedding of each label,
W[y], is calculated by summing the embeddings
of its components:

W[y] =
X

ck2Cy

W
k
[ck]. (3)

Here, Wk is an embedding matrix for each com-
ponent type k, and W

k
[ck] denotes the ck-th row

vector. Figure 2 illustrates this calculation process.
The label B-Facility/GOE/Park consists of
four components (i.e., B, Facility, GOE and
Park), each ck value of which is associated with a
row vector of each matrix W

k.

(b) Concatenation The embedding of each label,
W[y], is calculated by concatenating the embed-
dings of its components:

W[y] = [W
1
[c1], . . . ,W

K
[cK ]]. (4)

Here, similarly to W
k is an embedding matrix

for each component type k Equation 3. Unlike
Equation 3, the label component embeddings are
concatenated into one embedding. Compared
with the summation, one disadvantage of the
concatenation is memory efficiency: the number
of dimensions of the label embeddings increases
according to the number of label components K.

Our label embedding calculation enables models
to share the embeddings of label components com-
monly shared across labels. For example, the em-
beddings of both B-Facility/GOE/Park and
B-Facility/GOE/School are calculated by
adding the embeddings of the shared components
(i.e., B, Facility and GOE). Equations 3 and 4
can be regarded as a general form of the hierar-
chical label matrix proposed by Shimaoka et al.
(2017) because our method can treat not only hier-
archical structures but also any type of type–value
set, such as morphological feature labels (e.g.
Gender=Masc|Number=Sing).

3 Experiments

3.1 Settings

Dataset We use the Extended Named Entity Cor-
pus for English2 and Japanese.3 fine-grained
NER (Mai et al., 2018) In this dataset, each NE
is assigned one of 200 entity labels defined in the
Extended Named Entity Hierarchy (Sekine et al.,
2002). For the English dataset, we follow the train-
ing/development/test split defined by Mai et al.
(2018). For the Japanese dataset, we follow the
training/development/test split of Universal Depen-
dencies (UD) Japanese-BCCWJ. (Asahara et al.,
2018)4 Table 1 shows the statistics of the dataset.

Data statistics There is a gap between the fre-
quencies, i.e., how many times each label appears
in the training set. We categorize each label into
three classes on the basis of its frequency, shown
in Table 2. For example, if a label appears 0–100
times in the training set, it is categorized into the
“Low” class. Moreover, we denote how many times
entities with the labels belonging to each frequency
class appear in the development or test set. To bet-
ter understand the model behavior, we investigate
the performance of each frequency class.

Model setup As the encoder f(x,X) in Equa-
tion 2 in Section 2.1, we use BERT5 (Devlin et al.,
2019), which is a state-of-the-art language model.6

As the baseline model, we use the general label
embedding matrix without considering label com-
ponents, i.e., each label embedding W[y] in Equa-
tion 2 is randomly initialized and independently
learned. In contrast, our proposed model calculates
the label embedding matrix from label components
(Equations 3 and 4). The only difference between
these models is the label embedding matrix, so if
a performance gap between them is observed, it
stems from this point.

Hyperparameters The overall settings of hy-
perparameters are the same between the base-
line and the proposed model. For English, we
use the BERT pre-trained on BooksCorpus and
English Wikipedia (Devlin et al., 2019). For
Japanese, we use the BERT pre-trained on Japanese

2We e-mailed the authors of (Mai et al., 2018) and received
the English dataset.

3https://www.gsk.or.jp/catalog/
gsk2014-a/

4https://github.com/
UniversalDependencies/UD_Japanese-BCCWJ

5We use the open-source NER model utilizing BERT:
https://github.com/kamalkraj/BERT-NER.

6The state of the art model on the Extended Named Entity
Corpus is the LSTM + CNN + CRF model that uses dictionary
information (Mai et al., 2018)
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Dataset English Japanese

# of Sentences # of Entities # of Sentences # of Entities

train 14176 27686 34784 72318
dev 1573 3032 7009 11954
test 3942 7682 6783 11669

Table 1: Statistics of the datasets.

Frequency Classes English Japanese

Dev Test Dev Test

Low �0⇠100 1125 2798 666 619
Middle �101⇠500 1224 3128 2,875 2,531
High �501⇠ 683 1756 8,413 8,519

Table 2: Details of frequency classes.

Wikipedia (Shibata et al., 2019). We fine-tune
them on the Extended NER corpus for solving fine-
grained NER. We set the training epochs to 20 in
fine-tuning. Both the baseline and the proposed
models are trained to minimize cross-entropy loss
during training. We set a batch size of 32 and a
learning rate of 5.0⇥ 10

�5 using Adam (Kingma
and Ba, 2015) for the optimizer. We choose the
dropout rate from among {0.1, 0.3, 0.5} on the ba-
sis of the F1 scores in each development set.7 We
set the number of dimensions of the hidden states
in BERT. In the baseline model, we set the num-
ber of dimensions of the label embedding W in
Equation 2 to 768. In the proposed models, we
also use the same dimension size 768 for W in
Equations 3 and 4.

3.2 Results

We report averaged F1 scores across five different
runs of the model training with random seeds. Ta-
ble 3 shows F1 scores for overall classes and each
label frequency class on each test set.

Overall performance For the overall labels,
the proposed models (PROPOSED:SUM and PRO-
POSED:CONCAT) outperformed the baseline model
on English and Japanese datasets. These results
suggest the effectiveness of our proposed method
for calculating the label embeddings from label
components.

7In our experiments, we found that the models trained with
the dropout rate of 0.1 achieved the best performance on each
development set.

Performance for each frequency class For all
the label frequency classes, the proposed model
with summation (PROPOSED:SUM) yielded the
best results among the three models. In particu-
lar, for low-frequency labels, the proposed model
with summation (PROPOSED:SUM) achieved a re-
markable improvement of F1 compared with the
baseline model. Also, the proposed model with
concatenation (PROPOSED:CONCAT) achieved an
improvement of F1. These results suggest that
exploiting label embeddings of the components
shared across labels improves the generalization
performance, especially for low-frequency labels.

3.3 Analysis

Recall that the entity tag set used in the datasets
has a hierarchical structure. This means that la-
bel components at higher layers appear more fre-
quently than those at lower layers and are shared
across many labels. As shown in Table 3, the pro-
posed models achieve performance improvements
for low-frequency labels. Here, we can expect
that the embeddings of high-frequency shared la-
bel components help the model correctly predict
the low-frequency labels. To verify this hypothe-
sis, we compare between F1 scores of the baseline
and proposed models, shown in Table 4. Here,
the targets to investigate are the three-layered, low-
frequency labels8 that have a high-frequency, sec-
ond layer component.9 As shown in Table 4, the
PROPOSED:SUM model outperformed the base-
line model. This indicates that for predicting low-
frequency labels, it is effective for the model to
use shared components. On the other hand, the
PROPOSED:CONCAT model underperformed the
baseline model. One possible reason is that the
model obtains less information by concatenating
label embeddings than by summing them.

8We exclude the labels that consist of only two layers, such
as Timex/Date.

9In this paper, we also regard the second-layer components
appearing over 100 times in the training set as high-frequency.
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Low Middle High Overall

English

BASELINE 79.83±0.27 80.29±0.46 90.82±0.32 84.99±0.27
PROPOSED:SUM 81.15±0.24 80.99±0.27 90.87±0.26 85.67±0.13
PROPOSED:CONCAT 80.40±0.38 80.31±0.28 90.75±0.23 85.20±0.16

Japanese

BASELINE 44.39±0.29 51.73±0.50 70.82±0.32 68.06±0.27
PROPOSED:SUM 45.34±0.91 51.93±0.66 71.04±0.49 68.34±0.41
PROPOSED:CONCAT 44.76±1.12 51.45±0.40 70.52±0.29 67.77±0.23

Table 3: Comparison between the baseline and proposed models. Cells show the F1 scores and standard deviations
on each test set.

English Japanese

Baseline 76.58±0.26 49.66±0.68
Proposed:Sum 77.76±0.30 50.05±1.19
Proposed:Concat 76.77±0.71 49.31±1.12

Table 4: Comparison between the baseline and the pro-
posed models in the Low frequency class.

3.4 Visualization of label embedding spaces

To better understand the label embeddings cre-
ated from the label components by our proposed
method, we visualize the learned label embeddings.
Specifically, we hypothesize that the embeddings
of the labels sharing label components are close
to each other and form clusters in the embedding
space if they successfully encode the shared label
component information. To verify this hypothesis,
we use the t-SNE algorithm (van der Maaten and
Hinton, 2008) to map the label embeddings learned
by the baseline and proposed models onto the two-
dimensional space, shown in Figure 3. As we
expected, some clusters were formed in the label
embedding space learned by the proposed model,
shown in Figure 3b, while there is no distinct clus-
ter in the one learned by the baseline, shown in Fig-
ure 3a. By looking at them in detail, we obtained
two findings. First, in the embedding space learned
by the proposed model, we found that two distinct
clusters were formed corresponding to the two span
labels (i.e. B and I). Second, the labels that have
the same top layer label (represented in the same
color) also formed some smaller clusters within
the B and I-label clusters. For example, Figure 3c
shows the Product cluster whose members are
the labels sharing the top layer label Product.

From these figures, we could confirm that the em-
beddings of the labels sharing label components
(span and upper-layer type labels) form the clusters.

4 Related work

Sequence labeling has been widely studied and ap-
plied to many tasks, such as Chunking (Ramshaw
and Marcus, 1995; Hashimoto et al., 2017), NER
(Ma and Hovy, 2016; Chiu and Nichols, 2016)
and Semantic Role Labeling (SRL) (Zhou and Xu,
2015; He et al., 2017). In English fine-grained
entity recognition, Ling and Weld (2012) created
a standard fine-grained entity typing dataset with
multi-class, multi-label annotations. Ringland
et al. (2019) developed a dataset for nested NER
dataset. These datasets independently handle each
label without considering label components. In
Japanese NER, Misawa et al. (2017) combined
word and character information to improve per-
formance. Mai et al. (2018) reported that dictio-
nary information improves the performance of fine-
grained NER. Their methods do not consider label
components and are orthogonal to our method.

Some existing studies take shared components
(or information) across labels into account. In En-
tity Typing, Ma et al. (2016) and Shimaoka et al.
(2017) proposed to calculate entity label embed-
dings by considering a label hierarchical structure.
While their method is limited to only a hierarchi-
cal structure, our method can be applied to any set
of components and can be regarded as a general
form of their method. In multi-label classification,
Zhong et al. (2018) assumed that the labels co-
occurring in many instances are correlated with
each other and share some common features, and
proposed a method that learns a feature (label em-
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(a) BASELINE

��������

��������

(b) PROPOSED:SUM

(c) Enlarged view of a cluster in (b). The embeddings of the labels sharing the top layer label
Product form this cluster.

Figure 3: Visualization of the label embedding space. The same color represents the labels that have the same
hierarchical top layer label.

bedding) space where such co-occurring labels are
close to each other. The work of Matsubayashi et al.
(2009) is the closest to ours in terms of decompos-
ing the features of labels. They regard an original
label comprising a mixture of components as a set
of multiple labels and made models that are able
to exploit the multiple components to effectively
learn in the SRL task.

5 Conclusion

We proposed a method that shares and learns the
embeddings of label components. Through experi-
ments on English and Japanese fine-grained NER,
we demonstrated that our proposed method im-
proves the performance, especially for instances
with low-frequency labels. For future work, we
envision to apply our method to other tasks and
datasets and investigate the effectiveness. Also, we
plan to extend the simple label embedding calcula-
tion methods to more sophisticated ones.
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A Appendices

A.1 Additional results

Top Second Third

English

BASELINE 90.01±0.27 86.69±0.32 83.22±0.28
PROPOSED:SUM 90.53±0.06 87.53±0.11 83.87±0.20
PROPOSED:CONCAT 90.28±0.09 87.04±0.13 83.18±0.30

Japanese

BASELINE 72.68±0.20 66.22±0.36 66.84±0.34
PROPOSED:SUM 73.13±0.43 66.37±0.42 67.00±0.59
PROPOSED:CONCAT 72.50±0.30 66.19±0.24 66.42±0.49

Table 5: Comparison between the baseline and pro-
posed models for the labels at each hierarchical layer.

English Japanese

BASELINE 96.32±0.10 84.74±0.18
PROPOSED:SUM 96.31±0.11 85.01±0.15
PROPOSED:CONCAT 96.27±0.07 84.83±0.11

Table 6: Comparison between the baseline and the pro-
posed models in span (only considering B, I labels).

Performance for each hierarchical category
Table 5 shows F1 scores for each hierarchical
category. The proposed model with summation
(PROPOSED:SUM) outperformed the other models
in all the hierarchical categories. For the labels
at the top layer, in particular, PROPOSED:SUM
achieved an improvement of the F1 scores by a
large margin on the Japanese dataset.

Performance for entity span boundary match
Table 6 shows F1 scores for entity span boundary
match, where we regard a predicted boundary (i.e.,
B and I) as correct if it matches the gold annota-
tion regardless of its entity type label. The per-
formance of the proposed models was comparable
to the baseline model. This indicates that there is
a performance difference not in identification of
entity spans (entity detection) but in identification
of entity types (entity typing).

A.2 Case study
We observe actual examples predicted by the pro-
posed model with summation, shown in Table 7.

In Example (a) and (b), Both models succeeded
to recognize the entity span. However, only the
proposed model also correctly predicted the type
label. Note that the entities Location/Spa and
Natural Object/Living Thing/Living

Example (a) ↵B)…zen0˚˚˚
(The birthplace of Gero Spa ... )

ENTITY ↵B (Gero) )… (Spa)
GOLD B-Location/Spa I-Location/Spa

BASELINE B-Facility/Facility Other I-Facility/Facility Other

PROPOSED:SUM B-Location/Spa I-Location/Spa

Example (b) ˚˚˚ where clavaviridae derives from .

ENTITY clavaviridae
GOLD B-Natural Object/Living Thing/Living Thing Other

BASELINE B-Location/Astral Body/Constellation

PROPOSED:SUM B-Natural Object/Living Thing/Living Thing Other

Example (c) ˚˚˚BJ}DÂnI˚˚˚
(... the pale sunlight ... )

ENTITY BJ}D (pale)
GOLD B-Color/Color Other

BASELINE O

PROPOSED:SUM B-Color/Nature Color

Table 7: Examples of both model outputs in fine-
grained NER.

Thing Other appear rarely, but rather to the
extent of the top layer components Location
and Natural Object that appear frequently in
the training set. Therefore, these examples suggest
that the proposed model effectively exploits shared
information of label components, especially in
terms of the hierarchical layer.

Although, we found that the proposed model
predicts partially correct labels even though
it is not totally correct in some cases. In
Example (c), B J } D (pale) is catego-
rized into Color/Color Other, the pro-
posed model also predicted the wrong label
Color/Nature Color. However, interestingly,
the proposed model correctly recognized the top
layer of the type label as Color, which is in con-
trast to the completely wrong prediction of the base-
line model.
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Abstract
User generated texts contain many typos for
which correction is necessary for NLP sys-
tems to work. Although a large number of
typo–correction pairs are needed to develop
a data-driven typo correction system, no such
dataset is available for Japanese. In this pa-
per, we extract over half a million Japanese
typo–correction pairs from Wikipedia’s revi-
sion history. Unlike other languages, Japanese
poses unique challenges: (1) Japanese texts
are unsegmented so that we cannot simply ap-
ply a spelling checker, and (2) the way peo-
ple inputting kanji logographs results in typos
with drastically different surface forms from
correct ones. We address them by combining
character-based extraction rules, morphologi-
cal analyzers to guess readings, and various
filtering methods. We evaluate the dataset us-
ing crowdsourcing and run a baseline seq2seq
model for typo correction.

1 Introduction

For over a decade, user generated content (UGC)
has been an important target of NLP technology.
It is characterized by phenomena not found in
standard texts, such as word lengthening (Brody
and Diakopoulos, 2011), dialectal variations (Saito
et al., 2017; Blodgett et al., 2016), unknown ono-
matopoeias (Sasano et al., 2013), grammatical er-
rors (Mizumoto et al., 2011; Lee et al., 2018),
and mother tongue interference in non-native writ-
ing (Goldin et al., 2018). Typographical errors (ty-
pos) also occur often in UGC.1 Typos prevent ma-
chines from analyzing texts properly (Belinkov and
Bisk, 2018). Typo correction systems are important
because applying them before analysis would re-
duce analysis errors and lead to improved accuracy
in various NLP tasks.

⇤Current affiliation is Waseda University
1In the present study, typos may cover some grammatical

errors in addition to spelling errors.

Neural networks are a promising choice for
building a typo correction system because they
have demonstrated their success in a closely related
task, spelling correction (Sakaguchi et al., 2017).
Since neural networks are known to be data-hungry,
the first step to develop a neural typo correction
system is to prepare a large number of typos and
their corrections. However, to our best knowledge,
no such dataset is available for Japanese.2 This
motivated us to build a large Japanese typo dataset.

Typos are usually collected using data mining
techniques because thorough corpus annotation is
inefficient for infrequently occurring typos. Previ-
ous studies on building typo datasets have exploited
Wikipedia because it is large, and more importantly,
keeps track of all changes made to an article (Max
and Wisniewski, 2010; Zesch, 2012). In these stud-
ies, to collect typo–correction pairs, the first step
is to identify words changed in revisions and the
second step is to apply a spell checker to them or
calculate the edit distance between them.

While these methods work well on the target
languages of the previous studies, namely French
and English, they cannot be applied directly to lan-
guages such as Japanese and Chinese, where words
are not delimited by white space. This is because
a typo may cause a word segmentation error and
can be misinterpreted as a multiple-word change,
making it difficult to identify the word affected.
Although state-of-the-art word segmenters provide
reasonable accuracy for clean texts, word segmenta-
tion on texts with typos remains a challenging prob-
lem. In addition, languages with complex writing
systems such as Japanese and Chinese have typos
not found in French and English. These languages
use logographs, kanji in Japanese, and they are

2Although the publicly available multilingual GitHub Typo
Corpus (Hagiwara and Mita, 2020) covers Japanese, it con-
tains only about 1,000 instances and ignores erroneous kanji-
conversion, an important class of typos in Japanese.
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typically entered using input methods, with which
people enter phonetic symbols, kana in the case
of Japanese, and then select a correct logograph
from a list of logographs matching the reading. Ty-
pos occurring during this process can be drastically
different from the correct words.

In this paper, we build a Japanese Wikipedia
typo dataset (JWTD) from Japanese Wikipedia’s
revision history. To address problems mentioned
above, we treat adjacent changed words as one
block and obtain the readings of kanji using a mor-
phological analyzer. This dataset contains over half
a million typo–correction sentence pairs. We eval-
uate JWTD by using crowdsourcing and use it to
train a baseline seq2seq model for typo correction.
JWTD is publicly available at http://nlp.ist.i.
kyoto-u.ac.jp/EN/edit.php?JWTD. To the best
of our knowledge, this is the first freely available
large Japanese typo dataset.

2 Japanese Typos

We classify Japanese typos into four categories:
erroneous substitution (hereafter substitution), er-
roneous deletion (hereafter deletion), erroneous
insertion (hereafter insertion), and erroneous kanji-
conversion (hereafter kanji-conversion).3 An ex-
ample and its correction for each category are
shown in Table 1. Substitution is the replacement
of a character with an erroneous one, deletion is
the omission of a necessary character, insertion is
the addition of an unnecessary character, and kanji-
conversion is misconverting kanji, which needs
some explanation.

To enter kanji, you first enter hiragana syllabary,
either by converting roman-letter inputs or directly
using a hiragana keyboard. The hiragana sequence
indicates the reading, and accordingly, the input
method shows a list of candidate kanji that match
the reading, allowing you to choose the correct one.
Errors in kanji-conversion typically occur at the
last step. A typo of this category shares the reading
with the correct one but in most cases, does not
contain the same characters at all. For example, the
typo–correction pair, “ºäÿQ (harituke) !‘
(harituke)”, which mean paste and crucifixion re-
spectively, shares no character at all so that a simple
edit distance-based method does not work. This is
why kanji-conversion requires a special treatment.

3We do not collect erroneous transposition (Baba and
Suzuki, 2012) because we observe that it occurs only infre-
quently in Japanese.

3 Data Construction

We construct JWTD in two steps. We first extract
candidates of typo–correction sentence pairs from
Wikipedia’s revision history and then filter out pairs
that do not seem to be typo corrections.

3.1 Mining Typos from Wikipedia
We extract candidates of typo–correction sentence
pairs from Wikipedia’s revision history according
to the following procedure.4

1. For each revision of each article page, we extract
a plain text from an XML dump5 and split it into
a list of sentences.6

2. For each article, we compare each revision
with the revision immediately preceding it in a
sentence-by-sentence manner using the Python3
difflib library.7 We extract only sentence pairs
that have differences. We remove pairs that have
a sentence with 10 or fewer characters, or 200
or more characters. Too short sentences lack the
context for us to determine whether the changes
are typo corrections while too long sentences
may arise from preprocessing errors. We also
remove pairs with the edit distance of 6 or more
because we assume that a revision having a large
edit distance is not typo correction.

3. For each sentence pair, we split each sentence
into a word sequence using MeCab (Kudo et al.,
2004),8 compare them using difflib, and iden-
tify diff blocks. Note that difflib outputs the
replacement of multiple words as a single block.
Therefore, typos causing a change of multiple
words are also obtained.

4. We extract sentence pairs with a diff block that
falls into one of the following categories:
Substitution

• the edit distance is 1,9

4Due to space limitations, we do not explain in detail
additional measures to clean up the data: removing reverted
revisions, removing looping revisions (for example, A!B
and B!A), and replacing transitive revisions (for example,
replace A!B and B!C to A!C).

5To strip wiki markup, we use WikiExtractor (https:
//github.com/attardi/wikiextractor)

6We use an in-house sentence splitter: https://
github.com/ku-nlp/textformatting.

7https://docs.python.org/3/library/
difflib.html

8https://taku910.github.io/mecab/
9We limit the edit distance to one because our preliminary

investigation suggests that changes with the edit distance of
two or more are increasingly likely to be content revisions
rather than typos. The coverage problem needs to be addressed
in the future.
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Substitution DnËä⇣n (no) !k (ni)⌘@^WfD_uÎgÇBä� ...
(He was also a soldier belonging⇣of ! to⌘his brother’s unit, and ...)

Deletion ...⌘ìÏπ≠Â¸DTíÇcfDãSh⇣+g (de)⌘Ââåã⇥
(... is known⇣+ for⌘having a civilian rescue organization.)

Insertion ykM´õnÓjiL]F⇣-F (u)⌘gBã⇥
(In particular, differences in immunity is like that⇣- t⌘.)

Kanji-conversion ~`�hfhfL'fbk⇣ÂM (ikou) !˚L (ikou)⌘WfDjD_Å� ...
(Because all of the universities have not yet made a⇣after ! transition⌘to graduate school, ...)

Table 1: Examples of Japanese typos and their corrections. +, -, and ! indicate insertion, deletion, and substitution
from the left hand side to the right hand side, respectively.

• the two sentences are the same in length,
and

• both of the characters changed before and
after the revision are hiragana, katakana, or
alphabet.10

Deletion
• the edit distance is 1,
• the change in sentence length is +1, and
• the added character is hiragana, katakana,

or alphabet.
Insertion

• the edit distance is 1,
• the change in sentence length is �1, and
• the deleted character is hiragana, katakana,

or alphabet.
Kanji-conversion

• the two sentences have the same reading,11

and
• both of the diff blocks before and after the

revision contain kanji.

Mining typos separately for each category is a rea-
sonable decision because each category has its own
characteristics. However, this mining strategy pre-
vents us from obtaining a balanced dataset. We
leave it for future work.

3.2 Filtering

Sentence pairs obtained according to the above
procedure contain pairs that do not seem to be typo
corrections. We use the following three methods to
remove them.

10We use the Python3 regex library (https://pypi.
org/project/regex/) to determine character types, hi-
ragana, katakana, kanji, or alphabet.

11We use the morphological analyzers Juman++ (Tol-
machev et al., 2018) (http://nlp.ist.i.kyoto-u.
ac.jp/index.php?JUMAN++) and MeCab to get read-
ings of kanji. If at least one of the analyses of reading matches,
we regard the pairs as having the same reading.

Part of speech and morphological analysis
This filters out sentence pairs in which the changes
concern acceptable variants, rather than typos.
Based on the morphological analysis by Juman++,
we remove sentence pairs that have edits related to
name, number, tense, etc.

Redirect data This filters out sentence pairs that
have a different spelling but the same meaning such
as “±À‰ (keniya)” and “±À¢ (kenia)”, both
of which mean Kenya. For such close variants,
Wikipedia provides special redirect pages that auto-
matically send visitors to article pages. A page and
its redirect can be treated as a pair of acceptable
spelling variants. We obtain a list of redirects from
an XML dump and remove a sentence pair if the
diff block is found in the list.

Language model By using a character-level
LSTM language model, we filter out sentence pairs
in two ways. We trained the model by using all
the latest pages of Japanese Wikipedia generated in
September 2019, which contains 19.6M sentences.

The first filter measures how much the loss (neg-
ative log-likelihood) decreases by a revision. This
filters out sentence pairs that seem to be spam or
both sentences seem to be natural. Let losspre and
losspost be the total language model loss of the
pre-revision sentence and that of the post-revision
sentence, respectively. We filter out sentence pairs
that satisfy the following:

losspost � losspre
the number of characters changed in the pairs

> ↵,

where ↵ is determined heuristically. It is set to �4

for substitution, �5 for deletion, and �6 for inser-
tion. We do not apply this filter to kanji-conversion.
We found that a change from high-frequency kanji
to low-frequency kanji often yielded a large value
even if the change was correct.

The second filter focused on the loss of the post-
revision sentence. This filters out sentence pairs
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in which the post-revision sentence seems to be
unnatural. We filter out sentence pairs that satisfy
the following:

losspost
the number of characters of the post-revision sentence

> �,

where � is set to 5 heuristically.

4 Dataset Analysis

We built JWTD by applying the method explained
in Section 3 to Japanese Wikipedia’s revision his-
tory generated in June 2019. The number of
typo–correction pairs obtained for each category
is shown in Table 2. Because the first of the two
language model filters was not applied to kanji-
conversion, the effect of filtering was less drastic
for kanji-conversion.

The top 10 most frequent typo–correction pairs
are listed in Table 3. The unit of corrections is
the morpheme-level edits obtained by using Ju-
man++ and difflib. For deletion, there were typo–
correction pairs associated with colloquialism, such
as “ã (ru) ! Dã (iru)” and “_ (ta) ! D_
(ita)” (i-omission), and “åã (reru) ! âåã
(rareru)” (ra-omission). Both i- and ra-omissions
are considered inappropriate for formal writing.
For kanji-conversion, there were typo–correction
pairs with similar meanings. For example, the
media and entertainment industry distinguishes
the homonymous pair “˝\ (seisaku) ! 6\
(seisaku)”. The latter refers to production in a nar-
row sense while the former covers production man-
agement. However, people outside of the industry
usually are not aware of the distinction. Perhaps
for difficulty in differentiating them, we noticed
that some typo–correction pairs did not seem to
be genuine typo corrections but were acceptable
variants. Further work is needed to remove them.

The top 5 most frequent typo–correction pairs
in terms of parts-of-speech are shown in Table 4.
There were many typo–correction pairs related to
particles in substitution, deletion, and insertion
while there were many typo–correction pairs re-
lated to nouns in kanji-conversion. The special
part-of-speech “Undefined” in the substitution cate-
gory were mostly related to katakana proper nouns.

5 Evaluation through Crowdsourcing

By using crowdsourcing, we evaluated the dataset.
We randomly sampled 2,996 article pages and eval-
uated sentence pairs extracted from them. They

Typo Before filtering After filtering
Substitution 680,097 86,742

Deletion 490,673 89,428
Insertion 407,413 110,305

Kanji-conversion 296,757 240,219
Total 1,874,940 526,694

Table 2: Number of typo–correction pairs before and
after filtering.

consisted of 1,861 substitutions, 2,147 deletions,
2,395 insertions, and 4,388 kanji-conversions. To
prevent data bias, we sampled only 3 sentence pairs
and discarded the others if an article page contains
the same corrections more than 3 times.

5.1 Task
For each sentence pair, we presented the pre- and
post-revision sentences and asked whether these
are natural or unnatural in written-style texts. Note
that we added the phrase “in written-style text” be-
cause, as we have seen above, Wikipedia tends to
remove colloquialism. We randomly swapped pre-
and post-revision sentences and presented them
simply as sentences A and B so that crowdworkers
were unable to figure out which is the pre-revision
sentence. We asked crowdworkers to choose one
from the five choices: “A is natural in written-style
text, but B is unnatural”, “B is natural in written-
style text, but A is unnatural”, “Both are natural in
written-style texts”, “Both are unnatural in written-
style text”, and “Not sure”. Each sentence pair was
shown to 10 crowdworkers.

5.2 Results
After aggregating crowdworkers’ answers, we clas-
sified pairs with single majority votes as follows:
“Correct revision” if the pre-revision sentence was
unnatural and the post-revision sentence was natu-
ral, “Bad revision” if the pre-revision sentence was
natural and the post-revision sentence was unnat-
ural, “Both natural” if the choice was “Both are
natural in written-style text”, “Both unnatural” if
the choice was “Both are unnatural in written-style
text”, and “Not sure” if the choice was “Not sure”.
We classified pairs into “Other” if no choice got
more than 5 votes.

The classification results are listed in Table 5.
83.0% of substitution, 77.6% of deletion, 88.8%
of insertion, and 69.8% of kanji-conversion were
classified as “Correct revision”. “Both natural”
was more frequent in the deletion category than in
the other categories, and 41% of this typo group
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Substitution Deletion Insertion Kanji-conversion
n (no) !í (wo) 4.0% ã (ru) !Dã (iru) 13.3% -n (no) 14.2% ˝\!6\ (seisaku) 2.8%
n (no) !k (ni) 3.5% +k (ni) 10.9% -í (wo) 11.3% ÀÅf!�Åf (hazimete) 1.4%

ed (dutu) !Zd (zutu) 3.1% +í (wo) 10.4% -k (ni) 10.5% 6\!˝\ (seisaku) 1.0%
í (wo) !n (no) 2.7% +h (to) 5.1% -o (ha) 6.6% KL!K* (unkou) 1.0%
n (no) !L (ga) 1.9% _ (ta) !D_ (ita) 4.5% -L (ga) 6.5% å!· (ato) 0.9%
k (ni)!n (no) 1.8% +L (ga) 4.3% -h (to) 4.7% \i!\^ (sakusi) 0.9%
í (wo)!L (ga) 1.8% +n (no) 3.8% -g (de) 4.4% ‰Å_!ŸÅ_ (tutometa) 0.8%
L (ga)!í (wo) 1.3% å (re)!åf (rete) 2.6% -D (i) 1.7% ‰Åã!ŸÅã (tutomeru) 0.7%
K (ka)!L (ga) 1.1% +D (i) 2.2% -_ (ta) 1.5% ã>!„> (kaihou) 0.5%
h (to)!í (wo) 1.0% åã (reru)!âåã (rareru) 1.3% -W (si) 1.5% ÿ^!D^ (fuzoku) 0.5%

Table 3: Top 10 most frequent typo–correction pairs in JWTD. In kanji-conversion, the both hand sides are the
same reading.

Substitution Deletion Insertion Kanji-conversion
Particle ! Particle 28.5% +Particle 36.8% -Particle 57.5% Noun ! Noun 57.3%
Undefined ! Noun 6.9% Suffix ! Suffix 29.6% -Suffix 6.5% Verb ! Verb 17.0%

Noun ! Noun 6.5% Verb ! Verb 5.5% -Noun 4.4% Noun/Noun ! Noun 1.7%
Verb ! Verb 5.9% Noun ! Noun 2.9% Verb/Suffix ! Verb 2.5% Suffix ! Suffix 1.6%

Noun ! Suffix 3.4% +Suffix 2.5% -Verb 2.3% Noun ! Suffix 1.4%

Table 4: Top 5 most frequent typo–correction pairs in terms of parts-of-speech in JWTD.

Typo Correct Bad Both Both Not Otherrevision revision natural unnatural sure
Subst. 83.0 0.3 6.8 0.1 0.2 9.6

Deletion 77.6 0.1 13.1 0.0 0.0 9.3
Insertion 88.8 0.4 7.1 0.0 0.0 3.6

Kanji-conv. 69.8 7.5 3.1 0.0 0.1 19.5

Table 5: Results of crowdsourcing.

concerned i-omission. In our view, they should
have been classified as “Correct revision” because
i-omission is considered inappropriate in formal
writing, but crowdworkers turned out to be toler-
ant of colloquialism. “Other” of kanji-conversion
was more frequent than those of other categories.
This means that the answers of crowdworkers were
diverse. We conjecture that judging whether kanji
is correct or not needs higher-level knowledge of
kanji. Some pairs that should have been classified
as “Correct revision” were classified as “Other” or
“Bad revision”. These imply that the quality of
deletion and kanji-conversion was better than the
scores indicate.

6 A Typo Correction System using
JWTD

We built a baseline typo correction system using
JWTD.

6.1 Settings

We used OpenNMT (Klein et al., 2017)12, a Python
toolkit of encoder-decoder-based machine transla-
tion, as a typo correction system. We trained the
model separately for each category of typos. For
training and validation, we used sentence pairs
not used in the crowdsourced evaluation. The
training set contained 79,714 substitutions, 82,227
deletions, 102,897 insertions, and 230,490 kanji-
conversions and the validation set contained 5,000
sentence pairs of each category. The test set
contained 1,689 substitutions13, 1,665 deletion,
2,127 insertion, and 3,061 kanji-conversion sen-
tence pairs classified as “Correct revision” as the
result of crowdsourcing. The training and valida-
tion sets were constrained to be distinct from the
test set at the level of article pages because of the
sampling method used in the crowdsourced evalua-
tion. We compared morpheme-level and character-
level representations of inputs and outputs. For
the OpenNMT settings, we set the train step as
200,000, and learning rate as 0.5. We used the
default settings for the others: the encoder and de-
coder were 2-layer RNNs and the embedding size

12https://github.com/OpenNMT/OpenNMT-py
13In the article pages sampled for the crowdsourcing, 144

sentence pairs of substitution were almost indistinguishable to
the human eye, such as revisions related to “x (he)” (hiragana)
and “ÿ (he)” (katakana). We removed these sentence pairs
from crowdsourcing-based evaluation, but not from the test
set for the typo correction evaluation. We manually evaluated
these and confirmed that all of them are correct.
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Model Typo P R F0.5 Match SARI

Morph

Subst. 11.9 39.8 13.8 31.6 61.2
Deletion 23.2 69.9 26.7 60.9 80.2
Insertion 16.8 79.7 19.9 69.3 83.8

Kanji-conv. 30.8 57.0 33.9 48.7 71.0

Char

Subst 4.5 37.2 5.5 25.2 54.2
Deletion 6.5 59.4 8.0 44.7 69.6
Insertion 6.2 76.0 7.6 51.8 72.5

Kanji-conv 10.0 43.5 11.8 33.7 60.9

Table 6: Results of the typo correction experiment.

and the hidden size were 500.

6.2 Evaluation metrics

Our evaluation metrics were precision, recall and
F0.5 score in typo correction, the percentage of
exact matches between system outputs and refer-
ences, and SARI (Xu et al., 2016). We defined pre-
cision and recall as follows. For each sentence, we
calculate the character-level minimum edits from
the input to the gold G, the character-level min-
imum edits from the input to the system output
O, and G \ O. Let NG, NO, and NG\O be the
sums of |G|, |O|, and |G \O| in all sentences, re-
spectively. We calculated Precision = NG\O/NO

and Recall = NG\O/NG. We used the Python3
python-Levenshtein library14 for calculating mini-
mum edits. SARI is a metric for text editing. This
calculates the averaged F1 scores of the added, kept,
and deleted n-grams. We used character-level 4-
gram.15

6.3 Results

The results of the experiment are presented in Table
6. The morpheme-level model outperformed the
character-level model in all categories with large
margins. It is interesting that for morpheme-level
insertion, the precision scores were low while the
exact match scores were high. In some sentences,
text generation did not go well and the same token
was generated repeatedly, greatly lowering preci-
sion. The SARI scores indicate improvement for
all categories, given that the output identical to the
input yields a score of about 30.

14https://pypi.org/project/
python-Levenshtein/

15We used the implementation available at https:
//github.com/tensorflow/tensor2tensor/
blob/master/tensor2tensor/utils/sari_
hook.py, setting �-deletion = 1 (Geva et al., 2019).

7 Conclusion

In this paper, we built a Japanese Wikipedia
typo dataset (JWTD) which contains over half a
million typo–correction sentence pairs obtained
from Wikipedia’s revision history. We classified
Japanese typos into four categories and presented
mining procedures for each of them. We evaluated
JWTD using crowdsourcing and built a baseline
typo correction system on top of it. To the best of
our knowledge, JWTD is the first freely available
large Japanese typo dataset.

While the focus of this paper was on data con-
struction, developing a higher-quality typo correc-
tion system is the future direction to pursue. It is
also interesting to apply our methods to other lan-
guages requiring word segmentation, most notably,
Chinese.
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Abstract

Many recent Short Answer Scoring (SAS)
systems have employed Quadratic Weighted
Kappa (QWK) as the evaluation measure of
their systems. However, we hypothesize that
QWK is unsatisfactory for the evaluation of
the SAS systems when we consider measur-
ing their effectiveness in actual usage. We in-
troduce a new task formulation of SAS that
matches the actual usage. In our formulation,
the SAS systems should extract as many scor-
ing predictions that are not critical scoring er-
rors (CSEs). We conduct the experiments in
our new task formulation and demonstrate that
a typical SAS system can predict scores with
zero CSE for approximately 50% of test data at
maximum by filtering out low-reliablility pre-
dictions on the basis of a certain confidence
estimation. This result directly indicates the
possibility of reducing half the scoring cost of
human raters, which is more preferable for the
evaluation of SAS systems.

1 Introduction

The automated Short Answer Scoring (SAS) is a
task of estimating a score of a short-text answer
written as a response to a given prompt on the basis
of whether the answer satisfies the rubrics prepared
by a human in advance. SAS systems have mainly
been developed to markedly reduce the scoring cost
of human raters. Moreover, the SAS systems play a
central role in providing stable and sustainable scor-
ing in a repeated and large-scale examination and
(online) self-study learning support system (Attali
and Burstein, 2006; Shermis et al., 2010; Leacock
and Chodorow, 2003; Burrows et al., 2015).

The development of the SAS systems has a long
history (Page, 1994; Foltz et al., 1999). Many re-
cent previous studies, e.g., (Mizumoto et al., 2019;
Taghipour and Ng, 2016; Riordan et al., 2017;
Wang et al., 2019), utilize Quadratic Weighted

Kappa (QWK) (Cohen, 1968) as a measure for
the achievement and for the comparison of the per-
formances of the SAS systems. QWK is indeed
useful for measuring and comparing the overall
performance of each system and the daily develop-
ments of their scoring models. In our experiments,
however, we reveal that the SAS systems with high
QWK potentially incur serious scoring errors (see
experiments in Section 5.3). Such serious scoring
errors are rarely incurred by trained human raters,
therefore, we need to avoid containing this type of
errors to ensure the sufficient scoring quality, for
use in the scoring of commercial examinations, of
SAS systems. When we strictly focus on measur-
ing the effectiveness of the SAS systems in actual
usage, QWK seems unsatisfactory for the evalua-
tion of the SAS systems. Here, we assume that the
following procedure is a realistic configuration for
utilizing the SAS systems in actual usage: (1) apply
a SAS system to score each answer, (2) treat the
predicted score as the final decision if the predicted
score is highly reliable, proceed to the next step
otherwise, and (3) discard the unreliable predicted
score and reevaluate the answer by a human rater
as the final decision. Therefore, we aim to establish
an appropriate evaluation scheme for accurately es-
timating the effectiveness of the SAS systems in
actual usage instead of the current de facto standard
evaluation measure, QWK.

To do so, we first introduce a key concept criti-
cal scoring error (CSE), which reflects unaccept-
able prediction error. Specifically, CSE refers to the
observation that the gap between a predicted score
and the ground truth is larger than a predefined
threshold, which, for example, can be determined
by an average gap in human raters. Then, in our
task formulation, the goal of the automated SAS
is to obtain as many predictions without CSE as
possible, which directly reflects the effectiveness
of the SAS models in the actual usage. We also in-
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Conflicts of interest in Western culture are formed on the 
basis of God vs. Human, … Score: 4 points

��	�


Explain what the author means by the phrase “this 
tension has caused several different philosophical 
viewpoints in Western culture�

Figure 1: Example of a prompt and a student’s short-
text response excerpted from the dataset proposed by
(Mizumoto et al., 2019). The allotment score of this
prompt is 16, and this response is assigned four points
by a human rater. Note that the prompt and the re-
sponse are translated from the original ones given in
Japanese.

troduce the critical scoring error rate (CSRate),
which is the CSE rate in a subset of the test data
selected on the basis of the confidence measure of
predictions, for evaluating the performance of the
SAS systems.

In our experiments, we select two methods, i.e.,
posterior probability and trust score (Jiang et al.,
2018), as case studies of estimating whether or not
each prediction is reliable. We use those two confi-
dence estimation methods to obtain a set of highly
reliable predictions. The experimental results show
that the SAS systems can predict scores with zero
CSE for approximately 50% of test data at maxi-
mum by filtering low-reliability predictions.

2 Short Answer Scoring

2.1 Task Description
As an example, in Figure 1, for a short answer ques-
tion, a student writes a short text as a response to a
given prompt. A human rater marks the response
on the basis of the rubrics for the prompt. Similarly,
given a student response x = {x1, x2, ..., xn} for
a prompt allotted N points, our short answer scor-
ing task can be defined as predicting a score of
s 2 C = {0, ..., N} for that response.

SAS models are often evaluated in terms of the
agreement between the scores of a model predic-
tion and human annotation with QWK. QWK is
calculated as:

 = 1�

P
i,j Wi,jOi,jP
i,j Wi,jEi,j

, (1)

where O 2 RN⇥N is the confusion matrix of two
ratings and E 2 RN⇥N is the outer product of
histogram vectors of the two ratings; O and E are

normalized to have the same sum of their elements.
Wi,j is calculated as:

Wi,j =
(i� j)2

(N � 1)2
, (2)

where i and j are the score rated by a human and
the score predicted by a SAS system, respectively.
N is allotment score defined for a prompt.

2.2 Scoring Model
Following related works (Nguyen and O’Connor,
2015; Jiang et al., 2018; Hendrycks and Gimpel,
2017) on confidence calibration, we formalize our
SAS model as a classification model. Note that our
focus in this paper is more on evaluating the ef-
fectiveness of the confidential scores on SAS tasks
than on creating an accurate SAS model. Therefore,
we employ a standard Bidirectional Long Short
Term Memory (Bi-LSTM) based neural network
for our scoring model as a representative model for
typical SAS tasks.

Given an input student response x, the model
outputs a score s 2 S for the response as follows.
First, we convert tokens in x to word-embedding
vectors. These embeddings are fed into a Bi-LSTM
and D dimensional hidden vectors {h1,h2, ...,hn}

are obtained as the sum of the hidden vectors from
forward and backward LSTMs. The response vec-
tor eh is then computed by averaging these hidden
vectors.

eh =
1

n

nX

t=1

ht (3)

A probability distribution of the score is calculated
as:

p(s|x) = softmax(Weh+ b), (4)

where W 2 RN⇥D and b 2 RN are learnable pa-
rameters. Finally, we select the most likely output
score bs 2 S for given input x as:

bs = argmax

s2S
{p(s|x)}. (5)

3 Task Formulation

The goal in our new task formulation for applying
SAS to real-world educational measurements is to
obtain as many scoring predictions without CSEs
as possible. This is because we can trust such
predictions and markedly reduce the cost of the
human scoring effort. In this section, we describe
our new task formulation of the automated SAS.
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Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5 Prompt 6
Length limit (char.) 70 50 60 70 70 60
Average score 7.40 4.43 5.73 5.78 4.81 5.70
Allotment score (= N ) 16 12 12 15 15 14
Human agreement .96 (.93) .94 (.92) .76 (.79) .84 (.70) .82 (.83) .90 (.82)

Table 1: Statistics of the dataset used in this paper. “Length limit (char.)” is the maximum character length of
the response permitted for a prompt. “Allotment score” is the maximum score for a prompt. “Human agreement”
represents QWK and Cohen’s Kappa (shown in brackets) between the scores annotated by two human raters.

First, to evaluate the proportion of CSEs in
the predictions, we define a function on the gold
dataset D that returns whether or not the predicted
score bs of an input x is categorized as a CSE:

CSE(x, s) =
⇢

1 if |s� bs| � � ·N
0 otherwise , (6)

where � 2 [0, 1] is a given threshold, N is the al-
lotment of a score for a prompt, s is the ground
truth score of input x, and bs is obtained using Equa-
tion 5. Note that we can choose the value of �
depending on the situation. For example, for an
important examination such as an entrance exami-
nation, � should be smaller than that for daily tests
in schools.

Here, let D be a test data set. Moreover, let
D

0 be a subset of D, that is, D0
✓ D. Then, our

objective is to maximize the size of the subset D0

on the condition that this subset does not contain
CSEs. For obtaining D

0, we estimate a confidence
score C(x, bs) for each prediction on the basis of
a certain confidence measure, and then gather the
predictions with high confidence scores that exceed
a threshold, ⌧ . Therefore, for the evaluation of the
performance of our task formulation, we propose a
critical scoring error rate (CSRate) defined as:

CSRate(D, ⌧) =
1

|D0|

X

(x,s)2D0

CSE(x, s), (7)

D
0
= {(x, s) 2 D|C(x, bs) � ⌧},

(8)

where bs is obtained using Equation 5. In real-world
tasks, the model is expected to select as large a
subset D0 as possible with very small or ideally
zero CSRate.

4 Filtering Out Low-Reliability
Estimation Using Confidence Score

As described in Equation 8, the quality of the con-
fidence measure is important for our task config-
uration. In this paper, we employ two methods

for computing the confidence score: (1) posterior
probability of the classification model and (2) trust
score (Jiang et al., 2018) as case studies.

4.1 Posterior Probability
The most straightforward method for computing
the confidence of the prediction in a classification
problem is to employ a probabilistic model and use
the output label probability:

Cprob(x, bs) = p(bs|x). (9)

Although a label probability is often used as a
confidence score for prediction, some authors are
skeptical of its utility (Guo et al., 2017; Kumar
et al., 2018). In our experiments, we evaluate the
effectiveness of this posterior probability in terms
of a confidence estimation method for SAS models.

4.2 Trust Score
Trust score (Jiang et al., 2018) is an indicator of
the reliability of prediction based on the distance
between a target data point and its nearest data
points in training data. The intuition behind this
score is that the reliability of a prediction is higher
when the target data point is closer to the nearest
training data point with the same label and farther
away from the nearest training data point with a
different label.

In this paper, trust score is calculated
as follows. Given a training data value
{(x1, s1), ..., (xm, sm)}, a target data point x for
prediction, and its predicted label bs, we first obtain
a vector representation for each data point. In our
model, the representation for each data point is the
sentence vector of the student response described
in Section 2.2. Let H = {eh1, ..., ehm} be a set of
vector representations for the training data points
and let ehx be a vector for the target data point x.
Then we collect the representations in the training
data that have the same label as the predicted label
bs:

Hbs = {ehk 2 H | sk = bs}. (10)
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The trust score Ctrust for x is then calculated as
the ratio of the euclidean distance d(·, ·) between
the target representation ehx and two data-point
representations ehp and ehc in the training data:

Ctrust(x, bs,H) =
d(ehx, ehc)

d(ehx, ehp) + d(ehx, ehc)
, (11)

where, ehp is the representation of the nearest train-
ing data point having the same label as the pre-
dicted label bs, and ehc is the nearest training data
point with a different label:

ehp = argmin

eh2Hŝ

d(ehx, eh), (12)

ehc = argmin

eh2(H\Hŝ)

d(ehx, eh). (13)

5 Experiments

5.1 Dataset
We use the Japanese short answer scoring dataset1

introduced by Mizumoto et al. (2019). The dataset
consists of six prompts. Each prompt has its
rubric, student responses, and scores. The prompts,
rubrics, and student responses in the dataset were
collected from the examinations conducted by a
Japanese education company, Takamiya Gakuen
Yoyogi Seminar. Each response was manually
scored using the multiple analytic criteria for the
prompt, and the subscore for each criterion was
rated individually on the basis of the correspond-
ing rubric. In the experiments, we use the sum of
these analytic scores as a ground truth score of each
response.2

Table 1 shows the statistics of the dataset. In the
dataset, the randomly sampled 100 responses per
prompt are annotated by two human raters. There-
fore, we can calculate QWKs and their Kappa val-
ues (Cohen, 1960) between the two human raters
to confirm the degree of human agreement. The
Kappa values on this dataset are comparable to or
higher than those on other datasets for the SAS
task (Leacock and Chodorow, 2003; Mohler and
Mihalcea, 2009; Mohler et al., 2011; Basu et al.,
2013).

As additional statistics, we calculated the num-
ber of CSEs and CSRate in various settings of � in

1https://aip-nlu.gitlab.io/resources/
sas-japanese

2We ignored the globally subtracted points (e.g., subtrac-
tion for spelling errors and omissions) that are originally an-
notated in the dataset.

� #CSEs CSRate[%]
0.05 171 28.5
0.10 93 15.5
0.15 50 8.33
0.20 38 6.33
0.25 23 3.83
0.30 7 1.17

Table 2: Changes in the number of CSEs and CSRate
of two human raters with �. 100 responses per prompt
are graded by two human raters, and the number of
CSEs represents the sum of the number of CSEs of each
prompt.

Equation 6 over the annotated scores of two human
raters. Table 2 shows the result. The number of
CSEs in Table 2 represents sum of the number of
CSEs for all prompts.

5.2 Settings
We split the dataset into training data (1, 600), val-
idation data (200), and test data (200). We used
pretrained BERT (Devlin et al., 2019) as the em-
bedding layer of the model.3 We adopted the same
optimization algorithm, learning rate, batch size,
and output dimension of the recurrent layer as
in Taghipour and Ng (2016). We trained the SAS
models for 50 epochs and selected the parameters
in the epoch in which the best QWK was achieved
for the development set. We trained five models
with different random seeds and reported the aver-
age of the results.

Choosing a reasonable � that defines CSE is cru-
cial for our formulation. In our experiments, we
employed 0.2 as � for CSE. There is no theoreti-
cal and statistical evidence that 0.2 is the optimal
value for our formulation. However, as shown in
Table 2, 0.2 is assumed to be strict considering
that even for human raters make CSEs in about 6%
of responses. Therefore, this selection can offer
meaningful evaluations for our formulation.

5.3 Result
Can confidence scores filter out CSEs? Figure
2 shows CSRates on test data when we choose a
certain proportion of the predicted instances in de-
scending order of the confidence scores. The figure
illustrates that the CSRate in each prompt increases

3We adopted pretrained character-based BERT which is
known to be suitable for processing Japanese texts. This
is available at https://github.com/cl-tohoku/
bert-japanese.
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Prompt 1 Prompt 2 Prompt 3

, Prompt 4 Prompt 5 Prompt 6

Figure 2: CSRate for test data subsets with the highest confidence scores. Proportion of data represents the ratio of
|D

0
| to |D|. The lines represent average CSRates of the trained five models and the band represents the maximum

and minimum CSRates.

Prompt Trust Score Posteior
Prop[%] #CSEs ⌧ Prop[%] #CSEs ⌧

Prpt. 1 47.8 0.0 0.56 58.5 1.4 0.86
Prpt. 2 52.0 0.4 0.60 62.2 0.4 0.97
Prpt. 3 14.4 0.2 0.54 27.4 2.6 0.87
Prpt. 4 32.5 0.8 0.54 17.0 0.6 0.93
Prpt. 5 27.6 0.0 0.60 1.5 0.0 1.00
Prpt. 6 27.1 1.2 0.55 21.6 0.6 0.95

Table 3: Proportion of data (Prop[%]) and the number
of CSEs (#CSEs) when using the trust score or the pos-
terior probability to filter out unreliable predictions in
test data with a certain threshold ⌧ determined by the
development set.

almost monotonically for both confidence metrics.
We can also observe that the CSRate values on four
out of six prompts are suppressed to 0% with a cer-
tain amount of high confidence predictions (20%
to 60% of the test data). This is an important ob-
servation for our objective; the result demonstrates
that the proposed procedure using confidence scor-
ing possibly obtains a reasonable size of highly
reliable predictions. When comparing the two con-
fidence estimation methods, the trust score is more
effective for suppressing CSEs than the posterior
probability on Prompt 1, 3, 4, 5, and 6.

Filtering CSE using the threshold In a practi-
cal situation, it is necessary to determine a certain

10% 30% 50% 100%
TS. Pos. TS. Pos. TS. Pos. (Base)

Prpt. 1 1.0 .99 .99 .98 .99 .98 .95
Prpt. 2 1.0 1.0 1.0 1.0 .99 .98 .93
Prpt. 3 .93 .84 .83 .78 .77 .74 .67
Prpt. 4 1.0 1.0 .98 .96 .93 .92 .86
Prpt. 5 1.0 1.0 1.0 .94 .91 .88 .82
Prpt. 6 .94 .92 .95 .95 .93 .92 .88

Table 4: QWK for highly confident predictions. 10%,
30%, and 50% represent the proportion of data with the
highest trust score (TS.) or posterior (Pos.). The base
represents our model performance on a whole test data.

threshold ⌧ in the development set and use it for
filtering low- reliability predictions of unknown
samples. Assuming this situation, we evaluate how
much CSEs in the test set can be reduced by us-
ing the threshold ⌧ determined by the procedure
described in Section 3.

Table 3 shows the proportions of the remaining
test data and the number of CSEs after filtering out
low-reliability predictions using the thresholds in
each prompt. The results for both confidence esti-
mation methods indicate that we can successfully
filter out the unreliable predictions and achieve a
sufficiently low CSRate by the proposed approach.

QWK in highly reliable predictions Addition-
ally, we also show QWK of the top 10, 30, and 50%
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confident predictions to illustrate the model perfor-
mance with the de facto standard metric in Table 4.
We show QWK of our model predictions on all test
data as Base. The table shows that the proposed
approach of selecting high-confidence predictions
on the basis of confidence scores increases QWK
markedly compared with using the whole test data.
Moreover, we can achieve a QWK score of 1.0 in
some prompts with the top 30% confident predic-
tions, meaning that the model predictions perfectly
agree with the ground truth scores.

Note that a higher QWK value does not always
mean that the predictions do not contain CSEs. For
example, in Table 4, the QWK values for prompts
1 and 2 are higher than 0.9. However, as shown in
Figure 2, even with such high QWK values, these
predictions include 1.5 to 2.0% of CSEs. This
observation justifies the concept of CSE. QWK
possibly conceals serious mispredictions, which
are important to filter out in actual usage.

6 Conclusion and Future Work

In this paper, we introduced a new formulation
of the SAS task to evaluate the effectiveness of
the SAS systems in actual usage. We defined the
concept of a critical scoring error (CSE), which
represents unacceptable prediction errors. Then,
we formulate the objective of the task to obtain as
many predictions without CSE as possible. The
experimental results show that by using our pro-
posed procedure of selecting reliable predictions,
SAS systems can predict scores with zero CSE for
approximately 50% of test data at maximum. This
result directly indicates the possibility of reducing
half scoring cost of human raters, which, we be-
lieve, is highly preferable for the evaluation of SAS
systems.

Our study revealed some potential for a better
task formulation of SAS that links to actual us-
age. However, some issues remain, for example,
how to determine the effective threshold ⌧ that can
strictly guarantee zero CSE is still unknown. This
is one major challenge regarding our formulation.
Moreover, we must develop a method for more ac-
curately estimating the confidence scores, which is
our primary focus in the next step.
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Abstract
Long short-term memory (LSTM) networks
and their variants are capable of encapsulat-
ing long-range dependencies, which is evident
from their performance on a variety of linguis-
tic tasks. On the other hand, simple recurrent
networks (SRNs), which appear more biolog-
ically grounded in terms of synaptic connec-
tions, have generally been less successful at
capturing long-range dependencies as well as
the loci of grammatical errors in an unsuper-
vised setting. In this paper, we seek to develop
models that bridge the gap between biologi-
cal plausibility and linguistic competence. We
propose a new architecture, the Decay RNN,
which incorporates the decaying nature of neu-
ronal activations and models the excitatory and
inhibitory connections in a population of neu-
rons. Besides its biological inspiration, our
model also shows competitive performance rel-
ative to LSTMs on subject-verb agreement,
sentence grammaticality, and language model-
ing tasks. These results provide some pointers
towards probing the nature of the inductive bi-
ases required for RNN architectures to model
linguistic phenomena successfully.

1 Introduction

For the last couple of decades, neural networks
have been approached primarily from an engineer-
ing perspective, with the key motivation being ef-
ficiency, consequently moving further away from
biological plausibility. Recent developments (Song
et al., 2016; Gao and Ganguli, 2015; Sussillo and
Barak, 2013) have however incorporated explicit
constraints in neural networks to model specific
parts of the brain and have found a correlation be-
tween the learned activation maps and actual neural
activity recordings. Thus, these trained networks
can perhaps act as a proxy for a theoretical investi-
gation into biological circuits.

⇤⇤Equal Contribution

Recurrent Neural Networks (RNNs) have been
used to analyze the principles and dynamics of neu-
ral population responses by performing the same
tasks as animals (Mante et al., 2013). However,
these networks violate Dale’s law (Dale, 1935;
Strata and Harvey, 1999), which states that the neu-
rons have either a purely excitatory or inhibitory
effect on other neurons in the mammalian brain.
The decaying nature of the potential in the neu-
ron membrane after receiving signals (excitatory
or inhibitory) from the surrounding neurons is also
well-studied (Gluss, 1967). The goal of our work
is to incorporate these biological features into the
RNN structure, which gives rise to a neuro-inspired
and computationally inexpensive recurrent network
for language modeling, which we call a Decay RNN
(Section 4). We perform learning using the back-
propagation algorithm. Despite its differences with
the way learning is believed to happen in the brain,
it has been argued that the brain can implement
its core principles (Hinton, 2007; Lillicrap et al.,
2020). We assess our model’s ability to capture
syntax-sensitive dependencies via multiple linguis-
tic tasks (Section 6): number prediction, grammati-
cality judgement (Linzen et al., 2016) which entails
subject-verb agreement, and a more complex lan-
guage modeling task (Marvin and Linzen, 2018).

Subject-verb agreement, where the main noun
and the associated verb must agree in number, is
considered as evidence of hierarchical structure in
English. This is exemplified using a sentence taken
from the dataset made available by Linzen et al.
(2016):

1. *All trips on the expressway requires a toll.

2. All trips on the expressway require a toll.

The effect of agreement attractors (nouns having
number opposite to the main noun; expressway
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in the above example1) between the main noun
and main verb of a sentence has been well-studied
(Linzen et al., 2016; Kuncoro et al., 2018). Our
work also highlights the influence of non-attractor
intervening nouns. For example,

• A chair created by a hobbyist as a gift to
someone is not a commodity.2

In the number prediction task, if a model correctly
predicts the grammatical number of the verb (singu-
lar in case of ‘is’), it might be due to the (helpful) in-
terference of non-attractor intervening nouns (‘hob-
byist’, ‘gift’, ‘someone’) rather than necessarily
capturing its dependence the main noun (‘chair’).
From our investigation in Section 6.2, we find that
the linear recurrent models take cues present in
the vicinity of the main verb to predict its number,
apart from the agreement with the main noun.

In the subsequent sections, we investigate the
performance of the Decay RNN and other recurrent
networks, showing that no single sequential model
generalizes well on all (grammatical) phenomena,
which include subject-verb agreements, reflexive
anaphora, and negative polarity items as described
in Marvin and Linzen (2018). Our major outcomes
are:

1. Designing a relatively simple and bio-inspired
recurrent model: the Decay RNN, which per-
forms on-par with LSTMs for linguistic tasks
such as subject-verb agreement and grammat-
icality judgement.

2. Pointing to some limitations of analyzing
the intervening attractor nouns alone for the
subject-verb agreement task and attempting
joint analysis of non-attractor intervening
nouns and attractor nouns in the sentence.

3. Showing that there is no linear recurrent
scheme which generalizes well on a variety
of sentence types and motivating research in
better understanding of the nature of biases
induced by varied RNN structures.

2 Related Work

There has been prior work on using LSTMs
(Hochreiter and Schmidhuber, 1997) for language

1Main noun and verb are highlighted in bold. Intervening
nouns are underlined. Asterisks mark unacceptable sentences.

2Sentence taken from the dataset made available by Linzen
et al. (2016).

modeling tasks. The work of Gers and Schmidhu-
ber (2001) has shown that LSTMs can learn sim-
ple context-free and context-sensitive languages.
However, as per the investigations carried out in
Kuncoro et al. (2018), it was observed that if the
model capacity is not enough, then LSTMs may not
generalize the long-range dependencies. Recently
many architectures have explicitly incorporated the
knowledge of phrase structure trees (Kuncoro et al.,
2018; Alvarez-Melis and Jaakkola, 2017; Tai et al.,
2015) which have shown improvement in general-
izing over long-range dependencies. At the same
time, Shen et al. (2019) proposed ON-LSTMs, a
modification to LSTMs that provides an inductive
tree bias to the structure. However, Dyer et al.
(2019) have shown that the success of ON-LSTMs
was due to their proposed metric to analyze the
model, not necessarily due to their architecture.

From the biological point of view, Capano et al.
(2015) used a hard reset of the membrane poten-
tial in contrast to a soft decay observed in a neu-
ronal membrane. At the same time, their learn-
ing paradigm is similar to the Hebbian learning
scheme (Hebb, 1949), which does not involve er-
ror backpropagation (Rumelhart et al., 1986). Our
work is closely related to the idea of modeling
the population of neurons as a dynamical system
(EIRNN) proposed by Song et al. (2016). How-
ever, their time constant parameter was based on
the concepts described in Wang (2002) while the
sampling rate was arbitrarily chosen. Given that
the chosen values only considered a certain class
of neurons (Yang et al., 2019), we believe that it
is not necessary to have the same values of the pa-
rameters for each cognitive task. Thus, we build on
their formulation by making the sampling rate and
time constant learnable as manifested by our decay
parameter, described in the next section.

3 Biological Preliminaries

According to Dale’s principle, a neuron is either
excitatory or inhibitory (Eccles, 1976). If a neu-
ron output produces a negative (positive) change in
the membrane potential of all the connected neu-
rons via its synapse, then it is said to be an in-
hibitory (excitatory) neuron. In a set of N neurons,
if W is the synaptic connection matrix, then the
connection from the neuron j to neuron i is ‘ex-
citatory’ if Wij > 0, and ‘inhibitory’ if Wij  0.
Capano et al. (2015) have argued that a balance be-
tween structural and response variability (entropy),
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and excitability (synaptic strength) of a network
maximizes the overall learning. This balance is
governed by the ratio of inhibitory and excitatory
neurons. They have further shown that this bal-
ance also maximizes the overall performance in
multitask learning. Catsigeras (2013) mathemati-
cally prove that Dale’s principle is necessary for an
optimal3 neuronal network’s dynamics.

In the postsynaptic neuron, the integration of
synaptic potentials is realized by the addition of
excitatory (+ve) and inhibitory (-ve) postsynaptic
potentials (PSPs). PSPs are electronic voltages,
that decay as a function of time due to spontaneous
reclosure of the synaptic channels. The decay of
the PSPs is controlled by the membrane constant ⌧ ,
i.e., the time required by the PSP to decay to 37%
of its peak value (Wallisch et al., 2009).

4 Decay RNN
Here we present our proposed architecture, which
we call the Decay RNN (DRNN). Our architecture
aims to model the decaying nature of the voltage
in a neuron membrane after receiving impulses
from the surrounding neurons. At the same time,
we incorporate Dale’s principle in our architec-
ture. Thus, our model captures both the micro-
scopic and macroscopic properties of a group of
neurons. Adhering to the stated phenomena, we de-
fine our model with the following update equations
for given input x(t) at time t:
c
(t)

= (ReLU(W)Wdale)h
(t�1)

+Ux
(t)

+ b

h
(t)

= f(↵h(t�1)
+ (1� ↵)c(t))

Here f is a nonlinear activation function, W and
U are weight matrices, b is the bias and h

(t) repre-
sents the hidden state (analogous to voltage). We
define ↵ 2 (0,1) as a learnable parameter to incor-
porate a decay effect in the hidden state (analogous
to the decay in the membrane potential). Here ↵
acts as a balancing factor between the hidden state
h
(t�1) and c

(t).4 Wdale is a diagonal matrix, and
based on the empirical results on the mammalian
brain (Hendry and Jones, 1981), we set the last
20% of entries to -1, representing the inhibitory
connections, and the rest to 1 (See Appendix A.3).5

Unlike Song et al. (2016), we keep self-connections
in the network. Besides biological inspiration, our
model also has the following salient features.

3In the sense of showing the most diverse set of responses.
4It was kept bounded using a sigmoid function. Our results

did not change when we used a linear function instead.
5Our results did not change when we chose a different set

of -1 entries instead of the last 20%.

First, the presence of ↵ acts as a coupled gating
mechanism to the flow of information (Figure 1), at
the same time maintaining an exponential moving
average of the hidden state. Thus, ↵ values close
to 1 correspond to memories of the distant past. It
is worth mentioning that Oliva et al. (2017) have
considered the exponential moving average in the
context of RNNs. However, their approach manu-
ally selected a set of scaling parameters, whereas
we have a systematic way of arriving at the values
of those parameters by making them learnable for
the task at hand.

Second, our model also has an intrinsic skip con-
nection deriving out of its formulation.Yue et al.
(2018) has shown that the architectures with skip
connections provide an alternate path for the flow
of gradients during the error backpropagation. At
the same time presence of coupled gates slows
down the vanishing of gradient (Bengio et al.,
2013). Thus, despite of its simple un-gated struc-
ture, the features discussed above provide safe-
guards against vanishing gradient.

To examine the importance of Dale’s principle in
the learning process, we made a variant of our De-
cay RNN without Dale’s principle, which we call
the Slacked Decay RNN (SDRNN), with updates to
c
(t) made as follows:

c
(t)

= Wh
(t�1)

+Ux
(t)

+ b

To understand the role of the correlation between
the hidden states in the Decay RNN formulation,
we devised an ablated version of our architecture,
which we refer to as the Ab-DRNN. With the follow-
ing update equation, we remove the mathematical
factor (Wh

(t�1)) that gives rise to a correlation
between hidden states:

h
(t)

= f(↵h(t�1)
+ (1� ↵)(Ux

(t)
+ b))

f↵

1� ↵

h(t�1)

hidden

x(t)

input

h(t)

next hidden

Figure 1: Decay RNN cell, comprising of a skip con-
nection and coupled scalar gates.

5 Datasets

For the number prediction (Section 6.1) and gram-
maticality judgment (Section 6.3) tasks, we used a
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corpus of 1.57 million sentences from Wikipedia
(Linzen et al., 2016), of which 10% were used
for training, 0.4% for validation, and the remain-
ing were reserved for testing. On the other hand,
for the language modeling task (Section 6.4), the
model was trained on a 90 million word subset
of Wikipedia comprising of 3 million training and
0.3 million validation sentences (Gulordava et al.,
2018).

Despite having a large number of training points,
these datasets have certain drawbacks, including
the lack of a sufficient number of syntactically chal-
lenging examples leading to poor generalization
over the sentences out of the training data distribu-
tion. Therefore, we construct a generalization set
as described in Marvin and Linzen (2018), where
we generate the sentences out of templates that
can be described using a non-recursive context-free
grammar. The use of the generalization set allows
us to test on a much broader range of linguistic phe-
nomena. We will use this dataset for the targeted
syntactic evaluation of our trained models.

6 Experiments

Here we will describe our experiments6 to assess
the models’ ability to capture syntax-sensitive de-
pendencies. Details regarding the training settings
are available in Appendix A.4.

6.1 Number Prediction Task
The number prediction task was proposed by
Linzen et al. (2016). In this task, the model is
required to predict the grammatical number of the
verb when provided a sentence up to the verb.

1. The path to success is not straight forward.

2. The path to success

The model will take the second sentence as input
and has to predict the number of the verb (here,
singular). Table 1 shows the results on the number
prediction task. All the models including SRNs
performed well on this task. Thus, this indicates
that even vanilla RNNs can identify singular and
plural words and can associate the main subject
with the upcoming verb.

6.2 Joint Analysis of Intervening Nouns
So far in the literature, when looking at intervening
material in agreement tasks, the research has tended

6Our code is available at https://github.com/bhattg/Decay-
RNN-ACL-SRW2020

Model No. Prediction Grammaticality
SRN 97.70 50.12
LSTM 98.59 95.81
GRU 98.81 94.26
EIRNN 94.68 84.51
DRNN 98.66 95.48
SDRNN 98.65 96.83
Ab-DRNN 97.37 85.98

Table 1: % Accuracy of models when tested on ⇠ 1.4
million sentences for the number prediction and gram-
maticality judgement tasks.

to focus on agreement attractors, the intervening
nouns with the opposite number to the main noun
(Kuncoro et al., 2018). However, we posit that the
role of non-attractor intervening nouns may also
be important when understanding a model’s deci-
sions. For long-range dependencies in agreement
tasks, a model may be influenced by the presence
of non-attractor intervening nouns instead of purely
capturing the verb’s relationship with the main sub-
ject. Hence an analysis done solely based on the
number of agreement attractors may be misleading.
Table 2 shows an improvement in the verb number
prediction accuracy with an increasing number of
non-attractors (n), even as the subject-verb distance
and the attractor count are kept fixed. This indi-
cates that the models are also using cues present in
the vicinity of the main verb to predict its number,
apart from agreement with the main noun.

Model n=0 n=1 n=2
DRNN 90.65 95.56 96.06
LSTM 90.4 95.56 95.63

Table 2: Number prediction % accuracy with an in-
creasing number of non-attractor intervening nouns (n).
The distance between the main subject and the corre-
sponding verb is held constant at 7 and the attractor
count at 1.

6.3 Grammaticality Judgement
The previous objective was predicting the grammat-
ical number of the verb after providing the model
an input sentence only up to the verb. However,
this way of training may give the model a cue to
the syntactic clause boundaries. In this section, we
describe the grammaticality judgment task. Given
an input sentence, the model has to predict whether
it is grammatical or not. To perform well on this
task, the model would presumably need to allocate
more resources to determine the locus of ungram-
maticality. For example, consider the following
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pair of sentences2 :

1. The roses in the vase by the door are red.

2. *The roses in the vase by the door is red.

The model has to decide, for input sentences such
as the above, whether each one is grammatically
correct or not. Table 1 shows the performance of
different recurrent architectures on this task. It
can be seen that SRNs, which were comparable to
LSTMs and GRUs on the prediction experiment
described in Section 6.1, are no better than ran-
dom on the grammaticality judgment task. On the
other hand, the Ab-DRNN performed better than
the SRN. This highlights the importance of a bal-
ance between the uncorrelated hidden states (h(t)),
and the connected hidden states (Wh

(t)), which
is modeled by the Decay RNN. Due to its archi-
tectural similarity with the Independent RNN (Li
et al., 2018), which has independent connections
among neurons in a layer, Ab-DRNN did not suffer
from the vanishing gradient problem.

Importance of the generalization set
Capano et al. (2015) had argued that the inclusion
of Dale’s principle improved generalization abili-
ties for multitask learning. For our models trained
on a single task, we use the generalization set to
determine the number prediction confidence profile
over the sentences. Figure 2 describes the aver-
age number prediction confidence at each part of
speech for all prepositional phrases with inanimate
subjects. We note the anomalously low confidence
of the SDRNN at plural inanimate subjects (like
‘movies’, ‘books’), unlike the DRNN.

Task DRNN SDRNN
Across object RC (no that) anim 0.45 0.28
Reflexive Sentential Comp. 0.65 0.6
Long VP Coordination 0.53 0.43

Table 3: Accuracy comparison of DRNN and SDRNN
when tested on the generalization set for the grammat-
icality judgement task; ‘anim’ refers to an animated
noun.

In Table 3,7 we present the result of the models
trained for the grammaticality judgment task and
tested on the synthetic generalization set. From the
results, we can see that despite having nearly the
same accuracy on the original testing data (Table

7Here, we present three tests from the targeted syntactic
evaluation framework. Others test results can be found in
Appendix A.2.

Figure 2: Number prediction confidence (for the cor-
rect verb number) averaged over the generalization set
(540 sentences) for prepositional phrases with plural
inanimate subjects (IS). An example word for each po-
sition is indicated in parentheses. Values at ES indicate
the confidence for the following verb/auxiliary. For the
example sentence, confidence < 0.5 implies singular
verb number prediction, and confidence > 0.5 plural.

1), there is a substantial difference in the gener-
alization accuracies of the DRNN and SDRNN.
The DRNN shows better generalization than the
SDRNN in the experiments mentioned in Table 3
and Figure 2. This might be due to regularising
effects induced by Dale’s constraint. This is an
interesting observation that merits further investi-
gation.

6.4 Language Modeling
Word-level language modeling is a task that helps
in the evaluation of the model’s capacity to capture
the general properties of language beyond what is
tested in specialized tasks focused on, e.g., subject-
verb agreement. We use perplexity to compare our
model’s performance against standard sequential
recurrent architectures. Table 4 shows the valida-
tion perplexity of different language models along
with the number of learnable parameters for the
task. From the Table 4, we observe that incorporat-
ing the components of the Ab-DRNN and the SRN
in a coupled way might have led to the improved
performance of the Decay RNN.

6.5 Targeted Syntactic Evaluation
Targeted syntactic evaluation (Marvin and Linzen,
2018) is a way to evaluate the language model
across different classes of structure-sensitive phe-
nomena. This includes subject-verb agreement,
reflexive anaphora, and negative polarity items
(NPI).8 Table 4 shows that even with a simple archi-
tecture, the Decay RNN class of models performs

8The definitions of these linguistic terms are provided in
the supplementary material of Marvin and Linzen (2018).

248



SRN GRU LSTM DRNN SDRNN Ab-DRNN ON-LSTM
Validation Perplexity 114.74 53.78 52.73 76.67 76.88 86.42 -
Parameters 1.4M 4.2M 5.6M 1.4M 1.4M 0.55M -
Short-Range Dependency
SV Agreement:
Simple 0.88 0.95 0.92 0.95 0.97 0.90 0.99
Sentential Complement 0.84 0.86 0.93 0.89 0.92 0.85 0.95
Short VP Coord 0.5 0.87 0.85 0.73 0.77 0.69 0.89
In an object RC 0.59 0.75 0.87 0.77 0.74 0.63 0.84
In an object RC (no that) 0.57 0.67 0.75 0.74 0.71 0.62 0.78
Reflexive Anaphora:
Simple 0.51 0.85 0.85 0.75 0.73 0.63 0.89
Sentential Complement 0.56 0.78 0.83 0.68 0.65 0.62 0.86
Negative Polarity Items :
Simple (grammatical vs. intrusive) 0.01 0.51 0.56 0.25 0.01 0.29 0.18
Simple (intrusive vs. ungrammatical) 0.7 0.66 0.48 0.54 0.5 0.51 0.5
Simple (grammatical vs. ungrammatical) 0.11 0.67 0.55 0.45 0.38 0.31 0.07
Long-Range Dependency
SV Agreement:
Long VP coordination 0.51 0.8 0.8 0.55 0.62 0.51 0.74
Across a PP 0.51 0.75 0.6 0.56 0.54 0.53 0.67
Across a subject RC 0.52 0.67 0.67 0.53 0.55 0.52 0.66
Across an object RC 0.51 0.51 0.55 0.64 0.58 0.57 0.57
Across an object RC (no that) 0.50 0.50 0.51 0.65 0.60 0.59 0.54
Reflexive Anaphora :
Across a RC 0.51 0.58 0.57 0.62 0.66 0.58 0.57
Negative Polarity Items:
Across a RC (grammatical vs. intrusive) 0.87 0.55 0.55 0.32 0.48 0.57 0.59
Across a RC (intrusive vs. ungrammatical) 0.02 0.29 0.22 0.5 0.37 0.36 0.20
Across a RC (grammatical vs. ungrammatical) 0.1 0.2 0.03 0.1 0.3 0.11 0.11
Mean Arithmetic Rank 5.94 3 3.31 3.52 3.68 4.73 2.94

Table 4: Accuracy of models on targeted syntactic evaluation. RC: Relative Clause, PP: Prepositional Phrase, VP :
Verb Phrase. Closeness in the mean arithmetic rank of models (other than SRNs) across tasks suggests that within
the current space of sequential recurrent models, none dominates the others.

fairly similarly to LSTMs and much better than
SRNs for many tests.9 In the case of long-range
dependencies and NPI involving relative-object
clauses, our models perform substantially better
than LSTMs. High variability in the performance
of the models in the case of NPIs might be due to
non-syntactic cues as pointed out by Marvin and
Linzen (2018). Based on the mean ranks observed
in Table 4, we conjecture that there is no sequential
recurrent structure at present which outperforms
the others across the board. However, SRNs alone
are not sufficient for most purposes.

7 Conclusion

In this paper, we proposed the Decay RNN, a bio-
inspired recurrent network that emulates the decay-
ing nature of neuronal activations after receiving
excitatory and inhibitory impulses from upstream
neurons. We have found that the balance between
the free term (h(t)) and the coupled term (Wh

(t))
enabled the model to capture syntax-level depen-
dencies. As shown by McCoy et al. (2020); Kun-
coro et al. (2018), explicitly modeling hierarchical
structure helps to discover non-local structural de-
pendencies. The contrast in the performance of

9Results for the ON-LSTM are directly quoted from Shen
et al. (2019).

the language models encourages us to look at the
inductive biases, which might have led to better
syntactic generalization in certain cases. Recently,
Maheswaranathan and Sussillo (2020) showed the
existence of a line attractor in the dynamics of the
hidden states for sentiment classification. Thus,
similar dynamical-system-based analysis can be
extended to our settings to further understand the
working of the Decay RNN.

From the cognitive neuroscience perspective, it
would be interesting to investigate if the proposed
Decay RNN can capture some aspects of actual
neuronal behaviour and language cognition. Our
results here do at least indicate that the complex
gating mechanisms of LSTMs (whose cognitive
plausibility has not been established) may not be
essential to their performance on many linguistic
tasks, and that simpler and perhaps more cogni-
tively plausible RNN architectures are worth ex-
ploring further as psycholinguistic models.
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A Appendix

A.1 Effect of agreement attractors
In this section, we present the trends in the test-
ing performance of the LSTM and the Decay RNN
(DRNN) for the grammaticality judgment task. Fig-
ure 3 shows the performance of the models when
we fix the number of intervening nouns and vary
the count of attractors between the main subject
and the corresponding verb. The decreasing per-
formance of the models with the introduction of
more attractors indicates that they cause the mod-
els to get more confused about the upcoming verb
number.

A.2 Comparison between DRNN and
SDRNN

In Section 6.3, we saw that in terms of testing ac-
curacy for grammaticality judgment, the Slacked
Decay RNN (SDRNN) outperformed the Decay
RNN (DRNN). For a robust investigation of this
behaviour, we tested our models on the general-
ization set and mentioned a subset of our results
on grammaticality judgment in Table 3. Here we
present a bar graph (Figure 4) depicting the model
performance when tested on the generalization set
for the grammaticality judgment task. A substan-
tial difference in the performance of the SDRNN
and the DRNN reinforces the possibility of the reg-
ularizing effects of Dale’s principle.

A.3 Implementation of Dale’s constraint
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A.4 Training settings
For the number prediction task and the grammat-
icality judgment task the network is trained as a
binary classifier. The network is single-layered,
with ReLU activation and trained with embedding
and hidden layer dimension being 50, and a batch
size of 1. We have reported the average accuracies
after 3 separate runs in Table 1. For targeted syntac-
tic evaluation, we have trained a language model
to predict the grammaticality of a sentence. In our
language model, we used a 2-layered network with
tanh activation, a dropout rate of 0.2 with embed-
ding dimension 200, hidden dimension 650, and

a batch size of 128. All models are trained with a
learning rate of 0.001 using the Adam optimizer
(Kingma and Ba, 2015).

A.5 Decay parameter (↵) learning
In the main text, we describe the balancing effect of
↵ in the Decay RNN model. We present the trend
in the learned value of ↵ throughout training for
the grammaticality task for various initializations
in Figure 5. We observe that for all ↵ initializations
in the range (0,1), the learned value converges to
around 0.8. Hence, we initialize our ↵ to 0.8 at the
start of the training process.
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Figure 3: Trends in the performance of the LSTM (blue) and DRNN (orange) models with increasing numbers of
intervening nouns. For each subplot corresponding to a fixed intervening noun number, the number of agreement
attractors increases as we move from left to right on the x-axis.

Figure 4: Performance of the LSTM (blue), DRNN (orange), and SDRNN (green) models for the different types
of sentences in the generalization set, when trained for the grammaticality judgment task. There were at least 200
test sentences for each of these types.
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Figure 5: Moving average of ↵ over the course of training for different initializations. 1 unit of training length is 1
forward pass.
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Abstract

Existing models of multilingual sentence em-
beddings require large parallel data resources
which are not available for low-resource lan-
guages. We propose a novel unsupervised
method to derive multilingual sentence embed-
dings relying only on monolingual data. We
first produce a synthetic parallel corpus using
unsupervised machine translation, and use it
to fine-tune a pretrained cross-lingual masked
language model (XLM) to derive the multilin-
gual sentence representations. The quality of
the representations is evaluated on two paral-
lel corpus mining tasks with improvements of
up to 22 F1 points over vanilla XLM. In addi-
tion, we observe that a single synthetic bilin-
gual corpus is able to improve results for other
language pairs.

1 Introduction

Parallel corpora constitute an essential training data
resource for machine translation as well as other
cross-lingual NLP tasks. However, large parallel
corpora are only available for a handful of language
pairs while the rest relies on semi-supervised or
unsupervised methods for training. Since monolin-
gual data are generally more abundant, parallel
sentence mining from non-parallel corpora pro-
vides another opportunity for low-resource lan-
guage pairs.

An effective approach to parallel data mining
is based on multilingual sentence embeddings
(Schwenk, 2018; Artetxe and Schwenk, 2019b).
However, existing methods to generate cross-
lingual representations are either heavily super-
vised or only apply to static word embeddings.
An alternative approach to unsupervised multilin-
gual training is that of Devlin et al. (2018) or Lam-
ple and Conneau (2019), who train a masked lan-
guage model (M-BERT, XLM) on a concatenation
of monolingual corpora in different languages to

learn a joint structure of these languages together.
While several authors (Pires et al., 2019; Wu and
Dredze, 2019; Karthikeyan et al., 2019; Libovický
et al., 2019) bring evidence of cross-lingual transfer
within the model, its internal representations are
not entirely language agnostic.

We propose a method to further align representa-
tions from such models into the cross-lingual space
and use them to derive sentence embeddings. Our
approach is completely unsupervised and is appli-
cable even for very distant language pairs. The
proposed method outperforms previous unsuper-
vised approaches on the BUCC 20181 shared task,
and is even competitive with several supervised
baselines.

The paper is organized as follows. Section 2
gives an overview of related work; Section 3 intro-
duces the proposed method; Section 4 describes
the experiments and reports the results. Section 5
concludes.

2 Related Work

Related research comprises supervised methods to
model multilingual sentence embeddings and unsu-
pervised methods to model multilingual word em-
beddings which can be aggregated into sentences.
Furthermore, our approach is closely related to the
recent research in cross-lingual language model
(LM) pretraining.

Supervised multilingual sentence embed-
dings. The state-of-the-art performance in parallel
data mining is achieved by LASER (Artetxe and
Schwenk, 2019b) – a multilingual BiLSTM model
sharing a single encoder for 93 languages trained
on parallel corpora to produce language agnos-
tic sentence representations. Similarly, Schwenk
and Douze (2017); Schwenk (2018); Espana-Bonet

111th Workshop on Building and Using Comparable Cor-
pora
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et al. (2017) derive sentence embeddings from inter-
nal representations of a neural machine translation
system with a shared encoder. The universal sen-
tence encoder (USE) (Cer et al., 2018; Yang et al.,
2019) family covers sentence embedding models
with a multi-task dual-encoder training framework
including the tasks of question-answer prediction
or natural language inference. Guo et al. (2018)
directly optimize the cosine similarity between the
source and target sentences using a bidirectional
dual-encoder. These approaches rely on heavy su-
pervision by parallel corpora which is not available
for low-resource languages.

Unsupervised multilingual word embed-
dings. Cross-lingual embeddings of words can be
obtained by post-hoc alignment of monolingual
word embeddings (Mikolov et al., 2013) and
mean-pooled with IDF weights to represent
sentences (Litschko et al., 2019). Unsupervised
techniques to find a linear mapping between
embedding spaces were proposed by Artetxe et al.
(2018) and Conneau et al. (2018), using iterative
self-learning or adversarial training. Several recent
studies (Patra et al., 2019; Ormazabal et al., 2019)
criticize this simplified approach, showing that
even the embedding spaces of closely related
languages are not isometric. Vulić et al. (2019)
question the robustness of unsupervised mapping
methods in challenging circumstances.

Cross-lingual LM pretraining. Ma et al.
(2019); Reimers and Gurevych (2019) derive mono-
lingual sentence embeddings by mean-pooling con-
textualized word embeddings from BERT. Schuster
et al. (2019); Wang et al. (2019b) propose mapping
such contextualized embeddings into the multilin-
gual space and report favorable results on the task
of dependency parsing. Pires et al. (2019) extract
contextualized embeddings directly from unsuper-
vised multilingual LMs and use them for parallel
sentence retrieval. Other authors improve the align-
ment of representations in a multilingual LM using
a parallel corpus as an anchor (Cao et al., 2020) or
using iterative self-learning (Wang et al., 2019a).
None of these works apply multilingual embed-
dings to mine parallel sentences. Our work is the
first in improving unsupervised cross-lingual mod-
els using additional unsupervised information.

3 Proposed Method

We propose a method to enhance the cross-lingual
ability of a pretrained multilingual model by fine-

tuning it on a small synthetic parallel corpus. The
parallel corpus is obtained via unsupervised ma-
chine translation (MT) so the method remains unsu-
pervised. In this section, we describe the pretrained
model (Section 3.1), the fine-tuning objective (Sec-
tion 3.2) and the extraction of sentence embeddings
(Section 3.3). We provide details on the unsuper-
vised MT system in Section 3.4.

3.1 XLM Pretraining

The starting point for our experiments is a cross-
lingual language model (XLM) (Lample and Con-
neau, 2019) of the BERT family pretrained on con-
catenated monolingual texts in 100 languages using
the masked language model (MLM) training objec-
tive (Devlin et al., 2018). The model processes the
input in BPE subword units (Sennrich et al., 2016)
with a shared vocabulary for all languages. In
this work, we use the publicly available pretrained
model XLM-1002 (Lample and Conneau, 2019)
with 16 transformer layers, 16 attention heads and
a hidden unit size of 1280. The model was trained
on monolingual corpora in 100 languages with the
BPE vocabulary of 240k subwords.

3.2 XLM Fine-tuning with a Translation
Objective

When parallel data is available, it can be leveraged
in training of the multilingual language model us-
ing a translation language model loss (TLM) (Lam-
ple and Conneau, 2019). Pairs of sentences are con-
catenated, random tokens are masked from both
sentences and the model is trained to fill in the
blanks by attending to any of the words of the two
sentences. The Transformer self-attention layers
thus have the capacity to enrich word representa-
tions with the information about their monolingual
context as well as their translation counterparts.
This explicit cross-lingual training objective fur-
ther enhances the alignment of the embeddings in
the cross-lingual space.

We use this objective to fine-tune the pretrained
model on a small synthetic parallel data set ob-
tained via unsupervised MT for one language pair,
aiming to improve the overall cross-lingual align-
ment of the internal representations of the model.
In our experiments, we also compare the perfor-
mance to fine-tuning on small authentic parallel
corpora.

2https://github.com/facebookresearch/
XLM
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3.3 Sentence Embeddings
Pretrained language models produce contextual rep-
resentations capturing the semantic and syntactic
properties of word (subword) tokens in their vari-
able context (Devlin et al., 2018). Contextualized
embeddings can be derived from any of the internal
layer outputs of the model. We tune the choice of
the layer on the task of parallel sentence match-
ing and conclude that the best cross-lingual perfor-
mance is achieved at the 12th (5th-to-last) layer.
Therefore, we use the representations from this
layer in the rest of this paper. The evaluation across
layers is summarized in Figure 1 in Section 4.6.

Aggregating subword embeddings to fixed-
length sentence representations necessarily leads
to an information loss. We compose sentence em-
beddings from subword representations by sim-
ple element-wise averaging. Even though mean-
pooling is a naive approach to subword aggrega-
tion, it is often used for its simplicity (Reimers
and Gurevych, 2019; Ruiter et al., 2019; Ma et al.,
2019) and in our scenario it yields better results
than max-pooling.

3.4 Unsupervised Machine Translation
Our unsupervised MT model follows the approach
of Lample and Conneau (2019). It is a Transformer
model with an encoder-decoder architecture. Both
the encoder and the decoder are shared across lan-
guages and they are initialized with a pretrained
bilingual LM to bootstrap the training. Both the
encoder and the decoder have 6 layers, 8 atten-
tion heads and a hidden unit size of 768. The sys-
tem is trained using the unsupervised MT training
pipeline of denoising and back-translation (Lample
et al., 2018).

4 Experiments & Results

In this section, we empirically evaluate the qual-
ity of our cross-lingual sentence embeddings and
compare it with state-of-the-art supervised meth-
ods and unsupervised baselines. We evaluate the
proposed method on the task of parallel corpus min-
ing and parallel sentence matching. We fine-tune
two different models using English-German and
Czech-German synthetic parallel data.

4.1 Data
The XLM model was pretrained on the Wikipedia
corpus of 100 languages (Lample and Conneau,
2019). The monolingual data for fine-tuning was

sampled from NewsCrawl 2018 (10k Czech sen-
tences, 10k German sentences, 10k English sen-
tences).

Monolingual training data for the unsupervised
MT models was obtained from NewsCrawl 2007-
2008 (5M sentences per language). The text
was cleaned and tokenized using standard Moses
(Koehn et al., 2007) tools and segmented into BPE
units based on 60k BPE splits.

4.2 Experiment Details
To generate synthetic data for fine-tuning, we train
two unsupervised MT models (Czech-German,
English-German) using the same method and pa-
rameters as in Lample and Conneau (2019) on 8
GPUs for 24 hours. We use these models to trans-
late 10k sentences in each language. The transla-
tions are coupled with the originals into two paral-
lel corpora of 20k synthetic sentence pairs.

The small synthetic parallel corpora obtained in
the first step are used to fine-tune the pretrained
XLM-100 model using the TLM objective. We
measure the quality of induced cross-lingual em-
beddings from different layers on the task of par-
allel sentence matching described in Section 4.5
and observe the best results at the 12th layer af-
ter fine-tuning for one epoch with a batch size of
8 sentences and all other pretraining parameters
intact. The development accuracy decreases with
fine-tuning on a larger data set.

4.3 Baselines
We assess our method against two unsupervised
baselines to separately measure the fine-tuning ef-
fect on the XLM model and to compare our results
to another possible unsupervised approach based
on post-hoc alignment of word embeddings.

Vanilla XLM. Contextualized token represen-
tations are extracted from the 12th layer of the
original XLM-1003 model and mean-pooled into
sentence embeddings.

Word Mapping. We use Word2Vec em-
beddings with 300 dimensions pretrained on
NewsCrawl and map them into the cross-lingual
space using the unsupervised version of VecMap
(Artetxe et al., 2018). As above, word embeddings
are aggregated by mean-pooling to represent sen-
tences.4

3Using M-BERT model yielded similar results to XLM.
4Weighting word embeddings by their sentence frequency

(IDF) did not lead to a significant improvement over a simple
average.
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en-de en-fr en-ru en-zh Supervision
Leong et al. (2018) - - - 56.00 bitext 0.5M sent.
Bouamor and Sajjad (2018) - 76.00 - - bitext 2M sent.
Schwenk (2018) 76.90 75.80 73.80 71.60 9-way parallel 2M sent.
Azpeitia et al. (2018) 85.52 81.47 81.30 77.45 bitext 2-9M sent.
Artetxe and Schwenk (2019b) 96.19 93.91 93.30 92.27 2- or 3-way parallel 223M sent.
Unsup. baseline (Word Mapping) 32.04 32.94 17.68 20.65 none n/a
Unsup. baseline (Vanilla XLM)* 62.10 64.77 61.65 44.79 none n/a
Proposed method* (en$de) 80.06 78.77 77.16 67.04 none 20k sent.**

Table 1: F1 score on the parallel sentence mining task (BUCC test set). The supervised (upper part) and unsu-
pervised (lower part) winners are highlighted in bold. * The model was pretrained on Wikipedia. ** Synthetic
translations produced by unsupervised MT.

en-de en-fr en-ru en-zh en-kk cs-zh de-ru
Artetxe and Schwenk (2019b) 90.30 87.38 94.34 83.92 12.07 73.41 88.39
Unsup. baseline (Word Mapping) 28.45 30.79 17.81 16.04 2.28 10.86 19.55
Unsup. baseline (Vanilla XLM) 72.58 71.92 72.90 59.26 24.00 43.00 58.29
Proposed method (en$de) 79.32 77.05 80.98 65.49 35.41 48.79 65.91

Table 2: F1 score on the parallel sentence mining task (News test set). The supervised and unsupervised winners
are highlighted in bold. Artetxe and Schwenk (2019b) values obtained using the public implementation of the
LASER toolkit.

4.4 Evaluation I: Parallel Corpus Mining

We measure the performance of our method on the
BUCC shared task of parallel corpus mining where
the system is expected to search two comparable
non-aligned corpora and identify pairs of paral-
lel sentences. We evaluate on two data sets – the
original BUCC 2018 corpus created by inserting
parallel sentences into monolingual texts extracted
from Wikipedia (Zweigenbaum et al., 2017) and
a new BUCC-like data set (News train and test)
which we created by shuffling 10k parallel sentence
from News Commentary into 400k monolingual
sentences from News Crawl. The BUCC and News
data sets are comparable in size and contain par-
allel sentences from the same source, but differ in
overall domain.

In order to score all candidate sentence pairs,
we use the margin-based approach of Artetxe
and Schwenk (2019a) which was proved to elim-
inate the hubness problem of embedding spaces
and yield superior results (Artetxe and Schwenk,
2019b). The score relies on cosine similarity to
measure the distance between sentences but it is
defined in relative terms to the average cosine simi-
larity between the two sentences and their nearest
neighbors. The optimal threshold for filtering the
translation pairs is learned by tuning on the train
set F1 scores. Tables 1 and 2 show the results of
our proposed model on the BUCC and News test
sets, resp., comparing them to related work and
unsupervised baselines.

When comparing our method to related work, it
must be noted that the XLM model was pretrained
on Wikipedia and therefore has seen the monolin-
gual BUCC sentences during training. This could
result in an advantage over other systems, as the
model could exploit the fact that it has seen the
non-parallel part of the comparable corpus during
training. However, since both the proposed method
an the vanilla XLM baseline suffer from this, their
results remain comparable. We also report results
on the News test set which is free from such poten-
tial bias (Table 2).

The results reveal that TLM fine-tuning brings
a substantial improvement over the initial pre-
trained model trained only using the MLM objec-
tive (vanilla XLM). In terms of the F1 score, the
gain across four BUCC language pairs is 14.0-22.3
points. Even though the fine-tuning focused on
a single language pair (English-German), the im-
provement is notable for all evaluated language
pairs. The largest margin of 21.6 points is observed
for the English-Chinese mining task. We observe
that using a small parallel data set of authentic
translation pairs instead of synthetic ones does not
have a significant effect.

The weak results of the word mapping base-
line can be partially attributed to the superiority
of contextualized embeddings for representation
of sentences over static ones. Furthermore, word
mapping relies on the questionable assumption of
isomorphic embedding spaces which weakens its
performance especially for distant languages. In
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de-en cs-en cs-de cs-fr cs-ru fr-es fr-ru es-ru
Artetxe and Schwenk (2019b) 98.78 99.08 99.23 99.37 98.77 99.42 98.60 98.77
Unsup. baseline (Word Mapping) 60.60 55.03 75.35 43.33 79.87 71.07 41.25 53.87
Unsup. baseline (Vanilla XLM) 87.15 79.83 82.87 80.55 85.15 91.07 85.28 85.73
Proposed method (en$de) 93.97 90.47 90.48 90.07 92.23 94.68 91.80 91.92
Proposed method (cs$de) 94.43 90.15 90.50 89.48 92.33 94.65 91.72 91.25

Table 3: Accuracy on a parallel sentence matching task (newstest2012) averaged over both matching directions.

our proposed model, it is possible that joint train-
ing of contextualized representations induces an
embedding space with more convenient geometric
properties which makes it more robust to language
diversity.

Although the performance of our model gener-
ally lags far behind the supervised LASER bench-
mark, it is valuable because of its fully unsuper-
vised nature and it works even for distant languages
such as Chinese-Czech or English-Kazakh.

4.5 Evaluation II: Parallel Sentence
Matching

To assess the effect of proposed fine-tuning on other
language pairs not covered by BUCC, we evaluate
our embeddings on the task of parallel sentence
matching (PSM). The task entails searching a pool
of shuffled parallel sentences to recover correct
translation pairs. Cosine similarity is used for the
nearest neighbor search.

We first evaluate the pairwise matching accuracy
on a newstest multi-way parallel data set of 3k
sentences in 6 languages.5 We use newstest2012
for development and newstest2013 for testing. The
results in Table 3 show that the fine-tuned model
is able to match correct translations in 90-95% of
cases, depending on the language pair, which is
⇠7% more than vanilla XLM. It is notable that
the model which was only fine-tuned on English-
German synthetic parallel data has a positive effect
on completely unrelated language pairs as well (e.g.
Russian-Spanish, Czech-French).

Since the greatest appeal of parallel corpus min-
ing is to enhance the resources for low-resource
languages, we also measure the PSM accuracy on
the Tatoeba (Artetxe and Schwenk, 2019b) data set
of 0.5–1k sentences in over 100 languages aligned
with English. Aside from the two completely un-
supervised models, we fine-tune two more models
on small authentic parallel data in English-Nepali
(5k sentence pairs from the Flores development
sets) and English-Kazakh (10k sentence pairs from

5Czech, English, French, German, Russian, Spanish

News Commentary). Table 4 confirms that the im-
provement over vanilla XLM is present for every
language we evaluated, regardless on the language
pair used for fine-tuning. Although we initially
hypothesized that the performance of the English-
German model on English-aligned language pairs
would exceed the German-Czech model, their re-
sults are equal on average. Fine-tuning on small
authentic corpora in low-resource languages ex-
ceeds both by a slight margin.

The results are clearly sensitive to the amount
of monolingual sentences in the Wikipedia cor-
pus used for XLM pretraining and the matching
accuracy of very low-resource languages is signif-
icantly lower than we observed for high-resource
languages. However, the benefits of fine-tuning are
substantial (around 20 percentage points) and for
some languages the results even reach the super-
vised baseline (e.g. Kazakh, Georgian, Nepali).

It seems that explicitly aligning one language
pair during fine-tuning propagates through the
shared parameters and improves the overall rep-
resentation alignment, making the contextualized
embeddings more language agnostic. The prop-
agation effect could also positively influence the
ability of cross-lingual transfer within the model in
downstream tasks. A verification of this is left to
future work.

Figure 1: Average PSM accuracy on newstest2012 be-
fore and after fine-tuning from the input embedding
layer (0th) to the deepest layer (16th).
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af ar az be bg ca cs de el eo et fi fy gl
Sup. baseline 89.5 92.0 66.0 66.2 95.0 95.9 96.5 99.0 95.0 97.2 96.7 96.3 51.7 95.5
Vanilla XLM 38.1 19.9 25.1 33.7 36.2 51.0 31.5 65.0 27.0 45.8 19.8 31.4 37.0 51.4
Proposed method:

en$de (synth) 57.3 41.1 46.3 58.4 56.0 66.9 53.5 83.1 51.3 68.0 39.0 47.5 48.6 66.9
cs$de (synth) 54.2 41.2 44.2 61.8 60.7 68.9 59.9 87.3 53.1 67.4 41.4 49.5 44.8 67.3
en$kk (auth) 58.4 45.6 51.4 60.2 59.2 72.6 53.9 87.0 54.6 72.1 43.4 51.3 51.7 72.2
en$ne (auth) 59.9 46.6 54.2 63.1 62.9 71.0 57.6 85.0 51.0 71.2 44.6 52.7 48.6 71.0

hi hr ia is id ja ka kk ku la lt mk ml mn
Sup. baseline 94.7 97.2 95.2 95.6 94.5 91.8 35.9 18.6 17.2 58.5 96.2 94.7 96.9 8.2
Vanilla XLM 26.2 47.2 57.3 25.0 46.4 29.5 22.1 17.4 10.6 15.5 22.0 25.8 17.4 12.6
Proposed method:

en$de (synth) 53.4 68.2 71.4 43.1 64.9 54.4 41.4 33.6 16.8 24.9 43.9 48.8 51.6 29.0
cs$de (synth) 51.7 71.8 70.5 43.7 64.1 53.3 39.8 34.7 16.2 27.7 46.2 51.1 44.3 24.5
en$kk (auth) 60.3 71.3 79.5 45.0 66.4 59.6 44.0 46.1 20.0 28.6 46.2 54.7 54.0 32.7
en$ne (auth) 59.3 72.1 75.7 47.1 67.8 59.6 47.8 38.4 20.9 30.0 47.7 53.8 56.0 34.9

mr ms ne nn oc sl sr sv ta te tl uk ur yi
Sup. baseline 91.5 96.4 20.6 88.3 61.2 95.9 95.3 96.6 69.4 79.7 50.5 94.5 81.9 5.7
Vanilla XLM 15.3 52.0 21.3 49.9 20.0 34.7 35.9 47.2 11.9 14.1 14.6 38.0 19.3 9.9
Proposed method:

en$de (synth) 37.3 67.0 32.8 66.8 34.3 54.9 58.6 69.7 40.9 44.7 24.0 66.1 43.7 22.1
cs$de (synth) 34.2 65.4 31.4 67.5 35.9 59.2 64.8 71.8 31.9 37.8 20.4 70.4 43.8 22.8
en$kk (auth) 41.9 69.8 37.3 69.2 40.3 58.0 64.3 73.3 42.8 44.0 24.4 71.6 48.2 25.8
en$ne (auth) 43.5 72.1 42.8 69.2 36.9 58.8 65.0 72.0 41.7 53.2 26.8 71.0 49.9 26.7

Table 4: Accuracy on a parallel sentence matching task (Tatoeba) averaged over both matching directions (to
and from English). The supervised baseline was obtained using the public implementation of the LASER model
(Artetxe and Schwenk, 2019b). Our proposed models were fine-tuned on synthetic parallel data (en$de, cs$de)
and authentic parallel data (en$kk, en$ne).

4.6 Analysis: Representations Across Layers

We derive sentence embeddings from all layers of
the model and show PSM results on the develop-
ment set averaged over all language pairs in Fig-
ure 1, both before and after fine-tuning. The accu-
racy differs substantially across the model depth,
the best cross-lingual performance is consistently
achieved around the 12th (5th-to-last) layer of the
model. The TLM fine-tuning affects especially the
deepest layers.

5 Conclusion

We proposed a completely unsupervised method
to train multilingual sentence embeddings which
can be used for building a parallel corpus with no
previous translation knowledge.

We show that fine-tuning an unsupervised mul-
tilingual model with a translation objective using
as little as 20k synthetic translation pairs can sig-
nificantly enhance the cross-lingual alignment of
its representations. Since the synthetic translations
were obtained from an unsupervised MT system,
the entire procedure requires no authentic parallel
sentences for training.

Our sentence embeddings yield significantly bet-
ter results on the tasks of parallel data mining and
parallel sentence matching than our unsupervised

baselines. Interestingly, targeting only one lan-
guage pair during the fine-tuning phase suffices to
propagate the alignment improvement to unrelated
languages. It is therefore not necessary to build
a working MT system for every language pair we
wish to mine.

The average F1 margin across four language
pairs on the BUCC task is ⇠17 points over the
original XLM model and ⇠7 on the News dataset
where only one of the evaluated language pairs
was seen during fine-tuning. The gain in accuracy
in parallel sentence matching across 8 language
pairs is 7.2% absolute, lagging only 7.1% absolute
behind supervised methods.

For the future we would like to apply our model
on other cross-lingual NLP tasks such as XNLI or
cross-lingual semantic textual similarity.
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Abstract

Comparative constructions pose a challenge in
Natural Language Inference (NLI), which is
the task of determining whether a text entails
a hypothesis. Comparatives are structurally
complex in that they interact with other lin-
guistic phenomena such as quantifiers, numer-
als, and lexical antonyms. In formal seman-
tics, there is a rich body of work on compara-
tives and gradable expressions using the notion
of degree. However, a logical inference sys-
tem for comparatives has not been sufficiently
developed for use in the NLI task. In this
paper, we present a compositional semantics
that maps various comparative constructions in
English to semantic representations via Com-
binatory Categorial Grammar (CCG) parsers
and combine it with an inference system based
on automated theorem proving. We evaluate
our system on three NLI datasets that con-
tain complex logical inferences with compar-
atives, generalized quantifiers, and numerals.
We show that the system outperforms previ-
ous logic-based systems as well as recent deep
learning-based models.

1 Introduction

Natural Language Inference (NLI), or Recogniz-
ing Textual Entailment (RTE), is the task of de-
termining whether a text entails a hypothesis and
has been actively studied as one of the crucial
tasks in natural language understanding. In recent
years, systems based on deep learning (DL) have
been developed by crowdsourcing large datasets
such as Stanford Natural Language Inference
(SNLI) (Bowman et al., 2015) and Multi-Genre
Natural Language Inference (MultiNLI) (Williams
et al., 2018) and have achieved high accuracy. NLI
datasets focusing on complex linguistic phenom-
ena, such as negation, antonyms, and numerals,
have also been developed (Naik et al., 2018).

However, it has been pointed out that these
datasets contain various biases that can be ex-
ploited by DL models (Dasgupta et al., 2018;
McCoy et al., 2019), including easily classify-
ing numerical expressions in inference (Liu et al.,
2019) and answering by only looking at a hypoth-
esis (Gururangan et al., 2018). This suggests that
the success of NLI models to date has been over-
estimated and that tasks remain unresolved.

To handle inferences involving various linguis-
tic phenomena, there are also studies to probe
the effects of additional training using artificially
constructed data (Dasgupta et al., 2018; Richard-
son et al., 2020). However, in the case of struc-
turally complex inferences involving comparisons
and numerical expressions, there is a myriad of
ways to combine possible inference patterns. For
example, consider the following inference.

(1) P1: John is taller than 6 feet.

P2: Bob is shorter than 5 feet.

H: Bob is not taller than John. (Yes)

To correctly derive H from P1 and P2, it is
necessary to capture the predicate-argument struc-
tures of the sentences, antonyms (tall, short), nu-
merical expressions, and negation. Note that if the
hypothesis sentence H is changed to John is not
taller than Bob, the correct answer is not an entail-
ment (Yes) but rather a contradiction (No); even
if numerical expressions are excluded, the number
of combinations of sentence patterns that produces
this kind of reasonable inference is enormous.

In another approach, unsupervised NLI sys-
tems based on various logics have been stud-
ied (Bos, 2008; MacCartney and Manning, 2008;
Mineshima et al., 2015; Abzianidze, 2016). How-
ever, the accuracies of these systems on compara-
tive constructions are relatively low (see Section
3). Although there have been detailed discus-
sions in formal semantics taking into account the
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P1: John is tall.
P2: :
H: :

Sentences

Syntactic Parsing
CCG parsers

John
N
NP lex

is
(Sdcl\NP )/(Sadj\NP )

tall
Sadj\NP

Sdcl\NP
>

Sdcl
<

•

(a) CCG Derivation Trees

Modifying Trees
Tsurgeon •

Transformed
CCG Trees

P1: 9�(tall(j, �) ^ (� > ✓tall(U)))

P2: :
H: :

(b) Logical Forms (A-not-A)

•

Semantic Parsing
ccg2lambda

TPTP
format

Axioms
COMP

Yes, No,
Unknown

•

Theorem Proving
Vampire

Figure 1: Overview of the proposed method. The premises and hypothesis are mapped to logical forms based on
A-not-A analysis via CCG parsing and tree transformation; then a theorem prover judges yes, no, or unknown with
the axioms for comparatives.

complexity associated with adjectives and com-
parative expressions (Cresswell, 1976; Kennedy,
1997; Heim, 2000; Lassiter, 2017), such theories
have not yet been implemented in NLI systems.
Also, some logic-based NLI systems handle com-
paratives (Chatzikyriakidis and Bernardy, 2019;
Haruta et al., 2019), but these systems do not im-
plement a parser and/or a prover.

The goal of this study is to fill this gap by
implementing a formal compositional semantics
based on the so-called A-not-A analysis (Seuren,
1973; Klein, 1980, 1982; Schwarzschild, 2008),
which maps various comparative constructions in
English to logical forms (LFs) via CCG (Steed-
man, 2000) derivation trees. Based on this, we
present an inference system that computes com-
plex logical inference over comparatives, gener-
alized quantifiers, and numerals.1 For evalua-
tion, we use the FraCaS test set (Cooper et al.,
1994), which contains various linguistically chal-
lenging inferences, and the Monotonicity Entail-
ment Dataset (MED) (Yanaka et al., 2019), which
contains inferences with generalized quantifiers.
We also construct a new test set, the Comparative
and Adjective Dataset (CAD), which extends Fra-
CaS and collects both single-premise and multi-
premise inferences with comparatives. The exper-
iments show that our system outperforms previous
logic-based systems as well as recent DL models.

2 System overview

Figure 1 shows the pipeline of the proposed sys-
tem. First, the input sentences are a set of premises
P1, . . . , Pn and a hypothesis H . Next, the CCG
derivation trees are obtained using CCG parsers.

1GitHub repository with code and data: https://
github.com/izumi-h/ccgcomp

Derivation trees are modified to derive appropri-
ate LFs based on A-not-A analysis. We use the
semantic parsing system ccg2lambda (Martı́nez-
Gómez et al., 2016) based on �-calculus to ob-
tain LFs, which are then converted to the Typed
First-order Form (TFF) of the Thousands of Prob-
lems for Theorem Provers (TPTP) format (Sut-
cliffe, 2017), that is, a formal expression in first-
order logic with equality and arithmetic opera-
tions. Finally, together with the axiom system
COMP (Haruta et al., 2019) for comparatives and
numerical expressions, a theorem prover checks
whether P1 ^ · · · ^ Pn ! H holds or not. The
system output is yes (entailment), no (contradic-
tion), or unknown (neutral).

2.1 Degree semantics: A-not-A analysis

In formal semantics, comparative and other grad-
able expressions are usually analyzed using the
notion of degree (Cresswell, 1976).

(2) a. Ann is taller than Bob.

b. John is 5 feet tall.

c. John is tall.

For example, the sentence (2a), in which the com-
parative form taller of the gradable adjective tall is
used, compares the degree of height between two
persons. (2b) is an expression that includes a spe-
cific height, which is the numerical expression 5
feet. (2c) is a sentence using the positive form
of the adjective, which can be regarded as rep-
resenting a comparison with some implicit stan-
dard value. In degree-based semantics, such grad-
able adjectives are treated as two-place predicates
that have entity and degree (Cresswell, 1976). For
instance, (2b) is analyzed as tall(john,5 feet),
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Pattern Example Type LF

(i)
1. John is tall. Positive 9�(tall(john, �) ^ (� > ✓tall(U)))

2. John is taller than Bob. Increasing 9� (tall(john, �) ^ ¬ tall(bob, �))

3. Ann has more children than Bob. Numerical 9�(9x(child(x) ^ have(ann, x) ^many(x, �))

^¬9x(child(x) ^ have(bob, x) ^many(x, �)))

(ii)
1. John is as tall as Bob. Equatives 8�(tall(bob, �) ! tall(john, �))

2. Mary is 2 inches taller than Harry. Differential 8�(tall(harry, � � 2
00
) ! tall(mary, �))

3. John ate 3 more cookies than Bob. Measure 8�(9x(cookie(x) ^ eat(bob, x) ^many(x, � � 3))

! 9x(cookie(x) ^ eat(john, x) ^many(x, �)))

Table 1: Semantic representation of comparative constructions based on A-not-A analysis

where tall(x, �) is read as “x is at least as tall as
degree �” (Klein, 1991).

We use A-not-A analysis of comparatives,
which analyzes (3a) as (3b).

(3) a. Ann is taller than Bob is.
b. 9� (tall(ann, �) ^ ¬ tall(bob, �))

Ann

Bob
0 �

�1�2 �

According to this analysis, (3a) is interpreted as
saying that there exists a degree � of height that
Ann satisfies, but Bob does not. As shown in the
figure in (3), this guarantees that Ann’s height is
greater than Bob’s height. A-not-A analysis makes
it possible to derive entailment relations between
various comparative constructions in a simple way
using first-order logic theorem provers.

Table 1 shows LFs for some example sentences
using A-not-A analysis.2 Here, LFs can be divided
into two patterns. The examples in (i) in Figure
1 belong to the first type, where the degree of an
individual exceeds a certain degree. For example,
the sentence (i-2) means that the height of John is
greater than the height of Bob. The sentence (i-3)
means that the number of Ann’s children exceeds
the number of Bob’s children. Under our analysis,
this type of sentence is mapped to formulas of the
form 9�(· · · ^ · · · ).

The second type includes the examples in (ii),
which say that the degree of an individual is
greater than or equal to a certain degree. For
example, (ii-1) means that John’s height is greater
than or equal to Bob’s height (Klein, 1982). The

2For the positive form, the comparison class (Klein, 1982)
is relevant to determining the standard of degree (e.g., tall-
ness). We use a default comparison class such as ✓tall in our
implementation and leave the determination of comparison
classes and relevant standards (cf. Pezzelle and Fernández,
2019) to future work.

sentence (ii-3) means that the number of cookies
John ate is 3 or more greater than the number of
cookies that Bob ate; in other words, if Bob ate n
cookies, then John ate at least n+3 cookies. Sen-
tences of type (ii) are mapped to formulas of the
form 8�(· · · ! · · · ), as in Table 1.

2.2 Compositional semantics in CCG
In CCG, the mapping from syntax to seman-
tics is defined by assigning syntactic categories
to words (Steedman, 2000); the LF of a sen-
tence is then compositionally derived using �-
calculus. However, there is a gap between the
syntactic structures assumed in formal semantics
and the output derivation trees of existing CCG
parsers, i.e., statistical parsers trained on CCG-
Bank (Hockenmaier and Steedman, 2007). For
this reason, we modify the derivation trees pro-
vided by CCG parsers in post-processing. There
are several types of modifications.

Syntactic features The first modification is to
add syntactic features to CCG categories. For ex-
ample, in the default CCG trees, a nominal adjec-
tive (a tall boy) has the category N/N , while a
predicate adjective (John is tall) has the category
Sadj\NP . To provide a uniform degree semantics
to both constructions, we rewrite N/N as Nadj/N
for the category of nominal adjectives.

Multiword expressions Compound expressions
for comparatives and quantifiers are combined as
one word, such as a few, a lot of, and at most.

Empty categories We insert an empty category
to systematically derive the LFs of the two patterns
described in Table 1. The distinction between pat-
terns (i) and (ii) can be controlled by an expres-
sion appearing in the adjunct position of an adjec-
tive phrase, for example, a degree modifier such
as very or a numerical expression such as 2 cm.
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Figure 2: Derivation tree of John is (dgr) taller than Bob.

Example LF
Mary has many dogs. 9x(have(mary, x) ^ dog(x) ^many(x, ✓many(x)))

Ann read two books. 9x(read(ann, x) ^ book(x) ^many(x, 2))

Most apples are red. 9�(9x(apple(x) ^ red(x) ^many(x, �)) ^ ¬9x(apple(x) ^ ¬red(x) ^many(x, �)))

No more than five boys ran. ¬9x9�(boy(x) ^many(x, �) ^ (5 < �) ^ run(x))

Table 2: LFs of generalized quantifiers based on our degree semantics

When such an adjunct expression does not appear,
we insert an empty category dgr into the adjunct
position, which is used to derive the desired LF
compositionally. Figure 2 shows an example of a
modified derivation tree containing an empty ele-
ment dgr for increasing comparatives. Similarly,
we use two other types of empty categories for
equatives (e.g., as tall as) and the positive form.

2.3 Generalized quantifiers
The analysis of comparatives by the degree-based
semantics described above can naturally be ex-
tended to generalized quantifiers. In the traditional
analysis (Barwise and Cooper, 1981), generalized
quantifiers such as many, few, more than, and most
are analyzed as denoting a relation between sets.
Alternatively, an analysis based on degree seman-
tics has been developed, which represents expres-
sions such as many and few as adjectives (Partee,
1988; Rett, 2018) and most as the superlative form
of many (Hackl, 2000; Szabolcsi, 2010). We re-
cast this alternative analysis in our degree-based
semantics. Table 2 shows the LFs for some ex-
amples. We use the binary predicate many(x, n),
which reads “x is composed of (at least) n enti-
ties”. Most A are B is analyzed as meaning “More
than half of A is B”, following the standard truth-
condition (Hackl, 2000).

3 Experiments
3.1 Experimental settings
For CCG parsing, we use two CCG parsers,
namely, C&C (Clark and Curran, 2007) and de-
pccg (Yoshikawa et al., 2017), to mitigate parsing
errors. If two parsers output a different answer, we

choose the system answer in the following way: if
one answer is yes (resp. no) and the other is un-
known, the system answer is yes (resp. no); if one
answer is yes and the other is no, then the system
answer is unknown. For POS tagging, we use the
C&C POS tagger for C&C and spaCy3 for depccg.

To implement compositional semantics, we use
ccg2lambda4. We extend the semantic templates
proposed in Mineshima et al. (2015) to handle lin-
guistic phenomena based on degree-based seman-
tics. The total number of lexical entries assigned
to CCG categories is 106, and the number of en-
tries directly assigned to particular words (e.g.,
than and as for comparatives and items for quanti-
fiers) is 214. For tree transformation, we use Tsur-
geon (Levy and Andrew, 2006). We use 74 en-
tries (rewriting clauses) in the Tsurgeon script. For
theorem proving, we use Vampire5, which accepts
TFF forms with arithmetic operations.

For evaluation, we use three datasets. First,
FraCaS (Cooper et al., 1994) is a dataset com-
prising nine sections, each of which contains se-
mantically challenging inferences related to vari-
ous linguistic phenomena. In this study, we use
three sections: Generalized Quantifiers (GQ; 73
problems), Adjectives (ADJ; 22 problems), and
Comparatives (COM; 31 problems). The distribu-
tion of gold answer labels for the three sections
is (yes/no/unknown) = (36/5/32), (9/6/7), (19/9/3),
respectively.

Second, MED6 is a dataset that contains in-

3https://github.com/explosion/spaCy
4https://github.com/mynlp/ccg2lambda
5https://github.com/vprover/vampire
6https://github.com/verypluming/MED
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FraCaS-235 (COMPARATIVES) Gold answer: Yes
Premise 1 ITEL won more orders than APCOM.
Premise 2 APCOM won ten orders.
Hypothesis ITEL won at least eleven orders.

MED-1085 Gold answer: Unknown
Premise 1 No more than fifty campers have caught a cold.
Hypothesis No more than fifty campers have had a sunburn

or caught a cold.

CAD-011 (COMPARATIVES) Gold answer: Yes
Premise 1 Alex is not as tall as Chris is.
Hypothesis Chris is taller than Alex is.

CAD-034 (ADJECTIVES) Gold answer: Yes
Premise 1 Bob is 4 feet tall.
Premise 2 John is taller than Bob.
Hypothesis John is more than 4 feet tall.

Table 3: Examples of entailment problems from the
FraCaS, MED, and CAD test sets

ferences with quantifiers (so-called monotonic-
ity inferences). We use a subset (498 problems)
of MED that does not require world knowledge
and commonsense reasoning; these problems were
collected from various linguistics papers. The dis-
tribution of the gold answer is (yes/unknown) =
(215/283).

Because there are only 31 problems for compar-
atives in FraCaS, we created the CAD test set con-
sisting of 105 problems, which focuses on com-
paratives and numerical constructions not covered
by FraCaS. We collected a set of inferences (9
problems) from a linguistics paper (Klein, 1982)
and created more problems by adding negation,
using degree modifiers (e.g., very), changing nu-
merical expressions, replacing positive and nega-
tive adjectives (e.g., large to small), and swapping
the premise and hypothesis of an inference. Of
the 105 problems 50 are single-premise problems,
and 55 are multi-premise problems. The distribu-
tion of gold answer labels is (yes/no/unknown) =
(50/17/38). All of the gold labels were checked
by an expert in linguistics. Table 3 shows some
example problems.

3.2 Results and discussion
FraCaS test suite Table 4 shows the experi-
mental results on FraCaS. Majority is the accuracy
of the majority baseline and Ours the accuracy of
our system. Some errors were caused by failing
to assign correct POS tags and lemmas to compar-
atives; for example, cleverer is wrongly assigned
NN rather than JJR (FraCaS-217). To estimate
the upper bound of the accuracy of our system by

FraCaS
Section GQ ADJ COM

#All 73 22 31
#Single 44 15 16
Majority .48 .39 .61

Logic

MN .77 .68 .48
LP .93 .73 -
NL .98* .80* .81*
Ours .92 .86 .77
+rule .95 .95 .84

DL
LSTM .64* .47* .56*
DA .59 .45 .61
BERT .64 .45 .58

Table 4: Accuracy on the FraCaS test suite: ‘#All’
shows the number of all problems and ‘#Single’ the
number of single-premise problems.

reducing error propagation, we added hand-coded
rules to assign correct POS tags and lemmas (14
words). We also added two rules to join multi-
word expressions to derive correct logical forms
(law lecturer and legal authority for FraCaS-214,
215). In Table 4, +rule shows the improvement in
accuracy realized by adding these rules.

We compare our system with previous logic-
based NLI systems as well as three popular DL
models. For logic-based systems, we use MN (Mi-
neshima et al., 2015) and LP (Abzianidze, 2016)
based on CCG parsers and theorem proving and
NL (MacCartney and Manning, 2008) based on
Natural Logic. NL is evaluated on single-premise
problems only (indicated by *). Our system ac-
cepts both single-premise and multiple-premise
problems and outperforms the previous logic-
based systems on the adjectives and compara-
tives sections. Our system solves complex rea-
soning problems with multiple premises involving
comparatives and numerical expressions, such as
FraCaS-235 in Table 3, for which the previous sys-
tems were unable to give a correct answer.

For DL models, LSTM is the performance of a
long short-term memory model trained on SNLI,
which is reported in Bowman (2016) (only eval-
uated on single-premise problems). We also
tested the Decomposable Attention (DA) model
(Parikh et al., 2016), a simple attention-based
model trained on SNLI. We used the imple-
mentation provided in AllenNLP (Gardner et al.,
2018). Finally, BERT is the performance of a
BERT model (Devlin et al., 2019). We used
the bert-base-cased model fine-tuned with
MultiNLI. We used the code available at the orig-
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MED
#All 498
Majority .60
BERT+ .54
BERT .56
Ours .84

CAD
#All 105
Majority .48
DA .51
BERT .55
Ours .77

Table 5: Accuracy on the MED and CAD datasets

inal GitHub repository.7 Our system outperforms
the three DL models by large margins.8

MED and CAD datasets Table 5 shows the re-
sults on MED and CAD. For MED, we compared
our system with a BERT model fine-tuned with
MultiNLI (BERT) and a BERT model with data
augmentation (approximately 36K) in addition to
MultiNLI (BERT+), both being tested in Yanaka
et al. (2019). For CAD, we evaluated DA and
BERT. The results show that our system achieved
high accuracy on the logical inferences with adjec-
tives, comparatives, and generalized quantifiers.

Table 6 shows examples that were solved by our
system but not by DA and BERT. The DL models
were particularly difficult to handle inferences re-
lated to antonyms (e.g., FraCaS-209) and numer-
ical expressions (e.g., CAD-001). Indeed, the re-
sults on the DL models were predictable because
these models were trained on datasets (SNLI and
MultiNLI) that do not target the logical and nu-
merical inferences we are concerned with in this
study. However, it is fair to say that it is very chal-
lenging to generate effective training data to han-
dle various complex inferences with comparatives,
numerals, and generalized quantifiers.

There were some problems that our system
could not solve. For FraCaS, the accuracy for
the comparative section (COM) was relatively low
(.84). This is because this section contains lin-
guistically challenging phenomena such as clausal
comparatives (FraCaS-239, 240, 241) and at-
tributive comparatives (FraCaS-244, 245). For
MED, the present system does not handle down-
ward monotonic quantifiers (e.g., less than), non-
monotonic quantifiers (e.g., exactly), and negative

7https://github.com/google-research/
bert

8For DA and BERT, we evaluated multiple-premise prob-
lems by two methods: simply concatenating two or more
premises (e.g., “S1. S2.”) and by inserting and and com-
mas between sentences (e.g., “S1 and S2.”). Comparing the
two methods, we used the better accuracy for each problem
in MED and CAD in Table 4 and 5.

FraCaS-209 (ADJECTIVES) Gold answer: No
Premise 1 Mickey is a small animal.
Premise 2 Dumbo is a large animal.
Hypothesis Mickey is larger than Dumbo.

MED-1021 Gold answer: Unknown
Premise 1 More than five campers have had a sunburn

or caught a cold.
Hypothesis More than five campers have caught a cold.

CAD-001 Gold answer: Yes
Premise 1 John is 5 cm taller than Bob.
Premise 2 Bob is 170 cm tall.
Hypothesis John is 175 cm tall.

CAD-103 Gold answer: Unknown
Premise 1 Bob is not tall.
Premise 2 John is not tall.
Hypothesis John is taller than Bob.

Table 6: Examples of problems solved by our system
but not by the DL models. The answers of the DL mod-
els are: yes (DA and BERT) for FraCaS-209; yes (BERT
and BERT+) for MED-1021; no (DA and BERT) for
CAD-001; yes (DA) and no (BERT) for CAD-103.

polarity items (e.g., any). Furthermore, the sys-
tem needs to be extended to deal with linguistic
phenomena such as comparative subdeletion and
quantified comparatives that appear in CAD. To
address these problems, further improvement of
the CCG parsers will be needed.

4 Conclusion

In this study, we presented an end-to-end logic-
based inference system for handling complex in-
ferences with comparatives, quantifiers, and nu-
merals. The entire system is transparently com-
posed of several modules and can solve complex
inferences for the right reason. In future work, we
will extend our analysis to cover the more com-
plex constructions mentioned in Section 3. We
are also considering combining our system with an
abduction mechanism that uses large knowledge
bases (Yoshikawa et al., 2019) for handling com-
monsense reasoning with external knowledge.
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Miyao, and Daisuke Bekki. 2015. Higher-order log-
ical inference with compositional semantics. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 2055–2061.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language infer-
ence. In Proceedings of the 27th International Con-
ference on Computational Linguistics (COLING),
pages 2340–2353.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2249–2255.

Barbara H. Partee. 1988. Many quantifiers. In Pro-
ceedings of the 5th Eastern States Conference on
Linguistics (ESCOL), pages 383–402.

Sandro Pezzelle and Raquel Fernández. 2019. Is the
red square big? MALeViC: Modeling adjectives
leveraging visual contexts. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2865–2876.

Jessica Rett. 2018. The semantics of many, much,
few, and little. Language and Linguistics Compass,
12(1).

Kyle Richardson, Hai Hu, Lawrence S Moss, and
Ashish Sabharwal. 2020. Probing natural language
inference models through semantic fragments. In
Proceedings of the AAAI Conference on Artificial In-
telligence.

Roger Schwarzschild. 2008. The semantics of com-
paratives and other degree constructions. Language
and Linguistics Compass, 2(2):308–331.

Pieter A. M. Seuren. 1973. The comparative. In
F. Kiefer and N. Ruwet, editors, Generative Gram-
mar in Europe, pages 528–564. Riedel, Dordrecht.

Mark Steedman. 2000. The Syntactic Process. The
MIT Press.

Geoff Sutcliffe. 2017. The TPTP Problem Library and
Associated Infrastructure. Journal of Automated
Reasoning, 59(4):483–502.

Anna Szabolcsi. 2010. Quantification. Cambridge
University Press.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), pages 1112–1122.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and Jo-
han Bos. 2019. Can neural networks understand
monotonicity reasoning? In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 31–40.

Masashi Yoshikawa, Koji Mineshima, Hiroshi Noji,
and Daisuke Bekki. 2019. Combining axiom in-
jection and knowledge base completion for efficient
natural language inference. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages
7410–7417.

Masashi Yoshikawa, Hiroshi Noji, and Yuji Mat-
sumoto. 2017. A* CCG parsing with a supertag and
dependency factored model. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 277–287.

270



Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 271–278
July 5 - July 10, 2020. c�2020 Association for Computational Linguistics

Enhancing Word Embeddings with
Knowledge Extracted from Lexical Resources

Magdalena Biesialska⇤ Bardia Rafieian⇤ Marta R. Costa-jussà
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Abstract

In this work, we present an effective method
for semantic specialization of word vector
representations. To this end, we use tradi-
tional word embeddings and apply specializa-
tion methods to better capture semantic rela-
tions between words. In our approach, we
leverage external knowledge from rich lexical
resources such as BabelNet. We also show
that our proposed post-specialization method
based on an adversarial neural network with
the Wasserstein distance allows to gain im-
provements over state-of-the-art methods on
two tasks: word similarity and dialog state
tracking.

1 Introduction

Vector representations of words (embeddings) have
become the cornerstone of modern Natural Lan-
guage Processing (NLP), as learning word vectors
and utilizing them as features in downstream NLP
tasks is the de facto standard. Word embeddings
(Mikolov et al., 2013; Pennington et al., 2014) are
typically trained in an unsupervised way on large
monolingual corpora. Whilst such word represen-
tations are able to capture some syntactic as well
as semantic information, their ability to map rela-
tions (e.g. synonymy, antonymy) between words is
limited. To alleviate this deficiency, a set of refine-
ment post-processing methods–called retrofitting
or semantic specialization–has been introduced. In
the next section, we discuss the intricacies of these
methods in more detail.

To summarize, our contributions in this work are
as follows:

• We introduce a set of new linguistic con-
straints (i.e. synonyms and antonyms) created
with BabelNet for three languages: English,
German and Italian.

⇤Equal contribution

• We introduce an improved post-specialization
method (dubbed WGAN-postspec), which
demonstrates improved performance as com-
pared to state-of-the-art DFFN (Vulić et al.,
2018) and AuxGAN (Ponti et al., 2018) mod-
els.

• We show that the proposed approach achieves
performance improvements on an intrinsic
task (word similarity) as well as on a down-
stream task (dialog state tracking).

2 Related Work

Numerous methods have been introduced for in-
corporating structured linguistic knowledge from
external resources to word embeddings. Funda-
mentally, there exist three categories of semantic
specialization approaches: (a) joint methods which
incorporate lexical information during the training
of distributional word vectors; (b) specialization
methods also referred to as retrofitting methods
which use post-processing techniques to inject se-
mantic information from external lexical resources
into pre-trained word vector representations; and
(c) post-specialization methods which use linguis-
tic constraints to learn a general mapping function
allowing to specialize the entire distributional vec-
tor space.

In general, joint methods perform worse than the
other two methods, and are not model-agnostic,
as they are tightly coupled to the distributional
word vector models (e.g. Word2Vec, GloVe). There-
fore, in this work we concentrate on the specializa-
tion and post-specialization methods. Approaches
which fall in the former category can be consid-
ered local specialization methods, where the most
prominent examples are: retrofitting (Faruqui et al.,
2015) which is a post-processing method to enrich
word embeddings with knowledge from semantic
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Figure 1: Illustration of the semantic specialization approach.

lexicons, in this case it brings closer semantically
similar words. Counter-fitting (Mrkšić et al., 2016)
likewise fine-tunes word representations; however,
conversely to the retrofitting technique it counter-
fits the embeddings with respect to the given sim-
ilarity and antonymy constraints. Attract-Repel
(Mrkšić et al., 2017b) uses linguistic constraints
obtained from external lexical resources to seman-
tically specialize word embeddings. Similarly to
counter-fitting it injects synonymy and antonymy
constraints into distributional word vector spaces.
In contrast to counter-fitting, this method does not
ignore how updates of the example word vector
pairs affect their relations to other word vectors.

On the other hand, the latter group, post-
specialization methods, performs global special-
ization of distributional spaces. We can distinguish:
explicit retrofitting (Glavaš and Vulić , 2018) that
was the first attempt to use external constraints (i.e.
synonyms and antonyms) as training examples for
learning an explicit mapping function for specializ-
ing the words not observed in the constraints. Later,
a more robust DFFN (Vulić et al., 2018) method
was introduced with the same goal – to special-
ize the full vocabulary by leveraging the already
specialized subspace of seen words.

3 Methodology

In this paper, we propose an approach that builds
upon previous works (Vulić et al., 2018; Ponti et al.,
2018). The process of specializing distributional
vectors is a two-step procedure (as shown in Figure
1). First, an initial specialization is performed (see
§3.1). In the second step, a global specialization
mapping function is learned, allowing to generalize
to unseen words (see §3.2).

3.1 Initial Specialization

In this step a subspace of distributional vectors
for words that occur in the external constraints
is specialized. To this end, fine-tuning of seen
words can be performed using any specialization
method. In this work, we utilize Attract-Repel
model (Mrkšić et al., 2017b) as it offers state-
of-the-art performance. This method allows to
make use of both synonymy (attract) and antonymy
(repel) constraints. More formally, given a set
A of attract word pairs and a set of R of repel
word pairs, let VS be the vocabulary of words
seen in the constraints. Hence, each word pair
(vl, vr) is represented by a corresponding vector
pair (xl,xr). The model optimization method op-
erates over mini-batches: a mini-batch BA of syn-
onymy pairs (of size k1) and a mini-batch BR of
antonymy pairs (of size k2). The pairs of negative
examples TA (BA) =

h�
t
1
l , t
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r

�
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⇣
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drawn from 2 (k1 + k2) word vectors in BA [ BR.
The negative examples serve the purpose of

pulling synonym pairs closer and pushing antonym
pairs further away with respect to their correspond-
ing negative examples. For synonyms:
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where ⌧ is the rectifier function, and �att is the simi-
larity margin determining the distance between syn-
onymy vectors and how much closer they should
be comparing to their negative examples. Similarly,
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the equation for antonyms is given as:
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A distributional regularization term is used to re-
tain the quality of the original distributional vector
space using L2-regularization.

Reg (BA,BR) =
X

xi2V (BA[BR)

�reg kbxi � xik2

(3)

where �reg is a L2-regularization constant, and bxi
is the original vector for the word xi.

Consequently, the final cost function is formu-
lated as follows:

C(BA,BR) = A(BA) +R(BR) +Reg(BA,BR)

(4)

3.2 Proposed Post-Specialization Model
Once the initial specialization is completed, post-
specialization methods can be employed. This step
is important, because local specialization affects
only words seen in the constraints, and thus just
a subset of the original distributional space Xd.
While post-specialization methods learn a global
specialization mapping function allowing them to
generalize to unseen words Xu.

Given the specialized word vectors X
0
s from

the vocabulary of seen words VS , our proposed
method propagates this signal to the entire dis-
tributional vector space using a generative adver-
sarial network (GAN) (Goodfellow et al., 2014).
Hence, in our model, following the approach of
Ponti et al. (2018), we introduce adversarial losses.
More specifically, the mapping function is learned
through a combination of a standard L2-loss with
adversarial losses. The motivation behind this is
to make the mappings more natural and ensure
that vectors specialized for the full vocabulary are
more realistic. To this end, we use the Wasserstein
distance incorporated in the generative adversar-
ial network (WGAN) (Arjovsky et al., 2017) as
well as its improved variant with gradient penalty
(WGAN-GP) (Gulrajani et al., 2017). For brevity,
we call our model WGAN-postspec, which is an um-
brella term for the WGAN and WGAN-GP methods
implemented in the proposed post-specialization
model. One of the benefits of using WGANs over

vanilla GANs is that WGANs are generally more
stable, and also they do not suffer from vanishing
gradients.

Our proposed post-specialization approach is
based on the principles of GANs, as it is composed
of two elements: a generator network G and a dis-
criminator network D. The gist of this concept, is
to improve the generated samples through a min-
max game between the generator and the discrimi-
nator.

In our post-specialization model, a multi-layer
feed-forward neural network, which trains a global
mapping function, acts as the generator. Conse-
quently, the generator is trained to produce pre-
dictions G(x; ✓G) that are as similar as possible
to the corresponding initially specialized word
vectors x

0
s. Therefore, a global mapping func-

tion is trained using word vector pairs, such that
(xi,x0

i) = {xi 2 Xs,x0

i 2 X
0
s}. On the other

hand, the discriminator D(x; ✓D), which is a multi-
layer classification network, tries to distinguish
the generated samples from the initially special-
ized vectors sampled from X

0
s. In this process, the

differences between predictions and initially spe-
cialized vectors are used to improve the generator,
resulting in more realistically looking outputs.

In general, for the GAN model we can define the
loss LG of the generator as:

LG =�

nX

i=1

logP ( spec = 1|G(xi; ✓G); ✓D)�

�

mX

i=1

logP ( spec = 0|x
0

i; ✓D) (5)

While the loss of the discriminator LD is given as:

LD =�

nX

i=1

logP ( spec = 0|G(xi; ✓G); ✓D)�

�

mX

i=1

logP ( spec = 1|x
0

i; ✓D) (6)

In principle, the losses with Wasserstein distance
can be formulated as follows:

LG = �
1

n

nX

i=1

D(G(xi; ✓G); ✓D) (7)

and

LD =
1

m

mX

i=1

D(x
0

i; ✓D)�

�
1

n

nX

i=1

D(G(xi; ✓G); ✓D) (8)
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An alternative scenario with a gradient penalty
(WGAN-GP) requires adding gradient penalty �
coefficient in the Eq. (8).

4 Experiments

Pre-trained Word Embeddings. In order to
evaluate our proposed approach as well as to com-
pare our results with respect to current state-of-
the-art post-specialization approaches, we use pop-
ular and readily available 300-dimensional pre-
trained word vectors. Word2Vec (Mikolov et al.,
2013) embeddings for English were trained using
skip-gram with negative sampling on the cleaned
and tokenized Polyglot Wikipedia (Al-Rfou’ et al.,
2013) by Levy and Goldberg (2014), while German
and Italian embeddings were trained using CBOW
with negative sampling on WacKy corpora (Dinu
et al., 2015; Artetxe et al., 2017, 2018). Moreover,
GloVe vectors for English were trained on Com-
mon Crawl (Pennington et al., 2014).

Linguistic Constraints. To perform semantic
specialization of word vector spaces, we exploit lin-
guistic constraints used in previous works (Zhang
et al., 2014; Ono et al., 2015; Vulić et al., 2018)
(referred to as external) as well as introduce a new
set of constraints collected by us (referred to as
babelnet) for three languages: English, German
and Italian. We use constraints in two different
settings: disjoint and overlap. In the first setting,
we remove all linguistic constraints that contain
any of the words available in SimLex (Hill et al.,
2015), SimVerb (Gerz et al., 2016) and WordSim
(Leviant and Reichart, 2015) evaluation datasets.
In the overlap setting, we let the SimLex, SimVerb
and WordSim words remain in the constraints. To
summarize, we present the number of word pairs
for English, German and Italian constraints in Table
1.

Let us discuss in more detail how the lists of con-
straints were constructed. In this work, we use two
sets of linguistic constraints: external and babel-
net. The first set of constraints was retrieved from
WordNet (Fellbaum, 1998) and Roget’s Thesaurus
(Kipfer, 2009), resulting in 1,023,082 synonymy
and 380,873 antonymy word pairs. The second set
of constraints, which is a part of our contribution,
comprises synonyms and antonyms obtained using
NASARI lexical embeddings (Camacho-Collados
et al., 2016) and BabelNet (Navigli and Ponzetto,
2012). As NASARI provides lexical information
for BabelNet words in five languages (EN, ES, FR,

DE and IT), we collected each word with its re-
lated BabelNetID (a sense database identifier) to
extract the list of its synonyms and antonyms using
BabelNet API.

Furthermore, to improve the list of Italian words,
we also followed the approach proposed by Su-
cameli and Lenci (2017). The authors provided a
new dataset of semantically related Italian word
pairs. The dataset includes nouns, adjectives and
verbs with their synonyms, antonyms and hyper-
nyms. The information in this dataset was gathered
by its authors through crowdsourcing from a pool
of Italian native speakers. This way, we could
concatenate Italian word pairs to provide a more
complete list of synonyms and antonyms.

Similarly, we refer to the work of Scheible and
Schulte im Walde (2014) that presents a new collec-
tion of semantically related word pairs in German,
which was compiled through human evaluation. Re-
lying on GermaNet and the respective JAVA API,
the list of the word pairs was generated with a sam-
pling technique. Finally, we used these word pairs
in our experiments as external resources for the
German language.

Initial Specialization and Post-Specialization.
Although, initially specialized vector spaces show
gains over the non-specialized word embeddings,
linguistic constraints represent only a fraction of
their total vocabulary. Therefore, semantic spe-
cialization is a two-step process. Firstly, we per-
form initial specialization of the pre-trained word
vectors by means of Attract-Repel (see §2) algo-
rithm. The values of hyperparameter are set ac-
cording to the default values: �reg = 10

�9, �sim =

0.6, �ant = 0.0 and k1 = k2 = 50. Afterward, to
perform a specialization of the entire vocabulary, a
global specialization mapping function is learned.
In our WGAN-postspec proposed approach, the
post-specialization model uses a GAN with im-
proved loss functions by means of the Wasserstein
distance and gradient penalty. Importantly, the op-
timization process differs depending on the algo-
rithm implemented in our model. In the case of a
vanilla GAN (AuxGAN), standard stochastic gradi-
ent descent is used. While in the WGAN model we
employ RMSProp (Tieleman and Hinton, 2012). Fi-
nally, in the case of the WGAN-GP, Adam (Kingma
and Ba, 2015) optimizer is applied.
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English German Italian

overlap disjoint disjoint overlap disjoint disjoint overlap disjoint disjoint
simlex/verb wordsim simlex/verb wordsim simlex/verb wordsim

Synonyms babelnet 3,522,434 3,521,366 3,515,111 1,358,358 1,087,814 1,348,006 975,483 807,399 806,890
external + babelnet 4,545,045 4,396,350 3,515,111 1,360,040 1,089,338 1,349,612 976,877 808,605 808,225

Antonyms babelnet 1,024 843 1,011 139 136 136 99 99 98
external + babelnet 381,777 352,099 378,365 1,823 1,662 1,744 883 769 851

Table 1: Number of synonym and antonym word pairs for English, German and Italian in two settings: babelnet,
external + babelnet.

English
GLOVE WORD2VEC

overlap disjoint overlap disjoint

SL SV WS SL SV WS SL SV WS SL SV WS

ORIGINAL 0.407 0.280 0.655 0.407 0.280 0.655 0.414 0.272 0.593 0.414 0.272 0.593

ATTRACT- a 0.781 0.761 0.597 0.407 0.280 0.655 0.778 0.761 0.574 0.414 0.272 0.593

REPEL
b 0.407 0.282 0.655 0.407 0.282 0.655 0.414 0.275 0.594 0.414 0.275 0.593
c 0.784 0.763 0.595 0.407 0.282 0.655 0.776 0.763 0.560 0.414 0.275 0.593

DFFN
a 0.785 0.764 0.600 0.645 0.531 0.678 0.781 0.763 0.571 0.553 0.430 0.593
b 0.699 0.562 0.703 0.458 0.324 0.679 0.351 0.237 0.506 0.387 0.245 0.578
c 0.783 0.764 0.597 0.646 0.535 0.684 0.777 0.763 0.560 0.538 0.381 0.594

AUXGAN
a 0.789 0.764 0.659 0.652 0.552 0.642 0.782 0.762 0.550 0.581 0.434 0.602
b 0.734 0.647 0.627 0.417 0.284 0.658 0.405 0.269 0.587 0.395 0.260 0.581
c 0.796 0.767 0.639 0.659 0.560 0.669 0.782 0.755 0.588 0.583 0.438 0.603

WGAN
a 0.809 0.767 0.652 0.661 0.553 0.642 0.780 0.749 0.602 0.580 0.446 0.608
b 0.722 0.635 0.654 0.452 0.279 0.671 0.392 0.262 0.590 0.397 0.269 0.580
c 0.808 0.765 0.653 0.663 0.549 0.665 0.771 0.737 0.614 0.586 0.440 0.611

WGAN-GP
a 0.810 0.751 0.669 0.660 0.548 0.669 0.776 0.742 0.600 0.586 0.462 0.605
b 0.722 0.622 0.646 0.461 0.282 0.676 0.396 0.254 0.567 0.398 0.267 0.581
c 0.798 0.732 0.715 0.660 0.551 0.672 0.775 0.614 0.590 0.585 0.463 0.609

Table 2: Spearman’s ⇢ correlation scores on SimLex-999 (SL), SimVerb-3500 (SV) and WordSim-353 (WS).
Evaluation was performed using constraints in three settings: (a) external, (b) babelnet, (c) external + babelnet.

5 Results

5.1 Word Similarity

We report our experimental results with respect
to a common intrinsic word similarity task, using
standard benchmarks: SimLex-999 and WordSim-
353 for English, German and Italian, as well as
SimVerb-3500 for English. Each dataset contains
human similarity ratings, and we evaluate the simi-
larity measure using the Spearman’s ⇢ rank corre-
lation coefficient. In Table 2, we present results for
English benchmarks, whereas results for German
and Italian are reported in Table 3.

Word embeddings are evaluated in two scenar-
ios: disjoint where words observed in the bench-
mark datasets are removed from the linguistic con-
straints; and overlap where all words provided in
the linguistic constraints are utilized. We use the
overlap setting in a downstream task (see §5.2).

In the tasks we report scores for Original (non-
specialized) word vectors, initial specialization
method Attract-Repel (Mrkšić et al., 2017b), and
three post-specialization methods: DFFN (Vulić
et al., 2018), AuxGAN (Ponti et al., 2018) and our
proposed model WGAN-postspec (in two scenarios:
WGAN and WGAN-GP).

The results suggest that the post-specialization
methods bring improvements in the specialization
of the distributional word vector space. Overall,
the highest correlation scores are reported for the
models with adversarial losses. We also observe
that the proposed WGAN-postspec achieves fairly
consistent correlation gains with GLOVE vectors
on the SimLex dataset. Interestingly, while exploit-
ing additional constraints (i.e. external + babelnet)
generally boosts correlation scores for German and
Italian, the results are not conclusive in the case of
English, and thus they require further investigation.
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German Italian
WORD2VEC WORD2VEC

overlap disjoint overlap disjoint

SL WS SL WS SL WS SL WS

ORIGINAL 0.358 0.538 0.358 0.538 0.356 0.563 0.356 0.563

ATTRACT- a 0.360 0.537 0.358 0.538 0.376 0.568 0.364 0.565

REPEL
b 0.358 0.538 0.358 0.538 0.366 0.568 0.366 0.559
c 0.360 0.538 0.358 0.538 0.378 0.566 0.367 0.564

DFFN
a 0.366 0.422 0.370 0.452 0.381 0.512 0.365 0.519
b 0.354 0.538 0.348 0.538 0.364 0.559 0.361 0.560
c 0.359 0.541 0.358 0.533 0.376 0.561 0.369 0.559

AUXGAN
a 0.331 0.532 0.325 0.535 0.362 0.561 0.348 0.560
b 0.369 0.552 0.373 0.561 0.361 0.559 0.364 0.563
c 0.369 0.564 0.365 0.556 0.365 0.566 0.368 0.563

WGAN
a 0.331 0.528 0.327 0.531 0.361 0.558 0.344 0.558
b 0.364 0.558 0.367 0.559 0.359 0.553 0.367 0.559
c 0.371 0.559 0.364 0.560 0.367 0.567 0.370 0.562

Table 3: Spearman’s ⇢ correlation scores on SimLex-
999 (SL) and WordSim-353 (WS). Evaluation was per-
formed using constraints in three settings: (a) external,
(b) babelnet, (c) external + babelnet.

GLOVE

ORIGINAL 0.797
ATTRACT-REPEL 0.817
DFFN 0.829
AUXGAN 0.836
WGAN-POSTSPEC 0.838

Table 4: DST results for English.

5.2 Dialog State Tracking

We also evaluate our proposed approach on a dialog
state tracking (DST) downstream task. This task
is a standard language understanding task, which
allows to differentiate between word similarity and
relatedness. To perform the evaluation we follow
previous works (Henderson et al., 2014; Williams
et al., 2016; Mrkšić et al., 2017b). Concretely, a
DST model computes probability based only on
pre-trained word embeddings. We use Wizard-of-
Oz (WOZ) v.2.0 dataset (Wen et al., 2017; Mrkšić
et al., 2017a) composed of 600 training dialogues
as well as 200 development and 400 test dialogues.

In our experiments, we report results with a stan-
dard joint goal accuracy (JGA) score. The results
in Table 4 confirm our findings from the previ-
ous word similarity task, as initial semantic spe-
cialization and post-specialization (in particular
WGAN-postspec) yield improvements over original
distributional word vectors. We expect this con-
clusion to hold in all settings; however, additional
experiments for different languages and word em-

beddings would be beneficial.

6 Conclusion and Future Work
In this work, we presented a method to perform se-
mantic specialization of word vectors. Specifically,
we compiled a new set of constraints obtained from
BabelNet. Moreover, we improved a state-of-the-
art post-specialization method by incorporating ad-
versarial losses with the Wasserstein distance. Our
results obtained in an intrinsic and an extrinsic task,
suggest that our method yields performance gains
over current methods.

In the future, we plan to introduce constraints
for asymmetric relations as well as extend our pro-
posed method to leverage them. Moreover, we
plan to experiment with adapting our model to a
multilingual scenario, to be able to use it in a neu-
ral machine translation task. We make the code
and resources available at: https://github.com/
mbiesialska/wgan-postspec
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Abstract
Sequence-to-sequence (S2S) pre-training us-
ing large monolingual data is known to im-
prove performance for various S2S NLP tasks.
However, large monolingual corpora might not
always be available for the languages of inter-
est (LOI). Thus, we propose to exploit mono-
lingual corpora of other languages to comple-
ment the scarcity of monolingual corpora for
the LOI. We utilize script mapping (Chinese
to Japanese) to increase the similarity (number
of cognates) between the monolingual corpora
of helping languages and LOI. An empirical
case study of low-resource Japanese–English
neural machine translation (NMT) reveals that
leveraging large Chinese and French mono-
lingual corpora can help overcome the short-
age of Japanese and English monolingual cor-
pora, respectively, for S2S pre-training. Using
only Chinese and French monolingual corpora,
we were able to improve Japanese–English
translation quality by up to 8.5 BLEU in low-
resource scenarios.

1 Introduction

Neural Machine Translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015) is known to
give state-of-the-art (SOTA) translations for lan-
guage pairs with an abundance of parallel corpora.
However, most language pairs are resource poor
(Russian–Japanese, Marathi–English) as they lack
large parallel corpora and the lack of bilingual
training data can be compensated by by monolin-
gual corpora. Although it is possible to utilise the
popular back-translation method (Sennrich et al.,
2016a), it is time-consuming to backtranslate a
large amount of monolingual data. Furthermore,
poor quality backtranslated data tends to be of lit-
tle help. Recently, another approach has gained
popularity where the NMT model is pre-trained
through tasks that only require monolingual data
(Song et al., 2019; Qi et al., 2018).

Pre-training using models like BERT (Devlin
et al., 2018) have led to new state-of-the-art re-
sults in text understanding. However, BERT-like
sequence models were not designed to be used
for NMT which is sequence to sequence (S2S).
Song et al. (2019) recently proposed MASS, a S2S
specific pre-training task for NMT and obtained
new state-of-the-art results in low-resource settings.
MASS assumes that a large amount of monolin-
gual data is available for the languages involved
but some language pairs may lack both parallel and
monolingual corpora and are “truly low-resource”
and challenging.

Fortunately, languages are not isolated and often
belong to “language families” where they have sim-
ilar orthography (written script; shared cognates)
or similar grammar or both. Motivated by this, in
this paper we hypothesize that we should be able to
leverage large monolingual corpora of other assist-
ing languages to help the monolingual pre-training
of NMT models for the languages of interest (LOI)
that may lack monolingual corpora. Wherever pos-
sible, we subject the pre-training corpora to script
mapping which should help minimize the vocabu-
lary and distribution differences, respectively, be-
tween the pre-training, main training (fine-tuning)
and testing time datasets. This should help the
already consistent pre-training and fine-tuning ob-
jectives leverage the data much better and thereby,
possibly, boost translation quality.

To this end, we experiment with ASPEC
Japanese–English translation in a variety of low-
resource settings for the Japanese–English parallel
corpora. Our experiments reveal that while it’s
possible to leverage unrelated languages for pre-
training, using related languages is extremely im-
portant. We utilized Chinese to Japanese script
mapping to maximize the similarities between
the assisting languages (Chinese and French) and
the languages of interest (Japanese and English).
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We show that only using monolingual corpora of
Chinese and French for pre-training can improve
Japanese–English translation quality by up to 8.5
BLEU.

The contributions of our work are as follows:
1. Leveraging assisting languages: We give a
novel study of leveraging monolingual corpora
of related and unrelated languages for NMT
pre-training.

2. Empirical evaluation: We make a comparison
of existing and proposed techniques in a variety of
corpora settings to verify our hypotheses.

2 Related work

Our research is at the intersection of works on
monolingual pre-training for NMT and leveraging
multilingualism for low-resource language transla-
tion.

Pre-training has enjoyed great success in other
NLP tasks with the development of methods like
BERT (Devlin et al., 2018). Song et al. (2019)
recently proposed MASS, a new state-of-the-art
NMT pre-training task that jointly trains the en-
coder and the decoder. Our approach builds on the
initial idea of MASS, but focuses on complement-
ing the potential scarcity of monolingual corpora
for the languages of interest using relatively larger
monolingual corpora of other (assisting) languages.

On the other hand, leveraging multilingualism
involves cross-lingual transfer (Zoph et al., 2016)
which solves the low-resource issue by using data
from different language pairs. Dabre et al. (2017)
showed the importance of transfer learning between
languages belonging to the same language family
but corpora might not always be available in a re-
lated language. A mapping between Chinese and
Japanese characters (Chu et al., 2012) was shown to
be useful for Chinese–Japanese dictionary construc-
tion (Dabre et al., 2015). Mappings between scripts
or unification of scripts (Hermjakob et al., 2018)
can artificially increase the similarity between lan-
guages which motivates most of our work.

3 Proposed Method: Using Assisting
Languages

We propose a novel monolingual pre-training
method for NMT which leverages monolingual
corpora of assisting languages to overcome the
scarcity of monolingual and parallel corpora of

Target
languages

Mixed data

Pre-trained
model NMT model

Monolingual data

Parallel data

Pre-train Fine-tune

Data 
Selection

Assisting 
languages

Mapping
Target

languages

Figure 1: An overview of our proposed method consist-
ing of script mapping, data selection, pre-training and
fine-tuning

the languages of interest (LOI). The framework of
our approach is shown in Figure 1 which consists
of script mapping, data selection, pre-training and
fine-tuning.

3.1 Data Pre-processing
Blindly pre-training a NMT model on vast amounts
of monolingual data belonging to the assisting lan-
guages and LOI might improve translation quality
slightly. However, divergences between the lan-
guages, especially their scripts (Hermjakob et al.,
2018) and also the distributions of data between
different training phases is known to impact the
final result. Motivated by past works on using re-
lated languages (Dabre et al., 2017), orthography
mapping/unification (Hermjakob et al., 2018; Chu
et al., 2012) and data selection for MT (Axelrod
et al., 2011), we propose to improve the efficacy of
pre-training by reducing data and language diver-
gence.

3.1.1 Script Mapping
Previous research has shown that enforcing shared
orthography (Sennrich et al., 2016b; Dabre et al.,
2015) has a strong positive impact on translation.
Following this, we propose to leverage existing
script mapping rules1 or script unification mech-
anisms to, at the very least, maximize the possi-
bility of cognate sharing and thereby bringing the
assisting language closer to the LOI. This should
strongly impact languages such as Hindi, Punjabi
and Bengali belonging to the same family but writ-
ten using different scripts.

For languages such as Korean, Chinese and
Japanese there may exist a many to many mapping
between their scripts. Thus, incorrect mapping of

1Transliteration is another option but transliteration sys-
tems are relatively unreliable compared to handcrafted rule
tables.
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characters (basic unit of a script) might produce
wrong words and reduce cognate sharing. We pro-
pose two solutions to address this.
1. One-to-one mapping: Here we do not care
about word level information and map each charac-
ter in one language to its corresponding character
in another language. Here, we just select the first
mapping in the mapping list.
2. Many-to-many mapping with LM scoring:
A more sophisticated solution is where for each
tokenized word-level segment in one language we
enumerate all possible combinations of mapped
characters and use a language model in the other
language to select the character combination with
the highest score as the result.

3.1.2 Note on Chinese–Japanese Scripts
Japanese is written in Kanji which was borrowed
from China. Over time the written scripts have di-
verged and the pronunciations are naturally differ-
ent but there are a significant number of cognates
written in both languages. As such pre-training
on Chinese should benefit translation involving
Japanese. Chu et al. (2012) created a mapping table
between them which can be leveraged to further
increase the number of cognates.

3.1.3 Data Selection
Often, the pre-training monolingual data and the
fine-tuning parallel data belong to different do-
mains. (Axelrod et al., 2011; Wang and Neubig,
2019) have shown that proper data selection can
reduce the differences between the natures of data
between different training domains and phases. In
this paper we experiment with (a) Scoring monolin-
gual sentences using a language model (LM) and
selecting the highest scoring ones and (b) Select-
ing monolingual sentences to match the sentence
length distribution of the development set sentences
in the parallel corpus.
1. LM based data selection: We use a language
model trained on corpora belonging to the domain
that the fine-tuning data belongs to. We use this
sort monolingual sentences according to LM score
and use the top N sentences that are expected to be
the most similar to the domain of the fine-tuning
data.
2. Length based data selection: Algorithm 1
describes how to use the in-domain dataset
(TargetF ile; typically the sentences from the fine-
tuning parallel corpus) to select SelectNum lines
from the out-of-domain dataset (InputF ile; typ-

Algorithm 1: Length Distribution Data Se-
lection
Input :TargetFile , InputFile ,

SelectNum
Output :SelectedLines

1 TargetDistribution  {};
2 CurrentDistribution  {};
3 SelectedLines  {};
4 TargetNum = # of Lines in TargetFile;
5 foreach Line 2 TargetFile do
6 TargetD [len(Line)]+ = 1 ;

7 foreach Line 2 InputFile do
8 if

CurrentD [len(Line)]/SelectNum <
TargetD [len(Line)]/TargetNum
then

9 CurrentD [len(Line)]+ = 1;
10 SelectedLines  

SelectedLines [ {Line};

ically the monolingual corpus). When selecting
monolingual data of languages of interest, we can
first calculate the length distribution of parallel data
as target distribution (the ratio of all lengths in
TargetF ile) and we fill the length distribution by
selecting sentences from monolingual data of same
language. As a result, the monolingual data and
parallel data have similar length distribution.

3.2 NMT Modeling

In order to train a NMT model we first use the pre-
processed monolingual data for pre-training and
then resume training this model on parallel data to
fine-tune for the languages of interest.

We use MASS, which is a pre-training method
for NMT proposed by Song et al. (2019). In MASS,
the input is a sequence of tokens where a part of
the sequence is masked and the pre-training ob-
jective is to predict the masked fragments using a
denoised auto-encoder model. The NMT model is
pre-trained with the MASS task, until convergence,
jointly for both the source and target languages.
Thereafter training is resumed on the parallel cor-
pus, a step known as fine-tuning (Zoph et al., 2016).

4 Experimental Settings

We conducted experiments on Japanese–English
(Ja–En) translation in a variety of simulated low-
resource settings using the “similar” assisting lan-
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guage pairs Chinese (Zh) and French (Fr) and the
“distant” assisting language pairs Russian (Ru) and
Arabic (Ar).

4.1 Datasets
We used the official ASPEC Ja–En parallel corpus
(Nakazawa et al., 2016) provided by WAT 20192.
The official split consists of 3M, 1790 and 1872
train, dev and test sentences respectively. We sam-
pled parallel corpora from the top 1M sentences
for fine-tuning. Out of the remaining 2M sen-
tences, we used the En side of the first 1M and
the Ja side of the next 1M sentences as monolin-
gual data for language modeling for data selection.
We used Common Crawl3 monolingual corpora
for pre-training. To train LMs for data-selection
of the assisting languages corpora, we used news
commentary datasets 4. While this data selection
step for the assisting languages won’t minimize the
domain difference from the parallel corpus, it can
help in filtering noisy sentences. In this paper we
consider the ASPEC and news commentary data as
in-domain and the rest of the pre-training data as
out-of-domain.

4.2 Data Pre-processing
1. Normalization and Initial Filtering: We ap-
plied NFKC normalization to data of all languages.
Juman++ (Tolmachev et al., 2018) for Ja tokeniza-
tion, jieba5 for Zh tokenization and NLTK6 tok-
enization for other languages. We filtered out all
sentences from the pre-training data that contain
fewer than 3 and equal or more than 80 tokens. For
Chinese data, we filtered out sentences containing
fewer than 30 percent Chinese words or more than
30 percent English words.
2. Script Mapping: Chinese is the only assisting
language that can be mapped to Japanese reliably.
We converted Chinese to Japanese script to make
them more similar by using the mapping table from
(Chu et al., 2012) and the mapping approaches men-
tioned in the previous section. French and English
are written using the Roman alphabet and do not
need any script mapping. We did not perform script
mapping for Arabic and Russian to show the im-
pact of using distant languages (script-wise as well

2http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2019/index.
html#task.html

3http://data.statmt.org/ngrams/
4http://data.statmt.org/news-commentary/v14/
5https://github.com/fxsjy/jieba
6https://www.nltk.org

as linguistically).
3. Data selection: We used KenLM (Heafield,
2011) to train 5-gram LMs on in-domain data for
LM scoring based data selection and use ASPEC
dev set for length distribution based data selection.

5 Results and Analysis

5.1 Training and Evaluation Settings
We used the tensor2tensor framework (Vaswani
et al., 2018) 7, version 1.14.0., with its default
“transformer big” setting.

We created a shared sub-word vocabulary us-
ing Japanese and English data from ASPEC mix-
ing with Japanese, English, Chinese and French
data from Common Crawl. We used SentencePiece
(Kudo and Richardson, 2018) and obtained a vo-
cabulary with the size of roughly 64k . We used
this vocabulary in all experiments except unrelated
language experiment where Arabic and Russian
were used instead of Chinese and French data.

We combined monolingual data of assisting lan-
guages and languages of interest (LOI; Japanese
and English) for pre-training. When mixing
datasets of different sizes, we always oversampled
the smaller datasets to match the size of the largest.

For all pre-training models, we saved check-
points every 1000 steps and for all fine-tuning mod-
els, we saved checkpoints every 200 steps. We
used early-stopping using approximate-BLEU as
target and stops when no gain after 10,000 steps
for pre-training and 2,000 steps for fine-tuning. We
fine-tuned different fine-tune settings from the last
checkpoint of each pre-trained model.

For decoding we averaged 10 checkpoints of the
fine-tuning stage with ↵ = 0.6 and beamsize = 4.
We used sacreBLEU8 to evaluate BLEU score for
all translation evaluation.

5.2 Models Trained and Evaluated
5.2.1 Pre-trained Models
We separated pre-training settings into different
blocks as shown in Table 1. Baseline model with-
out fine-tuning is shown as A1. Zero (0M), low
(1M) and rich (20M) monolingual-corpus scenar-
ios are shown in parts B, C and D, respectively.
Part E explores the impact of the two script map-
ping techniques on pre-training. Part F shows the
impact of using related versus unrelated assisting
languages.

7https://github.com/tensorflow/tensor2tensor
8https://github.com/mjpost/sacreBLEU
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#
Pre-training Fine-tuning

Data pre-processing Zh Ja En Fr En!Ja Ja!En
3K 10K 20K 50K 3K 10K 20K 50K

A1 - - - - - 2.5 6.0 14.4 22.9 1.8 4.6 10.9 19.4

B1 1-to-1 Zh!Ja mapping + LM 20M - - - 5.3 14.5 20.0 26.1 3.7 11.2 15.6 20.5
B2 LM - - - 20M 3.4 9.1 14.9 23.4 2.1 6.3 11.3 17.7
B3 1-to-1 Zh!Ja mapping + LM 20M - - 20M 2.1 6.7 12.6 21.9 2.2 6.3 10.7 16.8

C1 LD - 1M 1M - 7.7 15.8 20.7 26.3 7.2 12.7 15.7 19.6
C2 1-to-1 Zh!Ja mapping + LD 20M 1M 1M - 8.3 16.4 20.2 26.9 7.5 12.5 16.3 20.7
C3 LD - 1M 1M 20M 8.3 15.3 19.3 26.7 6.8 12.3 15.4 20.4
C4 1-to-1 Zh!Ja mapping + LD 20M 1M 1M 20M 7.1 15.2 19.4 26.5 6.6 12.0 15.4 19.9

D1 LD - 15M 15M - 9.6 17.2 21.5 28.0 8.6 13.5 16.8 20.9
D2 1-to-1 Zh!Ja mapping + LD 20M 15M 15M - 9.7 17.1 21.6 27.2 8.3 13.3 16.7 20.6
D3 LD - 15M 15M 20M 7.7 15.0 19.8 26.3 6.3 11.7 15.1 20.2
D4 1-to-1 Zh!Ja mapping + LD 20M 15M 15M 20M 7.7 14.9 19.7 26.1 6.5 11.4 15.4 19.8

E1 1-to-1 Zh!Ja mapping 20M 20M 20M 20M 7.0 13.4 19.3 25.7 5.9 11.1 15.0 19.8
E2 LM-scoring Zh!Ja mapping 20M 20M 20M 20M 6.3 12.7 18.1 24.7 5.7 10.3 13.5 18.9

F1 LM-scoring - 20M 20M - 4.7 11.7 16.6 23.9 4.5 9.1 12.9 18.3
F2 1-to-1 Zh!Ja mapping + LM-scoring 20M 20M 20M 20M 7.0 13.4 19.3 25.7 5.9 11.1 15.0 19.8
F3 LM-scoring + Ar20M + Ru20M - 20M 20M - 4.8 12.1 18.1 25.1 4.4 10.2 13.5 18.9

Table 1: Low-resource pre-training experiments. Part A shows the baseline results. Part B, C, and D show results
on monolingual zero, low and rich-resource scenarios. Part E shows results of two different mapping methods.
And part F shows results of using related and unrelated languages. LD is with the meaning of “length distribution”.
Best results of each part are in bold.

5.2.2 Fine-tuned Models
We evaluated both Ja!En and En!Ja models with
four parallel dataset size settings, 3K, 10K, 20K
and 50K, selected from the previously selected 1M
ASPEC parallel sentences.

In Table 1, we show results of several experimen-
tal settings to analyse the effect of: pre-training
data size, Zh!Ja mapping methods and choices of
unrelated languages versus related languages.

In our preliminary experiments we found out that
1-to-1 script mapping was not only faster but better
than LM-scoring based script mapping. Further-
more, using length distribution was better than LM
based data selection for the languages of interest
(Japanese and English). Due to lack of space we
only report core results using 1-to-1 script mapping
(for assisting languages) and length distribution
based data selection (for languages of interest).

5.3 Monolingual Zero and Low-resource
scenario

The results of zero-resource and low-resource sce-
nario are shown in parts B and C of Table 1. In
these settings we used either no monolingual data
or very little (1M) monolingual data for Japanese
and English.

In part B, for a zero-monolingual data scenario,
we observed large improvements, a maximum of
8.5 BLEU score over the baseline setting (A1), on

all fine-tuning settings over model without fine-
tuning when using only Chinese monolingual data
(B1). Using only French data also gives better
results on almost all fine-tuning settings, but not as
large as that of using only Chinese data. Combining
Chinese and French data, led to reduction in scores
indicating some incompatibility between them.

In part C of the table, when there are 1M
Japanese and English monolingual sentences, com-
bining them with 20M Chinese data also gives im-
provements up to 1.1 BLEU points over A1. Com-
bining with French data only gives occasional im-
provements. In this setting too, combining Chinese
and French data led to reduction in performance.

Although French and English share cognates and
have similar grammar, we have not performed ex-
plicit script mapping like we did for Chinese to
make it more similar to Japanese. In the future we
will investigate whether using a simple dictionary
to map French to English can alleviate this issue.

We can draw the following conclusions,

1. Utilizing monolingual corpora of other lan-
guages IS beneficial.
2. Using similar languages (French and English)
will sometimes give better results.
3. There may be conflicts between data of different
assisting languages.
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5.4 Monolingual resource-rich scenario
In part D, we found that there is less need to com-
bine related language data when we use a large
monolingual data of target languages. Only com-
bining with Chinese data (D2) is comparable with
pure Japanese-English monolingual pre-training
(D1). Using French data degrades the translation
quality in most settings. Thus, assisting languages
become interfering languages in scenarios where
large amounts of monolingual data are available
for languages to be translated.

5.5 Chinese to Japanese mapping
In part E, we compared our two proposed script
mapping methods. Results showed that the one-
to-one mapping (character-level mapping) gives
better BLEU score than word-level mapping con-
sistently on most fine-tuning settings, about 0.7 to
1.0 in most cases. The word-level mapping gives
lower score than baseline in Ja!En 50K case. One
possible reason is that the Chinese and Japanese
tokenizers cut the words in different granularity. So
that applying Japanese LM to Chinese data may not
work well. Therefore, we focus on 1-to-1 mapping
experiments.

5.6 Unrelated language VS related language
In part F of the table, we compare pre-training on
related languages versus unrelated languages. We
saw that using Arabic and Russian as unrelated
assisting languages in addition to Japanese and En-
glish, gives about 0.1 to 1.5 BLEU improvement
over the baseline (G1) which uses only Japanese
and English monolingual data. This is surprising
and it shows that leveraging any additional lan-
guage is better than not leveraging them. However,
using (mapped) Chinese and French instead of Ara-
bic and Russian yields about 2 to 2.7 BLEU score
improvements. This clearly indicates that language
relatedness is definitely important. In the future,
we will consider more rigorous ways of increasing
relatedness between pre-training corpora by using
existing dictionaries and advanced script unifica-
tion/mapping techniques instead of simple script
mapping techniques.

6 Conclusion

In this paper we showed that it is possible to lever-
age monolingual corpora of other languages to pre-
train NMT models for language pairs that lack par-
allel as well as monolingual data. Even if monolin-

gual corpora for the languages of interest are un-
available, we can successfully improve translation
quality by up to 8.5 BLEU, in low-resource set-
tings, using monolingual corpora of assisting lan-
guages. We showed that the similarity between the
other (assisting) languages and the languages to be
translated is crucial and leveraged script mapping
wherever possible. In the future, we plan to exper-
iment with even more challenging language pairs
such as Japanese–Russian and attempt to leverage
monolingual corpora belonging to diverse language
families.We might be able to identify subtle rela-
tionships among languages and approaches to bet-
ter leverage assisting languages for several NLP
tasks.
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Abstract
In this paper, we propose a method of re-
ranking the outputs of Neural Machine Trans-
lation (NMT) systems. After the decoding pro-
cess, we select a few last iteration outputs in
the training process as the N -best list. After
training a Neural Machine Translation (NMT)
baseline system, it has been observed that
these iteration outputs have an oracle score
higher than baseline up to 1.01 BLEU points
compared to the last iteration of the trained sys-
tem.We come up with a ranking mechanism by
solely focusing on the decoder’s ability to gen-
erate distinct tokens and without the usage of
any language model or data. With this method,
we achieved a translation improvement up to
+0.16 BLEU points over baseline.We also eval-
uate our approach by applying the coverage
penalty to the training process.In cases of mod-
erate coverage penalty, the oracle scores are
higher than the final iteration up to +0.99
BLEU points, and our algorithm gives an im-
provement up to +0.17 BLEU points.With ex-
cessive penalty, there is a decrease in transla-
tion quality compared to the baseline system.
Still, an increase in oracle scores up to +1.30
is observed with the re-ranking algorithm giv-
ing an improvement up to +0.15 BLEU points
is found in case of excessive penalty.The pro-
posed re-ranking method is a generic one and
can be extended to other language pairs as
well.

1 Introduction

Neural Machine Translation(NMT) has brought
excellent results in the field of Machine Transla-
tionSutskever et al. (2014); Bahdanau et al. (2014);
Cho et al. (2014) due to generation of high-quality
translations for different language pairs. Yet even
higher quality can be achieved by combining mul-
tiple models by techniques like ensembles Hansen
and Salamon (1990) and reranking Shen et al.
(2004). Our work deals with how Neural Machine

Translation (NMT) can achieve better results ex-
plicitly with reranking methods.

Neural Machine Translation has an encoder-
decoder architecture that is jointly trained to max-
imize the probability of target given source sen-
tences. It first encodes the source sentence into a
single vector, and the decoder predicts it.With the
Attention Mechanism, it tries to apply weights to
the input sentence at each time step. Recent ap-
proaches like the transformer model Vaswani et al.
(2017) have achieved the state-of-the-art results for
Machine Translation.

Neural Machine Translation (NMT) however,
leads to over-translation and under-translation as it
tends to ignore the past alignment information, and
it is effectively tackled by introducing a coverage
vector Tu et al. (2016). Other approaches such as
Mi et al. (2016a) and Mi et al. (2016b) too solve the
coverage problem in NMT. Without the coverage
vector, it could result in a decrease in translation
quality.

We propose a method that selects a better hy-
pothesis giving high importance to distinct words
generated from decoder without the usage of any
language model or data.After applying the pro-
posed reranking method, an overall improvement
in translation quality is observed as compared to
the baseline system.

The rest of the paper is organized as follows;
Section 2 discusses the work related to re-utilizing
existing models for Machine Translation. Section
3 describes our approach for Checkpoint based
Reranking. In Section 4, we present our Reranking
Algorithm. In Section 5, we demonstrate all of our
Experiments along with the results obtained, and
finally, the paper is concluded in Section 6 with
future directions.
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2 Related Work

The work of Imamura and Sumita (2017) explains
the concepts of reranking and ensembling in detail.
It introduces a method of bidirectional reranking in
which it combines the hypothesis from l2r and r2l
decoding following the works of Liu et al. (2016),
which proposes an agreement model to solve unbal-
anced outputs of recurrent neural networks. Marie
and Fujita (2018) has introduced a reranking sys-
tem that uses a smorgasbord of informative features
in tasks where PBSMT and NMT produce transla-
tions of different quality.

The work by Shen et al. (2004) shows how to
apply perceptron-like reranking algorithms to im-
prove the overall translation quality, and Olteanu
et al. (2006) shows the usage of Language Models
(LMs) for reranking on hypotheses generated by
phrase-based Statistical Machine Translation sys-
tems. Wang et al. (2007) has shown linguistically
motivated and computationally efficient structured
language models for reranking in SMT systems.

The concept of Checkpoint ensembles is intro-
duced by Sennrich et al. (2016) and was later on
improvised to independent ensembling Sennrich
et al. (2017). Vaswani et al. (2017) included a
checkpoint averaging method for their model. Liu
et al. (2018) has focused on decoding techniques
that utilize existing models at parameter, word, and
sentence level corresponding to checkpoint aver-
aging, model ensembling, and candidate reranking
and found that all of these improve the translation
quality without retraining the model.

3 Checkpoint Based Reranking

In our approach, the iteration outputs are selected
as the N -best list. It implies for the last K itera-
tions; we have the corresponding K-best list for
a sentence. We take our Oracle scores as the one
that is having the largest BLEU Score Papineni
et al. (2002) on the test reference hypothesis from
this K-best list. After obtaining the oracle scores
from this K-best list, we observe that this score is
larger than the baseline system, and it indicates that
there is scope for further improvement of transla-
tion quality. So we propose a reranking method that
improves the translation quality over the baseline
system without any language model or data.

We try to focus on the nature of translations that
the decoder generates with and without coverage
penalty. In the initial step, we keep track of the
number of distinct words in the generated hypothe-

sis, and the later ones we keep track of words that
have repeated more than once.A higher score is
given for sentences having a higher number of Dis-
tinct Tokens (D) and lower scores for those having
more number of repetitive words (F ).

For each sentence in the N -best list, these scores
are sorted, and the sentence having the highest
score is selected. This process is repeated for the
entire test set, and the ones that are having the top
most scores are chosen as the reranked output, as
shown in Section 4.

4 Reranking Procedure

Algorithm 1 Method
Input: Translated Target Language Sentences

H = ( h(n� k)...,h(n) ) at last k epochs for given
sentence

Output: Sentence having highest num-
ber of distinct words and lowest repetitive
words

for each sentence hj in H do
if hj  (w1,w2,w3...wl) then
D ! DISTINCT ((w1,w2,w3...wl))
F ! FREQ(w1)⇥FREQ(w2)...

scorej !D/F
end if
return sentence with highest scorej

end for=0

For a sentence, FREQ is the count of each word;
DISTINCT is the total count of unique words. For
each hypothesis in the K-best list we divide DIS-
TINCT with FREQ and select the highest scorer.

5 Experiments and Results

5.1 DataSet
We used ILCI Jha (2010) corpus, which has eleven
language pairs from which we chose Telugu and
Hindi as our parallel data during the training pro-
cess. The entire corpus is manually cleaned to
remove the misalignments. Table 1 shows the split
ratio of sentences followed in the process.

Data Size
Training 45000
Validation 4000
Test 990

Table 1: Corpus Division
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5.2 Experiments

We adopt the Keras implementation Álvaro Peris
and Casacuberta (2018) for our experiments.We
use a two-layer encoder-decoder model with 500-
dimensional source and target embeddings and 500
units in each of the layers. The encoder layers are
LSTM Hochreiter and Schmidhuber (1997) and
decoder are ConditionalLSTM with Bahdanu’s at-
tention Bahdanau et al. (2014) and the optimizer
used is Adam Kingma and Ba (2014) and the model
is trained for 15 iterations with a batch size of 512
sentences. The rest of the parameters in the con-
figuration file were set to their default values. We
evaluate with coverage penalty and the absence of
it for our experiments.

The hypotheses are collected for the last k=3,
5, 7 during decoding. We evaluate the generated
hypotheses with BLEU Papineni et al. (2002) for
our experiments.

5.3 Results

Hypothesis BLEU
Checkpoint-1 0.62
Checkpoint-2 3.55
Checkpoint-3 8.83
Checkpoint-4 13.53
Checkpoint-5 17.01
Checkpoint-6 19.20
Checkpoint-7 20.72
Checkpoint-8 21.09
Checkpoint-9 21.38
Checkpoint-10 21.87
Checkpoint-11 22.39
Checkpoint-12 22.37
Checkpoint-13 22.57
Checkpoint-14 22.71
Checkpoint-15 22.92

Table 2: BLEU Scores with Baseline System

The scores obtained after each iteration are
shown in Table 2. After this, we apply our pro-
posed reranking method to the last few iteration
outputs, which are selected as the N -best list. The
proposed reranking method leads to an overall im-
provement of translation quality by +0.07, +0.15,
+0.16 BLEU score compared to the baseline with
oracle improvements up to +0.55, +0.90, +1.01 on
the three systems. The scores obtained for each of
them are shown in Tables 3, 4, 5.

System BLEU
Baseline 22.92
Reranking 22.99 (+0.07)
Oracle 23.47 (+0.55)

Table 3: Last 3 Iterations

System BLEU
Baseline 22.92
Reranking 23.07 (+0.15)
Oracle 23.82 (+0.90)

Table 4: Last 5 Iterations

System BLEU
Baseline 22.92
Reranking 23.08 (+0.16)
Oracle 23.93 (+1.01)

Table 5: Last 7 Iterations

5.4 With Coverage Penalty
We also evaluate our work by adding coverage
penalty Wu et al. (2016) in the training process to
ensure that this algorithm works when both the un-
der translations and over translations are addressed
adequately. All the hyperparameters are kept the
same as the baseline system except for the coverage
penalty.

Hypothesis 0.1 penalty
Checkpoint-1 1.22
Checkpoint-2 5.59
Checkpoint-3 11.92
Checkpoint-4 16.59
Checkpoint-5 19.18
Checkpoint-6 20.51
Checkpoint-7 21.26
Checkpoint-8 21.40
Checkpoint-9 21.80
Checkpoint-10 21.72
Checkpoint-11 22.27
Checkpoint-12 22.57
Checkpoint-13 23.11
Checkpoint-14 22.93
Checkpoint-15 23.35

Table 6: BLEU Scores With 0.1 Coverage Penalty
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Figure 1: Comparison with Baseline System

System 0.1 penalty
Baseline 23.35
Reranking 23.40 (+0.05)
Oracle 23.86 (+0.51)

Table 7: Last 3 Iterations with 0.1 coverage penalty

System 0.1 penalty
Baseline 23.35
Reranking 23.50 (+0.15)
Oracle 24.17 (+0.82)

Table 8: Last 5 Iterations with 0.1 coverage penalty

System 0.1 penalty
Baseline 23.35
Reranking 23.52 (+0.17)
Oracle 24.34 (+0.99)

Table 9: Last 7 Iterations with 0.1 coverage penalty

From Tables 7, 8, 9 it can be inferred that there is
an improvement of +0.05, +0.15, +0.17 and oracle
improvements up to +0.51, +0.82, +0.99 for 0.1
coverage penalty.

With excess coverage penalty, there is a decline
in translation quality compared to the baseline sys-
tem without coverage penalty, as shown in Tables
2 and 10. Still, the proposed method gives an in-
crease of +0.12, +0.15, +0.15 over baseline with
oracle improvements up to +0.91, +1.30, +1.30
for the last 3, 5 and 7 checkpoints respectively as
shown in Tables 11, 12, 13.

One can also observe that the improvements and
the oracle scores increase correspondingly with
the size of the N -best list.The variation with the
baseline can be obtained as shown in Figure 1.

Hypothesis 0.2 penalty
Checkpoint-1 1.33
Checkpoint-2 3.54
Checkpoint-3 10.10
Checkpoint-4 15.36
Checkpoint-5 18.08
Checkpoint-6 19.36
Checkpoint-7 20.35
Checkpoint-8 20.29
Checkpoint-9 20.56
Checkpoint-10 20.96
Checkpoint-11 21.43
Checkpoint-12 21.52
Checkpoint-13 21.66
Checkpoint-14 21.56
Checkpoint-15 21.81

Table 10: BLEU Scores With 0.2 Coverage Penalty

System 0.2 penalty
Baseline 21.81
Reranking 21.93 (+0.12)
Oracle 22.72 (+0.91)

Table 11: Last 3 Iterations with 0.2 coverage penalty

System 0.2 penalty
Baseline 21.81
Reranking 21.96 (+0.15)
Oracle 23.11 (+1.30)

Table 12: Last 5 Iterations with 0.2 coverage penalty

System 0.2 penalty
Baseline 21.81
Reranking 21.96 (+0.15)
Oracle 23.11 (+1.30)

Table 13: Last 7 Iterations with 0.2 coverage penalty

6 Conclusions and Future Work

In this paper, we introduce a method of selecting
an N -best list for NMT systems and propose a way
of reranking to the generated hypotheses from the
system. We observe that our approach is giving bet-
ter results over the baseline model by following the
proposed reranking method and is also evaluated
with the coverage penalty.

One can investigate our approach with vary-
ing beam sizes and analyzing the effect of length
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penalty Wu et al. (2016) and comparing it with
methods such as Yang et al. (2018). We also look
forward to coming up with better reranking ways
that are closer to the oracle scores and investigate
the efficacy of the approach in low-resourced data
conditions.

Language models are used for getting the like-
lihood of sentences and is a widely used concept
for reranking hypotheses. Introducing Language
Models during reranking could establish a tradeoff
between perplexity and the scores to the hypothe-
ses generated. We also plan to explore the work by
Çaglar Gülçehre et al. (2017) and Çaglar Gülçehre
et al. (2015) that introduces language models into
the existing neural architecture with methods such
as Shallow Fusion and Deep Fusion. It is another
promising area to be looked upon for reranking.
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Abstract

Distinguishing informative and actionable
messages from a social media platform like
Twitter is critical for facilitating disaster man-
agement. For this purpose, we compile a multi-
lingual dataset of over 130K samples for multi-
label classification of disaster-related tweets.
We present a masking-based loss function for
partially labeled samples and demonstrate the
effectiveness of Manifold Mixup in the text
domain. Our main model is based on Multi-
lingual BERT, which we further improve with
Manifold Mixup. We show that our model
generalizes to unseen disasters in the test set.
Furthermore, we analyze the capability of our
model for zero-shot generalization to new lan-
guages. Our code, dataset, and other resources
are available on Github.1

1 Introduction

In times of disaster, affected individuals often turn
to social media platforms, such as Twitter or Face-
book, to express their feelings generated by a disas-
ter, update friends and relatives on their status, re-
quest help or supplies, or report useful information
to the disaster response teams. Response organiza-
tions can use social media to increase situational
awareness by providing information about disas-
ter status, ongoing rescue operations, and disas-
ter warnings (Palen and Hughes, 2018). However,
the low entry-barrier of social media platforms,
where everybody can post their own “news” in real-
time, leads to information overload, making it hard
for users to find relevant and useful information
(Reuter et al., 2018). Thus, it is crucial to filter out
the non-informative messages, and to distinguish
among different categories of informative messages
to ensure that a message reaches its target users. In

1https://github.com/JRC1995/
Multilingual-BERT-Disaster

turn, this can help facilitate disaster response and
increase situational awareness.

Towards this goal, in recent years, many works
have focused on disaster-related tweet classifica-
tion (Alam et al., 2018b; Mazloom et al., 2018;
Nguyen et al., 2017; Li et al., 2017; Neppalli et al.,
2018; Caragea et al., 2016, 2011). However, most
of these works have focused on the classification
of English tweets only, with a few notable excep-
tions (Musaev and Pu, 2017; Khare et al., 2018;
Lorini et al., 2019; Torres et al., 2019). We stress
that there are a lot of disaster-prone non-English-
speaking countries, which could benefit from a
multilingual classifier that can be used in real-time
to identify useful information on social media. Fur-
thermore, there is a lack of a large scale standard
multilingual disaster-related dataset for multi-label
classification with diverse disaster types. Against
this background and needs, we make the following
contributions:

1. We aggregate existing datasets into a large dis-
aster dataset using a new annotation scheme.
Furthermore, by utilizing a class-mask (elab-
orated in Section 4.1), we make use of both
binary-classification data and multi-class clas-
sification data in the same training phase.

2. We explore Manifold Mixup (Verma et al.,
2019) in the natural language-based disaster
domain. Manifold Mixup is a regularization
technique originally introduced in computer
vision tasks.

3. We employ Multilingual BERT (Devlin et al.,
2019) to train multilingual classifiers. We
demonstrate its generalization on unseen dis-
asters and its zero-shot transfer-ability to lan-
guages not present in the training data.
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2 Related Work

There are numerous prior works on disaster-related
tweet classification. For example, Imran et al.
(2013; 2015) focus on classifying and extracting ac-
tionable information from disaster-related tweets,
assuming that sufficient labeled tweets from the
ongoing disaster are available for model training.
Later, Imran et al. (2016b) explore real-time clas-
sification of tweets from a target disaster using
models trained on past disasters. Nguyen et al.
(2017) introduce a Convolutional Neural Network
that performs robustly even on out-of-event data
during inference. Other works explore domain-
adaptation that uses labeled tweets from past dis-
asters and unlabeled tweets from an ongoing dis-
aster (Li et al., 2018; Alam et al., 2018a). Kruspe
(2019) take a few-shot learning approach, in which
a disaster-specific model is trained using only a few
(around 10) examples for disaster-related tweet de-
tection. In contrast, we train a universal model
on diverse disaster types for fine-grained classifi-
cation and show that it performs remarkably well
on unseen disaster types without further training
(specifically, it achieves zero-shot generalization
to unseen events). Wang and Lillis (2019) classify
actionable tweets using ELMo contextual word em-
beddings, whereas Ma (2019) uses a monolingual
BERT-based model for disaster-related tweet clas-
sification. In contrast, we work with a multilingual
model, which we compare with multiple baselines,
and augment with Manifold Mixup.

Regarding cross-lingual approaches, Dittrich
and Lucas (2014) present a real-time application
tool for multilingual tweet classification and dis-
aster detection. However, this tool requires a
long training phase with tweets from specific ar-
eas for robust detection, and its multilingual clas-
sifier filters messages based on shallow matching
of pre-selected keywords (and their translations).
Musaev and Pu (2017) construct a multilingual
model for tweet classification using multilingual
Wikipedia articles as knowledge repository. Khare
et al. (2018) also take into account cross-lingual ca-
pabilities, however, this is limited to the fixed few
number of languages that are present in their an-
notated training data and do not generalize to new
languages without further training. M-BERT over-
comes these shortcomings. Similar to us, Lorini
et al. (2019) use multi-lingual word embeddings
for cross-lingual classification, but they use non-
contextual embeddings. Torres et al. (2019) use

contextualized word embeddings for cross-lingual
analysis, but only on limited samples (8K) and
only for two languages (English and Spanish).

A few recent works (Pires et al., 2019; K et al.,
2020) also demonstrate the strong cross-lingual and
zero-shot transfer capabilities of M-BERT, but not
in the disaster domain.

3 Aggregated Dataset

To prepare our large multilingual dataset, we ag-
gregated several resources from CrisisNLP,2 to-
gether with two resources from CrisisLex.3 Specif-
ically, we used Resource #1 (Imran et al., 2016a),
Resource #4 (Nguyen et al., 2017), Resource #5
(Alam et al., 2018c), and Resource #7 (Alam et al.,
2018a) from CrisisNLP, and CrisisLexT6 (Olteanu
et al., 2014) and CrisisLexT26 (Olteanu et al.,
2015) from CrisisLex. The original classes in
each resource, together with the mapping to the
new classes included in our data set, can be seen
in Table 1. Some examples from the dataset are
shown in Table 2. For the dataset construction, the
following classes were included:

1. Casualties and Damage (C & D): This class
consists of tweets related to affected indi-
viduals, displaced people, building collapse,
rescue operations, infrastructure and utilities
damage, needs of affected people, missing
or trapped people, and other topics related to
situational awareness and disaster response.

2. Donation and Volunteering (D & V): This
class consists of tweets related to donations,
volunteering requests, and other needs and
requests targeted to individuals following the
disaster and/or supporting the victims.

3. Caution and Advice (C & A): This class
consists of tweets recommending caution, ex-
pressing warnings, or providing advice regard-
ing the crisis situation. Such tweets are useful
for the affected individuals.

4. Informative (I): This is a general class,
which includes: tweets belonging to any of
the above three classes; tweets with niche cat-
egories that do not fit into the above classes;
tweets with more vague classes (e.g., “other
useful information”); and tweets originally la-
beled with only binary classes such as relevant
or informative.

2https://crisisnlp.qcri.org/
3https://crisislex.org/data-collections.html
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Original Class New Class Original Class New Class Original Class New Class
CrisisNLP Resource #1 CrisisNLP Resource #5

Other relevant info. I Disease signs, symptoms C & D, I Other relevant info. I
Displaced people C & D, I Affected People C & D, I Affected individuals C & D, I
Needs of those affected C & D, I Prevention C & A, I Injured or dead C & D, I
Donations of money D & V, I Death Reports C & D, I Vehicle damage C & D, I
Not related to crisis N Disease Transmission I Infrastructure & util. C & D, I
Infrastructure C & D, I Treatment I Volun. & Donation D & V, I
Shelter and supplies D & V, I Displaced people & evac. C & D, I Missing or found C & D, I
Other relevant I Other Useful Info. I CrisisNLP Resource #7
Injured and dead C & D, I Money D & V, I Relevant I
Volunteer or Prof. services D & V, I Caution & Advice C & A, I Not relevant N
Sympathy & emotional N Humanitarian Aid D & V, I CrisisLexT6
Infrastructure & util. C & D, I People missing or found C & D, I on-topic I
Donations supp. & volun. D & V, I Response Efforts C & D, I off-topic N
Not related or irrelevant N Urgent Needs D & V, I CrisisLexT26
Requests for Help/Needs D & V, I Not Informative N Affected individuals C & D, I
Praying N CrisisNLP Resource #4 Not applicable N
Missing, trapped, found C & D, I Other Useful Info. I Donations & volun. D & V, I
Not Relevant N Not related or irrelevant N Sympathy & support N
Informative I Affected Individuals C & D, I Caution and advice C & A, I
Injured or dead people C & D, I Sympathy and support N Infrastructure & util. C & D, I
Infrastructure damage C & D, I Donations and volunteering D & V, I Other Useful Info. I
Personal, sympathy, support N

Table 1: Overview of mappings between the original classes and the new classes.

Examples Original label New label

Another typhoon named internationally as #BOPHA will hit #Southern
#Mindanao. It will be named #Pablo in RP. Oh noooooes!!

Other Useful Info. Informative

#RescuePH Rescue pls family trapped at Blk64 Lot2 Phase2 Dela
Costa Homes V Burgos Montalban Rizal.Family of 4w/2 children. ...”

Affected individuals Casualties & Damage

Methods of prevention of Coronavirus: Use a tissue when coughing or
sneezing, cover your mouth and nose with it, and then get rid of it

Prevention Caution & Advice

Table 2: Examples from the aggregated dataset with the original and new label.

5. Non-Informative (N): This class consists of
all the tweets that are not included in the In-
formative class.

Some of the above classes (for example, Casualties
and Damage) are very broad and could be broken
down into more specific classes. However, keeping
them broad simplifies the aggregation of different
annotation schemes and prevents the formation of
multiple fine-grained but sparse classes.

During aggregation, we treat the first four classes
as mutually exclusive (they are also mutually ex-
clusive with the Non-Informative class). We filter
out duplicate tweets. For duplicates from different
resources that were originally associated with more
than one mutually exclusive classes, we keep only
the first class, based on the order in which classes
are listed above.

Statistics about the final dataset with respect to
the number of tweets per class and per language
are shown in Table 3.

Number of Tweets per Class

C & D D & V C & A I N
16, 235 9, 125 3, 634 79, 473 54, 947

Number of Tweets per Language

English Spanish Italian French Others
123, 406 4, 724 1, 581 666 4043

Table 3: Samples per class and per language.

4 Methods

4.1 Classification Approach

In general, all of our models use a sentence en-
coder to map a tweet to a single vector sentence
representation. The vector is then fed to multi-
ple binary classifiers. Specifically, we train four
classifiers. One classifier distinguishes between
Informative and Non-Informative classes, while the
other three classifiers correspond to the remaining
three classes: Casualties and Damage, Caution and
Advise, and Donations and Volunteers, respectively
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(each classifier predicts whether a tweet belongs to
a particular class or not).

We should note that there are many tweets
belonging to the Informative class, which orig-
inally only had binary classes (informative/non-
informative or relevant/non-relevant). While those
tweets may also belong to one of the more fine-
grained classes, their class could not be determined,
if it was not available in the original resources. In
other words, many of the samples in the dataset are
partially labeled (where the binary “informative”
or “Non-Informative” class is present but the other
fine-grained class information is absent). However,
ignoring all partially labeled tweets would result
in removing nearly half of the data. In order to get
the benefit from the binary-classification-only data
while also enabling the same model to work on
multi-label classification we devise a label mask-
ing strategy. Precisely, the mask is used to ensure
that the loss signal is only propagated from classes
which are annotated. The strategy is discussed in
further details below.

By default, we use the negative class for the three
fine-grained categories as dummy ground-truth for
such cases. We then mask out (i.e., zero out) the
loss from the dummy ground truth cases during
training. For masking the loss from dummy ground
truth, we use a class mask mij (i.e., a mask for the
jth class and the ith sample), where mij is 0 if the
actual jth class ground truth is not present for the
ith sample, otherwise it is 1. Overall, we use binary
cross entropy for each of the classifiers with the
class masks and class weights. The loss function
can be formalized as:

L = �
1

N

NX

i=1

1

K

KX

j=1

mij ·(cjyij · logP✓(yij |xi)

+ (1� yij) · log(1� P✓(yij |xi))) (1)

where K is the number of classes, N is the number
of samples, cj is the class weight for the jth class,
xi is the ith tweet string, ✓ represents the model pa-
rameters, and P✓(yij |xi) is the model prediction for
the ith tweet string and the jth class. We use class
weights to handle class imbalance. We consider
the cost of filtering out an important and urgent
tweet to be higher than the cost of including a non-
informative tweet. This is why we bias our model
towards recall by using class-weights of value � 1

for the positive classes. We use a class weight
of 1 for the Informative versus Non-Informative

classes (as they are fairly balanced, with already
a small bias towards the positive class). For the
fine-grained classes, we use the following formula
to find the class weights:

ci =
maxj({count(classj)|classj 2 C})

count(classi)
(2)

where C = {‘Non-Informative’, ‘Casualties &
Damage’, ‘Donation & Volunteering’, ‘Caution
& Advice’}. We should note here that the loss func-
tion does not take the positive classes as mutually
exclusive since, in principle, a single tweet could
have multiple classes (for example, a tweet could
have both ‘Caution and Advice’ and ‘Casualties
and Damage’).4

4.2 Sentence Encoders
As we focus on supervised learning from large
data, we use some standard text classification mod-
els, such as FastText (Joulin et al., 2017; Mikolov
et al., 2018), CNN (Kim, 2014), XML-CNN (Liu
et al., 2017), and BiLSTM (Adhikari et al., 2019)
as baseline sentence encoders. We compare them
with M-BERT (Devlin et al., 2019) encoders.

Manifold Mixup. We also adopt Manifold Mixup
(Verma et al., 2019) in our main model (M-BERT).
Mixup (Zhang et al., 2018) was originally intro-
duced in the image classification domain as a data
augmentation based regularization technique. The
original technique augments data by linearly in-
terpolating two different input data samples and
their associated classes. In effect, this helps make a
model more robust by inducing a linear behavior in-
between training samples. Guo et al. (2019) show
that Mixup both at the level of word embeddings
and at the level of sentence embeddings (output of
sentence encoder) is effective for text classification.
Manifold Mixup is a more recent variant of the
original input Mixup, where the hidden states of
two different data samples, along with their associ-
ated classes, are linearly interpolated. To do this, a
mixup ratio � is sampled from a Beta distribution,
as: � ⇠ Beta(↵,↵).

Next, a hidden layer l is randomly chosen for
mix up. Let hli be the randomly chosen lth hidden

4Even though the classifiers are not mutually exclusive,
the annotated classes (excluding the more general informative
class) are kept mutually exclusive because there were not
many multi-label annotations in the original data and most
tweets tend to belong to only one of the specific classes. One
could also use mutually exclusive classifiers with the given
data.
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Model F1 (mean, std) F1 (mean, std)

Meteor (802) Cyclone (2, 473)

FastText 73.79± 0.55 81.81± 0.67
FastTexthier 74.61± 1.19 81.59± 0.50
CNN 66.83± 2.16 82.40± 0.48
XML-CNN 74.34± 2.51 82.04± 1.02
BiLSTM 72.40± 2.47 82.65± 0.88

M-BERT 83.63± 0.78 83.99± 0.47
+Word Mixup 83.02± 0.95 85.48± 0.64⇤

+Sentence Mixup 82.62± 0.55 83.78± 0.73
+Mixup 84.90± 0.84⇤ 85.09± 0.86⇤

Flood (684) Mixed (10, 000)

FastText 75.53± 0.54 82.91± 0.05
FastTexthier 76.21± 0.81 84.09± 0.24
CNN 72.78± 3.18 83.70± 0.12
XML-CNN 77.03± 1.26 84.56± 0.32
BiLSTM 74.35± 0.25 84.33± 0.15

M-BERT 78.51± 0.93 86.77± 0.18
+Word Mixup 79.18± 0.95⇤ 87.31± 0.29⇤

+Sentence Mixup 79.85± 0.50 87.32± 0.20⇤

+Manifold Mixup 79.36± 0.79 87.39± 0.23⇤

Table 4: F1 scores on four test datasets (English Only).
* means that the difference from M-BERT is statisti-
cally significant.

layer output from the ith tweet sample, and let hlj
be the hidden layer output from the jth sample.
The two outputs can be mixed up as follows:

˜hli = � · hli + (1� �) · hlj (3)

where ˜hli is the augmented (mixed-up) hidden state.
We use the same � to mix the hidden states of the
tweet samples i and j, and also the corresponding
ground truth classes and class masks for each class
k included in our dataset:

ỹik = � · yik + (1� �) · yjk (4)
m̃ik = � ·mik + (1� �) ·mjk (5)

where, ỹik and m̃ik are the corresponding mixed-up
class and class-mask, respectively. The augmented
class-masks can be intuitively thought of as indi-
cating to what extent the loss following the corre-
sponding augmented ground truth class should be
considered. If the major fraction of the mixed up
class is a dummy class, then the corresponding aug-
mented class-mask should have a low value. We
also compare Word Mixup and Sentence Mixup.
Word Mixup and Sentence Mixup can be consid-
ered as special cases of Manifold Mixup where the
mixup is applied on only a specific layer. In case of
word mixup, it is the first embedding layer, and in
case of Sentence Mixup it is the final layer output
of the sentence encoder.

Model F1 (mean, std) F1 (mean, std)

Meteor (930) Cyclone (2, 558)

M-BERT 81.39± 1.42 84.60± 1.06
+Word Mixup 80.16± 3.09 84.47± 0.81
+Sentence Mixup 80.97± 1.65 84.87± 0.71
+Manifold Mixup 81.73± 0.78 85.15± 0.79⇤

Flood (768) Mixed (10, 000)

M-BERT 79.24± 1.28 86.63± 0.22
+Word Mixup 78.32± 0.81⇤ 87.10± 0.19
+Sentence Mixup 78.77± 0.69 86.98± 0.18
+Manifold Mixup 79.84± 0.68⇤ 87.44± 0.11⇤

Table 5: F1 scores on four test datasets (Full Dataset). *
means that the difference from M-BERT is statistically
significant.

5 Experiments and Results

5.1 Experimental Setup

We use four datasets for testing: Russia Meteor, Cy-
clone Pam, Philippines Flood, and Mixed disasters.
To demonstrate the generalization capabilities of
our models, we ensured that the first three datasets
are from disasters that are absent in the training set.
For M-BERT-based models, we use a mini batch
size of 32, a learning rate of 10�3 for non-BERT
parameters, and a fine-tuning rate of 2⇥ 10

�5 for
M-BERT parameters. We set the parameter ↵ of
the Beta distribution for the Mixup equation to 2.
We run each model five times and report the mean
and standard deviation of the results obtained in the
5 runs. For the other models, we import the parame-
ter settings from their corresponding paper and then
perform light manual tuning. The exact hyperpa-
rameters are available on Github.5. For significance
testing, we used the paired t-test (p  0.05) (Dror
et al., 2018) Note that the CNN baseline is also
similar to the model used by Nguyen et al. (2017)
which was demonstrated to be a strong performer
in disaster-related classification.

5.2 Results

In Table 4, we show the results on English only
samples, and in Table 5, we show the results on the
full multilingual test sets. As can be seen in Ta-
ble 4, the M-BERT outperforms all the non-BERT
baseline models. Using Manifold Mixup consis-
tently increases the performance of base M-BERT
in all cases, often also working better than Word
Mixup and Sentence Mixup, especially for the mul-
tilingual setting (see Table 5). Manifold Mixup

5https://github.com/JRC1995/
Multilingual-BERT-Disaster
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Language Samples F1 (mean, std)

French (zero shot) 666 81.33± 0.77

Italian (zero shot) 1, 581 75.44± 0.67

Spanish (zero shot) 4, 724 85.26± 0.37

Table 6: F1 scores of M-BERT + Manifold Mixup.

C & D D & V C & A I

79.8± 0.5 77.5± 1 70.3± 1 90.9± 0.2

Table 7: Per-class F1 of M-BERT+Manifold Mixup on
Multilingual Mixed Disasters.

either outperforms or is very close to the other
Mixup techniques. Table 6 shows the results of
the cross-lingual experiments with M-BERT and
Manifold Mixup for French, Italian, and Spanish
languages, respectively, in a zero shot setting (Pires
et al., 2019), where no tweets in the test language
are included in the training set.

As can be seen from the table, the zero shot F1-
score on Spanish is 85.25% (which is comparable
to the best results in the previous experiments), de-
spite the fact that no Spanish tweets were included
in the training. The zero shot F1-scores on French
and Italian are 81.33% and 75.44%, respectively.
These results show that the M-BERT+Manifold
Mixup model has good generalization capability
in the new language (zero shot) setting. Thus, we
can conclude that our M-BERT+Manifold Mixup
model has great capability to generalize to a disas-
ter in a new language (unseen in the training set) as
long as the language is one of the 104 languages on
which M-BERT was pre-trained. This is a strong
result given that disasters can happen in countries
with limited resources for automated classification
of social media information.

In Table 7, we check the binary classification per-
formance of M-BERT+Manifold Mixup for each
class. As we can see, our model achieves an F1

above 90% for the binary classification task of dis-
tinguishing whether a tweet is informative or not.
Interestingly, it does not perform too poorly on Cau-
tion & Advice either despite having very limited
samples for this class in the training set.

6 Conclusion

We present a way to aggregate prior disaster-related
resources to compile a large scale tweet dataset for
multi-label classification utilizing both multi-class
classes and binary classes. We motivate the use of

M-BERT for disaster-related tweet classification
and we demonstrate its strong performance on un-
seen disasters and languages. We also motivate the
use of Manifold Mixup for further improvement. In
the future, it would be interesting to explore weak
suervision and other data augmentation techniques
to improve models’ robustness further.
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Abstract

The principle of compositionality has deep
roots in linguistics: the meaning of an ex-
pression is determined by its structure and the
meanings of its constituents. However, mod-
ern neural network models such as long short-
term memory network process expressions in
a linear fashion and do not seem to incorpo-
rate more complex compositional patterns. In
this work, we show that we can explicitly in-
duce grammar by tracing the computational
process of a long short-term memory network.
We show: (i) the multiplicative nature of long
short-term memory network allows complex
interaction beyond sequential linear combina-
tion; (ii) we can generate compositional trees
from the network without external linguistic
knowledge; (iii) we evaluate the syntactic dif-
ference between the generated trees, randomly
generated trees and gold reference trees pro-
duced by constituency parsers; (iv) we evalu-
ate whether the generated trees contain the rich
semantic information. 1

1 Introduction

Recurrent neural networks have demonstrated sur-
prising performance on processing natural lan-
guage data, surpassing traditional n-gram or hand-
engineered features on a variety of tasks. Natu-
rally, curiosity about whether these models cap-
ture aspects of linguistic knowledge increases. Re-
cent works proposed different probing tests on
whether a model learns a set of linguistic prop-
erties (Conneau et al., 2018) such as subject-verb
agreement (Linzen et al., 2016), syntax-sensitive
dependencies (Kuncoro et al., 2018), whether a
neuron learns to recognize a group of words with
special properties (such as date) (Dalvi et al., 2019),
or by dropping the word in the context far away vs

1Codes are available at https://github.com/
windweller/LSTMTree/.

nearby and trace perplexity to see how neural net-
works leverage context (Khandelwal et al., 2018).

However, there are two major limitations of the
probing tests: i) probing tests are limited in the
scope of their claim; ii) probing tests often treat
model as a blackbox, reaching conclusions by di-
rectly altering the testing stimuli and observing the
change in the outcome. This type of research often
does not yield satisfactory conclusion about the
underlying complex mechanism of the blackbox
model (Jonas and Kording, 2017).

More holistic approach has been explored to
study whether modern neural networks understand
sentences by implicitly inducing recursive struc-
tures that match the semantics and syntactic theo-
ries in linguistics (Williams et al., 2018). However,
Williams et al. (2018) studied a specific type of
models that explicitly build tree representations of
each sentence, which are far from common text pro-
cessing models such as long short-term memory
(LSTM) networks (Hochreiter and Schmidhuber,
1997). In the end, the question of whether common
text processing model assumes implicit linguistic
structures is left unanswered.

In this work, we draw inspirations from the field
of deep learning model interpretations to provide
a glimpse into how LSTM networks process a sen-
tence, and extract a tree structure that LSTM net-
works implicitly create. Using the techniques from
contextual decomposition (Murdoch et al., 2018),
we propose a tree building algorithm that mimics
construction grammar in that the grammar we in-
duce is conditionally dependent on the task and the
sentence. We extend Williams et al. (2018)’s analy-
sis on the trees generated from the LSTM networks.
We evaluate whether the induced tree structures
syntactically resemble constituency grammar, and
we evaluate whether training a recursive neural
network on the induced structure will provide per-
formance gain over recursive neural network on the
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constituency grammar.
Similar to Williams et al. (2018)’s conclusion on

models that explicitly build tree representation, we
conclude that induced trees from LSTM networks
also do not resemble semantic or syntactic formal-
ism created by human. We hope our work can
encourage future work about interpretation-based
methods and their connections with semantic and
syntactic theory in linguistics.

2 Method

2.1 Long Short-Term Memory Networks
Long Short-Term Memory Network is a recurrent
neural network composed of a cell, an input gate,
an output gate and a forget gate (Hochreiter and
Schmidhuber, 1997). The cell remembers values
over arbitrary time intervals and the three gates
regulate the flow of information into and out of the
cell. This type of network processes input from left
to right, with the same cell weights.

ot = �(Woxt + Voht�1 + bo)

ft = �(Wfxt + Vfht�1 + bf )

it = �(Wixt + Viht�1 + bi)

gt = tanh(Wgxt + Vght�1 + bg)

ct = ft � ct�1 + it � gt

ht = ot � tanh(ct)

(1)

2.2 Shapley Value
Given a function f and variables F = {z1, ..., zn},
and a subset S ✓ F \ {zi}, we can define the
Shapley value �i of a given variable zi as:

�i(f) =
X

S✓F\{zi}

1

Z
(f(S [ zi)� f(S)) (2)

Intuitively, Shapley value computes the contri-
bution of a term for the final outcome by executing
the function with the term zi and without the term
zi in all possible permutations (enumerating over
the presence and absence of all other variables),
and then takes the average over the number of such
permutations Z. Shapley value has been shown as
the unifying framework that subsumes many other
deep learning interpretation methods (Lundberg
and Lee, 2017).

Shapley value has some desirable properties.
For example, Shapley values are locally accurate,

which means f(z1, ..., zn) =
Pn

i=1 �i(f). We ob-
tain an additive linear combination of Shapley val-
ues �i that will produce the same output as the
original model f . Murdoch et al. (2018) proposed
to use Shapley decomposition to linearize the non-
linear activation functions in the LSTM networks.

Let f(a, b) = tanh(a + b), we can linearize
tanh activation by calculating the Shapley values
of variable a and b (Eq 3).

�a(f) =
1

2
(tanh(a) + (tanh(a+ b)� tanh(b)))

�b(f) =
1

2
(tanh(b) + (tanh(b+ a)� tanh(a)))

(3)

Analogously, we can linearize � activation as
well. We use Ltanh and L� to denote this lineariza-
tion process, and let Ltanh(a) = �a(tanh(a+ b+
...)) and L�(a) = �a(�(a + b + ...)). It is worth
noting that Ltanh and L� are functions of a, as
Shapley value will change with respect to input.
Also, by decomposing LSTM into a summation of
Shapley values, we still retain the original output
value.

2.3 The Linearly Decomposed LSTM
Murdoch et al. (2018) proposed a method to lin-
earize the LSTM computation by computing the
Shaley value of each term. We can use this lin-
earized LSTM to understand how LSTM processes
through all time steps, and why it is very powerful
in terms of representing a sequence of input. By
linearizing the activation functions, we can rewrite
the LSTM computation in Eq 4.

ot = L�(Woxt) + L�(Voht�1) + L�(bo)

ft = L�(Wfxt) + L�(Vfht�1) + L�(bf )

it = L�(Wixt) + L�(Viht�1) + L�(bi)

gt = Ltanh(Wgxt) + Ltanh(Vght�1) + Ltanh(bg)

ct = ft � ct�1 + it � gt

ht = ot � tanh(ct)

(4)

Since all nonlinear computations are now lin-
earized, we can apply the distributive law of mul-
tiplication for these additive terms and trace the
computation. We note that the Hadamard product
enables an efficient mixing of all additive terms.

If we trace the computation, assuming that h0
and c0 are initialized with 0 vector, and input
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(x1, x2, x3), we can collect the number of terms
that are associated with input by symbolic compu-
tation. We verify that each of these terms is in fact
different and can be understood as the output of a
function that can take a subset of {x1, x2, x3} as
input. These are interaction terms among different
time steps, creating features that are mixings of
these steps. We remove the bias term so that the
symbolic tracing is still tractable. We provide a few
examples of such mixing terms in Figure 1.

L�(Wox2) ⇤ Ltanh((L�(Wfx2) ⇤ (L�(Wix1) ⇤

Ltanh(Wgx1))))
L�(Wox2) ⇤ Ltanh((L�(Wix2) ⇤ Ltanh(Wgx2)))

Figure 1: We show a few terms from the symbolic
tracer’s output when the LSTM has processed both x1

and x2.

We count the statistics of terms that are associ-
ated with each input at the first three time steps.
Each term is a unique feature computation of the
input from the sequence (guaranteed by the unique-
ness of Shapley value). We present the result of
tracing in Table 1. This shows that LSTM is im-
plicitly mixing inputs to allow interactions, and the
final hidden state hn, assuming the sequence is of
length n, can be decomposed to many terms that
contain combinations of x1, ..., xn.

Terms x1 Step x2 Step x3 Step

x1 1 2 16
x2 — 1 2

x1x2 — 9 2,574
x3 — — 1

x2x3 — — 9
x1x3 — — 28

x1x2x3 — — 581

Total 1 12 3,211

Table 1: Number of unique terms that are associated
with inputs when the LSTM progresses. We observe an
exponential increase of terms as LSTM progresses.

We show that the Hadamard product provides the
much needed mixing of time steps, and each time
step’s feature is processed using existing weight
matrices but through different ways — enabled by
nonlinearity. Previous work hypothesized that the
advantage of the LSTM comes from the addition
in the cell state computation: ft � ct�1 + it � gt,
which resembles skip-connections between time

steps, or improves the effectiveness on the gradient
flows (Chung et al., 2014). Our result shows an al-
ternative explanation on why LSTM is so effective
at creating representations of an entire sequence —
by creating interaction terms of time steps implic-
itly. Our analysis shows that the high expressivity
brought by the Hadamard product � might con-
tribute to the overall effectiveness of the LSTM
network as well.

2.4 Contextual Decomposition
Murdoch et al. (2018) proposed the contextual de-
composition algorithm to interpret which part of
the text sequence contributes most to the LSTM
prediction. Given a subsequence xi, ..., xj , 1 

i < j  T , contextual decomposition re-arranges
the terms at every time step t, such that each hidden
and cell state can be decomposed into a relevant
part associated with xi, ..., xj , denoted by �, and
an irrelevant part, denoted by � (Eq 5).

ct = ct� + ct�

ht = ht� + ht�
(5)

Since the recurrent computation is fully linear
and additive, the rearrangements of Shapley values
will produce the same hidden and cell state as the
original computation. At the final step of LSTM
recurrence, hT is used as the feature representation
of the entire sentence. In a binary classification
setting, the probability for label y can be computed
by the dot product between the hidden state hT and
the output layer weight W . We can easily calculate
the contextual decomposition score (contribution
score) s for a given subsequence xi, ..., xj by cal-
culating dot product between the relevant hidden
state hT� and the output layer weight W .

ŷ = WhT = WhT� +WhT�

s = WhT�
(6)

2.5 Agglomerative Contextual
Decomposition

As we discussed in Section 2.3, tracing all inter-
active terms of all time steps is intractable. The
problem of how to find out which combinations
of input in a given sequence contributed the most
to the final label prediction remains. Singh et al.
(2019) proposed a hierarchical clustering method
to discover sub-sequences that contribute the most
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Figure 2: Overview of the tree generation algorithm. We train our model on SST-2 sentiment classification dataset.
We use the Agglomerative Contextual Decomposition algorithm (ACD) for hierarchical sentiment interpretation.
For each iteration, ACD selects one of the unselected words with the highest contextual score, and update scores of
other unselected words. Blocks with sentiment scores (blue for negative, orange for positive, and grey for neutral)
are formed through iterations. We build the tree with sentiment labels based on these blocks and binarize the tree
for further evaluation and analysis.

to the final prediction, where the contribution score
calculated by contextual decomposition algorithm
is used as the metric to determine which clusters to
join at each step.

We explain the procedure in Figure 2. We de-
scribe a simplified version of their algorithm:

• Initialize: Compute a contribution score for
each word using the contextual decomposition
algorithm and add these words to a priority
queue with their scores.

• Select: Dequeue and obtain the word with the
highest absolute contribution score.

• Update: Update contribution scores of other
unselected words by adjusting the range of
contextual decomposition algorithm to in-
clude the adjacent words.

• Finalize: Repeat Select and Update until the
queue is empty.

2.6 Tree Generation
As the agglomerative contextual decomposition al-
gorithm progresses, text blocks will be formed dur-
ing iterations. By tracing how the merge happens at
every step, we can create a tree-like structure that is
the phrase-structure grammar of the sentence. We
explain the procedure in Figure 2. The merging
will stop when all regions are merged together. We
binarize the trees by using left Chomsky normal
form for further evaluation and analysis.

Connection to Construction Grammar We
note that by selecting and merging text spans that
have the highest contribution scores, we are letting
the classifier that maps a sentence to a semantic at-
tribute (such as sentiment) to define the structure of

the sentence. We leave to future work to examine
possible connection between the structure induc-
tion through machine interpretation algorithm and
construction grammar (Goldberg, 1995).

3 Experiments

3.1 Generation

3.1.1 Model Training

We trained a simple 1-layer unidirectional LSTM
sentence classification model on Stanford Senti-
ment Treebank (SST) (Socher et al., 2013). SST
contains 8544 training sentences, 1101 validation
sentences and 2210 test sentences. We use pre-
trained 300d GloVe embedding (Pennington et al.,
2014). We use Adam optimizer (Kingma and Ba,
2014) with learning rate 0.001 to optimize the al-
gorithm. We obtain 82.2% and 85.3% accuracy
with hidden state dimension 50 and 500 on the
binary classification task of positive and negative
sentiment on the test dataset.

3.1.2 Tree Generation

We generate tree structures by tracing the selections
made by the agglomerative contextual decomposi-
tion (ACD) algorithm, and binarize the final tree.
The algorithm has O(n3

) runtime, where n is the
length of sequence. We find that this algorithm
becomes very inefficient for any sequence longer
than 20 words, so we focus on generating struc-
tures from SST sequences that are shorter than 20
words. This leads to 4980 / 633 / 1280 generated
trees from training / validation / test set, respec-
tively. An example of generated trees and the gold
tree can be found in Figure 4.
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Figure 3: Syntactic and semantic evaluation of our results. For syntactic evaluation, we compare our trees with
left-leaning trees, right-leaning trees and gold reference trees. An example of syntactic similarity evaluation is
shown in the left part. The similarity (Jaccard index) of the two trees is 0.8. For semantic evaluation, we train
a tree recursive neural network on our generated trees with sentiment labels. Each node is embedded and can
represent the sentiment. We report the sentiment classification accuracy on all nodes or only the root node.

3.2 Evaluation

We are interested in two aspects: i) Syntactic: how
do our generated trees compare with gold trees
constructed by Stanford CoreNLP parser (Manning
et al., 2014)? ii) Semantic: do our generated trees
contain rich semantic information? We show an
overview of the syntactic and semantic evaluation
in Figure 3.

3.2.1 Syntactic Evaluation
We compare the generated tree structures with three
types of trees: always left-leaning trees (LS), al-
ways right-leaning trees (RS), and gold reference
trees (GS) produced by Stanford CoreNLP parser.
We also compute the result of randomly gener-
ated trees to compare with trees generated from
the ACD algorithm. Results are reported in Table 2.
We use the same script from Williams et al. (2018)
that computes the Jaccard similarity between set
representation of two trees.

Compared with randomly generated trees, here
we see that LSTM does capture structures that more
closely resembles the gold reference, but there are
still remarkable differences. LSTM with 500 di-
mension hidden states performed better on the orig-
inal sentiment classification task (85.3% vs 82.2%
accuracy), and generated trees are more balanced
than LSTM with 50 dimension hidden states. This
is also a phenomenon discovered by Williams et al.
(2018) that balanced trees are often implicitly pro-
duced by the machine learning algorithms.

3.2.2 Semantic Evaluation
We also train a recursive neural network on these
generated structures. We use the contribution score

Trees LS RS GS AD

Random 29.3 29.2 27.6 4.19
LSTM-50d 36.9 25.7 29.7 5.53
LSTM-500d 33.7 32.5 30.2 5.91

Table 2: The Jaccard similarity between generated trees
and gold trees. LS means left-leaning trees. RS means
right-leaning trees. GS means gold parse trees. AD
means average tree depth.

s for each phrase as the intermediate labels and we
allow the recursive computation step to be either a
normal RNN or an LSTM. We evaluate the label
accuracy on all nodes (All) or only on the root node
(Root). The generated structure under-performed
gold reference trees by a large margin, and is also
below the original LSTM’s performance, indicating
that structures recovered by ACD are not equivalent
to the true LSTM sequence computing process.

Trees RNN LSTM
All Root All Root

LSTM-50d 72.7 60.4 74.8 63.3
LSTM-500d 75.1 53.6 75.9 58.0
Gold Trees 75.9 74.5 78.2 78.1

Table 3: The sentiment classification accuracy of recur-
sive neural networks on the generated trees and gold
trees. The gold tree set is also composed of trees that
correspond to sequences shorter than 20 words.
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Figure 4: Example of generated trees and the gold tree
with sentiment labels. Labels are discretized (-1 for
negative, 1 for positive, and 0 for neutral).

4 Discussion and Conclusion

In this work, we extract trees from LSTM by an in-
terpretation algorithm — agglomerative contextual
decomposition (ACD). We show empirically that
the generated trees are not similar to the trees pro-
duced from formal syntactic theory. The generated
trees also do not seem to provide more compu-
tational improvement when we train a recursive
neural network leveraging the structure to predict
the final label.

These negative observations can result from sev-
eral possible reasons. Firstly, as discussed in
Sec 2.6, the connection between the structure in-
duction through machine interpretation algorithm
and construction grammar remains a question —
whether what is semantically important for senti-
ment analysis is necessarily reflected in the syntax
and the way the syntactic constituents are formed
in the language? Besides, while sentiment analy-
sis requires the understandings of compositionality,
models trained on linguistic tasks may better cap-
ture syntactic information. For future work, we con-
sider conducting the same experiments on CoLA,
a dataset for judging the grammatical acceptability
of a sentence (Warstadt et al., 2019). Moreover, it
is unclear whether models truly learned composi-
tionality or just overfit to some spurious patterns
of the dataset, as recent works have demonstrated
that a well-performing natural language inference
model completely fails on challenging cases gen-
erated by syntactic transformations (McCoy et al.,
2019).

Nonetheless, we conclude with encourage-
ment for the community to look deeper into
interpretation-based methods and their connections
with semantic and syntactic theory in linguistics.
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Abstract

Social media posts often contain questions,
but many of the questions are rhetorical and
do not seek information. Our work stud-
ies the problem of distinguishing rhetorical
and information-seeking questions on Twitter.
Most work has focused on features of the ques-
tion itself, but we hypothesize that the prior
context plays a role too. This paper introduces
a new dataset containing questions in tweets
paired with their prior tweets to provide con-
text. We create classification models to as-
sess the difficulty of distinguishing rhetorical
and information-seeking questions, and exper-
iment with different properties of the prior con-
text. Our results show that the prior tweet and
topic features can improve performance on this
task.

1 Introduction

Questions are common in social media forums, but
they can serve many pragmatic functions. Ques-
tions are often information-seeking, but social me-
dia posts also frequently contain questions that do
not expect any information for what the question
literally asks about. We will use the term rhetor-
ical question (RQ) broadly to refer to all ques-
tions that do not seek any information. For ex-
ample, rhetorical questions can express criticism
(e.g., “Can’t you do anything right?”), sentiment
(e.g., “How fun is that?”), sarcasm (e.g., “Who
knew?”), and agreement/disagreement (e.g., “Is
the pope catholic?”). Distinguishing rhetorical and
information-seeking questions is important for dia-
logue processing and conversational analysis, but
only recently has begun to receive attention in the
NLP community.

Our research has two main contributions. First,
we created a new resource for this understudied
problem. We have compiled a collection of nearly
5,000 tweets that contain a question that is respond-

ing to an initial tweet, and labeled the questions
as rhetorical or information-seeking with crowd-
sourcing. We found that 53% of the questions are
information-seeking (IQ) and 47% are rhetorical
(RQ), confirming that both types of questions are
prevalent in social media.

Second, our research examines whether the ini-
tial tweet prior to a question can help to predict
whether a question is information-seeking or rhetor-
ical. Most prior work has focused only on the ques-
tion itself, but we investigate whether the topic
of the discussion may be a valuable indicator too.
Our intuition was that rhetorical questions are com-
mon in contexts associated with argumentation and
debate, such as politics. Conversely, we expect
information-seeking questions to be prevalent in
contexts about products and services, where people
are actively seeking information.

In this paper, we first describe our Twitter dataset
and human annotations. Next, we present classi-
fication models that exploit both the question and
the initial tweet prior to the question. We explore
several ways of extracting topic information from
tweets to capture the prior context. Our results
show that the prior context does improve perfor-
mance for this task.

2 Related Work

Rhetorical questions have been studied in linguis-
tics, primarily focused on linguistic properties
and pragmatic functions (Sadock, 1971; Schmidt-
Radefeldt, 1977; Frank, 1990; Gutierrez-Rexach,
1998; Han, 2002; Schaffer, 2005). However there
has been relatively little work on rhetorical ques-
tions in the NLP community until recently. Work
by Zhao and Mei (2013) identified the information
need of questions in Twitter by extracting features
from the question tweets. However, their work did
not explore the usefulness of prior context in dis-
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tinguishing rhetorical questions from information-
seeking questions. Ranganath et al. (2016) mod-
eled the contextual overlap between a question and
the most recent status message (MRSM) of the
same user in Twitter, with the hypothesis that a
rhetorical question shares context with its MRSM
more than a random question with its MRSM. Bhat-
tasali et al. (2015) found that n-gram features from
utterances immediately preceding and following a
question could help identify rhetorical questions.
Our work differs from both works in several as-
pects. First our evaluation dataset contains human-
assigned gold labels and a rich mix of both RQ and
IQ. In contrast, Ranganath et al. (2016) automati-
cally assigned their dataset with labels according
to some heuristic rules, which may be noisy, and
Bhattasali et al. (2015) used the Switchboard Dia-
log Act Corpus (Godfrey et al., 1992), where only
5% of questions are rhetorical. Second, neither
of these works took preceding context and topic
information into account.

Oraby et al. (2016) studied rhetorical questions
in the context of sarcasm in debate forums, but
they did not study the problem of distinguish-
ing rhetorical questions from information-seeking
questions. In contrast, we focused on distinguish-
ing the information need of general questions in
Twitter. Oraby et al. (2017) further explored dis-
tinguishing rhetorical questions from information-
seeking questions. But their gold standard data
consists of rhetorical questions automatically ex-
tracted from debate forums using heuristic rules.
In contrast, our gold standard data consists of ques-
tions that have been manually labeled as rhetorical
or information-seeking. Another difference is that
Oraby et al. (2017) did not consider the prior con-
text for questions, which we focus on in this work.

3 Data

We began by collecting tweets that contain ques-
tion marks from January to December 2014.1 We
then applied a few filters to remove tweets that (1)
are not in English (based on Twitter’s language
code), (2) contain < 5 words, (3) are retweets or
have quotation marks around the question, because
these questions did not originate with the tweeter,
(4) contain URLs or media (e.g., photos), because
the question may refer to the linked content, (5)

1We intentionally collected tweets from several years ago
because their continued presence on Twitter suggests that they
are likely to remain available, so other researchers can easily
reacquire our data.

contain multiple questions, which could be difficult
to tease apart, or (6) were posted by a VIP (“veri-
fied”) account. Questions posted by VIP accounts
(entities in the public interest) were predominately
rhetorical questions in advertisements, and we did
not want these to skew our data. We will refer to the
resulting tweets as Question Tweets (QTweets).

We also collected the preceding tweets, which
we will refer to as Prior Tweet (PTweets). Our
hypothesis is that the preceding context can be
important because (a) the question alone can be
ambiguous, and (b) knowledge about the topic of
discussion can affect the likelihood that a question
will be rhetorical or information-seeking. Con-
sequently, we only kept question tweets that re-
sponded to a prior tweet. We also required that the
prior tweet was the initial tweet in the conversa-
tional thread because conversational threads often
have topic shifts and questions may refer back to
earlier comments. Detangling discourse threads is
a challenging problem in its own right.

This process produced 5,064 question tweets2,
each paired with its prior tweet as context.

3.1 Manual Annotation
We hired three annotators from Amazon’s Mechan-
ical Turk3 to label each of the question tweets (cou-
pled with its prior tweet) with one of the following
three labels:

Information-seeking Question (IQ): The main
purpose of the question is most likely to seek some
information about what it literally asks.

Rhetorical Question (RQ): The main purpose
of the question is most likely not to seek any in-
formation about what it literally asks. Instead, the
speaker uses the question mainly for some other
purpose, such as suggestion or criticism.

Incomprehensible (I): The annotation sample
is not in English or it is hard to understand.

We emphasized in the annotation guidelines that
some questions are ambiguous and could indeed
have multiple purposes at the same time. One ex-
ample is the question “The sunset is great, isn’t
it?”, which may convey the speaker’s admiration
of the sunset and also seek the hearers’ agreement
at the same time. We advised the annotators to
choose the most likely primary purpose of a ques-
tion, according to their instincts. To further assist

2We originally collected 5,200 tweets, but a pre-processing
error allowed 136 tweets with < 5 words to slip through so
they were later discarded.

3https://www.mturk.com/
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the annotators, we provided several examples of
both rhetorical and information-seeking questions
in the annotation guidelines, along with explana-
tions for why each question belongs to its corre-
sponding category.

The pairwise inter-annotator agreement scores
using Cohen’s kappa were:  = .67, .67, .68. Of
the 5,064 questions, 67 (1.3%) were annotated as
Incomprehensible by at least 1 annotator and dis-
carded. The rest were assigned a gold standard
label using majority vote. The final annotated
dataset contains 4,997 question tweets, with 2,332
(47%) labeled as rhetorical and 2,665 (53%) la-
beled as information-seeking. The final gold stan-
dard dataset is available for download at the au-
thors’ website.

4 Classifying Questions as Rhetorical or
Information-seeking

We designed a variety of classification models to
assess the difficulty of distinguishing rhetorical and
information-seeking questions, and to examine the
role of prior context for this task.

First, we applied the CMU Twokenizer (Gim-
pel et al., 2011), removed URLs and hashtags, and
replaced acronyms with their corresponding full
words or phrases using a Twitter acronym list4.
Next, we applied the Stanford CoreNLP parser
(Manning et al., 2014) to obtain lemmas and part-
of-speech tags. For the embedding features, we
used GloVe vectors (Pennington et al., 2014) pre-
trained on 2B tweets. We experimented with both
25 and 100 dimensional vectors, and show the best
results in Section 5. We then extracted three sets
of features: word features, question features, and
topic features.

4.1 Word Features

We explored both unigrams and embedding vectors
to capture the meaning of the words in a tweet.

Unigrams: Each word is a feature with a TF-
IDF value. We only include unigrams that occur �
3 times in the training set.

Embedding (Embed): We create an embedding
vector for a tweet by averaging the embedding vec-
tors for all words in the tweet.

4https://sproutsocial.com/insights/social-media-
acronyms/

4.2 Question Features

We suspected that rhetorical questions and
information-seeking questions may be phrased dif-
ferently. Hence we developed 3 features to capture
the question form.

Question Attributes: (1) One feature repre-
sents the leading bigram of the question (e.g., a
leading “How to” may be more likely to seek a so-
lution), (2) one feature indicates the WH-category
of the leftmost question word: {who, when, what,
where, which, why, how}. (3) one feature counts
the number of negations in the question, as rhetori-
cal questions may have more negations (e.g., “why
don’t you try this ?”).

Post-Question Attributes: We observed that
rhetorical questions in Twitter are often followed
by another sentence (suggesting a self-answer) or
emoji. So we created three post-question features:
(1) a feature indicating whether the question is fol-
lowed by additional words, (2) a feature indicating
whether the question is followed by emoji and (3)
a feature that counts the number of emoji after the
question.

Subjectivity Features: Rhetorical questions
often express an opinion (e.g., criticize), agree-
ment/disagreement, etc. So we hypothesized that
recognizing subjective language may be a helpful
clue for identifying rhetorical questions. We ex-
tracted 5 features associated with subjectivity: (1)
the number of elongated words (e.g., “looooove”),
(2) the number of entirely upper case words (e.g.,

“YAY”), (3) the number of exclamation marks, (4) the
number of strongly subjective words found in the
MPQA lexicon (Wilson et al., 2005), and (5) the
number of weakly subjective words in the MPQA
lexicon.

4.3 Topic Features

Our research explores whether the topic of
discussion can help distinguish rhetorical and
information-seeking questions, so we created four
types of features to capture topic information.

Nouns Embedding (NounEmbed): The set of
nouns in a tweet, in aggregate, might sufficiently re-
flect the topic of a tweet. So we created a composite
nouns embedding vector by averaging embeddings
of all the nouns.

Specificity (Specific): Information-seeking
questions often focus on a specific entity or ob-
ject, so we created features to capture specificity
using the MRC resource (Brysbaert et al., 2013),
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which assigns words with familarity and concrete-
ness scores from 100 to 700. One feature counts
the number of words with familiarity score � 400,
and the other feature counts the number of words
with concreteness score � 400.

Latent Dirichlet Allocation (LDA): We cre-
ated an LDA model (Blei et al., 2003) from our
training data, after removing stopwords, with k =

25 as the number of topics. Given input text, we
extracted the latent topic distribution as k features.

Google Topic Categories (GTopic): Google’s
Content Classifier5 labels text with respect to 700+
topic categories in its content hierarchy. Our
dataset is small, so we only used the 27 general
categories in the top level of its hierarchy. Given
an input text, we used 27 features to capture the
topics assigned by Google’s Content Classifier.

Initially we extracted topic features directly from
a tweet. But topic models and classifiers perform
better on longer texts, so we also tried giving a
tweet to Google as a query, and extracting the
summary snippet for the top-ranked web page.6

The resulting snippet is usually longer but similar
in topic. We will call the snippet retrieved by a
QTweet its QSnippet, and the snippet retrieved by
a PTweet its PSnippet. In our experiments, we
tried extracting the topic features from the tweet
alone, its snippet, and from the tweet combined
with its snippet. For the sake of brevity, we only
show the best-performing results.

4.4 Learning Models
We created two types of classifiers: 1) a linear
SVM (Chang and Lin, 2011) with C = 0.1, and 2)
a 4-layer BiLSTM, implemented using PyTorch7,
with a hidden size of 100 and ReLU. We set the
learning rate of the BiLSTM to 0.0001 with a
dropout rate of 0.1 (Srivastava et al., 2014). For
both models, we use GloVe embeddings pre-trained
on 2B tweets of size 25 or 100 dimensions (Pen-
nington et al., 2014).

5 Experimental Results

We randomly split our data into 3 partitions: train-
ing (3,200), development (797), and test (1,000).
All classifiers were trained on the training set and

5https://cloud.google.com/natural-language/
6We filtered snippets from Twitter.com or any website

with ‘dictionary’ in its url or title, because the snippet from
Twitter.com is usually the tweet itself, and online dictionaries
just provide definitions of the words.

7https://pytorch.org/

tuned with the development set. We report results
on the test set as Precision, Recall, & F1 scores, all
macro-averaged over the RQ and IQ classes.

First, we evaluated models that used features
derived only from the QTweet (QT). The first two
rows of Table 1 show the performance of SVMs
trained with word embedding vectors and unigrams,
respectively. The third row shows that the BiLSTM
outperforms the SVMs, achieving an F1 score of
70.8. However, the fourth row shows that adding
the Question Features to the SVM performs better
than the BiLSTM, yielding an F1 score of 73.5.

Classifiers for QTweet Prec Rec F1
SVM Embed(QT)100D 67.6 67.8 67.6
SVM Unigrams(QT) 68.8 68.9 68.9
BiLSTM(QT)100D 71.0 70.9 70.8
SVM Unigrams(QT) + QFeatures(QT) 73.5 73.5 73.5

Adding Topic Features
+ NounEmbed(QT)25D 72.9 72.9 72.9
+ Specific(QT) 73.1 73.1 73.1
+ LDA(QT) 73.4 73.4 73.4
+ GTopic(QT) 73.5 73.6 73.5
+ ALL topic features (QT-SVM) 73.9 74.0 73.9

Table 1: Results using only QTweet (QT)

The lower portion of Table 1 shows results when
adding each type of topic feature (not cumulatively)
to the best SVM model. None of them improved
performance on their own, but adding them all to-
gether (shown in the last row) increased the F1
score to 73.9. We observed that the topic is often
unclear from the question itself, which may explain
the minimal gains. We will refer to the best model
in Table 1 as QT-SVM.

Classifiers for QTweet+PTweet Prec Rec F1
BiLSTM(PT + QT)100D 70.3 70.1 70.2
QT-SVM+Embed(PT)25D+Sbj(PT) 74.4 74.5 74.5
+ Specific(PT) 74.7 74.8 74.8
+ LDA(Psnippet) 74.7 74.8 74.8
+ GTopic(Psnippet) 74.8 74.9 74.8
+ NounEmbed(PT + Psnippet)25D 75.1 75.2 75.2
Best Combination:
+ Specific + LDA + GTopic 75.4 75.5 75.5

Table 2: Results using QTweet (QT) & PTweet (PT)

Table 2 shows results for classifiers that used
features derived from both the QTweet and PTweet.
The first row shows the BiLSTM model trained
with the PTweet words followed by the QTweet
words. This model performs slightly worse than
the BiLSTM trained on QTweets alone. The next
row shows results for QT-SVM with added features
representing the PTtweet as a 25D embedding vec-
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RQ IQ
Prec Rec Prec Rec

QT-SVM 71.3 72.4 76.5 75.5
QT-SVM+Embed(PT)25D+Sbj(PT) 71.7 73.3 77.1 75.7
+Topic Features 72.9 74.2 77.9 76.8

Table 3: Breakdown of Precision and Recall Scores of
Different Models for Each Question Class

tor8 and Subjectivity (Sbj) Features9 extracted from
the PTweet. The additional PTweet information im-
proved the SVM performance from 73.9 to 74.5.
The following rows show results when adding each
type of topic feature extracted from the PTweet (not
cumulatively). Each of them slightly improved per-
formance. We also experimented with combining
them and the last row shows the best-performing
combination, which achieved an F1 score of 75.5.
We conjecture that each topic feature itself does not
necessarily capture useful topic information across
all questions, but combined they become comple-
mentary to each other and are more useful for the
classifier.

Table 3 shows the breakdown of precision and re-
call scores for rhetorical questions and information-
seeking questions separately. Overall the scores for
rhetorical questions are consistently lower than for
information-seeking questions, which means that
it is harder to identify rhetorical questions. This
is not surprising as it often requires complex com-
monsense knowledge to understand that a question
is not seeking information, and we will show some
examples in Section 6.

Between the first row and the second row, the
recall for rhetorical questions increases by about
1%, while the precision for information-seeking
questions goes up. This shows that the embedding
and subjectivity features from the PTweet help dis-
cover rhetorical questions that were previously mis-
labeled as information-seeking. In the third row,
recall and precision improves for both categories
as the topic features are added. This implies that
the topic features from the PTweet help to identify
both rhetorical and information-seeking questions
that were previously mislabeled.

6 Analysis

To better understand how topics interact with rhetor-
ical and information-seeking questions, we ana-

8We also tried adding unigrams but the embedding worked
better.

9None of the Question Features other than the Subjectivity
Features are applicable to PTweets

lyzed the distribution of RQ and IQ over topics,
based on the topic labels produced by the Google
Content Classifier applied to the PSnippets from
our training and development sets. Table 4 shows
the four topics most highly correlated with each
question category. The second column shows the
total number of questions identified for each topic,
and the third and fourth columns show the percent-
ages of rhetorical and information-seeking ques-
tions in each topic.

Topic Total RQ% IQ%
Computers & Electronics 85 20 80
Internet & Telecom 70 23 77
Games 94 24 76
Autos & Vehicles 34 29 71
Home & Garden 41 56 44
Law & Government 74 58 42
Books & Literature 42 60 40
Sensitive Subjects 41 71 29

Table 4: Topic Associations for RQs and IQs

The four topics most highly correlated with
information-seeking questions are Computers &
Electronics, Internet & Telecom, Games, and Autos
& Vehicles. Our analysis found that this is because
people tend to ask about the details of products and
services in Twitter (e.g., sale price, features of com-
puters, and release dates of games). On the other
hand, the four topics most highly correlated with
rhetorical questions are Sensitive Subjects, Books
& Literature, Law & Government, and Home &
Garden. We inspected examples from these topics
and found that they are usually related to opinion
expressions and debates (e.g., debates about race
and politics, and assessment of books’ quality),
which lead to more rhetorical questions.

We also manually inspected some questions that
seemed to be difficult for our system to label cor-
rectly. Table 5 shows some examples from our
development dataset that were mislabeled by our
best model. Example 1 requires the model to know
that the question serves as a joke. In Example 2, the
question, despite its simple question structure and
lack of explicitly negative words, expresses a nega-
tive emotion. But without recognizing the implicit
sentiment, it is hard to determine that the question
is rhetorical. In Example 3, the model needs to un-
derstand the interaction between the prior context
and the question to know that the question serves
as a sarcastic response. Example 4 was classified
as RQ probably because it is syntactically not in
a complete question form (e.g., “Are you going to
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prom or nah?” ). The model mislabeled Example
5 probably because the question contains only a
(complex) noun phrase and thus looks like a sug-
gestion, which is a more common phenomenon in
rhetorical questions.

Rhetorical Questions

1
PTweet: Welcome anytime. You know where I live.

Tweet: At the bottom of a sinkhole?

2
PTweet: Son of a .. How many blocked FG’s do we
have to endure. Going out of my mind. #smh

Tweet: How does this keep happening?!

3
PTweet: Hans is a piece of crap.

Tweet: Where were you like 4 months ago with that?

Information-seeking Questions

4
PTweet: Have faith just have faith.

Tweet: you going to prom or nah?

5
PTweet: Definitely going to send me that picture are
you? Haha!

Tweet: The one of your cheese on toast?

Table 5: Examples of RQ and IQ Mislabeled by the
Best Model

7 Conclusions

A contribution of this work is that we have cre-
ated a new dataset containing nearly 5,000 ques-
tion tweets labeled as rhetorical or information-
seeking coupled with their prior tweets. To our
knowledge, this is the first Twitter-based dataset for
studying rhetorical questions that has both human-
generated gold labels and includes prior context
for each question. We also presented classification
models to benchmark performance on this task, and
showed that including the tweet prior to a question
improves performance. We also showed several
ways to capture topic information, and that topic
information represented in the preceding context
seems to be useful for this task. Our hope is that
this work will lead to further research on the role of
context for recognizing rhetorical and information-
seeking questions in social media.
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Abstract

Standard methods in deep learning for natural
language processing fail to capture the com-
positional structure of human language that
allows for systematic generalization outside
of the training distribution. However, human
learners readily generalize in this way, e.g. by
applying known grammatical rules to novel
words. Inspired by work in cognitive science
suggesting a functional distinction between
systems for syntactic and semantic process-
ing, we implement a modification to an exist-
ing approach in neural machine translation, im-
posing an analogous separation between align-
ment and translation. The resulting architec-
ture substantially outperforms standard recur-
rent networks on the SCAN dataset, a com-
positional generalization task, without any ad-
ditional supervision. Our work suggests that
learning to align and to translate in separate
modules may be a useful heuristic for captur-
ing compositional structure.

1 Introduction

A crucial property underlying the expressive power
of human language is its systematicity (Lake et al.,
2017; Fodor and Pylyshyn, 1988): syntactic or
grammatical rules allow arbitrary elements to be
combined in novel ways, making the number of
sentences possible in a language to be exponential
in the number of its basic elements. Recent work
has shown that standard deep learning methods
in natural language processing fail to capture this
important property: when tested on unseen combi-
nations of known elements, standard models fail
to generalize (Lake and Baroni, 2018; Loula et al.,
2018; Bastings et al., 2018). It has been suggested
that this failure represents a major deficiency of
current deep learning models, especially when they

are compared to human learners (Marcus, 2018;
Lake et al., 2017, 2019).

From a statistical-learning perspective, this fail-
ure is quite natural. The neural networks trained
on compositional generalization tasks fail to gen-
eralize because they have memorized biases that
do indeed exist in the training set. These tasks re-
quire networks to make an out-of-domain (o.o.d.)
extrapolation (Marcus, 2018), rather than merely
interpolate according to the assumption that train-
ing and testing data are independent and identically
distributed (i.i.d.). To the extent that humans can
perform well on certain kinds of o.o.d. tests, they
must be utilizing inductive biases that are lacking
in current deep learning models (Battaglia et al.,
2018).

It has long been suggested that the human capac-
ity for systematic generalization is linked to mech-
anisms for processing syntax, and their functional
separation from the meanings of individual words
(Chomsky, 1957; Fodor and Pylyshyn, 1988). In
this work, we take inspiration from this idea and
explore operationalizing it as an inductive bias in
an existing neural network architecture.

First, we notice a connection between syntactic
structure and the correct alignment of words in the
source sequence to meanings in the target. In our
model, alignment is accomplished with an attention
mechanism (Bahdanau et al., 2015) that determines
the relevance of each word in the source to the
translation of the next word in the target. This pro-
cess must take into account the syntactic structure
of both sequences (e.g. if a verb was just trans-
lated, it would be important to know whether there
is in the source sequence an adverb that modifies
it). We reasoned that if alignment was separated
from direct translation (analogous to a separation
of syntax and the meanings of individual words),
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Figure 1: Illustration of the transformation of an out-of-
domain (o.o.d.) generalization problem into two inde-
pendent, identically distributed (i.i.d.) problems.

Figure 2: Syntactic Attention architecture. Information
used for alignment (“syntax”, shown in blue) is kept
separate from information used for direct translation
(“semantics”, shown in red).

the difficult o.o.d. problem of composing known el-
ements into a novel combination would be reduced
to two easier i.i.d. problems, because the distribu-
tions of correct alignments and translations would
be similar in training and testing data (see Figure
1).

We implemented this intuition by modifying
an existing attention mechanism (Bahdanau et al.,
2015), and call the resultant architecture Syntactic
Attention to reflect the intuition that the attention
mechanism used for alignment should operate pri-
marily on syntactic information, which should be
separated from the information relevant to translat-
ing individual words. We show that this modifica-
tion achieves substantially improved compositional
generalization performance over the original archi-
tecture on the SCAN dataset.

2 Syntactic Attention

The Syntactic Attention model improves the com-
positional generalization capability of an existing
attention mechanism (Bahdanau et al., 2015) by
separating two streams of information processing
for alignment and translation (see Figure 2). We
describe the mechanisms of this separation and the
other details of the model below.

2.1 Factorizing alignment and translation
In the seq2seq problem, models must learn a map-
ping from arbitrary-length sequences of inputs x =

{x1, x2, ..., xTx} to arbitrary-length sequences of
outputs y = {y1, y2, ..., yTy}: p(y|x). The under-
lying assumption made by the Syntactic Attention
architecture is that the dependence of target words
on the input sequence can be separated into two
independent factors. One factor, p(yi|xj), models
the conditional distribution from individual words
in the input to individual words in the target. Note
that, unlike in the model of Bahdanau et al. (2015),
these xj do not contain any information about the
other words in the input sequence because they
are not processed with an RNN. The other factor,
p(j ! i|x, y1:i�1), models the conditional proba-
bility that word j in the input is relevant to word i in
the target sequence, given the entire input sequence.
This alignment is accomplished from encodings of
the inputs produced by an RNN. The crucial ar-
chitectural assumption, then, is that any temporal
dependency between individual words in the input
that can be captured by an RNN should only be
relevant to their alignment to words in the target
sequence, and not to the translation of individual
words. This assumption will be made clearer in the
model description below.

2.2 Encoder
The encoder produces two separate vector repre-
sentations for each word in the input sequence.
Unlike the previous attention model (Bahdanau
et al., 2015)), we separately extract the information
that will be used for direct translation with a lin-
ear transformation: mj = Wmxj , where Wm is a
learned weight matrix that multiplies the one-hot
encodings {x1, ..., xTx}. Note that these represen-
tations do not contain any information about the
other words in the sentence. As in the previous
attention mechanism (Bahdanau et al., 2015), we
use a bidirectional RNN (biRNN) to extract the
information that will be used for alignment. The
biRNN produces a vector for each word on the
forward pass, (

�!
h1, ...,

��!
hTx), and a vector for each

word on the backward pass, (
 �
h1, ...,

 ��
hTx). The rep-

resentation of each word xj is determined by the
two vectors

��!
hj�1,

 ��
hj+1 corresponding to the words

surrounding it: hj = [
��!
hj�1;

 ��
hj+1].

In all experiments, we used a bidirectional
LSTM for this purpose. Note that hj is encoding
the context of the surrounding words in the sen-
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tence. Our motivation for doing this was to force
the RNN in the encoder to rely on the “role” the
word is playing in the sentence. Note also that be-
cause there is no sequence information in the mj ,
all of the information required to align the input se-
quence correctly (e.g. phrase structure, modifying
relationships, etc.) must be encoded by the biRNN.

2.3 Decoder

The decoder models the conditional probability of
each target word given the input and the previous
targets: p(yi|y1, y2, ..., yi�1,x), where yi is a tar-
get and x is the whole input sequence. As in the
previous model, we use an RNN to determine an
attention distribution over the inputs at each time
step (i.e. to align words in the input to the current
target). However, our decoder diverges from this
model in that the mapping from inputs to outputs
is performed from a weighted average of the mj :

p(yi|y1:i�1,x) = f(di) di =
TxX

j=1

↵ijmj (1)

where f is parameterized by a linear function with
a softmax, and the ↵ij are the weights determined
by the attention model. The attention weights are
computed by a function measuring how well the in-
put representations hj align with the current hidden
state of the decoder RNN, si:

↵ij =
exp(eij)PTx
k=1 exp(eik)

eij = a(si, hj) (2)

where eij can be thought of as measuring the impor-
tance of a given input word xj to the current target
word yi, and si is the current hidden state of the de-
coder RNN. Bahdanau et al. (2015) model the func-
tion a with a feedforward network, but we choose
to use a simple dot product: a(si, hj) = si · hj . Fi-
nally, the hidden state of the RNN is updated with
the same weighted combination of the hj :

si = g(si�1, ci) ci =
TxX

j=1

↵ijhj (3)

where g is the decoder RNN, si is the current hid-
den state, and ci can be thought of as the infor-
mation in the attended words that can be used to
determine what to attend to on the next time step.
Again, in all experiments an LSTM was used.

3 Experiments

3.1 SCAN dataset
The SCAN1 dataset was specifically designed to
test compositional generalization (details can be
found in the appendix, or in Lake and Baroni,
2018). It is composed of 20,910 sequences of com-
mands that must be mapped to sequences of ac-
tions, and is generated from a simple finite phrase-
structure grammar that includes things like adverbs
and conjunctions. The splits of the dataset include:
1) Simple split, where training and testing data are
split randomly, 2) Length split, where training in-
cludes only shorter sequences, and 3) Add primitive
split, where a primitive command (e.g. “turn left”
or “jump”) is held out of the training set, except in
its most basic form (e.g. “ jump”! JUMP)

Here we focus on the most difficult problem
in the SCAN dataset, the add-jump split, where
“jump” is held out of the training set.

3.2 Implementation details
Experimental procedure is described in detail in
the appendix. Training and testing sets were kept
as they were in the original dataset, but following
(Bastings et al., 2018), we used early stopping by
validating on a 20% held out sample of the training
set. All reported results are from runs of 200,000
iterations with a batch size of 1. Unless stated oth-
erwise, each architecture was trained 5 times with
different random seeds for initialization, to measure
variability in results. All experiments were imple-
mented in PyTorch. Details of the hyperparameter
search are given in the appendix. Our best model
used LSTMs, with 2 layers and 200 hidden units
in the encoder, and 1 layer and 400 hidden units in
the decoder, and 120-dimensional vectors for the
mj . The model included a dropout rate of 0.5, and
was optimized using an Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 0.001.

3.3 Compositional generalization results
The Syntactic Attention model achieves high com-
positional generalization performance on the stan-
dard seq2seq SCAN dataset (see table 1). The table
shows results (mean test accuracy (%) ± standard
deviation) on the test splits of the dataset. Syn-
tactic Attention is compared to the previous mod-
els, which were a CNN (Dessı̀ and Baroni, 2019),
GRUs augmented with an attention mechanism (“+

1The SCAN dataset can be downloaded at https://
github.com/brendenlake/SCAN

315



attn”), which either included or did not include a
dependency (“- dep”) in the decoder on the previ-
ous action (Bastings et al., 2018), and the recent
model of Li et al. (2019).

Lake (2019) showed that a meta-learning archi-
tecture using an external memory achieves 99.95%
accuracy on a meta-seq2seq version of the SCAN
task. In this version, models are trained to learn
how to generalize compositionally across a number
of variants of a compositional seq2seq problem.
Here, we focus on the standard seq2seq version,
which limits the model to one training episode.

The best model from the hyperparameter search
showed strong compositional generalization perfor-
mance, attaining a mean accuracy of 91.1% (me-
dian = 98.5%) on the test set of the add-jump split.
However, as in Dessı̀ and Baroni (2019), we found
that our model showed variance across initializa-
tion seeds (see appendix for details). For this rea-
son, we ran the best model 25 times on the add-
jump split to get a more accurate assessment of per-
formance. These results were highly skewed, with
a mean accuracy of 78.4% but a median of 91.0%
(see appendix for detailed results). Overall, this
represents an improvement in the compositional
generalization performance compared to the orig-
inal attention mechanism (Bahdanau et al., 2015;
Bastings et al., 2018), and rivals the recent results
from Li et al. (2019).

3.4 Additional SCAN experiments
We hypothesized that a key feature of our architec-
ture was that an RNN was used to encode the infor-
mation in the input sequence relevant to alignment,
while one was not used to encode the information
relevant to translation. To test this hypothesis, we
conducted two more experiments:

1. RNN for translation-encoding. An additional
biLSTM was used to process the input se-
quence: mj = [

�!mj ;
 �mj ], where �!mj and  �mj

are the vectors produced for the source word
xj by a biLSTM on the forward and backward
passes, respectively. These mj replace those
generated by the simple linear layer in the
Syntactic Attention model.

2. ci used for translation. Sequential infor-
mation from the encoder RNN (i.e. the
ci) was allowed to directly influence the
output at each time step in the decoder:
p(yi|y1, y2, ..., yi�1,x) = f([di; ci]), where

again f is parameterized with a linear func-
tion and a softmax output nonlinearity.

The results of the additional experiments (mean
test accuracy (%) ± standard deviations) are shown
in table 2. These results partially confirmed our
hypothesis: performance on the jump-split test set
was worse when encodings from an RNN were
directly used for translation. However, when se-
quential information from the biLSTM encoder
was used an additional input in the final production
of actions, the model maintained good composi-
tional generalization performance. We hypothesize
that this was because in this setup, it was easier
for the model to learn to use the mj to directly
translate actions, so it largely ignored the sequen-
tial information. This experiment suggests that
the factorization between alignment and translation
does not have to be perfectly strict, as long as non-
sequential representations are available for direct
translation.

Additional results, including on other SCAN
splits and analyses of the attention distributions,
can be found in the appendix.

3.5 Machine translation experiments
Although the purpose of this work was to study
the inductive biases that might encourage compo-
sitional generalization, we also validated our ar-
chitecture on a small machine translation dataset
to obtain a basic measure of its efficacy in a more
naturalistic setting. The dataset (Lake and Baroni,
2018; Bastings et al., 2018) is composed of 10,000
English/French sentence pairs in the training set
and 1,190 pairs in the test set. We trained and tested
our existing model without making any changes,
except for adjusting the learning rate. We also
ran the same experiment with the architecture de-
scribed above that used ci for translation, as this
architecture also showed strong compositional gen-
eralization performance on SCAN. BLEU scores
on the test set for the best learning rate (0.00015
for both models) are shown in the table below, with
comparison to previously reported results using ba-
sic recurrent architectures. Our model performs
comparably in neural MT, validating it in a more
naturalistic setting.

4 Related work

The principle of compositionality has recently re-
gained the attention of deep learning researchers
(Bahdanau et al., 2019b,a; Lake et al., 2017; Lake
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Model Simple Length Add turn left Add jump
GRU + attn (Bastings et al., 2018) 100.0 ± 0.0 18.1 ± 1.1 59.1 ± 16.8 12.5 ± 6.6
GRU + attn - dep (Bastings et al., 2018) 100.0 ± 0.0 17.8 ± 1.7 90.8 ± 3.6 0.7 ± 0.4
CNN (Dessı̀ and Baroni, 2019) 100.0 ± 0.0 - - 69.2 ± 8.2
Li et al. (2019) 99.9 ± 0.0 20.3 ± 1.1 99.7 ± 0.4 98.8 ± 1.4
Syntactic Attention (ours) 100.0 ± 0.0 15.2 ± 0.7 99.9 ± 0.16 91.0*

± 27.4

Table 1: Compositional generalization results. The Syntactic Attention model achieves an improvement on the
compositional generalization tasks of the SCAN dataset in the standard seq2seq setting, compared to the standard
recurrent models (Bastings et al., 2018; Dessı̀ and Baroni, 2019). Star* indicates median of 25 runs.

Model Simple Length Add turn left Add jump
RNN for translation-encoding 99.3 ± 0.7 13.1 ± 2.5 99.4 ± 1.1 42.3 ± 32.7
ci used for translation 99.3 ± 0.85 15.2 ± 1.9 98.2 ± 2.2 88.7 ± 14.2
Syntactic Attention 100.0± 0.0 15.2 ± 0.7 99.9 ± 0.16 91.0*

± 27.4

Table 2: Results of additional experiments. Star* indicates median of 25 runs.

Model En-Fr Fr-En
LSTM + attn 28.6 -
GRU + attn 32.1 37.5
Syntactic Attention 36.8 35.2
ci used for translation 35.1 33.8

Table 3: Results on small MT dataset (Lake and Baroni,
2018; Bastings et al., 2018).

and Baroni, 2018; Battaglia et al., 2018; Johnson
et al., 2017; Keysers et al., 2020) . In particular,
the issue has been explored in the visual-question
answering (VQA) setting (Andreas et al., 2016;
Hudson and Manning, 2018; Johnson et al., 2017;
Perez et al., 2018; Hu et al., 2017). Many of the
successful models in this setting learn hand-coded
operations (Andreas et al., 2016; Hu et al., 2017),
use highly specialized components (Hudson and
Manning, 2018), or use additional supervision (Hu
et al., 2017). In contrast, our model uses standard
recurrent networks and simply imposes the addi-
tional constraint that mechanisms for alignment
and translation are separated. In the Compositional
Attention Network, built for VQA, the represen-
tations used to encode images and questions are
restricted to interact only through attention distri-
butions (Hudson and Manning, 2018). Our model
utilizes a similar restriction, reinforcing the idea
that compositionality is enhanced when informa-
tion from different modules are only allowed to
interact through discrete probability distributions.

Li et al. (2019) recently showed good perfor-
mance on the SCAN tasks using a very similar ap-

proach. Our results lend additional support to the
idea that separating alignment and translation can
facilitate compositional generalization. The results
from the meta-seq2seq version of the SCAN task
(Lake, 2019) suggest that meta-learning may also
be a viable approach to inducing compositionality
in neural networks.

We were inspired by work in cognitive science
emphasizing the relationship between systematicity
and syntax (Chomsky, 1957; Fodor and Pylyshyn,
1988). Others have explored similar ideas in dif-
ferent natural language tasks (Bastings et al., 2017,
2019; Chen et al., 2018; Havrylov et al., 2019;
Strubell et al., 2018). This work supports the sug-
gestion that intuitions from cognitive science can
aid architecture design in deep learning.

5 Conclusion

In this work we attempt to operationalize an intu-
ition from cognitive science, implementing it as in-
ductive bias in the form of a factorization between
alignment and translation in the seq2seq setting.
We showed that this can improve compositional
generalization performance on the SCAN task, and
that it doesn’t degrade performance on a small MT
task. We believe this factorization prevents the
model from memorizing spurious correlations in
the data, and note that similar ideas may be useful
in other natural language tasks.
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A SCAN dataset details

The SCAN dataset (Lake and Baroni, 2018) is com-
posed of sequences of instructions that must be
mapped to sequences of actions (see Figure 3).

The instruction sequences are generated using
the pharase-structure grammar described in Figure
4. This simple grammar is not recursive, and so can
generate a finite number of command sequences
(20,910 total).

These commands are interpreted according to
the rules shown in Figure 5. Although the grammar
used to generate and interpret the commands is sim-
ple compared to any natural language, it captures
the basic properties that are important for testing
compositionality (e.g. modifying relationships, dis-
crete grammatical roles, etc.). The add-primitive
splits (described in main text) are meant to be anal-
ogous to the capacity of humans to generalize the
usage of a novel verb (e.g. “dax”) to many con-
structions (Lake and Baroni, 2018).

B Experimental procedure details

The cluster used for all experiments consists of
3 nodes, with 68 cores in total (48 times Intel(R)
Xeon(R) CPU E5-2650 v4 at 2.20GHz, 20 times In-
tel(R) Xeon(R) CPU E5-2650 v3 at 2.30GHz), with
128GB of ram each, connected through a 56Gbit
infiniband network. It has 8 pascal Titan X GPUs
and runs Ubuntu 16.04.

All experiments were conducted with the SCAN
dataset as it was originally published (Lake and
Baroni, 2018). No data were excluded, and no pre-
processing was done except to encode words in the
input and action sequences into one-hot vectors,
and to add special tokens for start-of-sequence and
end-of-sequence tokens. Train and test sets were
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Figure 3: Examples from the SCAN dataset. Figure reproduced from (Lake and Baroni, 2018).

Figure 4: Phrase-structure grammar used to generate SCAN dataset. Figure reproduced from (Lake and Baroni,
2018).

kept as they were in the original dataset, but follow-
ing (Bastings et al., 2018), we used early stopping
by validating on a 20% held out sample of the
training set. All reported results are from runs of
200,000 iterations with a batch size of 1. Except
for the additional batch of 25 runs for the add-jump
split, each architecture was trained 5 times with
different random seeds for initialization, to mea-
sure variability in results. All experiments were
implemented in PyTorch.

Initial experimentation included different imple-
mentations of the assumption that syntactic infor-
mation be separated from semantic information.
After the architecture described in the main text
showed promising results, a hyperparameter search
was conducted to determine optimization (stochas-
tic gradient descent vs. Adam), RNN-type (GRU
vs. LSTM), regularizers (dropout, weight decay),
and number of layers (1 vs. 2 layers for encoder
and decoder RNNs). We found that the Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 0.001, two layers in the encoder RNN and 1
layer in the decoder RNN, and dropout worked the
best, so all further experiments used these specifi-
cations. Then, a grid-search was conducted to find
the number of hidden units and dropout rate. We
tried hidden dimensions ranging from 50 to 400,
and dropout rates ranging from 0.0 to 0.5.

The best model used an LSTM with 2 layers and
200 hidden units in the encoder, and an LSTM with

1 layer and 400 hidden units in the decoder, and
used 120-dimensional mj vectors, and a dropout
rate of 0.5. The results for this model are reported
in the main text. All additional experiments were
done with models derived from this one, with the
same hyperparameter settings.

All evaluation runs are reported in the main text:
for each evaluation except for the add-jump split,
models were trained 5 times with different ran-
dom seeds, and performance was measured with
means and standard deviations of accuracy. For
the add-jump split, we included 25 runs to get a
more accurate assessment of performance. This
revealed a strong skew in the distribution of results,
so we included the median as the main measure
of performance. Occasionally, the model did not
train at all due to an unknown error (possibly very
poor random initialization, high learning rate or
numerical error). For this reason, we excluded runs
in which training accuracy did not get above 10%.
No other runs were excluded.

C Skew of add-jump results

As mentioned in the results section of the main text,
we found that test accuracy on the add-jump split
was variable and highly skewed. Figure 6 shows a
histogram of these results (proportion correct). The
model performs near-perfectly most of the time,
but is also prone to catastrophic failures. This may
be because, at least for our model, the add-jump
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Figure 5: Rules for interpreting command sequences to generate actions in SCAN dataset. Figure reproduced from
(Lake and Baroni, 2018).

split represents a highly nonlinear problem in the
sense that slight differences in the way the primitive
verb “jump” is encoded during training can have
huge differences for how the model performs on
more complicated constructions. We recommend
that future experiments with this kind of composi-
tional generalization problem take note of this phe-
nomenon, and conduct especially comprehensive
analyses of variability in results. Future research
will also be needed to better understand the fac-
tors that determine this variability, and whether it
can be overcome with other priors or regularization
techniques.

D Supplementary experiments

D.1 Testing nonlinear translation
Our main hypothesis is that the separation between
sequential information used for alignment and in-
formation about the meanings of individual words
encourages systematicity. The results reported in
the main text are largely consistent with this hypoth-
esis, as shown by the performance of the Syntactic
Attention model on the compositional generaliza-
tion tests of the SCAN dataset. However, it is also
possible that the simplicity of the translation stream
in the model is also important for improving com-
positional generalization. To test this, we replaced
the linear layer in this stream with a nonlinear neu-
ral network. From the model description in the
main text:

p(yi|y1, y2, ..., yi�1,x) = f(di), (4)

In the original model, f was parameterized with
a simple linear layer, but here we use a two-layer
feedforward network with a ReLU nonlinearity, be-
fore a softmax is applied to generate a distribution
over the possible actions. We tested this model on
the add-primitive splits of the SCAN dataset. The

results (mean (%) with standard deviations) are
shown in Table 4, with comparison to the baseline
Syntactic Attention model.

The results show that this modification did not
substantially degrade compositional generalization
performance, suggesting that the success of the
Syntactic Attention model does not depend on the
parameterization of the translation stream with a
simple linear function.

D.2 Add-jump split with additional examples
The original SCAN dataset was published with
compositional generalization splits that have more
than one example of the held-out primitive verb
(Lake and Baroni, 2018). The training sets in these
splits of the dataset include 1, 2, 4, 8, 16, or 32
random samples of command sequences with the
“jump” command, allowing for a more fine-grained
measurement of the ability to generalize the usage
of a primitive verb from few examples. For each
number of “jump” commands included in the train-
ing set, five different random samples were taken to
capture any variance in results due to the selection
of particular commands to train on.

Lake and Baroni (2018) found that their best
model (an LSTM without an attention mechansim)
did not generalize well (below 39%), even when it
was trained on 8 random examples that included the
“jump” command, but that the addition of further
examples to the training set improved performance.
Subsequent work showed better performance at
lower numbers of “jump” examples, with GRU’s
augmented with an attention mechanism (“+ attn”),
and either with or without a dependence in the de-
coder on the previous target (“- dep”) (Bastings
et al., 2018). Here, we compare the Syntactic At-
tention model to these results.

The Syntactic Attention model shows a substan-
tial improvement over these previous approaches
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Figure 6: Histogram of test accuracies across all 25 runs of add-jump split.

Table 4: Results of nonlinear translation experiment. Star* indicates median of 25 runs.

Model Add turn left Add jump
Nonlinear translation 99.0 ± 1.7 84.4 ± 14.1
Syntactic Attention 99.9 ± 0.16 91.0*

± 27.4

at the lowest numbers of “jump” examples used for
training (see Figure 7 and Table 5). Compositional
generalization performance is already quite high
at 1 example, and at 2 examples is almost perfect
(99.997% correct).

D.3 Template splits
The compositional generalization splits of the
SCAN dataset were originally designed to test for
the ability to generalize known primitive verbs to
valid unseen constructions (Lake and Baroni, 2018).
Further work with SCAN augmented this set of
tests to include compositional generalization based
not on known verbs but on known templates (Loula
et al., 2018). These template splits included the
following (see Figure 8 for examples):

• Jump around right: All command sequences
with the phrase “jump around right” are held
out of the training set and subsequently tested.

• Primitive right: All command sequences con-
taining primitive verbs modified by “right” are
held out of the training set and subsequently
tested.

• Primitive opposite right: All command se-

quences containing primitive verbs modified
by “opposite right” are held out of the training
set and subsequently tested.

• Primitive around right: All command se-
quences containing primitive verbs modified
by “around right” are held out of the training
set and subsequently tested.

Results of the Syntactic Attention model on
these template splits are compared to those origi-
nally published (Loula et al., 2018) in Table 6. The
model, like the one reported in (Loula et al., 2018),
performs well on the jump around right split, con-
sistent with the idea that this task does not present
a problem for neural networks. The rest of the re-
sults are mixed: Syntactic Attention shows good
compositional generalization performance on the
Primitive right split, but fails on the Primitive op-
posite right and Primitive around right splits. All
of the template tasks require models to generalize
based on the symmetry between “left” and “right”
in the dataset. However, in the opposite right and
around right splits, this symmetry is substantially
violated, as one of the two prepositional phrases in
which they can occur is never seen with “right.”
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Figure 7: Compositional generalization performance on add-jump split with additional examples. Syntactic At-
tention model is compared to previously reported models (Bastings et al., 2018) on test accuracy as command
sequences with “jump” are added to the training set. Mean accuracy (proportion correct) was computed with 5
different random samples of “jump” commands. Error bars represent standard deviations.

Table 5: Results of Syntactic Attention compared to models of Bastings et al. (2018) on jump-split with additional
examples. Mean accuracy (% - rounded to tenths) is shown with standard deviations. Same data as depicted in
Figure 7.

Number of jump commands in training set

Model 1 2 4 8 16 32

GRU + attn 58.2±12.0 67.8±3.4 80.3±7.0 88.0±6.0 98.3±1.8 99.6±0.2

GRU + attn - dep 70.9±11.5 61.3±13.5 83.5±6.1 99.0±0.4 99.7±0.2 100.0±0.0

Syntactic Attention 84.4±28.5 100.0±0.01 100.0±0.02 99.9±0.2 100.0±0.01 99.9±0.2

E Visualizing attention

Here, we visualize the attention distributions over
the words in the command sequence at each step
during the decoding process. In the following fig-
ures (Figures 9 to 14), the attention weights on each
command (in the columns of the image) is shown
for each of the model’s outputs (in the rows of
the image) for some illustrative examples. Darker
blue indicates a higher weight. The examples are
shown in pairs for a model trained and tested on
the add-jump split, with one example drawn from
the training set and a corresponding example drawn
from the test set. Examples are shown in increasing
complexity, with a failure mode depicted in Figure
14.

In general, it can be seen that although the at-
tention distributions on the test examples are not
exactly the same as those from the corresponding
training examples, they are usually good enough for
the model to produce the correct action sequence.
This shows the model’s ability to apply the same
syntactic rules it learned on the other verbs to the

novel verb “jump.” In the example shown in Figure
14, the model fails to attend to the correct sequence
of commands, resulting in an error.
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Figure 8: Table of example command sequences for each template split. Reproduced from (Loula et al., 2018)
.

Table 6: Results of Syntactic Attention compared to models of Loula et al. (2018) on template splits of SCAN
dataset. Mean accuracy (%) is shown with standard deviations. P = Primitive

Template split

Model jump around right P right P opposite right P around right

LSTM (Loula et al. (2018)) 98.43±0.54 23.49±8.09 47.62±17.72 2.46±2.68
Syntactic Attention 98.9±2.3 99.1±1.8 10.5±8.8 28.9±34.8

Figure 9: Attention distributions: correct example

Figure 10: Attention distributions: correct example
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Figure 11: Attention distributions: correct example

Figure 12: Attention distributions: correct example
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Figure 13: Attention distributions: correct example
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Figure 14: Attention distributions: incorrect example
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Abstract

The recent surge in online forums and move-
ments supporting sexual assault survivors has
led to the emergence of a ‘virtual bubble’
where survivors can recount their stories. How-
ever, this also makes the survivors vulnera-
ble to bullying, trolling and victim blaming.
Specifically, victim blaming has been shown
to have acute psychological effects on the sur-
vivors and further discourage formal reporting
of such crimes. Therefore, it is important to de-
vise computationally relevant methods to iden-
tify and prevent victim blaming to protect the
victims. In our work, we discuss the drastic
effects of victim blaming through a short case
study and then propose a single step transfer-
learning based classification method to iden-
tify victim blaming language on Twitter. Fi-
nally, we compare the performance of our pro-
posed model against various deep learning and
machine learning models on a manually anno-
tated domain-specific dataset.

1 Introduction

Global statistics indicate that 35% of women
worldwide have experienced sexual violence at
some point in their lives1. Popular hashtags like
‘#metoo’, ‘#sexualharassment’ on Twitter have en-
couraged victims to share their stories of sexual
assault and formally report them. However, the
backlash faced by the victims has been staggering.
Victims of sexual assault are often held culpable
for the assault, and are attacked on social forums
by extremists. With the rise of such crimes, it is
important to devise a computational framework
that can identify and prevent online victimization
of sexual assault survivors who choose to report
the crime. Ambiguous interpretations of rape cul-
ture and victim blaming makes manually sorting
and identifying such information an arduous task.

⇤Authors contributed equally
1http://worldpopulationreview.com/countries/rape-

statistics-by-country

Hence, in our work we have attempted to identify
an objectively grounded definition of victim blam-
ing for further research in this domain.

Victim blaming occurs when the victim of a
crime or any wrongful act is held entirely or par-
tially at fault for the harm that befell them (Coates
et al., 2006). Additionally, “slut shaming” is a
popular form of victim blaming which refers to at-
tacking a person’s character on the basis of sexual
activity, real or perceived (Ringrose and Renold,
2012). Victims of sexual assault are initially hesi-
tant to make a sexual assault complaint and often
encounter victim blaming and slut shaming atti-
tudes when they finally do (Ahrens, 2006). This
blame can appear in the form of toxic social re-
sponses from medical professionals, the media, the
judiciary or a growing majority of online activists
on social media platforms (Campbell et al., 2009).

Social platforms like Twitter and Facebook pro-
vide victims with a ‘virtual bubble’ to recollect
the assault stories and seek emotional help. The
victim blaming faced by these victims, however,
discourages them from disclosing their personal
stories and further seeking medical help (Verdun-
Jones and Rossiter, 2010). Therefore, in this work,
we propose a method to identify such language on
Twitter and protect the victims who choose to dis-
close their plight. We propose a Twitter-specific
classification model which can exclusively identify
victim blaming tweets. The key contributions of
this work are:

• Our work is the first attempt in devising a com-
putational framework for identifying victim
blaming language.

• We provide a manually annotated dataset that
contains 5,070 tweets for further research in
this domain.

• We propose a single step transfer learning
based classification method that identifies vic-
tim blaming language and labels it. It obtained
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superior results to many deep learning and ma-
chine learning based approaches.

2 Related Work

Prior research has shown sexual assault is a crime
that women are most afraid of (Koss, 1993). Of-
tentimes, victims of sexual assault are subjected to
humiliation, blaming because of which, reasonable
doubt is created about their credibility (Ullman,
2000). Popular theories such as the “just world”
(Lerner, 1980) theory and the “invulnerability” (An-
drew et al., 2003) theory explain the psychological
motivation behind victim blaming. The “just world”
theory states that people get what they deserve and
deserve what they get, thereby shifting the blame
of the crime to the victim while the “invulnerabil-
ity” theory states that people blame the victim to
project their own sense of invulnerability.

Victim Blaming, therefore, stems from an in-
dividual’s personal sense of insecurity and acts
as a silencing function for most victims who are
discouraged to disclose their personal stories or
seek any help online (Ahrens, 2006). Since victims
fail to obtain the required medical assistance, they
become highly susceptible to emotional difficul-
ties that manifest as depression in the short term
and acute psychological difficulties in the long run
(Verdun-Jones and Rossiter, 2010). In addition to
this, chronosystem factors like past instances of
victimization and sexual revictimization affect the
mental health outcomes of the survivor often lead-
ing to suicidal behaviour, substance use, depression
etc. (Campbell et al., 2009).

With the advent of social media, a new medium
has presented itself for victim blaming to occur.
Social platforms like Twitter, Facebook and Reddit
provide a space to publicly post comments and
present an insight into community opinions for
researchers and social scientists. Due to its in-
creasing popularity, Twitter is being used for re-
search in opinion mining (Andleeb et al., 2019),
keyword extraction (Biswas, 2019), hate speech
detection (Badjatiya et al., 2017) etc. It has been
widely used for research on sexual violence (Wek-
erle et al., 2018) as well as suicidal ideation us-
ing linear and ensemble classifiers (Sawhney et al.,
2018). Research has also been focused on hate
speech detection for Twitter using deep learning
techniques, classifying tweets as sexist, racist or
neither (Badjatiya et al., 2017). Balakrishnan et al.
(2020) have used Naive Bayes, Random Forest and

J48 for detection of cyberbullying. Due to the simi-
larities between victim blaming and cyberbullying,
we have used Naive Bayes as one of our baseline
models. Schrading (2015) analyzes discussions on
domestic abuse across social media, using LSTM,
Naive Bayes, Logistic Regression, and SVM which
has been used as a baseline against our proposed
method because of its good performance.

2.1 Motivation: Weibo Victim Scandal

Liu Jingyao, a 21 years old student at the Uni-
versity of Minnesota accused Liu Qiangdong the
founder of Chinas largest company JD.com, of rap-
ing her. She did not report her case immediately as
she was afraid that she would be blamed. After the
case became popular in China, people commented
things like The woman looks disgusting, She is a
slut etc. on Weibo, the Chinese equivalent of Twit-
ter. She suffered from post traumatic stress disorder
and insomnia because of this.2

The Weibo Case study is a classic example of
the drastic effects of victim blaming on the victim
and it’s prevalence in our society. Reporting of
instances of sexual violence has shown to pre-empt
blame in the talk of women reporting blame which
further shows that victim blaming itself is marked
by specific topics and framing of sentences that
shifts the blame onto the victim. Parameters like
location of incident, state of victim etc. can be used
for identifying such instances (Stubbs-Richardson
et al., 2018). In lieu of these specific markers of
victim blaming language which can further lead to
biased reporting in offline media as well, we feel it
is imperative to study about it in detail. Previous
works in hate speech detection classified tweets as
racist or sexist only (Badjatiya et al., 2017). These
works generalize all instances of sexism under one
classification. However, recent research has shown
important sub-classifications of sexism that may be
important for online media research. (Parikh et al.,
2019) classifies tweets into 14 sub categories of sex-
ism and we identify that not all 14 categories may
have as drastic effects as victim blaming and slut
shaming. Victim Blaming on online media directly
leads to psychological disturbances for the victim
and biased responses from authorities seeking legal
action for such crimes (Gruenewald et al., 2004).
This does not undermine the severity of other cat-
egories but rather establishes why victim blaming

2https://www.nytimes.com/2019/12/13/business/liu-
jingyao-interview-richard-liu.html
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Clothing, makeup of victim (short skirt, skimpy clothes, v-neck shirts)
Victim’s physiological state at time of incident (drunk, sad, depressed)

Victim’s former/current job as a prostitute
Victim’s sexual history or promiscuity

Victim’s upbringing as explanation for behaviour (raised by lesbians, rich)
Locations that suggest victim culpability (bar, road, club)

Use of loaded terms to describe rape (alleges, accuses, she says)
self-reporting (Victim chooses to report crime on online media first)

Table 1: Coding Instrument to Identify Victim Blaming Language

should be studied separately and not as a specific in-
stance of hate speech due to sensitivity and specific
topics related to this issue. Models specific to each
sub-category may not seem feasible and scalable
but viewing at the issue of victim blaming from a
psychological perspective we feel research in this
domain is essential to devise computational frame-
works to identify and prevent victim blaming on
social media extensible to offline media reporting.

3 Dataset Construction

Creating our victim-blaming dataset entails a two
step process: collection of data and data annota-
tion. Due to the lack of prior work, we create a
custom dataset by crawling English tweets from
Twitter using the Twitter API3 that mentioned ma-
jor hashtags related to sexual harassment. A to-
tal of 4,242 tweets were scrapped from November
6, 2019 to November 19, 2019 which contained
‘metoo. Also, 413 tweets were scrapped contain-
ing ‘sexualharassment. We further observed that
victim blaming tweets contained derogatory terms
like ’whore’ therefore, we used common words re-
lated to sexual harassment (rape, slut, whore) for
increasing the number of positive samples. A total
of 732 tweets were added after scrapping tweets
from November 16, 2019 to November 29, 2019.
Tweets are unstructured and noisy in nature due
to the use of informal language prevalent on so-
cial media (Zappavigna, 2012). For pre-processing
them, stop words are removed along with non al-
phanumeric text as they provide little information.
URL’s, emojis like ‘:)’ and the symbol ‘#’ are re-
moved using regex. Usernames are also removed
for anonymity. The tweets are then tokenized to
run the various models. Tokenization and removal
of stop words is done using NLTK. The average

3https://developer.twitter.com/

number of characters in a tweet is 33 4. After
pre-processing, we remove tweets which have less
than 33 characters. The final dataset contains 5,070
tweets out of which 1562 were classified as positive
samples. Under the guidance of a social scientist, a
coding scheme to identify victim blaming language
is devised, taking into account gender related dis-
course and campaigns as well as psychological
analysis of rape culture and victimization from so-
cial media. Table 1 summarizes the key identifiers
of victim-blaming language.

We follow a two-phase annotation process for
the classification of each tweet in the final dataset.
In Phase 1, two annotators, a psychology student
and a social science student identify tweets which
contain features listed in Table 1 and subsequently
classify them by marking victim blaming tweets
as ‘1’ and other tweets as ‘0’. The inter annotator
agreement, measured by the average of the Co-
hens Kappa (Cohen, 1960) is 0.712. In case of a
disagreement between the annotators, a third an-
notator who is a social science student classifies
the ambiguous tweet. Phase 2 involves checking
that all the tweets have been classified and correct
symbol that is, either ‘1’ or ‘0’ have been used for
it. Table 2 shows some samples from the dataset
that were labeled ‘1’ by the annotators.

4 The Victim Blaming Language Model

NLP problems are solved using shallow machine
learning models or deep learning models along
with manually crafted features which fail to capture
the linguistic information properly due to dimen-
sionality problems (Khatua et al., 2018). Twitter
follows a unique semantic and linguistic format
(Hu et al., 2013) that makes it imperative to devise
frameworks that incorporate the specific linguistic

4https://techcrunch.com/2018/10/30/twitters-doubling-
of-character-count-from-140-to-280-had-little-impact-on-
length-of-tweets/
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Tweets Label
She went with them and got drunk. She slept with them and
when they called her a whore accused them of rape 1
She is a dumb British whore who filed fake claim 1
Harvey Weinstein is a very evil man, but some of the celebrity women apart of the #Metoo
movement that were “sexually assaulted” knew exactly what they were doing. 1
Another perverted Democratic! Let’s see if Hollywood will say something or
if #MeToo is only for Republicans. 0
They definitely raped her. Why else would they call her a whore? 0
Women don’t admit they lost their power to men via rape for the fun of it.
If a woman says she was raped, believe her. 0

Table 2: Examples from Annotated Dataset(Paraphrased to preserve anonymity)

Figure 1: High Level Overview of Victim Blaming
Classification Method. Blue indicates transferred lay-
ers and grey indicates randomly intialized layers

styles used on Twitter. Recent advancements in us-
ing transfer learning for tweet stance classification
shows that enriching models with Twitter linguis-
tics can improve performance (Zarrella and Marsh,
2016) Additionally, victim blaming language ex-
hibits specific topics and syntax as shown in the
coding instrument in Table 1. However, popular
text classification models have failed to incorpo-
rate the subtle nuances of victim blaming language
on social media specifically Twitter. Therefore,
we propose a transfer learning based model that
addresses this issue.

We propose a simple yet effective classification
method based on single step transfer learning
(Chronopoulou et al., 2019). State-of-the-art
transfer learning methods employ language models
(LM) trained on generic corpora with additional
fine tuning of LMs for task specification. In our

method, we combine the task-specification and
language modelling with the help of an auxiliary
loss function that is adjusted during training for
task and linguistic adaptation. This prevents
catastrophic forgetting and allows our model to be
trained on a social media specific large corpora
for e.g.: Twitter or Reddit standard datasets
and then be adapted to target tasks on domain
specific smaller corpora. (Chronopoulou et al.,
2019) theorizes that the prevention of catastrophic
forgetting for machine translation tasks is because
the language model objective acts as the regularizer
that limits the loss of generalizable features and
evidence for the same is presented in their work.
We intuitively inferred that a similar approach
would be effective in capturing the subtle topics
of victim blaming on Twitter due to the additional
language modelling step that guides the training
across the text classification task.
LM Pretraining: We train a word-level LM
which consists of an embedding LSTM layer, 2
hidden LSTM layers and a linear layer.

Transfer learning and Auxiliary Loss: We
transfer the weights of the pre-trained model and
add an additional LSTM layer.

We introduce an auxiliary LM loss during train-
ing to incorporate the contribution of the pre-
trained language model in the classification method.
The joint loss is the sum of classification loss, LCLF
and auxiliary LM loss, LLM.

L = LCLF + LLM

We consider equal contribution of both the loss
values to effectively capture language modelling
information and classification information specific
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Parameter Value
Activation function ReLU
Dropout 0.4
Batch size 64
Epochs 20
Optimizer Adam
Learning rate 0.0005

Table 3: Parameters for CNN Architectures

to the nature of our dataset. A High level overview
of our method is shown in Figure 1.

5 Experiments

5.1 Baselines
Traditional Machine Learning (ML) Approaches
We have used two machine learning models,
Support Vector Machine (SVM) and Naive Bayes
(NB).

SVM: For feature extraction, TF-IDF has been
used on word unigrams that is fed to the SVM

NB: Similar to SVM, TF-IDF has been used for
feature extraction for classification
LSTM-Based Architectures

LSTM: The word embeddings for all the words
in a post are fed to a vanilla LSTM

TextbiRNN: This is an improvement on a
vanilla RNN. The word embeddings for all the
words in a post are fed to a bi-directional LSTM.

CNN-Based Architectures
TextCNN: Convolutional filters we applied to

the word vectors of a post followed by max-pooling
layers as described by (Kim, 2014)

CharCNN: A sequence of encoded characters
are fed into a CNN as described by (Zhang et al.,
2015)

fasttext: fasttext classifier is used for text classi-
fication which takes into account n-grams of words
to incorporate local word order (Grave et al., 2016)

5.2 Implementation of Victim-Blaming
Classification Method

To pretrain the language model we create a dataset5

of 1 million English tweets scraped from Twitter,
including approximately 1M unique tokens. We
use 50K most frequent tokens as our vocabulary.
We then use our Victim-Blaming dataset for clas-
sification. To pre-process the tweets we use regex

5https://www.kaggle.com/paoloripamonti/twitter-
sentiment-analysis

to remove usernames, urls and emojis. In addition
to this, we use NLTK for stop word removal and
tokenization of the tweets. For neural models, we
use an LM with embedding size of 300, 2 hidden
layers, dropout of 0.3 and batch size of 64. We add
an LSTM of size 100 with a softmax classification
layer on top of the transferred LM. In pretrain-
ing, and pretrained layers (of transferred model),
Adam was used with a learning rate of 0.0001. For
the newly added LSTM and classification layers,
Adam with learning rate of 0.0005 was used. For
developing our models, we use Pytorch and Sci-kit
learn.

5.3 Results
Table 4 describes the performance of the baseline
models in comparison to our proposed approach
across the accuracy metric. The models were
trained over 60% of the dataset while 20% was held
out for test and 20% was used as dev split to opti-
mize the parameters across all the models tested.
The proposed approach outperforms all baselines
including RNNs, CNNs, LSTMs and traditional
ML approaches SVM and NB. Fasttext model is
able to generate domain specific embeddings due to
the nature of embedding construction that benefits
the unpredictable and unstructured Twitter seman-
tics. CharCNNs usually have a high perplexity due
to the character-by-character prediction, however,
they presented similar results to the fasttext model
which are better than the other baseline models.
Our method shows better results when compared
with the baseline models. Since we do not have
a lot of data, the baseline models fail to identify
linguistic features of twitter language which are
significantly different from normal conversational
language. Our method takes care of this using
the auxiliary loss function. The language model
trained on generic corpora is successfully able to
capture these features and can therefore perform
better when retrained for classification. In com-
parison to our baselines, our model architecture is
simpler and computationally inexpensive.

5.4 Error Analysis
It has been observed that sometimes incidents of
victim blaming are either self reported or reported
by a third person. Some tweets may cite previous
instances of victim blaming to speak against victim
blaming. Since, these tweets consist of the marked
topics and linguistic framing encoded in the coding
instrument in Table 1, the proposed model classifies
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Approach Accuracy
NB 0.60
SVM 0.73
LSTM 0.74
TextbiRNN 0.74
TextCNN 0.75
CharCNN 0.77
fasttext 0.78
Proposed Method 0.82

Table 4: Performance Comparisons on Victim Blaming
Dataset

such tweets as positive examples. This is a typi-
cal form of error encountered in even hate speech
detection tasks (MacAvaney et al., 2019) where
keywords marked for positive examples leads to
classification errors. It should further be discussed
whether such examples should be classifies as pos-
itive or negative during the annotation process
and requires extensive social and psychological
research. Some systemic errors we explored during
our experiments:

• She may tweet against you in #MeToo if you
are not careful : This tweet was annotated as
1, that is, victim blaming tweet since it con-
tains implicit victim blaming. The proposed
model wrongly classifies it as 0 as it lacks
specific topics and keywords that the model
has learned during training. This error arises
due to the model failing to effectively capture
sarcasm.

• All the desi feminists....using woman card for
personal gains and abusing #Metoo.: This
tweet is not classified as victim blaming by
the model, however, it is annotated as victim
blaming due to implicit gaslighting of victims
who choose to report it. It was mis-classified
since it is not directly threatening or accus-
ing a victim. The researchers also feel this
might be an oversight between the annotators
while data annotation as this may be a case
of general sexism and not victim blaming. To
address this type of error we plan to extend
our work into a multi-label categorization task
which considers sub-categories of victimiza-
tion, that is, secondary, primary and gender
based victimization in rape cases.

• Even if I agree, most of what it would take
for that to be a valid viewpoint, you still mean

that ”you cant́ rape a whore.” Justice should
be principle based not tribe based.: This tweet
is not victim blaming but citing an instance of
victim blaming directly which leads the model
to classify it as victim. This is an instance
which is very common in hate speech tasks
as well where citing or using such phrase and
words to talk against the hate or victim blam-
ing language leads to false positives during
classification.

• I’ll be a good boy and take it silently if you
rape my cunt: This tweet contains vulgar lan-
guage that is identified by the model as victim
blaming erroneously. This tweet is annotated
as 0, not victim blaming but the specific words
like ’cunt’ or ’take it’ has clearly confused the
model as it is failing to capture long sequences
here and decipher the meaning of the tweet
wholly.

6 Conclusion and Future Work

In this work, we established the need to devise a
computationally effective method to identify vic-
tim blaming language on Twitter. To achieve this,
we proposed a single step transfer learning based
classification method that effectively captures the
unique linguistic structures of twitter data and vic-
tim blaming language. On a manually annotated
dataset, our proposed approach could achieve sig-
nificant improvement over existing methods that
rely on custom textual features and popular deep
learning based methods. The prevalence of rape
culture and the subsequent victim blaming on un-
solicited social media forums like Twitter has not
been studied from a computational linguistic per-
spective before. Our work, therefore presents an ex-
tensive study of popular text classification methods
on a niche’ dataset with victim blaming semantics
and further presents the significance of using a sim-
ple transfer learning approach to capture Twitter
semantics on a limited dataset. We anticipate that
this study encourages further research on how vic-
tims of sexual assault are portrayed on social media.
Our future agenda includes further bifurcating and
exploring the specific types of victim blaming and
the efficacy of the proposed approach on such a
multi label classification task. We plan to explore
the different weighting factors for the language
modelling loss and classification loss described in
section 4 to determine if weighting factors can help
customize the auxiliary loss for different tasks.
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