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Introduction

Welcome to the ACL 2020 Student Research Workshop!

The ACL 2020 Student Research Workshop (SRW) is a forum for student researchers in computational
linguistics and natural language processing. The workshop provides a unique opportunity for student
participants to present their work and receive valuable feedback from the international research
community as well as from faculty mentors.

Following the tradition of the previous student research workshops, we have two tracks: research papers
and thesis proposals. The research paper track is a venue for Ph.D. students, Masters students, and
advanced undergraduates to describe completed work or work-in-progress along with preliminary results.
The thesis proposal track is offered for advanced Masters and Ph.D. students who have decided on a thesis
topic and are interested in feedback on their proposal and ideas about future directions for their work.

This year, the student research workshop has received considerable attention, reflecting the growth of
the field. We received 137 submissions in total: 10 thesis proposals and 127 research papers. Among
these, 12 research papers were non-archival. We accepted 49 papers, with an acceptance rate of 36%.
After withdrawals and excluding non-archival papers, 43 papers appear in these proceedings, including
six thesis proposals and 37 research papers. All the accepted papers will be presented virtually, as a part
of the main conference, spread across three days (July 6th-8th).

Mentoring is at the heart of the SRW. In keeping with previous years, we had a pre-submission mentoring
program before the submission deadline. A total of 57 papers participated in the pre-submission
mentoring program. This program offered students the opportunity to receive comments from an
experienced researcher to improve the writing style and presentation of their submissions. Additionally,
authors of accepted SRW papers were matched with mentors to review their camera-ready drafts and
conference presentations.

We are deeply grateful to our sponsors, including the National Science Foundation and the Don and
Betty Walker Scholarship Fund. We also thank Grammarly for offering writing assistance to the authors
of SRW papers. We thank our program committee members for their careful reviews of each paper and
all of our mentors for donating their time to provide feedback to our student authors. Thank you to our
faculty advisors, Omri Abend, Sujian Li, and Zhou Yu, for their essential advice and guidance, and to
the ACL 2020 organizing committee for their support. Finally, thank you to our student participants!
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Adaptive Transformers for Learning Multimodal Representations

Prajjwal Bhargava
prajjwalgo@gmail.com

Abstract

The usage of transformers has grown
from learning about language semantics to
forming meaningful visiolinguistic repre-
sentations.  These architectures are often
over-parametrized, requiring large amounts of
computation. In this work, we extend adap-
tive approaches to learn more about model
interpretability and computational efficiency.
Specifically, we study attention spans, sparse,
and structured dropout methods to help
understand how their attention mechanism
extends for vision and language tasks. We
further show that these approaches can help us
learn more about how the network perceives
the complexity of input sequences, sparsity
preferences for different modalities, and other
related phenomena.

1 Introduction

Learning richer representations from visual and
text data is a central task to solve multi-modal
learning. Attention-based methods have proven
to be very useful in learning long term dependen-
cies and forming richer representations of the in-
put sequences. Numerous approaches (Lu et al.,
2019; Su et al., 2019; Li et al., 2019; Chen et al.,
2019) have been proposed for learning visiolinguis-
tic representations with transformers. Although
these approaches have provided us with significant
improvement on various benchmarks (language
and visiolinguistic), the architectures used are over-
parameterized require extensive training lasting for
several weeks using multiple objectives to form
a generalized representation of the task to be ad-
dressed, which is then followed by fine-tuning on
a downstream task. This workflow has become a
concerning problem. It results in deep learning
methodologies being inaccessible and increased
carbon footprints (Strubell et al., 2019). In this
work, we specifically explore adaptive methods.

1

We refer to Adaptive mechanisms as those meth-
ods that change their behavior during training/run
time and adapt stochastically to the environment
based on data heuristics (parameters) learned by en-
countering samples from the same data distribution
optimized by an objective function. Alternative
approaches such as pruning, distillation (Hinton
et al., 2015) and quantization are rigid to some
extent and induce some form of permanent modi-
fications to the model. Adaptive methods enforce
the network to learn parameters such that their be-
havior changes as per the complexity of the input
sequence as perceived by the neural network. The
code to reproduce the results in this work is pub-
licly available at this link'.

Current self-attention approaches assume that
the attention span of a head is invariant to the com-
plexity of an input sequence. Attention heads can
learn their optimal context size (Sukhbaatar et al.,
2019), which results in a reduction of FLOPS.
When an optimal attention span is learned, the
amount of attention given to a particular input se-
quence by an attention head is determined by its
context size. We show that the context size varies
with the emergent complexity of the sequence, and
spans can help us understand how much sensitive a
layer is to an input sequence.

Training models with a quarter of a million pa-
rameters are not feasible and practical for most
users. One effective way to facilitate neural net-
work scaling is by making the weights of the net-
work sparse. This configuration allows us to per-
form faster training of deeper networks with rela-
tively less compute. To make attention distributions
sparse, we use a entmax (Correia et al., 2019) to
obtain probability distribution of weights. Nor-
malized exponential functions like softmax cannot
assign a zero attention weight. This property en-

"https://github.com/prajjwall/
adaptive_transformer
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forces the context vector to stay dense, resulting
in non-relevant sequences to be considered even
though the network has discarded them by putting
a deficient weight. Adaptive sparsity can make
an attention head to learn richer distributions by
oscillating the behavior of distribution to stay be-
tween softmax and sparsemax. We show that this
behavior can help us understand preferences for the
density of attention weight distribution and how it
varies amongst each head about different modality.

We also study a form of regularization method
called Layerdrop (Fan et al., 2019) to understand
its regularization impact for multi-modal features.
If the network can learn to drop identical layers
(Data Driven pruning), then it can be regarded as an
adaptive depth mechanism. We specifically use the
Every other pruning method where the user speci-
fies the drop rate because it offers maximal gains
as suggested compared to its counterpart pruning
methods. This method has proven to be effective
in reducing the number of parameters and pruning
layers during inference.

The contribution of this work is as follows:

e The adaptive approaches have only been
tested with linguistic features only. We extend
these approaches to study how do they align
to capture complex relationships between dif-
ferent modalities. We also study the effects of
aligning these approaches to understand their
compatibility through ablation analysis.

e We perform interpretability analysis to learn
how these approaches can enhance our under-
standing of attention behavior and adaptive
approaches.

e We provide experimental results on the recent
adaptive approaches for the multi-modal input
sequences.

2 Background

2.1 LXMERT

We use LXMERT (Tan and Bansal, 2019) as the
baseline architecture. The adaptive approaches can
be combined with any other self-attention mecha-
nism based transformer. LXMERT uses self and
cross attention layers to jointly attend to image
and text inputs (input sequence). Specifically, it
takes a word-level sentence and object-level image
embeddings. The encoder consists of three main

components: language (9 layers) and visual (5 lay-
ers) encoder (single-modality) to form textual and
image representations and cross-modality encoder
(5 layers) to jointly attend to both these representa-
tions. Cross attention is responsible for forming the
mapping between ROI features and textual repre-
sentations. Since the architecture used is identical,
we refer the readers to (Tan and Bansal, 2019) for a
detailed description of pre-training strategies. The
network used has been pre-trained on four objec-
tives: Masked Cross Modality LM, Masked Object
Prediction, Cross Modality Matching, and Image
Question Answering. Faster RCNN is used to ex-
tract ROI features from the input images.

2.2 Adaptive Attention Span

Unlike dynamic attention, which assumes that all
attention heads require the same amount of span,
learning an optimal attention span enables the gath-
ering of information as per the context size deter-
mined by the attention head. A max upper bound
span limit is enforced on each head, which helps
reduce computation and memory requirements. As
proposed in (Sukhbaatar et al., 2019), different
heads emphasize on different context depending
upon the task it is addressing. We explicitly show
that these spans vary significantly based on the
complexity of the task. We use the same masking
function with minor modification:

m.(z) = min [max [;(R T o} , 1]

Here, z acts as a model’s parameter. We initialize it
with kaiming normal (He et al., 2015) distribution.
m, is coupled with the attention weights. Hyperpa-
rameter R helps in controlling the softness of this
attention distribution.

The attention head compute the similarities be-
tween current token ¢ and past token 7 in the span
[t —S,t) as:

Str = Z?QT(Kl'T + Pt—r) (2
where K, () and P;_, denote key, query vectors,
and position embedding respectively. In the stan-

dard setting, attention weight distribution is ob-
tained by applying softmax on the similarity vector.

Ay = softmax(sy) 3)

The attention weights from Equation 3 are then



—— layer 0
-~ layer1
—— layer2
—— layer3
—— layer 4
—— layer5
layer 6

—— layer 7
layer 8

170

Attention Span
Attention Span

140

—— layer 0 230 —— Jlayer0
~— layer 1 — layer 1

—— layer2 220 —— layer2
—— layer3 —— layer 3
—_ 4 —_ 4
ayer 210 ayer
200

190

Attention Span

—— layer 0
1209 —— layer1
—— layer2
100{ —— layer 3
—— layer 4

1 2 3 4 5

Epoch
Vision (Cross Attention)

Epoch
Language (Cross Attention)

Epoch
Vision+Language (Cross Attention)

2004

n
ooe e
® © ©
& 8 &

o
13
3

Attention Spai

—— layer 0
+— layer 1
1704 —— layer2
—— layer3
165 —— layer 4

1 2 3 4 5

Epoch
Vision (Self Attention)

Figure 1: Variation of adaptive spans in different attention layers (single and cross-modality) as the training pro-
gresses. Accuracy on the local-validation set is reported per epoch. The maximum adaptive span limit was set to

1024

processed by the masking function as:

A, — m(t — r)exp(sy)

t—1 )
> my(t — q)exp(si)
q=t—S

The masking function is a non-increasing func-
tion that applies a transformation to the input values
of attention scores to keep them in range of [0, 1].
The parameters of m, are updated with model pa-
rameters to learn the optimal span.

2.3 Adaptive Sparse Attention

In order to make attention weights sparse, we use
o entmax as proposed in (Correia et al., 2019).
Specifically, softmax is replaced with o entmax to
compute attention weights given attention scores
in Equation 3.

AtH(Q, K, V) = (Qj(;) Vo5)

m(Z)ij = a -entmax (2;); (6)

« plays a crucial role in determining the behavior
of an attention head. If o > 1, the weight dis-
tribution would move away from softmax’s dense
representation towards sparse mappings as its cur-
vature changes. For a = 2, we obtain complete
sparse mappings. The value of alpha oscillates be-
tween 1 and 2. It is set as a network parameter,
which is jointly optimized in the training process.
Different values of « will govern the behavior of
the attention head.

2.4 LayerDrop

Layerdrop (Fan et al., 2019) is a method to reduce
the depth of the transformer in a controlled manner.
This method drops the identical sub-layers in the
transformer determined by a pruning strategy. We
follow the Every Other strategy, which drops the
layer as specified by a drop rate. It has been noted
that this pruning strategy works well as compared
to Search on Valid and Data Driven pruning strate-
gies. Let N denote the total number of layers in
the network. Setting p = 1 implies that we are
dropping one layer out of all the layers assigned
for a modality. The number of remaining layers
becomes N — p. Although the network will consist
of an equivalent amount of parameters as that of N
layers, all the operations will be carried out equiv-
alent to operations in N — p layers. This strategy
allows us to prune layers during inference time.

3 Experimental Setup

Visual Question Answering To solve the VQA
task, given an image and a question related to it,
the network is supposed to predict the right an-
swer from the given set of answer choices. We
performed all the experimentation on the VQA 2.0
dataset (Antol et al., 2015). The dataset consists
of three sets with a train set containing 83k images
and 444k questions, a validation set containing 41k
images and 214k questions, and a test set contain-
ing 81k images and 448k questions. In this case,
the network is asked to predict an answer from
3129 answer choices for a particular question.



Implementation We use the pre-trained weights
provided by (Tan and Bansal, 2019). We fine-tune
LXMERT to form visiolinguistic representations
based on image and text sequences with adaptive
approaches mentioned above. This operation is
followed by a classifier that receives the concate-
nated pooled features of image and text to predict
the answer. Fine-tuning is performed on a single
P100 GPU with 128 batch size. Optimization is per-
formed with Lookahead (Zhang et al., 2019) with
LAMB (You et al., 2019) as the inner optimizer.
Learning rate schedule is regulated by Cyclical
LR (Smith, 2017), with base and max learning rates
setto le — 5 and le — 4.

4 Experimental Findings and Results

Adaptive span for understanding the complex-
ity of the input sequence We demonstrate how
learning spans can help in understanding the behav-
ior of individual layers. Figure 1 shows how span
varies amongst different attention layers. Studying
spans can help us understand which layers are more
sensitive to the input sequences encountered during
the training process.

In the case of single modality encoder, spans
for self-attention layers for vision and language
decrease monotonically, indicating that the learning
behavior is somewhat similar, although slopes tell
us that the rate of learning is dissimilar. Similar
behavior is seen in the cross-modality encoder for
language.

Requiring a larger context size is indicative
of the complexity of the sequences. When self-
attention attends to both modalities, we observe
that the intermediate layers responsible for forming
complex representations increase their spans. This
observation shows that a more significant span is
necessary to attend both modalities jointly. Self-
attention also requires a high span when attending
to visual features in the cross-modality encoder.
This observation shows that visual sequences are
perceived as a more complex input to process than
a language input in the cross-modality encoder.

Determining sparsity preferences for vision and
language modality with & The value of « deter-
mines if the head is favoring sparse or dense atten-
tion weight distribution. For dealing with language
modality, self-attention favors mostly sparse map-
ping of attention weights in intermediate layers.
Similar behavior is observed inside cross-modality
encoder as well. This observation shows that lan-
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Figure 2: Regularization effect of layerdrop

guage modality benefits from sparse weights being
assigned as attention distribution. The value of
« is restricted below 1.5 for processing visual in-
puts. When vision modality is involved, heads that
preferred sparse mapping initially are converging
towards denser mapping, indicating that this repre-
sentation of attention weights is preferred. We also
observe that when both modalities are involved, the
network prefers, even more, denser weight distribu-
tion. This observation shows that vision modality
is given more preference (partly due to perceived
complexity) over language inputs to process the
sequence. Figure 3 shows variation of « values as
training progresses.

Regularization effect of Layerdrop We con-
sider two configurations of the model. The first one
has 10 language, 6 vision, and 6 cross-modality
layers with drop rate (p) set to 1 layer. In this
case, the number of parameters is more, but the
FLOPS is equivalent to the standard 9-5-5 base-
line configuration. The later one has the 9-5-5
configuration with p set to 1. This rate causes a
FLOP reduction of 17.54%. It is observed that lay-
erdrop requires ~3.5x more compute runtime for
convergence during training. A possible explana-
tion can be that additional training aids in forming
a consolidated understanding of multi-modal rep-
resentations. Even after ensuring the convergence
of the model, a strong regularization effect (with
a minimum value of p) prevents the network from
achieving performance that is close enough with
the mentioned adaptive methods with an equivalent
number of parameters being used training. Figure 2
and Table 2 shows this noted observations.

Quantitative Analysis In this section, Table 1
compares the adaptive approaches with the baseline
model and other state-of-the-art models, which rely
upon standard softmax attention mechanism. We
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notice that these approaches achieve near close
performance as standard attention mechanisms by
being computationally efficient. The results are
reported without any hyperparameter tuning.

Qualitative Analysis In this section, we analyze
the confidence scores on complex examples to bet-
ter understand the network’s predictions. We usu-
ally take the class with maximum confidence, but
analyzing confidence scores of other classes can
help us learn about what the network is learning
about the similarity of different tasks in the image.
Figure 4 shows confidence scores on an example
input. We observe that entmax aids in forming a
consolidated understanding of contrastive features.
In most cases, the top 5 confidence scores include
predictions present in the ground truth. Due to
sparse mapping, the network makes strong, con-
fident predictions about one label. When trained
with an adaptive attention span, the network some-
times seems unsure about the correct label as ex-

pected from softmax behavior. It works well when
a high probability is assigned to one label in the
ground truth. We did not observe comparable per-
formance from Layerdrop. In this example, the
right answer is assigned a deficient score. The net-
work does not seem to learn distinguishing features
from similar classes properly.

5 Ablation Analysis

We normalize attention scores with entmax instead
of softmax before applying the masking function
to use both adaptive attention span and sparse at-
tention weights mapping. It is evident from Table 2
that the adaptive span works better with the denser
representation of attention weights to perform op-
timally. The effect of soft masking function is
reduced when used with a sparse mapping func-
tion. We evaluate the layerdrop method with two
configurations of the network 9-5-5 (language, vi-
sion, and cross-modality layers) and 10-6-6 with



Model test-dev test-std
BUTD (Anderson et al., 2018) 65.32  65.67
VIiLBERT (Lu et al., 2019) 70.55 70.92
VLBERT (Su et al., 2019) 71.16 -
VisualBERT (Li et al., 2019)  70.80 71.00
UNITER (Chen et al., 2019) 7227 7246
LXMERT (T1an and Bansal, 2019)

w/ softmax 7242  72.54
w/ Adaptive Attetion Span 71.62  71.72
w/ Adaptive Sparse 71.73 7197
w/ Layerdrop (10-6-6) (p=1) 66.4  66.72

Table 1: Comparison to the state-of-the-art methods
with adaptive approaches on the VQA dataset.

Model test-dev test-std
LXMERT (Tan and Bansal, 2019)

w/ Attention Span and Entmax 63.07  63.33
Default (10-6-6) 66.35 66.57
w/ Layerdrop (9-5-5) (p=1) 66.51 66.81

Table 2: Ablation study for Adaptive approaches

p = 1. From Table 2, we see that the shallower
network performs better than the deeper-layered
model. This observation shows that there is a spe-
cific threshold drop rate up until which layerdrop
helps. It is plausible that this type of regularization
is favorable in deeper networks.

6 Conclusion

While attention-based approaches are becoming
universal, computationally efficient ways must
be favored for broader adoption of provided pre-
trained models on low resource hardware. Adaptive
methods can significantly reduce the cost incurred
to train such models and carbon footprints. In this
work, we extend adaptive approaches to Visiolin-
guistic tasks to understand more about attention and
adaptive mechanisms. While the empirical results
are encouraging, important future work includes
explorations of higher efficient adaptive and sparse
mechanisms that can significantly cause FLOPS
and parameter reduction with minimal loss in per-
formance.
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Abstract

Text style transfer aims to change the style
of the input text to the target style while pre-
serving the content to some extent. Previous
works on this task are on the sentence level.
We aim to work on story-level text style trans-
fer to generate stories that preserve the plot of
the input story while exhibiting a strong target
style. The challenge in this task compared to
previous work is that the structure of the input
story, consisting of leading roles and their re-
lations with each other, needs to be preserved,
and that the generated story needs to be con-
sistent after adding flavors. We plan to ex-
plore three methods including the BERT-based
method, the Story Realization method, and the
Graph-based method.

1 Introduction

Text style transfer has been extensively explored
by the NLP community on the sentence level. In
previous work, researchers defined style of a sen-
tence as one or some of its attributes, including
but not limited to sentiment (Xu et al., 2018; John
etal., 2019; Liao et al., 2018), formality (Luo et al.,
2019; Jain et al., 2018; Rao and Tetreault, 2018),
factuality (Zhang et al., 2018), etc. The goal is to
change the specified attribute or attributes in the in-
put sentence to the target attribute or attributes. For
example, changing a positive sentence to a negative
sentence while keeping its key information. There
are also works on transferring Shakespearean En-
glish to modern English and backward (Xu et al.,
2012; Jhamtani et al., 2017).

In this paper, we propose methods to transfer
text style on the story level. The task takes a story
as input, and generates a story in the target style
with the main plot of the input story preserved. In
our work, we define style as the setting of the story
which reveals time background and geographical
information. For example, if a story starts with a

8

boy receiving a package containing parchments and
a robe delivered by an owl, a good guess is that this
is a magic story most likely taken from or inspired
by Harry Potter. If we want to change the above
mentioned story into the Alice in Wonderland style,
an ideal output maybe a story about a girl receiving
a package containing an invitation to a tea party
from a rabbit.

Compared with sentence-level text style trans-
fer, our proposed work faces more challenges. It
is impractical to collect parallel stories that have
the same plot or structure but differ in settings. To
deal with this, we break down the task into two
parts. First, we explore methods to build a struc-
tural representation of the original story to preserve
the main plot, including leading roles and their con-
nections. Second, we generate a story given the
retrieved information or graph and the target style.

2 Related Work

The work we propose is closely related to previous
work on event extraction from text so that we have
a structure representation of the input story, and
text generation from events to produce the story in
the target style.

Graph Extraction from Text Generating text
on the story level from events ideally requires the
events to be organized as a structural representation,
otherwise the plot will not be consistent. While
manually constructing graphs is expensive, there
are multiple approaches to automatically construct
graphs based on stories, including Named Entity
Recognition (NER), Knowledge Graph, and other
text graph generation methods. While NER has
been studied for a while, the task of extracting
named entities with semantic relations between
nodes labelled has much room left to be explored.
Most previous work on extracting entities together
with relations either extract them separately and
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Figure 1: Illustration of how Story-realization Method works
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Figure 2: Structure of Graph Convolutional Network

predict the latter given the former (Chan and Roth,
2011; Zhou et al., 2005), or rely on feature engi-
neering to extract them jointly (Ren et al., 2017).
Recently, Fu et al. (2019) employed relation-
weighted graph convolutional networks (GCNs)
(Kipf and Welling, 2016) to build an end-to-end
relation extraction model, GraphRel, and reported
SOTA results. Figure 2 illustrates how GCN works.
GCN is a variant of convolutional neural networks
(CNNis) that works on graphs. The representation
of each node is updated based on its adjacent nodes.

Text Generation from Graph Due to the vari-
ety of graphs and information loss of long-distance
dependencies, it is hard to generate coherent stories
that span across multiple sentences from a graph.
Koncel-Kedziorski et al. (2019) proposed a novel
graph transformer to alleviate this problem by lever-
aging the relational structure of graphs without set-
ting linearization or hierarchical constraints.

The usage of GCN for text generation from
graphs is enjoying growing popularity among re-
searchers. Marcheggiani and Perez-Beltrachini
(2018) used GCNs to build an encoder which cal-

culates the node representation of each node in a
directed graph. After adding residual connections
and dense connections between the GCN layers,
they used an LSTM decoder. Guo et al. (2019)
built Densely Connected Graph Convolutional Net-
works to address the issue of learning deeper GCNss,
and achieved better results on graph-to-sequence
learning and AMR-to-text generation than previous
methods.

3 Proposed Methodology

Our goal is to adapt the original story to the target
setting. A well-known example of such kind of
adaptation is New York theatre production Sleep No
More, which adapts the story of Macbeth deprived
of its original time setting, and sets in a 1930s hotel
called the McKittrick.

3.1 Data Set

The data sets ideal for our proposed work need
to satisfy the following requirements. First, each
corpus needs to have an abundant amount of text
in the same style. Second, the style of each corpus
should differ from each other significantly, to the
extent that a snippet from a certain corpus tells
enough for people to tell which corpus it is from.

We select paragraphs between 100 and 200
words from each corpus and use GraphRel to auto-
matically build graphs from the text.

For each method described in the next section,
we use different training data. For the BERT-
based method, we use the story corpora as training
data. For the Story-realization method, we use the
selected paragraphs and corresponding extracted



input (Educated) graph expected output (Harry Potter)
("Tara Westover was ) SUNIVanot /Harry, on his eleventh\
seventeen the first time magicians birthday, learns he is
she set foot in a a wizard. Thus, he
classroom. Born to attends school to learn
survivalists in the bom to magic. Born to magicians
mountains of ldaho, she savage stew killed by Lord Voldemort,
prepared for the end of metal herb he prepared for the battle
the world by stockpiling | === Harry == | ith dark magic to save
home-canned peaches magicians from the end of
and sleeping with her the world by learning from
‘head for the hills’ bag. In prepare for professors and friends.
the summer she stewed He inherited kindness
herbs for her , a from his and
midwife and healer, and in courage from his
the winter she salvaged
metal in her ‘s
\junkyard. Y, \_ J

Figure 3: Illustration of how Graph-based Method works

named entities as training data. For the Graph-
based method, we use the selected paragraphs and
graphs built by GraphRel as training data.

To satisfy these requirements, we choose the
Harry Potter Series and the Game of the Throne
Series as our corpora. The former consists
of 1,084,170 words and the latter consists of
1,736,054 words.

3.2 Models

We plan to experiment with the following three
methods. The first two methods serve as baselines.

BERT-based Method This method will be
based on Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018).
In this method, first we use the corpus in the target
style to fine-tune BERT. Then we build a vocabu-
lary for the target corpus, setting the threshold of
minimum occurrence to 20. We examine each word
in the input story to see if they are included in the
vocabulary of the target corpus. If they are not, we
use the fine-tuned BERT to mask and predict these
words one by one. The BERT-based method serves
as our baseline model as it modifies the input story
sentence by sentence instead of as a whole.

In simpler cases where we only wish to change
the era of the story and do not have any other re-
quirements, we can add append a phrase indicat-
ing the era to the original sentences. For example,
when we mask video in the sentence The boy spent
a whole day playing video games.”, BERT (large-
cased version) correctly predicts the word to be
video. If we add the phrase *on the first day of the
18th century’, the prediction becomes card, which
matches the time setting.

Story Realization Method Ammanabrolu et al.
(2019) proposed an ensemble-based model to gen-
erate sentences given plot events. This involves
two steps. First, we need to extract events from
the input story. This can be done through Named
Entity Recognition (in this work we will use Al-
lennlp NER) and finding VerbNet (Kipper-Schuler,
2005) classes of verbs and WordNet (Miller, 1995)
Synsets for nouns recognized as events. The
next step is to expand these events to a story.
We plan to experiment with the ensemble model
by Ammanabrolu et al. (2019) which is reported
to combine the strength of the retrieve-and-edit
method (Hashimoto et al., 2018), the template fill-
ing method, the sequence-to-sequence methods
with finite state machine decoder, Monte Carlo
beam decoding, and vanilla beam-decoding respec-
tively. This method will conduct an event-to-event
generation first to include more events before gen-
erating the output story. Figure 1 illustrates how
this method works.

Here we need to note that sometimes ex-
tracted entities or relations are out-of-target-corpus-
vocabulary words in the target style corpus. For
example, computer is not in the corpus of Harry
Potter. We need to replace these words with words
that have the same part of speech and closest in
the word embedding trained on the target corpus.
Euclidean distance is used for distance calculation.

We expect that compared with the BERT-based
method, the Story Realization method will perform
better in terms of creativity while not as well in
terms of content preservation.

10



Graph-based Method In this method, a sim-
ilar replacing scheme of out-of-target-corpus-
vocabulary words as in the story realization method
should be used on the input story. Then we plan
to experiment with graph transformers and other
graph-to-text generators trained on our data sets,
compare their performance on our task, and exam-
ine the possibility to improve their performance by
making modifications. Specifically, in the text-to-
graph step we explore using Graph Neural Network.
We plan to start with using GraphRel, the GCN-
based SOTA entity and relation extraction model,
to convert the input story to a graph.

Figure 3 illustrates how the Graph-based Method
works. The input is an extract from the novel Edu-
cated. A graph containing key information is built
upon the input story. Some modification is done
to replace out-of-target-corpus-vocabulary words.
We expect the output to preserve the structure of
the input story while being creative and consistent.
Towards this goal, we plan to experiment with dif-
ferent GCNGs structures for text generation.

3.3 Evaluation

We plan to evaluate our generated stories using
perplexity and human evaluation, with an emphasis
on the latter considering the creative nature of this
task.

The generated stories will be evaluated by lin-
guists from these aspects: grammar and fluency;
main plot preservation; strength of the target style;
creativeness. Each aspect will be given a score
between 1 and 5, with 1 representing total failure,
2 representing barely acceptable, 3 representing
acceptable, 4 representing good, and 5 representing
the most satisfying performance.

4 Summary

We propose to explore text style transfer on the
story level. The challenge remains in preserving the
main plot and generating consistent and meaningful
text in the target style. We plan to focus mostly on
studying the possible application of GCN in this
task. We will perform extensive experiments and
report results in future work.
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Abstract

Aphasia is a speech and language disorder that
results from brain damage, often characterized
by word retrieval deficit (anomia) resulting in
naming errors (paraphasia). Automatic para-
phasia detection has many benefits for both
treatment and diagnosis of Aphasia and its
type. But supervised learning methods cant be
utilized adequately as there is a lack of apha-
sic speech data. In this paper, we describe our
novel unsupervised method, which can be im-
plemented without the need for labeled para-
phasia data. Our evaluations show that our
method outperforms previous work based on
supervised learning and transfer learning ap-
proaches for English. We demonstrate the util-
ity of our method as an essential first step in
developing augmentative and alternative com-
munication (AAC) devices for patients suffer-
ing from aphasia in any language.

1 Introduction

Aphasia is a speech and language disorder com-
monly acquired by brain damage resulting from a
stroke (Bhogal et al., 2003). Many people around
the world suffer from Aphasia as there are at least
2 million patients in USA and 250,000 in Great
Britain (National Aphasia Association, 2019).

Anomia, the difficulty in spoken word retrieval,
is a common symptom in Aphasic speech (Laine
and Martin, 2013). A majority of persons with
aphasia (PWA) suffer from varying degrees of
anomia (Nickels, 2002). Anomia further results in
various types of Paraphasia (naming errors) which
impedes the PWA’s ability to carry out meaning-
ful conversation leading to loneliness and social
anxiety (Beeke et al., 2013).

There are three common types of paraphasia
which occur in aphasic speech, namely semantic,
phonemic and neologistic (Laine and Martin, 2013;
Goodglass and Kaplan, 1972). In semantic para-
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phasia, the PWA substitutes a semantically sim-
ilar word eg. (substituting elbow with knee). In
phonemic paraphasia, there are various sub types
involving the type of phoneme substitution such
as, substituting bat with lat, inserting or deleting a
phoneme (drake as dake) or phoneme movements
(candle with cancle). Lastly, in neologistic para-
phasia, the target word is substituted with a non-
word (harmonica with parokada). Detecting and
classifying the type of paraphasia is useful to de-
termine the type of aphasia and which treatment to
prescribe (Nickels, 2002; Friedmann et al., 2013).

Aphasia TalkBank (MacWhinney, 2007), is a
large scale multi-modal online database of aphasic
speech data. It contains aphasic speech data for
many languages such as English, French efc which
is primarily used by clinical researchers to study
aphasia (Forbes et al., 2012). While the amount
of data is sufficient for clinical researchers, there
is a lack of data to implement supervised learning
methods. This is true not only for a well researched
language like English, but also for low-resource !
languages like Greek, Spanish efc.

To counter the lack of data and to extend the
proposed method for low-resource languages too,
we investigate an unsupervised approach. We first
consider large and available speech corpuses such
as LibriSpeech (Panayotov et al., 2015) to create
speech embeddings of individual words similar to
(Chung et al., 2016). We then perform soft cluster-
ing using HDBSCAN on these embeddings, and
classify each word by using simple rules with a
cutoff hyperparameter. The whole method is end-
to-end unsupervised and can be applied to any lan-
guage.

In our evaluations section, we demonstrate the
efficacy of our method over a naive baseline and the
transfer learning method used by (Le et al., 2017)

'we define low-resource wrt amount of available aphasic
speech data
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for English. We hope that such an unsupervised
method allows for development of AAC devices
improving daily life of not only English-speaking
PWA'’s but also PWA’s in other languages.

2 Related Work

Recently, researchers have demonstrated the use of
machine learning methods not only to diagnose
the type of aphasia but also to rehabilitate and
treat PWA’s. Mainly focusing on obtaining a medi-
cal diagnosis, (Fraser et al., 2013) applied feature
selection using a transcript and low-level acous-
tic features to classify between two sub-types of
primary progressive aphasia. Likewise, (Peintner
et al., 2008) used speech and language features to
classify between three broad types of frontotempo-
ral lobar degeneration, including progressive non-
fluent aphasia. Further, given speech samples of
PWA’s, (Le et al., 2014; Le and Mower Provost,
2015; Le et al., 2016) proposed approaches for
predicting the utterance-level pronunciation and
prosody scores. (Abad et al., 2012, 2013) aimed
to tackle the contextually similar problem through
keyword spotting. It recognized target words from
phrases spoken by the PWA but disregarded fine-
grained word-level errors such as paraphasias.

Deep learning methods to detect paraphasia was
first demonstrated in (Le et al., 2017). It worked
around the notion of mispronunciation detection,
adopting the methods of (Lee et al., 2013; Lee and
Glass, 2013), which used Dynamic Time Warping
(DTW) features to provide a quantitative compar-
ison of word and phone-level pronunciations be-
tween native and non-native speakers. Similarly,
(Le et al., 2017) has used DTW and other acous-
tic features like Phone Edit distance and Good-
ness of Pronunciation, to distinguish between target
transcripts and paraphasias. Consequently, it has
also used Automatic Speech Recognition (ASR)
techniques to generate the target transcripts from
the paraphasias automatically. In the end, all of
these proposed methods require target transcripts
for their core functioning.

To the best of our knowledge, no existing work
provides an unsupervised approach to detecting
and classifying paraphasia from aphasic speech. In
this paper, we explore a realistic scenario where we
have access only to the free form discussion with
PWA’s.
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3 Method

Aphasic speech data can be collected in mainly two
ways: as a free form discussion between a PWA
and an interviewer or a PWA reading a set of pro-
vided scripts. While a PWA reading from scripts
is conducive to supervised learning methods, it is
rarely the case in real life. Hence, our goal is to
perform paraphasia detection and classification in
the wild i.e. without any target scripts. Another
motivation for classification in the wild is the lack
of labeled English aphasic speech data. Further, the
available speech data has a class imbalance (phone-
mic and neologistic paraphasias account for 12.0
and 6.4 percent respectively). Low-resource lan-
guages such as Hindi, Greek efc. have a serious
lack of aphasia speech data and almost non-existent
labeled speech data. Using transfer-learning ap-
proaches similar to (Le et al., 2017), would not
allow extending it to such low-resource languages.
Hence, it was necessary to investigate unsupervised
approaches for paraphasia classification. In this sec-
tion, we outline our proposed unsupervised method
which consists of first creating speech embeddings
of non-aphasic speech data and then performing
soft clustering to further classify the type of para-
phasia detected.

3.1 Speech Embedding

In order to classify phonemic and neologistic para-
phasia, capturing phoneme placement in a word is
necessary.

Previous work, used features such as Goodness
of Pronunciation and Phoneme Edit-Distance to do
the same. Hence, we adopt speech embeddings
which focus on phoneme pronunciation.

In particular, we use the Audio-Word2Vec em-
beddings outlined in (Chung et al., 2016) as they
have demonstrated good performance in distin-
guishing utterances that have large (>3) phoneme
sequence edit distance and grouping utterances
with low phoneme sequence edit distance (O to
2). These speech embeddings are created in an un-
supervised fashion. Each word utterance is passed
through a sequence-to-sequence encoder and recon-
structed via a decoder. This process preserves the
acoustic information in the embedding.

(Chung et al., 2016) further demonstrated that
sequential phoneme structure is preserved in the
vector space. This property can be exploited us-
ing density based clustering, the next step of our
proposed method.



Classifying semantic paraphasia requires differ-
ent approaches which cannot be encompassed in
methods used to classify phonemic and neologistic
paraphasia and hence is left as future work.

3.2 Probing Tasks

Unsupervised word embeddings can be improved
further and geared specifically for aphasic speech,
but in order to understand what these embeddings
are capturing it is important to probe them. Taking
inspiration from (Conneau et al., 2018), we create
probing tasks specifically for paraphasia. Probing
tasks are simple classification tasks for embeddings.
We detail three probing tasks specifically for phone-
mic and neologistic paraphasia.

1. Phoneme-Movement: Phonemic paraphasia is
often characterized with phoneme movement,
usually involving a shift in the position of one
or two phonemes. In this binary classification
task, the embeddings are used to determine if
a phoneme shift took place or not.

. Phoneme-Add/Delete: The addition or dele-
tion of a phoneme is seen in phonemic para-
phasia. We use the generated embeddings to
determine if the word utterance has a phoneme
addition/deletion or is unchanged.

. In-Dictionary: In this task, we check if the
embeddings can classify if the word is in the
language’s dictionary or not. Neologistic para-
phasia occurs when PWA’s substitute target
words with non-words.

These three probing tasks, while not exhaustive,
can be used to determine how well the speech em-
beddings can perform for paraphasia detection.

3.3 Density based Clustering

As our method is unsupervised, we do not have
access to whether each word utterance is a para-
phasia (further what type) or not. To classify each
utterance, we use techniques similar to anomaly
detection.

Firstly, the embeddings generated for each word,
represent only non-paraphasia words. This is be-
cause the dataset used to create these embeddings
consists of only correct words utterances. We clus-
ter these non-paraphasia embeddings into distinct
clusters where the members of each cluster are
embeddings of the same word. We use individ-
ual words as centroids rather than phoneme based

15

centroids. This is because, phoneme based cen-
troid choices such as monophones, senones efc.
creates a surjective mapping from embeddings to
centroids (eg. both words cat and hat contain the
same phoneme ae, hence both words will be as-
signed to the same centroid), whereas word based
centroids has a bijective mapping.

Secondly, we use HDBSCAN (Mclnnes et al.,
2017) to perform density based clustering as it al-
lows for cluster densities of varying size. The two
most influential parameters namely, minimum clus-
ter size and minimum samples are chosen so as to
produce number of clusters equal to the vocabulary
size of the dataset.

Lastly, we exploit the soft clustering property of
HDBSCAN to detect paraphasias. We use simple
rule based methods to perform classification. When
a word utterance is correct i.e it is not a paraphasia,
the top 1 cluster probability should be high, as the
embedding should have a core distance of 0. Hence
if the utterance satisfies top; probability > « then
it is classified as a correct word. We use av = 0.75
in our experiments.

Now, if a word utterance is phonemic paraphasia,
HDBSCAN returns near similar cluster member-
ship probabilities for 2 to 3 clusters (eg. lat will be
clustered close to correct words bat, late etc.)

topy — topa < 8 ()

If a word utterance satisfies equation 1 then we
can classify it as a phonemic paraphasia. We use
B = 0.2 in our experiments.

For a neologistic paraphasia, the cluster mem-
bership probabilities are evenly low, as the word
utterance is a non-word and was never seen by
HDBSCAN while clustering. Hence, a utterance
that satisfies

k
> top; <
is classified as a neologistic paraphasia. In our
experiments k = 5 and v = 0.5
This clustering based method does not violate
the unsupervised nature of the proposed goal. Our
reasoning is validated by the empirical evaluations
performed in further sections.

4 Evaluation

In order to validate the claims made in the previous
section, we perform the following evaluations. For
a fair comparison, we use the same test dataset used
in (Le et al., 2017), and perform further analysis



on our soft clustering approach. In this section,
we detail the experimental setup used including
the model structure and hyperparameters, the met-
rics and the baselines used to compare and finally
expand on the results of our method.

4.1 Data

We use two speech datasets, one to create word ut-
terance embeddings and perform HDBSCAN clus-
tering and another to test our method.

As detailed in (Chung et al., 2016), we used
the LibriSpeech corpus (Panayotov et al., 2015) to
create audio-word2vec embeddings. We have used
the train-clean-100 subset to train the Seq2Seq
autoencoder and a combination of dev-clean and
test-clean subsets to perform density based soft
clustering. MFCC’s of 13 feature-coefficient were
used as input to the models.

For our test dataset we used speech data from
Aphasia TalkBank (MacWhinney, 2007), specif-
ically, the Scripts section of the English section.
Scripts contains recordings of PWA’s reading a
script, with each word utterance conveniently la-
beled as [*p:n] and [*n:k] for phonemic and ne-
ologistic paraphasia. (Le et al., 2017) uses the
Fridriksson subset consisting of 12 PWA’s reading
4 predefined scripts each, allowing (Le et al., 2017)
to use supervised learning to classify paraphasia
as they have access to the target word. We used
this same subset, for our experiments to remain
consistent.

4.2 Analysis

In this section we provide empirical evidence to
substantiate our intuition while building our unsu-
pervised method.

4.2.1 Probing Tasks

The three probing tasks are used to determine how
well the unsupervised embeddings are perform-
ing on specific tasks. We examine three different
types of embedding methods. First is the original
setup (Chung et al., 2016) utilized, an Sequence-to-
Sequence autoencoder with both the RNN Encoder
and Decoder consisting of one hidden layer of 100
LSTM units was used. The networks were trained
with SGD without momentum with a fixed learn-
ing rate of 0.3 and for 500 epochs. Secondly we
improve upon the autoencoder architecture by us-
ing 2 instead of 1 hidden layer of 100 bidirectional
LSTM units. (Chung et al., 2016) noticed that the
embeddings favoured phonemes towards the end
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of the word, this problem is alleviated by using
bidirectional LSTM. The networks were trained
with Adam with a learning rate of 0.01 and for 500
epochs.

Ph- Ph- In-

Method Move | Add/Del | Dict
Audio-word2vec | 68% 81% 76%
Bi-LSTM 73% 77% 83%

Table 1: Performance of embedding generation meth-
ods on probing tasks reported as averaged accuracy val-
ues.

As seen in table 1, the bi-directional LSTM ver-
sion of audio-word2vec performs better and hence
going further we use this setup for creating word
utterance embeddings.

4.2.2 Soft Clustering

We empirically demonstrate that the word embed-
ding clusters behave similar to the format outlined
in the Methods section. We use (Mclnnes et al.,
2017) implementation of HDBSCAN in our exper-
iments.

First we report the HDBSCAN cluster member-
ship scores for correct, phonemic and neologistic
paraphasias in Table 2. The paraphasia are tran-
scribed in CHAT transcription format.

Word | Top1 | Top2 | Top3
Correct Words

weather .882 | .073 | .032

hot 821 | .072 | .053

rarely 764 | 213 .014
Phonemic Paraphasia

u@u (to) 537 | 419 | .065

duz@u (choose) | .501 324 171

fpt@u (spring) | .461 | .253 | 258
Neologistic Paraphasia

ziz@u (easy) 2717 102 | 156

muz@u (use) 196 | 162 | 153

zt@u (vast) 234 142 077

Table 2: Top k cluster membership probability scores
for correct, phonemic and neologistic paraphasia. Cor-
rect word for corresponding paraphasia is included in
parenthesis

The cluster membership probabilities, align with
the choice of cutoff rules used in the Methods sec-
tion. Phonemic paraphasia is usually assigned a
membership score split across two or three clusters.
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Figure 1: (a) TSNE projections of phonemic paraphasia (in red) with top 1,2 and 3 clusters. The darker the color
the higher the cluster membership probability. (b) Minimum spanning tree based on mutual reachability scores

This is true because of the phoneme movement,
addition or deletion property leaving rest of the
word unaffected, causing confusion so as to which
cluster the utterance belongs to. TSNE projection
of a sample phonemic paraphasia with its top 1,2
and 3 clusters is displayed in Figure 1. The mini-
mum spanning tree of the clusters also displays the
confusion in allocating cluster membership to the
phonemic error. Similarly neologistic paraphasia,
has uniformly low cluster membership scores, as
the utterance is never seen by HDBSCAN as it is a
non-word.

A very small set of word utterances (< 20) satis-
fied the condition for both phonemic and neologis-
tic paraphasia eg.( top 1,2 and 3 probabilities were
.32 .11 and .09) These utterances were classified as
phonemic due to the higher value of top 1 than the
average neologistic paraphasia.

4.3 Results

As noted by (Le et al., 2017), it is necessary to
classify if the word is correct in addition to phone-
mic or neologistic for future ASR and AAC system
development. We report the averaged F1 score on
three binary classification schemes, namely C-pn
(correct vs. phonemic or neologistic), C-p (correct
vs. phonemic) and C-n (correct vs. neologistic)

As baselines, we compare with a naive baseline
which classifies all words as correct (the majority
class) and the DBLSTM-RNN acoustic model by
(Le et al., 2017). It is necessary to note that the
DBLSTM-RNN was trained on supervised data
using transfer learning methods.

Our method demonstrates results in table 3
which are comparable to the supervised learning
method. It outperforms the other baselines for C-pn
and C-p.
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Method C-pn | C-p | Cn
Majority Baseline | .442 | 461 | .484
(Leetal,2017) | .704 | .632 | .761
Ours 761 | .683 | .728

Table 3: Paraphasia detection and further classification
reported as averaged F1 scores.

While, a tighter set of cutoff hyperparameters
can be used to classify the paraphasias as the AAC
devices and systems gets further personalized. Our
choice of hyperparameters is purposely kept gener-
alized so as to accommodate various PWA speakers.
We also believe a better embedding method will
allow for better scores even with our general cutoff
hyperparameters, especially neologistic paraphasia
as it will be further from any word cluster.

5 Conclusion

The work presented in this paper is heavily inspired
by (Le et al., 2017), but differs and improves it in
the following ways. We provide a completely unsu-
pervised method which outperforms previous work
in paraphasia classification and detection. While
we maintain that our method can be used for all
languages, irrespective of aphasic speech data, due
to time constraints we could include only English
in our evaluations. We lay the ground-work for
paraphasia classification in low-resource languages
allowing for development of ASR and AAC sys-
tems for not only English-speaking PWA’s but also
PWA'’s in developing nations. Our future work
will target demonstrating the method on other lan-
guages. We also hope to address semantic parapha-
sia in future work and create, deploy AAC systems
building on the method proposed in this paper.
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Abstract

Recently, deep learning has been used in Med-
ical Subject Headings (MeSH) indexing to
reduce the labor costs associated with manual
annotation, including DeepMeSH, TextCNN,
etc. However, these models fail to capture the
complex correlations between MeSH terms.
To this end, we use a Graph Convolution
Network (GCN) to learn the relationship
between these terms and present a novel Hy-
brid Graph Convolution Net for MeSH index
(HGCN4MeSH). We utilize two bidirectional
GRUs to learn the embedding representation
of the abstract and the title of the MeSH
index text respectively. We construct the
adjacency matrix of MeSH terms, based on
the co-occurence relationships in corpus,
and use the matrix to learn representations
using the GCN. On the basis of learning the
joint representation, the prediction problem
of the MeSH index keywords is an extreme
multi-label classification problem after the
attention layer operation. Experimental results
on two datasets show that HGCN4MeSH is
competitive with the state-of-the-art methods.

1 Introduction

MEDLINE! is an important database for publi-
cations of biomedical and life science containing
more than 24 million journal citations. To facilitate
information storage and retrieval, the National Li-
brary of Medicine (NLM) created Medical Subject
Headings (MeSH)? to index articles in MEDLINE.
MeSH is an annually-updated hierarchical glossary.
There are 29368 concepts® of MeSH in 2019, cov-
ering various area from biomedicine to information
technology. Currently, the articles in MEDLINE
are indexed primarily by NLM human experts. It is
estimated that it costs millions of dollars each year
*The corresponding author.
"https://www.nlm.nih.gov/bsd/medline.html

2https://www.nlm.nih.gov/mesh/meshhome.html
3https://www.nlm.nih.gov/databases/download/mesh.html
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Examplel: [Animals, Blotting Western, Body, Weight,
Heme, Oxygenasel, Male, Mice ,Mice Obese, Motor, Ac-
tivity, Oxygen, Consumption, Protoporphyrins, Receptor
Melanocortin Type 4, Thermogenesis, Weight]

Example2: [Animals, Blotting Western, Cell Hypoxia,
Cell Line, Cell Survival, Cells Cultured, E2F1 Transcrip-
tion Factor, Hepatocytes, Hypoxia-Inducible Factor 1 al-
pha Subunit, Membrane Proteins, Mice, Mice Inbred
C57BL, Mitochondrial Proteins, RNA Small Interfering]

Example3: [Animals, Appetite Regulation, Energy
Metabolism, Fats, Feedback Physiological, Glucose, Hu-
mans, Intestine Small, Signal Transduction]

Table 1: Examples of tags from article 26815432,
27391842, 26736497 in MEDLINE. It can be seen that
when the tag ‘Mice’ appears, tag ‘Animals’ is likely to
appear. However, when tag ‘Animals’ appears, the tag
‘Mice’ does not necessarily appear.

to index new articles (Mork et al., 2013). Therefore,
it is necessary to build an efficient and accurate
model for indexing documents — MeSH index.

Xun et al. (2019) demonstrated that the MeSH
indexing problem can be cast as an extreme multi-
label classification task. Each MeSH term can be
regarded as a tag, with a total of 29368 tags, and
each article has an average of 13 tags. Recently,
there are some deep learning models applied to
MeSH terms indexes successfully, such as Atten-
tionMeSH (Jin et al., 2018), MeSHProbeNet (Xun
et al., 2019), etc. However, these models do not
considered the correlation and the co-occurrence
relationship between MeSH terms. By ignoring
the complexity between objects, these methods are
inherently limited. Table 1 is a real example of
article tags from the data.

In this paper, we propose a novel GCN (Kipf
and Welling, 2016)-based MeSH term index model,
HGCN4MeSH, which learns the co-occurrence rep-
resentation of tags via a GCN-based mapping func-
tion. Specifically, we design a novel data-driven
adjacency matrix to guide the information prop-
agation between nodes. To solve the problem of
too many tags in extreme multi-label classification
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Figure 1: The proposed model framework. Balls of various sizes and colors represent different representations
of MeSH terms, BiGRU is the bidirectional gated recurrent unit. First, A hybrid graph is constructed for MeSH
terms, where each node represents a MeSH term. The abstract and title are input into GRU for feature extraction
respectively and GCN updates the representation of MeSH terms by learning co-occurrences of MeSH terms during
training. The final representation of MeSH terms consists of two parts, one is the representation generated by GCN,
the other is the semantic representation of MeSH terms. Then we can calculate the attention weight between MeSH
terms and title; abstract, output the final score via a linear layer and a sigmoid activation function.

cases, we propose a hybrid adjacency matrix, that
is, constructing a bidirectional GCN between high-
frequency tags and a unidirectional GCN between
high-frequency and low-frequency tags to reduce
the computation. The major contribution are:

e We propose a novel end-to-end extreme multi-
label classification framework (Figure 1),
which employs a GCN to learn tags repre-
sentation.

We utilize a partial block adjacency matrix
to reduce calculation and noise for extreme
multi-label classification. The experimental
results show that our method is competitive
with the state-of-the-art method.

2 Related Work
Aronson et al. (2004) introduced the Medical Text
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Index (MTI) to help experts find suitable MeSH
terms for articles quickly and accurately. Peng et al.
(2016) proposed DeepMeSH, which achieved the
best results in the 2017 BioASQ challenge task
A. BioASQ is a challenge funded by the Euro-
pean Union; the task A of BioASQ requires par-
ticipants to use only the abstracts and titles to pre-
dict corresponding MeSH terms. DeepMeSH uti-
lized TF-IDF (Jones, 1972) and document to vec-
tor (D2V) (Le and Mikolov, 2014) to represent
each abstract and They used k-nearest-neighbor
(KNN) (Altman, 1992) classifiers to generate can-
didate MeSH terms. AttentionMeSH (Jin et al.,
2018) was also divided into two parts. The first
part used KNN to generate candidate MeSH terms,
and the second used bidirectional Recurrent Gated
Unit (BiGRU) (Cho et al., 2014) architecture to
capture context features. Xun et al. (2019) used



the representation learned from the name of journal
combine with the information from the abstract and
a multi-view neural classifier to get results. Wang
and Mercer (2019) provided a useable data set, in-
cluding the title, abstract, paragraphs associated
with the figures, and tables of each text, and used
multi-channel TextCNN (Kim, 2014) to solve the
problem.

MeSH terms were modelled independently in
those methods, which ignored the relationships be-
tween MeSH terms. In this paper, we use a GCN
to capture the more complex topological relation-
ships.

3 HGCN4MeSH Model

3.1 Graph Convolutional Network and
Correlation Matrix

We use Graph Convolutional Network (GCN) to
model the relationship between MeSH terms. Kipf
and Welling (2016) proposed GCN which induces
embedding vectors of the nodes according to the
properties of their neighbor nodes. Given a graph
G = (V,E) where V and E denote the set of nodes
and edges respectively. The GCN is a multi-layer
neural network. With convolutional operations, the
propagation of every layer can be written as

(D

Here, H' € R™*% and H't! € R™ indicate
the nodes representation of the [*" and (I + 1)
hidden layer respectively (where n is the number
of nodes and d, d’ are the dimensions of the node
representations), A € R represents the normal-
ized version of the correlation matrix A € R™*",
h(-) means a non-linear operation such as ReLU, -
means the matrix product operation, W' € Raxd’
is a layer-specific trainable transformation matrix.

GCN updates the node features by propagating
the information between neighbor nodes, based on
the corresponding correlation matrix. Hence, the
crucial thing is how to build the adjacency matrix.
In most applications, the adjacency matrix is pre-
defined. However, there is no corresponding adja-
cency matrix already defined in the area of extreme
multi-label text classification. Facing this problem,
we propose the hybrid adjacency matrix construc-
tion method. We construct the adjacency matrix
between tag frequencies and the co-occurrence re-
lationships between tags.

In extreme multi-label text scenarios, the num-
ber of tags is often in the tens of thousands. If we

H"™ = (A H - W,
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consider the relationship between all the tags, the
adjacency matrix would be huge and consume con-
siderable memory and time during the computation.
Considering that in the extreme multi-label classi-
fication task, the distribution of tags is long-tailed,
which means that there are some tags appear rarely,
hence A is a sparse matrix.
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Figure 2: The construction of adjacency matrix. (a)
the adjacency matrix of original GCN (m x m) (b) the
hybrid adjacency matrix of our model (m X n)

Hence, we set a threshold frequency to divide
tags into low-frequency and high-frequency groups.
We find that the number of low-frequency tags co-
occurring with high-frequency tags is larger than
the number of low-frequency tags co-occurring
with low-frequency tags through empirically. Thus,
we build an adjacency matrix A € R™*™ where
m is the number of the high-frequency tags and
n denotes the total number of tags. It means that
we utilize the information between high-frequency
tags and low-frequency tags, so it is called hybrid
adjacency matrix. Figure 2 shows the example of
adjacency matrix. We use the empirical conditional
probability to model the directed relationship be-
tween tags:

M. .

p(Lj|Li) = Nz
which means the occurrence probability of tag L
when tag L; appears, where N; denotes the occur-
rences times of the tag L;, and M;; denotes the
concurring times of tag L; and tag L;.

Py = p(L;|Li)

2

3)

However, due to a large number of tags, these co-
occurrencesmay be noisy estimate for some tags
with low co-occurrence frequency, so we set a
threshold 7 as follows:
A — {Pij P>
(/N

4
0 b @)



3.2 Document Representation

The core challenging in MeSH idnexing is to learn
representations for the title and abstract. After to-
kenizing the titles and abstracts, we derive the
context-aware title representation via a bidirec-
tional Gated Recurrent Unit (BiGRU) (Cho et al.,
2014):

Hiine = BIGRU(Xg0) € RE*2n

Habstract = BIGRU(Xabstract) S RL *2dn

where Hiyjtle, Hapstrace Mean the hidden state
of title, abstract respectively. Xy € REXde
Xabstract € RL'%de denote the feature of title, ab-
stract respectively (d. means the embedding di-
mension of word), L is the length of title, L' is the
length of title, dj, is the hidden layer dimension. In
this work, the title and the abstract share the same
process.

3.3 MeSH Representation

First, we use the corresponding word embedding
of all MeSH terms as the initial input (Hg) to GCN.
In section 3.1, we introduced a novel adjacency
matrix A, we can get the new representation of
MeSH terms with co-occurrence information after
multi-layers of GCN.

Hgen = o(A-HY - W (6)

where H! € R™*% is the high-frequency MeSH
terms representation of [*" layer, A is the normal-
ized version of adjacency matrix and W' is a layer-
specific trainable transformation matrix. In other
words, only the representations of high-frequency
MeSH terms are propagated at each layer in GCN.
After getting the representation of MeSH terms in-
terrelation by GCN, we also use the embedding of
MeSH terms to retain the semantic information.

(7)

Hiresan = [Haon : €mesH])

where the symbol : means the concatenated op-
eration; epsesy is the word embedding of MeSH
terms.

Now we can utilize MeSH representations to se-
lect the most relevant text representation features
for classification by attention mechanism (Bah-
danau et al., 2014). We calculate the similarity
between MeSH terms and text by dot products and
use Softmax to normalize the word axis:

Sim = Hype - Hvesn

®)

Aatin = softmax(Sim)
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Ultimately, we can get the representation of MeSH
terms by words representation:

(€))

! !
HM@SH = Aatthtitle + Aatthabst'r‘act

where A/, is the attention score between abstract
and MeSH terms, and H ;p;qc¢ 18 the hidden state
of abstract. Then we can gain the score of MeSH
terms:

) =0(WHjesy +b)

here, o(-) is the sigmoid function, W is the train-
able weight matrix and b is the bias. The binary
cross-entropy loss function is applied in the model:

(10)

Lj = —(y;log(g;) + (1 — y;)log(1 — g;)) (11)

where y; is the ground truth, §; € [0, 1]. The total

loss is:
1 K
j=1

Here, K is the total number of training data.
Finally, the MeSH multi-label classifier outputs
the MeSH index that we want.

(12)

4 Experiments

4.1 Dataset

PMC Collection contains 257590 manually anno-
tated biomedical articles and covers 22881 MeSH
terms in total. Each documents contains 13.34
MeSH terms on average.

SETC2015 contains 14828 annotated articles cre-
ated by Demner-Fushman and Mork (2015). Wang
and Mercer (2019) used this dataset to create a
new dataset, which covers 14365 MeSH terms and
contains 13.15 MeSH terms per document.

4.2 Implementation Details

In the processing, non-English characters are re-
moved. The embedding dimensions of title and
abstract are both 200, GRU layer number is set to
2, and the hidden dimension is 200. In the part
of GCN, we use a layer of GCN with both input
and output dimensions of 200. LeakyReLLU (Maas
et al., 2013) with a negative slope of 0.2 is used as
the non-linear activation function. For the division
of word frequency, we choose the high-frequency
MeSH terms with more than 1000 occurrences, the
low-frequency MeSH terms with less than 1000
of the PMC Collection dataset. For SETC2015
dataset, the threshold is 500. We set 7 in Eq.(4)



pQk nDCGQk
pQ1 pQ3 pQ5 pQ10 pQl5 | nDCGQ@1 nDCGQ3 nDCGEQ5
PMC Collection
multichannel TextCNN | 0.8791 0.7214 0.6148 0.5179 0.4801 0.8791 0.7574 0.6752
HGCN4MeSH-1 09145 0.8250 0.7417 0.5773 0.4618 0.9145 0.8463 0.7832
HGCN4MeSH 0.9267 0.8495 0.7707 0.6124  0.4953 0.9267 0.8677 0.8086
SETC2015

multichannel TextCNN | 0.8051 0.6298 0.5206 0.4196  0.3959 0.8051 0.6698 0.5841
HGCN4MeSH-1 0.9054 0.7841 0.6921 0.5415  0.4450 0.9054 0.8124 0.7411
HGCN4MeSH 0.9185 0.7930 0.7078 0.5581 0.4563 0.9185 0.8221 0.7555

Table 2: Results for our Model in p@k and nDCG, HGCN4MeSH-1 is the model using the embedding of MeSH
terms merely without GCN, HGCN4MeSH is the model with GCN

to be 0.1. Dropout (Srivastava et al., 2014) is 0.2,
and learning rate 0.0005. Besides, we apply the
Adam optimizer (Kingma and Ba, 2014) and early
stopping strategies (Yao et al., 2007). The model is
implemented with PyTorch (Paszke et al., 2017).

4.3 Evaluation Metrics

Due to the large space of the tags, only a few tags
can match the text. Hence, the major metrics for
performance evaluation are ranking-based meth-
ods.

Precision at k£ (p@k) and normalized discounted
cumulative gain (nDCGQG) are ranking-based evalu-
ation methods. In this paper, we also utilize these
two authoritative metrics.

4.4 Experiments Results

Table 2 shows the rank-based matric result. Al-
though there are some strong baselines of bioASQ
challenge, the code is available to test on the two
dataset. We compare with the state-of-art method,
multichannel TextCNN (Wang and Mercer, 2019).
For the proposed model, we report the results of
the model with GCN or not. It is obvious that our
model without GCN outperforms baseline, and the
performance of the model with GCN is the best
result, which may due to the fact that the model
with GCN pays more attention to the co-occurrence
relationships between the tags.

In addition, the score of the PMC Collection
dataset increases by about 2-4 points after introduc-
ing GCN. However, the score of SETC2015 only
increases by 1-2 points. The reason is that there are
only 14000 samples of SETC2015. Thus the data-
driven adjacency matrix is biased. Nevertheless,
since the PMC Collection dataset contains about
250000 data, the adjacency matrix based on the
dataset should be closer to the true co-occurrence
relationship between the MeSH terms, and results
to better performance.
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Model pQk

| f p@1 p@Q3 p@5 p@10
1]05k | 09116 0.8345 0.7597 0.6029
1| 1k | 0.9267 0.8495 0.7707 0.6124
1|15k 09185 0.8409 0.7518 0.6103
4| 2k | 09174 0.8359 0.7618 0.6046

Table 3: The result of MeSH terms on testing set for
different frequency threshold. [ is the GCN layer, f
is the frequency threshold, f=1k means MeSH terms
with less than 1000 occurrences is low-frequency tag,
and those with more than 1000 occurrences are high-
frequency tags.

Model pQk

L f p@1 pQ@3 p@5 p@10
1] 1k | 0.9267 0.8495 0.7707 0.6124
2 | 1k | 0.9094 0.8323 0.7577 0.6008
3] 1k | 09170 0.8285 0.7494 0.5945

Table 4: The result of MeSH terms for different GCN
layers. =1 means the GCN layer is 1.

4.5 Ablation Studies

In the Table 3, we can observe effects of thresholds
that define low-frequency MeSH terms and
high-frequency MeSH terms. If the threshold
is too high, it may cause fewer high-frequency
MeSH terms, which causes the representation
between different MeSH terms to be too smooth.
However, when the frequency threshold is too low,
there are many high-frequency words, and some
co-occurrence of many words may become noise.

Table 4 shows that with the number of GCN
layers increasing, the results decrease. As the
number of GCN layers increasesthe information
transmission between nodes may accumulate,
resulting in excessive smoothness of the final
representation.



Model p@l p@Q3 p@5 p@10
w/o atten | 0.8897 0.7978 0.7235 0.5531
w/o GCN | 0.9145 0.8250 0.7417 0.5773
w/o title | 0.9094 0.8351 0.7589 0.5984

w/o abs | 0.8763 0.7857 0.7050 0.5569
title&abs | 0.9082 0.8361 0.7621 0.6058

ours 0.9267 0.8495 0.7707 0.6124
Table 5: The result of ablation studies. w/o: without;

atten: attention; abs: abstract; ours:HGCN4MeSH; ti-
tle&abs: title and abstract are concatenated as the input
of GRU.

The results of the ablation experiment are shown
in Table 5. Title contains a lot of useful information,
the effect of extracting information from title and
abstract separately is slightly better than directly
concatenating both.

5 Conclusion

Modelling the relationship between MeSH terms is
a key issue in MeSH indexing. This paper proposes
a model for constructing specifying the relationship
between MeSH terms based on GCN and a new
end-to-end model for MeSH indexing.

In the field of biomedicine, the co-occurrence
relationship of tags is very common and useful. We
use the co-occurrence relationship between tags to
design the adjacency matrix by the GCN using the
data-driven method, which can also be extended to
other extreme multi-label classification fields.
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Abstract

Recently, several studies have focused on im-
proving the performance of grammatical er-
ror correction (GEC) tasks using pseudo data.
However, a large amount of pseudo data are re-
quired to train an accurate GEC model. To ad-
dress the limitations of language and compu-
tational resources, we assume that introducing
pseudo errors into sentences similar to those
written by the language learners is more effi-
cient, rather than incorporating random pseudo
errors into monolingual data. In this regard,
we study the effect of pseudo data on GEC task
performance using two approaches. First, we
extract sentences that are similar to the learn-
ers’ sentences from monolingual data. Second,
we generate realistic pseudo errors by con-
sidering error types that learners often make.
Based on our comparative results, we observe
that F 5 scores for the Russian GEC task are
significantly improved.

1 Introduction

Recently, several studies have proposed models
to solve grammatical error correction (GEC)
task as an application of writing support for
language learners of various languages, such
as English or Russian. A standard approach to
improve GEC models is to incorporate pseudo
errors into large monolingual datasets for pre-
training. In particular, previous works achieved
state-of-the-art performance by pre-training the
model using pseudo data with a subsequent fine-
tuning of the pre-trained model using a learner
corpus (Zhao et al., 2019; Kiyono et al., 2019;
Grundkiewicz et al., 2019; Nédplava and Straka,
2019; Grundkiewicz and Junczys-Dowmunt,
2019).

Considering the aforementioned approach, sev-
eral methods have been proposed for the genera-
tion of pseudo data for pre-training a GEC model.

*Currently at Retrieva, Inc.
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In theory, it is possible to include all types of errors
in a dataset via random error generation. However,
considering the limitations of computational re-
sources required to train a GEC model using large
pseudo datasets, there is a need to generate pseudo
datasets with only realistic errors.

Thus, in this study, we generate pseudo data to
train GEC models considering the types of errors
made by language learners and study the effect of
this realistic pseudo training data. First, we extract
sentences similar to the training data from mono-
lingual datasets to generate pseudo data for pre-
training. Second, we analyze the error tendency
of learners and add pseudo errors considering the
errors learners tend to make in English and Rus-
sian languages. Through experiments, we show
that the proposed pseudo data generation method
improves the F 5 scores of the GEC model.

In summary, the primary contributions of this
study are as follows:

* We confirm that selecting training data sim-
ilar to the learners’ corpus instead of us-
ing randomly selected monolingual data im-
proves the performance of the GEC model.

* We show the effect of realistic pseudo errors
by considering the types of errors typically
made by language learners for the Russian
GEC task.

2 Related Works

Pseudo data have been generated for GEC tasks
in several previous works. Zhao et al. (2019) gen-
erated pseudo data by adding randomly generated
pseudo errors, in an error-free sentence. In par-
ticular, in this approach, randomly selected words
were replaced or deleted from a large monolin-
gual dataset. In addition, a random word was
inserted into sentences, and words in a sentence
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En (CoNLL 2013) Ru (RULEC-GEC dev)
Error type Ratio (%) Error type Ratio (%)
Art./Det. 19.9 Spelling 22.8
Collocation/Idiom 12.5 Insert 13.2
Noun number 114 Noun case 10.2
Preposition 8.98 Replace 9.99
Word form 6.56 Delete 9.58

Table 1: Comparison of error statistics between English
and Russian learner corpora (Development Data).

were swapped around. A similar approach was
proposed by Kiyono et al. (2019), where an origi-
nal word is masked or retained to generate pseudo
data for pre-training. However, both of these
methods generate errors that are not similar to
the real errors made by language learners. The
data in Table 1 indicates that English language
learners tend to make errors related to article and
word choice, while Russian language learners of-
ten make errors related to spelling, insertions, and
noun inflections. In our study, we use these error
tendencies to generate realistic errors to develop
pre-training datasets for GEC tasks in those lan-
guages.

Furthermore, Grundkiewicz et al. (2019) gener-
ated realistic pseudo data by building a confusion
set based on an unsupervised spellchecker to re-
strict word replacements made by learners in the
resulting dataset. They used the conditional proba-
bility P(cor|err) based on the spellchecker distri-
bution; however, it is not the same as P(err|cor),
nor does it include error types other than spelling
errors. Conversely, in our work, we approximate
P(err|cor) using a uniform distribution for the
set of candidates for a correct word. This uni-
form distribution is developed using prior knowl-
edge of error types instead of that obtained from
a spellchecker. Thus, our generated pseudo data
contains comparatively more realistic pseudo er-
rors. Kasewa et al. (2018) determined the dis-
tribution of the pseudo error generation model
P(err|cor) from parallel data obtained using a
grammatical error detection task.

Moreover, Grundkiewicz and Junczys-Dowmunt
(2019) developed a confusion set that retained
out-of-vocabulary words and preserved consistent
letter casing. However, using this approach,
unrealistic errors might be included in the pseudo
data because it primarily considers the surface
of words. Further, Naplava and Straka (2019)
conducted a GEC experiment in multiple lan-
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Original sent.

| at || a Itotal || cost || to || the || government | ...

about, by, for, in,

the, [no article .
[ 1 from, of, with, on, at

Erroneous sent.

| at || the Itotal || cost || for || the ||g0vernments

Noun Number
error

Article
error

Preposition
error

Figure 1: Example of pseudo error generation.

guages, such as English, Russian, German, and
Czech, and proposed a pseudo error generation
model for Czech, considering errors in diacritics.
In the present study, we incorporate the most
common error types in monolingual data based
on language-specific prior knowledge to obtain
development data.

3 Method for Pseudo Data Generation

First, we describe the method for pseudo data gen-
eration that considers learner error types. Subse-
quently, we use the generated pseudo data for pre-
training a GEC model.

In this study, we combine the proposed method
of pseudo data generation with previous methods.
In particular, we incorporate the basic random ap-
proach (deletion, insertion, swapping) in our ap-
proach, as well as the more recent sophisticated
approach proposed by Grundkiewicz et al. (2019)
(character level perturb, confusion set based on an
unsupervised spellchecker).

3.1 Data Selection

We assume that the sentences, where errors of
the learners’ error types are added, should be
similar to that of the learners’ sentences them-
selves. Thus, we used a data selection method
(Moore and Lewis, 2010), where an N-gram lan-
guage model (LM) is used to score input sen-
tences. This method creates a generic LM N and
targets LM [ sets for the generic and target do-
mains, respectively. Subsequently, the entropy H
is calculated for the sentence s in monolingual
data from these LM sets (LM 0401 € {1, N }). Fi-
nally, the entropy difference (Equation 1) for the
sentence is calculated. Data selection is then per-
formed based on the similarity to the target domain



in descending order of the assigned score.

score(s) = H(s; N) — H(s;I) (1)
1
H(S; LMmodel) = _m IOg PLMmodel (5)
where |s| indicates the sentence length,

PiM,, 4. (5) indicates the probability estimated
by the LM,,04e1 for sentence s.

In this study, for each sentence in the mono-
lingual data, the entropy difference is calculated
between the LM trained on monolingual data and
that trained on the data in the target domain. Sub-
sequently, sentences are extracted according to the
LM scores for pre-training data.

3.2 Error Types

Figure 1 shows an example of pseudo error gen-
eration according to the most common error types
in learners’ corpora. As an example of preposition
errors, we limit the confusion set by defining the
pseudo error generation model as P(err|cor
“to”) where err € {about, by, for, from, in, of,
with, on, at}. The pseudo error is generated using
a uniform distribution for the pseudo error gener-
ation model P(err|cor).

English. As listed in Table 1, the common er-
ror types in English are those related to arti-
cle/determiner, collocation/idiom, noun number,
preposition, and word form. Thus, for English, we
consider each error type as follows:

e For article/determiner errors, the set of re-
placement candidates is the entire vocabulary
in the random baseline. However, we limit
the set of replacement candidates to other ar-
ticles and determiners only. This set contains
an entry of “no article” as well (i.e., deletion).

* For noun number errors, the error can be
generated by swapping the singular or plu-
ral form of a noun with the plural or singular
form, respectively.

* For preposition errors, we define a candi-
date set as the top 10 most frequently used
prepositions (Bryant and Briscoe, 2018). We
only replace the preposition with one from
the candidate sets.

e For word form errors, we define a candidate

set for replacement using word_forms .

'https://github.com/gutfeeling/
word_forms
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Lang. Dataset Corpus  Sent.
English  One Billion Corpus mono 10M
Lang-8 + NUCLE para 134K
Russian  Russian News Crawl mono 10M
Lang-8 + RULEC-GEC  para 54K

Table 2: Data statistics.

We did not consider collocation and idiom errors
in our study because defining a candidate set for
those error types is challenging.

Russian. For the Russian language, we consider
replacement and spelling errors as per the previ-
ously proposed methods (i.e., random and unsu-
pervised spellchecker). For noun case errors, we
define a candidate set for replacement using a dic-
tionary. When the target word is a noun and is
included in the dictionary, the candidates for re-
placement consist of the inflected patterns speci-
fied in the dictionary.

4 [Experiments

4.1 Data

Table 2 lists the details of monolingual and par-
allel data used for training in our study. As
training data, we used Lang-8 (Mizumoto et al.,
2012) and NUS Corpus of Learner English
(NUCLE) (Dahlmeier et al., 2013) for English,
while we used Lang-8 and Russian Learner Cor-
pus of Academic Writing-GEC (RULEC-GEC)
(Rozovskaya and Roth, 2019) for Russian. As
pre-training data (i.e., pseudo data), we used One
Billion Corpus 2 for English and Russian News
Crawl 3 for Russian.

4.2 Experimental Setting

We used the transformer model with copy-
augmented architecture (Zhao et al., 2019) as the
GEC model with almost the same hyperparame-
ters. In particular, we set max-epoch = 3 for pre-
training, and 15 for training. As an evaluation met-
ric, we computed the precision, recall, and Fg 5
score for the CoNLL-2014 dataset and RULEC-
GEC test set. Furthermore, we used the CoNLL-
2013 (Nget al., 2013) data and the RULEC-GEC
dev data for development.

https://www.statmt.org/lm-benchmark/
http://www.statmt.org/wmt18/
translation-task.html



CoNLL-2014 (En)  RULEC-GEC test (Ru)

System Pseudo data Prec. Rec. Fos Prec. Rec. Fos

Random errors w/o Data selection (baseline) 1I0M 675 34.1 565 227 3.6 11.1
Random errors w/ Data selection 2M 679 31.1 549 187 0.11 4.5
4M 68.0 325 558 192 153 5.8

6M 674 337 562 205 242 8.2

8M 689 343 573 253 335 11.0

IOM 682 349 573 277 3.77 12.2

Error type w/o Data selection IOM 692 342 575 411 124 28.1
Error type w/ Data selection (proposed) 2M 675 313 548 328 2.5 9.7
4M 688 33.1 566 372 6.7 19.5

6M 70.0 335 575 442 119 28.6

8M 685 346 572 49.0 150 33.7

IOM  69.1 345 57.6 486 16.8 35.2

Table 3: Results comparison of for each evaluated method. Best score in each column is indicated in bold.

As explained in Section 3.1, we trained the tar-
get LM to extract sentences from monolingual
data using a part of the target side of the paral-
lel data, where its domain matched the develop-
ment data. We extracted the highest-scoring 10M
sentences from the original monolingual datasets,
One Billion Corpus, and Russian News Crawl,
which have 30M and 80M sentences, respectively.

Furthermore, as discussed in Section 3.2, we
generated pseudo data by incorporating pseudo er-
rors into the monolingual corpus of each language.
For noun case errors in Russian, we used a dic-
tionary 4 containing noun inflections. We verified
that the total number of pseudo errors in each ex-
periment was similar to ensure a fair comparison.
In our experiments, we compared the following
three baselines to study the effects of pseudo er-
rors and data selection in the monolingual corpus.

Random errors w/o Data selection In this ap-
proach, pseudo errors are added into randomly
selected 10M monolingual data. The added er-
rors include deleting, adding, and replacing ran-
domly selected words, and shuffling the words in
a sentence. This method corresponds to that of
Zhao et al. (2019).

Random errors w/ Data selection First, we se-
lected the top 10M sentences from the monolin-
gual corpus using the LM scoring method de-
scribed in Section 3.1. In our experiments, the
amount of data is up to 10M sentences, increased
by 2M sentences. In this approach, the process of
adding pseudo errors is the same as in the Random

*nttp://opencorpora.org/?
page=downloads
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errors w/o Data selection approach.

Error type w/o Data selection In this approach,
we introduced pseudo errors to randomly selected
10M monolingual data, as described in Section
3.2.

Error type w/ Data selection This method is
our proposed approach, where we combine the
data selection and error type approaches.

4.3 Result

Table 3 lists the results for each system.

Data selection. When comparing the results ob-
tained using the Random errors, we can evaluate
the effect of the data selection method. For En-
glish, the random methods, which incorporated
the data selection approach, perform better than
the random method without it (56.5 — 57.3). In
contrast, for Russian, similar improvements were
noted for both approaches (11.1 — 12.2).

Furthermore, when comparing the results ob-
tained using the error type, we confirmed that
the data selection approach significantly improved
GEC performance for Russian data. However, for
the English data, no significant improvements for
GEC performance were observed. Moreover, for
the Russian data, we found that both precision and
recall improved when using the error type-based
approach (Precision: 41.1 — 48.6, Recall: 12.4
— 16.8).

Error types. When comparing random and er-
ror type w/ data selection approaches, we observed
the effect of pseudo data containing pseudo er-
rors based on learners’ error types in GEC perfor-
mance. For the English data, the improvement is



System Sentence

We know each others’
We know each others’

Source Sentence
Gold Sentence

status, changements and so on through the social media.
status, changes and so on through the social media.

We know each others’
We know each others’

Random w/ Data selection
Error type w/ Data selection

status, changements and so on through the social media.
status, changes and so on through the social media.

Source Sentence
Gold Sentence

Besides, we can make more friends by such interactions when our friends ...
Besides, we can make more friends through such interactions when our friends ...

Random w/ Data selection
Error type w/ Data selection

Besides, we can make more friends through such interactions when our friends ...
Besides, we can make more friends with such interactions when our friends ...

Source Sentence
Gold Sentence

B counnenne 6LI.HO MHOTI'O OH_II/I6OK.
B counnennn 6nu10 MuOTO ormubok. (En: There were many mistakes in the essay.)

Random w/ Data selection
Error type w/ Data selection

B counnenue 66110 MHOrO OMIMOOK.
B counnenun 6b1710 MHOTO OIINOOK.

Table 4: Comparison of system outputs in English and Russian. Examples on the top indicate those word form
errors that were successfully corrected, while those on the middle indicate preposition errors that were not suc-
cessfully corrected. Those on the bottom indicate noun case errors that were successfully corrected in Russian.

English
60 == Random w/o Data selection
’\g Random w/ Data selection
< 40 mmm Error type w/ Data selection
©
o
& ) I I I I I I
0 ———
Art./Det. Col./Idiom Noun number Preposition Word form
Russian
60 mmm Random w/o Data selection
(o‘ Random w/ Data selection
< 40 mmm Error type w/ Data selection
©
o
& 20

O—I--_I-- ..

Spelling Insert Noun case Replace Delete

Figure 2: Comparison of recall for each error type. All
systems were input with 10M pseudo data sentences.

not large. In contrast, for Russian data, the pro-
posed method achieved the same level of accuracy
using only one-third of the parallel corpus (8.23 —
9.68). Moreover, using the same amount of data,
the score was almost tripled (12.2 — 35.2).

5 Analysis

Error type. Figure 2 shows the recall for each
error type. We selected error types that most com-
monly appear in the development data.

For English data, the recall was comparable for
all error types. Regarding error types other than
preposition errors, an equal or improved recall was
realized. In contrast, for preposition errors, the re-
call reduced significantly. It seems that this degra-
dation in the recall can be attributed to the method
used to add preposition errors in our study. In par-
ticular, we only considered replacement for prepo-
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sition error generation, and not deletion or inser-
tion. We believe this problem could be handled
by generating preposition errors via insertion and
deletion as well.

For Russian data, recall improved significantly
for spelling and noun error cases. Note that these
two error types are not considered explicitly dur-
ing random error generation. In contrast, recalls
for other error types are approximately compara-
ble because the errors were generated using the
same approach. Therefore, overall, we observed
that the approach significantly improved by con-
sidering error types that could not be obtained us-
ing random error generation.

Example. Table 4 lists the output examples of
two systems: Random errors w/ data selection and
error type w/ data selection. Words in red indicate
errors in the sentence, while those in blue indicate
correct words.

At the top of Table 4, we present an instance of a
word form error that was corrected using the pro-
posed method. In particular, the random method
outputted the input sentence as it stands. Con-
versely, the proposed method corrected the word
form error by considering other word forms.

Furthermore, in the middle of Table 4, we
present an output example wherein preposition
errors were left uncorrected by the proposed
method. In particular, the random method cor-
rected the preposition error in an appropriately;
however, our proposed method failed in perform-
ing the task. This difference in results is due to the
limitations we posed on the dataset for the replace-



ment to generate realistic pseudo errors. Thus,
this example suggests that the recall degradation
for preposition errors was caused by restricting the
confusion set too strictly.

Finally, in the bottom of Table 4, we present an
instance of a noun case error in Russian. The word
“counnenue” is a neuter noun, and this case in-
flection of the word represents nominative or ac-
cusative case. When this word is used with the
preposition “B”, meaning English “in” in this ex-
ample, it is necessary to change the case to prepo-
sitional case (coumnenue — counmHenuu). From
this example, our proposed method can correct
noun case error, while the random method cannot
correct them.

As an overall tendency of Russian noun case er-
rors, the random method often outputted the input
sentence as it is, according to our observation of
the outputs, or it outputted a completely different
word.

As a case of failure to correct, in our proposed
method, we confirmed a tendency that the method
changed case inflections to the wrong ones.

6 Conclusions

In this study, we studied the effect of pseudo data
obtained using two approaches. In particular, we
confirmed that combining data selection and real-
istic error injection approaches to obtain pseudo
data improved the F 5 scores. Moreover, we ana-
lyzed the recall for each error type. Based on our
experimental results, we observed that the recall
for error types considered in our study improved
or were comparable.
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Abstract

Deep neural network based machine learning
models are shown to perform poorly on un-
seen or out-of-domain examples by numerous
recent studies. Transfer learning aims to avoid
overfitting and to improve generalizability by
leveraging the information obtained from mul-
tiple tasks. Yet, the benefits of transfer learn-
ing depend largely on task selection and find-
ing the right method of sharing. In this the-
sis, we hypothesize that current deep neural
network based transfer learning models do not
achieve their fullest potential for various tasks
and there are still many task combinations that
will benefit from transfer learning that are not
considered by the current models. To this
end, we started our research by implementing
a novel multi-task learner with relaxed anno-
tated data requirements and obtained a perfor-
mance improvement on two NLP tasks. We
will further devise models to tackle tasks from
multiple areas of machine learning, such as
Bioinformatics and Computer Vision, in addi-
tion to NLP.

1 Introduction

Deep neural network based machine learning mod-
els have shown remarkable progress in the last
decades across a wide range of tasks. The typi-
cal training regime uses a large amount of labeled
data to get a general mapping of the elements in the
input space to the label space, which is known as
supervised learning. Yet, it is shown by numerous
studies that these models suffer from overfitting
and are sensitive to noise and examples that are not
available in the training data (Jia and Liang, 2017;
Belinkov et al., 2017). In addition, these models
are usually trained from scratch for each new task
where the weights of the models are initialized ran-
domly. This approach does not follow the way
humans learn new tasks, i.e. leveraging external
world knowledge and information obtained from
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related tasks when learning a new task (Bruner,
1985; Hayes et al., 2002).

Transfer learning (TL) is a biologically moti-
vated training paradigm that aims to mitigate the
above mentioned real-world challenges of conven-
tional supervised learning (Ruder, 2019). Signals
in the training set of a source task are used as ad-
ditional information for a given target task to en-
able better generalization. It is especially useful
when the labeled data is limited for the target task
and when the tasks are relatively similar (Collobert
and Weston, 2008; Hashimoto et al., 2017; Ruder,
2019). Learning the structure among tasks is an es-
sential first step to benefit most from transfer learn-
ing, and to this end Zamir et al. (2018) proposed a
fully-computational framework to learn this struc-
ture in the Computer Vision domain. Straight-
forward application of transfer learning algorithms
may lead to catastrophic forgetting where models
forget the source task after being exposed to the
target task. In addition, there is a lack of theoret-
ical understanding of the task relationships, and
as a result, tasks for transfer learning are usually
determined with hindsight.

Multi-task learning (MTL) is a special case of
transfer learning where multiple tasks are learned
simultaneously. Caruana (1997) summarizes multi-
task learning as leveraging information obtained
from the training data of different tasks to improve
generalization. It enables better generalization
and lowers the annotated data requirements (Caru-
ana, 1997; Maurer et al., 2016). Current multi-
task learning systems typically use hard-sharing,
where a low layer hidden representation is shared
among all tasks to have an inductive bias (Collobert
etal., 2011; Chu et al., 2015). It is recently shown
that for dissimilar tasks hard-sharing may degrade
the performance, which is also called negative-
transfer (Yosinski et al., 2014). More sophisticated
information sharing methodologies must be consid-

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 33—41

July 5 - July 10, 2020. (©)2020 Association for Computational Linguistics



ered in addition to finding useful task combinations,
to make the most out of multi-task learning and to
avoid negative-transfer.

The above findings and challenges motivate our
research on transfer learning in deep neural net-
works. Specifically, we focus our research on inves-
tigating the task relations on the currently proposed
models and on proposing new task combinations.
Through our research, we plan to find answers to
‘where to transfer from’ (task selection), ‘what to
transfer’ (datasets and data selection) and ‘how to
transfer’ (pretraining and model architecture). Our
main hypothesis is that, 1) neural network based
transfer learning models improve over their single-
task counterparts both in terms of generalizabil-
ity and overall performance, 2) currently proposed
transfer learning models do not achieve their fullest
potential, and 3) there are many task combinations
that will benefit from transfer learning. We will
focus on the following research questions about
transfer learning models throughout this thesis:

RQ1. How to optimize the model architecture
and sharing methodology for a given task combina-
tion?

RQ2. What are some good auxiliary tasks to
improve the perfomance of a target task?

RQ3. How to find useful pretraining schemes?

The first question aims to find the most useful
architecture and the sharing methodology when the
task combination is known/determined. Second
is a higher-level research question to find useful
task combinations and can be considered as the
preliminary step for the first one. Finally, question
three aims to find the right pretraining scheme to
make the most ouf of transfer learning for a given
set of target tasks. By combining these research
questions, we aim to find the most useful multi-task
learning setting for a given domain.

We started our research by analyzing the limi-
tations of current supervised learning systems and
showed the sensitivity of neural network based
models to the changes in the domain (Akdemir
et al., 2018). Next, we proposed a novel joint learn-
ing model that relaxes labeled data requirements
for the Named Entity Recognition and Dependency
Parsing tasks and showed improvements over the
conventional methods. The results for the model
are given in more detail in Section 4. We will
further devise models to tackle tasks from multi-
ple areas of machine learning, such as Bioinfor-
matics and Computer Vision (CV) in addition to
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NLP. Specifically, we plan to focus on biomedical
question answering and object detection tasks from
Bioinformatics and CV areas, respectively. We
motivate the choice of these two domains as fol-
lows: Transfer learning with ImageNet achieved a
huge success, and almost all state-of-the-art models
for downstream tasks in CV make use of transfer
learning. The abundance of transfer learning based
models makes CV a good test-domain for evaluat-
ing the contributions we will propose for different
pretraining schemes for transfer learning. On the
contrary, applications of transfer learning is scarce
in Bioinformatics compared to CV and NLP. Hence,
there should be various task combinations that can
benefit from transfer learning in the Bioinformat-
ics domain that were not investigated before. This
motivated us to choose Bioinformatics as a target
domain to find new task combinations.

The remainder of this paper is structured as fol-
lows. Section 2 gives a summary of the related
work on transfer learning and multi-task learning.
This is followed by the Research Plan, where we ex-
plain the methodology we will use regarding each
research question. Finally, Section 4 describes the
evaluation methods and datasets that will be used
to assess the significance of our contributions re-
garding each research question.

2 Related Work

Our research is related to the works in the subtopics
we summarize below.

2.1 Transfer Learning

We follow the taxonomy defined by Ruder (2019)
to differentiate between transfer learning and multi-
task learning. Specifically, transfer learning is an
umbrella term for settings where information from
a source task is leveraged to improve the perfor-
mance of a target task. If the target and source
are learned simultaneously, this methodology is
defined as ‘multi-task learning’, whereas if we em-
ploy a sequential learning of each task, this is re-
ferred to as ‘sequential transfer learning’. For in-
stance, in the domain of reinforcement learning,
Rusu et al. (2016) proposed ‘progressive neural
networks’ which learn each task sequentially and
fixes the parameters for the subsequent tasks. On
the contrary, Hashimoto et al. (2017) proposed a
joint many task model to simultaneously learn mul-
tiple NLP tasks.

In the area of Computer Vision, sequential trans-



fer learning unlocked many potentials. Models pre-
trained on ImageNet are finetuned on the target task
datasests (Krizhevsky et al., 2012) to achieve state-
of-the-art results. Similarly, Peters et al. (2018)
showed pretrained models improve performance
across a wide range of NLP tasks. Radford et al.
(2018) and Devlin et al. (2019) pretrained mod-
els over huge unlabeled datasets and these models
are successfully applied to many downstream NLP
tasks. However, Mou et al. (2016) showed that
transferability depends largely on the semantic re-
latedness of the tasks. Finding related tasks is a key
factor to achieve better transfer learning models,
but a thorough understanding of how to find the
most useful pretraining task is still missing (Ruder,
2019).

Another key factor to improve transferability
is the selection of relevant data. Recently, Ruder
and Plank (2017) proposed learning a similarity
metric over the training sets by using Bayesian
Optimization for transfer learning. Their work is
limited to a domain adaptation setting where the
source tasks are the same as the target task but the
domains of the datasets are different. We propose
extending their method to avoid negative-transfer
in various multi-task settings.

2.2 Multi-task Learning

Ruder (2017) gives a comprehensive overview of
multi-task learning models, where they define two
main categories based on the information sharing
methodology: hard-sharing and soft-sharing. In
Hard-sharing, models contain a low-level layer
which is shared among all task-specific layers,
whereas in soft-sharing each model has its own
weight set and regularization is applied to force
these weights to be similar across all models. Soft-
sharing based models are shown to benefit from
multi-task learning when applied to related tasks.
Yet, the benefits of this method are unclear for
loosely related tasks.

Long and Wang (2015) attempted to learn the
information flow between task-specific models.
Ruder (2017) showed the effect of applying regular-
ization to the network weights to generalize better.
Using a more sophisticated approach to control the
information flow and applying additional regular-
ization terms on the network weights are promising
ways to obtain improvements over the current mod-
els. Zhang et al. (2018) proposed learning the most
suitable model for a given multi-task setting using
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the previous results obtained for various (S, M)
pairs where S is a set of tasks and M is the learn-
ing model. They find the best candidate covariance
matrix which represents the task relations to esti-
mate the relative error for a new multi-task setting
and show the effectiveness of their approach. One
drawback of these approaches is that they focus
only on learning the task-relatedness between tasks
and ignore the architectural variations. Meyerson
and Miikkulainen (2019) showed that architectures
can also be decomposed to allow sharing of various
sub-modules for a set of tasks. Yet, more research
is necessary to find out the best method of shar-
ing and the best architecture for a given multi-task
setting.

3 Research Plan

In this section, we restate the research questions
and explain the approach we are planning to take.

RQ1: How to optimize the model architec-
ture and sharing methodology for a given task
combination?

Currently proposed multi-task learners mostly
use hard sharing, where models share a common
low-level layer, and task-specific sharing methods
are not analyzed for many task combinations (Col-
lobert et al., 2011; Sggaard and Goldberg, 2016;
Hashimoto et al., 2017). Following Long and Wang
(2015), we plan to use learnable parameters to con-
trol the information flow between each task-specific
model. Learning joint label embeddings for dis-
parate label classes (Augenstein et al., 2018) is
another promising approach that goes beyond hard-
sharing. Specifically, we will apply this method
to leverage our previously proposed joint learner
for Dependency Parsing and Named Entity Recog-
nition. Part-of-speech tags strongly correlate with
named entities and dependencies (Hashimoto et al.,
2017; Akdemir and Giingor, 2019b). Thus, we ar-
gue that learning joint label embeddings of these
tasks can help to further capture the relations be-
tween them.

RQ2: What are some good auxiliary tasks to
improve the performance of a target task?

Regarding this research question, we will fix a
target task and try to improve the performance by 1)
incorporating a transfer learning framework and 2)
applying a more sophisticated data selection mecha-
nism. To better understand the task relations (where
to transfer from), we will compare the performance
on a fixed target task using several auxiliary tasks



obtained through different task selection mecha-
nisms. Lee et al. (2019) proposed pretraining the
BERT model in the biomedical domain and apply
the model to make predictions in several different
downstream tasks in Bioinfomatics such as gene-
disease relation extraction and biological named
entity recognition. We argue that their approach
can be combined with multi-task learning to further
leverage the information available in the dataset of
each task. Specifically, we claim that biological
named entity recognition can be used as an auxil-
iary task to improve the performance of biological
question answering systems. Our preliminary re-
sults are given in Section 4. The biological named
entity dataset consists of several types of entities
(genes, chemicals and disease mentions) and each
type can be considered as a different task. We will
use these set of tasks to compare the performance
of the task selection mechanisms.

Deciding which data are useful (what to trans-
fer), in addition to finding promising task combina-
tions, is another key factor to increase transferabil-
ity (Ruder and Plank, 2017). However, many of the
current multi-task models use all the available data
for all tasks (Long and Wang, 2015; Hashimoto
et al., 2017; Lee et al., 2019). To this end, we
will apply the previously proposed data selection
mechanisms on our new task combinations to find
the most useful and relevant examples from each
dataset to improve the transferability and to avoid
negative-transfer. Previous work on data selection
successfully showed that using a Bayesian suite for
deciding which data to use for multi-task learning
brings significant improvements (Ruder and Plank,
2017). This motivated us to incorporate similar
data selection mechanisms to further improve the
performance of transfer learning models. We will
compare several data selection mechanisms by fix-
ing the model to be used and the task combination.

RQ3:
schemes?

How to find useful pretraining

The standard approach in sequential transfer
learning is to pretrain a model using an objective
that is relevant to and useful for the target task.
In NLP, the prevailing method is to train a lan-
guage model using the next sentence prediction
and masked token prediction objectives over huge
unlabeled datasets, e.g. the BERT model (Devlin
et al., 2019). The pretrained models are usually
fine-tuned on task-specific datasets, yet the char-
acteristics of the downstream task are usually not
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considered during the pretraining process. Regard-
ing this research question, our main goal is to find
task-specific pretraining schemes and to compare
the performance with fine tuned models that are not
pretrained considering the downstream task (Lee
et al., 2019).

Curriculum learning aims to find a good order-
ing of the training samples to go beyond random
sampling (Bengio et al., 2009). The training sam-
ples are ordered according to their difficulties using
prior knowledge. Recently, Jiang et al. (2015) pro-
posed self paced curriculum learning which tries to
learn this ordering dynamically during training to
mitigate the drawbacks of defining static difficul-
ties for training samples using external knowledge.
Following this idea of changing the difficulty of the
training samples (Bengio et al., 2009; Kumar et al.,
2010; Jiang et al., 2015; Liang et al., 2016), we
propose using ‘adaptive masking’ for pretraining
language models. The standard approach for pre-
training with masked language modeling involves
predicting the distribution of a randomly masked
word using its context (Devlin et al., 2019). Each
masked word can be considered as an instance of
a cloze test which is frequently used to assess the
linguistic skills in humans. In a cloze test, students
are expected to understand the context to fill in the
masked word. Randomly selecting which words
to mask causes the difficulty of each instance to
change randomly as well. We propose adaptively
changing the difficulty of the next training instance
by observing the performance of the model. In
this context, we define difficulty as the amount
of contextual information necessary to select the
most probable word, whereas Bengio et al. (2009)
defined difficulty as the inverse of the frequency
of each masked token regardless of their contexts.
Table 1 illustrates why going beyond random mask-
ing is a promising method to improve the learning
process. For the first example, the model (or the
person tested) must predict ‘school’ from the con-
text which includes the word ‘students’. In the
second example, the model must comprehend the
overall negative meaning to predict ‘low’ instead
of ‘high’. ! The idea can be extended easily to
other domains of machine learning such as object
detection where ‘difficult words’ are replaced with
‘difficult objects’.

'The examples were taken from intermediate and advanced
level cloze grammar tests from the englishlearner website:
https://www.englishlearner.com/tests



Difficulty

Sentence

Intermediate

Two students from Cologne, Germany, ages 17 and 18,
are accused of plotting an attack at their school on November 20.

Advanced

Low levels of literacy have a damaging impact on almost every aspect of adult life.

Table 1: Two example sentences for the masked language modeling task. The underlined tokens are the originally
masked ones in the reference tests. Tokens that are more challenging to predict are shown in bold.

4 Evaluation

In order to evaluate the significance of our contri-
butions, we will do evaluations for each research
question separately. Below we give the evaluation
methodology, together with example tasks and the
related datasets that will be used for each research
question.
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We will compare our proposed methodology with
the previously proposed multi-task learners and
the state-of-the-art single-task learners in the same
setting. We proposed a novel multi-task learning
framework to improve the performance of the target
task, Named Entity Recognition, using the informa-
tion obtained from the auxiliary task, Dependency
Parsing, for the Turkish language. Dependency
Parsing is chosen as the auxiliary task following
the previous work that showed the importance of
dependencies for the Named Entity Recognition
task, for morphologically rich languages, e.g the
Turkish language (Giingor et al., 2018; Straka et al.,
2019; Akdemir and Giingor, 2019a). The results
in Table 2 show that our proposed model (Model
2) achieves an absolute 2.45% F-1 score overall
improvement over the conventional joint learning
model (Model 1). The conventional model requires
a single dataset annotated with labels for both
tasks, which is a delimiting constraint for less re-
sourced languages. Instead, we proposed using sep-
arate datasets for each task (Akdemir and Giingor,
2019b) which allows the model to be trained on a
larger dataset.

Next, we proposed a hierarchical multi-task
learning framework (Akdemir et al., 2020) that
builds on our previous work mentioned above. In
this framework, each task-specific component is
implemented following the state-of-the-art mod-
els and experiments are conducted using differ-
ent sharing methodologies to find the most use-
ful setting for this task combination. We fol-
lowed Qi et al. (2018) and Lample et al. (2016) to
implement a Highway Long Short Term Memory

37

Model 1 | Model 2
PER 84.50 86.48
LOC 81.97 86.36
ORG 78.34 78.63
Overall | 82.11 84.56

Table 2: Results comparing the proposed model
(Model 2) with the conventional joint learner (Model
1). All results are given in percentage (%) F-1.

(H-LSTM) based dependency parser and a BiL-
STM Conditional Random Fields based named en-
tity recognizer. In addition, we used BERT sub-
word contextual embeddings as the common low-
level layer shared by the task-specific components.
This framework achieved absolute improvements
of 18.86% and 4.61% F-1 over our previously
proposed model for DEP and NER tasks respec-
tively. In addition, the framework showed absolute
improvements of 1.44% and 0.13% F-1 over the
state-of-the-art models for the Turkish language for
DEP and NER tasks respectively. The details about
the implementation and the experiments conducted
are given in (Akdemir et al., 2020).

We will further test the validity of our hypoth-
esis on other less resourced morphologically rich
languages such as the Czech Language (Demir and
Ozgiir, 2014).

Dataset. To test our hierarchical multi-task
learner on the Czech Language, we will use the
‘Czech Named Entity Corpus 2.0” (Sev&ikovd et al.,
2007) for the NER task and the PDT-UD tree-
bank (Haji¢ et al., 2017) of the ‘CoNLL 2018
Shared Task’ (Zeman et al., 2018) for Depen-
dency Parsing task. The NER dataset contains
8,993 sentences with 35,220 entities and uses a
two-level named entity classification. For our pur-
poses it is sufficient to use the first level classes
(10 classes) as the named entity labels, referred as
supertypes. PDT-UD contains 87,913 sentences
obtained mainly from newswire.



42 RQ2.

To evaluate the significance of the contributions
we make regarding RQ2, we will fix a target task
and compare the performance using the newly pro-
posed auxiliary task(s). As mentioned in Section 3,
an example target task is biomedical question an-
swering. We argue that detecting and categorizing
diseases and biological entities is an important first
step to answer biological questions. In addition,
the effect of applying data selection will be evalu-
ated by fixing a deep learning model for the object
detection task. It was chosen because there are
numerous models already proposed for multi-task
object detection which allows us to clearly assess
the significance of our contributions.

Dataset. We use the BC2GM (Smith et al.,
2008), BC4ACHEMD (Krallinger et al., 2017), and
BC5CDR (Li et al., 2016) datasets for biological
named entity recognition which contain gene en-
tities, chemical entities and disease mentions re-
spectively. To test our claim, we use the BioASQ
dataset (Tsatsaronis et al., 2015) used during the
biomedical question answering competition which
contains yes-no, factoid and list type questions.

The preliminary results we obtained for Biolog-
ical Question Answering task can be seen on Ta-
ble 3. 2 We started with BERT (Devlin et al., 2019)
embeddings and obtained improvements through 1)
transfer learning on the biomedical abstracts from
PubMed, 2) pretraining the question answering
module on the Squad question answering dataset
and 3) training a multi-task learning model for all
question types. Step 3 is our contribution and has
not been employed before, to the best of our knowl-
edge. We aim to show further improvements by in-
corporating multi-task learning of biological named
entities.

BioAsq-6b - Factoid

Model LAcc | SAcc | MRR

BERT (baseline) 024 | 035 | 0.28
+TL on PubMed 0.32 | 0.50 | 0.39
+pretraining on Squad | 0.39 | 0.58 | 0.47
+MTL of all questions | 0.42 | 0.61 | 0.49

Table 3: Initial results on Biological Question
Answering-6 factoid type questions.

For multi-task object detection from different do-
mains, we will use the Office-Caltech (Gong et al.,

LAcc,SAcc and MRR are abbreviations for Lenient Accu-
racy, Strict Accuracy and Mean Reciprocal Rank, respectively.
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2012) dataset, which is the standard benchmark
for transfer learning in Computer Vision. The Of-
fice dataset contains images from three different
domains; Amazon, Webcam and DSLR, containing
31 categories. Caltech dataset is the 10 overlapping
categories from the Caltech-256 dataset (Griffin
et al., 2007).

4.3 RQ3.

We will evaluate our newly proposed pretraining
schemes both performance-wise and resource-wise.
We choose the standard pretraining objective of
BERT (Devlin et al., 2019) as the baseline and we
will train the same model using our newly proposed
‘adaptive masking’.

Dataset. We will use the unlabeled Wikipedia
articles in English for pretraining the model using
both pretraining tasks. Next, we will evaluate the
performance of the system on the benchmark “The
Stanford Question Answering Dataset’, SQuAD
2.0, which contains over 150,000 answerable and
unanswerable questions. We choose question an-
swering as the downstream task, as it was used as
the downstream task to evaluate the performance
of BERT (Devlin et al., 2019) .

S Summary

Transfer learning is a promising area of research
for deep neural network based machine learning
models. It helps achieve better generalization and
utilization of the training datasets. In this paper, we
pointed out the current key challenges and unsolved
problems: 1) Going beyond the conventional way
of hard-sharing in multi-task learning and finding
the most useful architecture for a given setting, 2)
Finding good auxiliary tasks in a multi-task setting
for a specific target task, and 3) Finding useful
pretraining schemes. Our research aims to apply
the current work on transfer learning to new tasks
and also find novel methods to obtain better multi-
task learning models.
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Abstract

It is well-understood that different algorithms,
training processes, and corpora produce dif-
ferent word embeddings. However, less is
known about the relation between different em-
bedding spaces, i.e. how far different sets of
embeddings deviate from each other. In this
paper, we propose a novel metric called Rel-
ative pairwise inner Product Distance (RPD)
to quantify the distance between different sets
of word embeddings. This metric has a uni-
fied scale for comparing different sets of word
embeddings. Based on the properties of RPD,
we study the relations of word embeddings of
different algorithms systematically, and inves-
tigate the influence of different training pro-
cesses and corpora. The results shed light on
the poorly understood word embeddings and
justify RPD as a measure of the distance of em-
bedding spaces.

1 Introduction

Word embeddings are important in Natural lan-
guage processing (NLP) which map words into a
low-dimensional vector space. Many works have
been proposed to generate word embeddings (Mnih
and Kavukcuoglu, 2013; Mikolov et al., 2013; Pen-
nington et al., 2014; Levy and Goldberg, 2014a;
Bojanowski et al., 2017; Devlin et al., 2019).

With many different sets of word embeddings
produced by different algorithms and corpora, it is
interesting to investigate the relationships between
these sets of word embeddings. Intrinsically, this
would help us better understand word embeddings
(Levy et al., 2015). Practically, knowing the rela-
tionship between different sets of word embeddings
helps us build better word meta-embeddings (Yin
and Schiitze, 2016), reduce biases in word embed-
dings (Bolukbasi et al., 2016), pick better hyper-
parameters (Yin and Shen, 2018), and choose suit-
able algorithms in different scenarios (Kozlowski
etal., 2019).

zhengzx@smail.nju.edu.cn,
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To study the relationship between different em-
bedding spaces systematically, we propose RPD
as a measure of the distance between different sets
of embeddings. We derive statistical properties of
RPD including its asymptotic upper bound and nor-
mality under the independence condition. We also
provide a geometric interpretation of RPD. Further-
more, we show that RPD is strongly correlated with
the performance of word embeddings measured by
intrinsic metrics, such as comparing semantic simi-
larity and evaluating analogies.

With the help of RPD, we study the rela-
tions among several popular embedding meth-
ods, including GloVe (Pennington et al., 2014),
SGNS! (Mikolov et al., 2013), Singular Value De-
composition (SVD) factorization of PMI matrix,
and SVD factorization of log count (LC) matrix.
Results show that these methods are statistically
correlated, which suggests that there is an unified
theory behind these methods.

Additionally, we analyze the influence of train-
ing processes, i.e. hyperparameters (negative sam-
pling), random initialization; and the influence of
corpora towards word embeddings. Our findings
include the fact that different training corpora result
in significantly different GloVe embeddings, and
that the main difference between embedding spaces
comes from the algorithms although hyperparam-
eters also have certain influence. Those findings
not only provide some interesting insights of word
embeddings but also fit nicely with our intuition,
which further proves RPD as a suitable measure to
quantify the relationship between different sets of
word embeddings.

2 Background

Before introducing RPD, we review the theory be-
hind some static word embedding methods, and

! Skip-gram with Negative Sampling
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discuss some previous works investigating the rela-
tionship between embedding spaces.

2.1 Word Embedding Models

We consider the following four word embedding
models: SGNS, GloVe, SVDppmi, SVDc. SGNS
and GloVe are two widely used embedding meth-
ods, while SVDpy; and SVDy ¢ are matrix fac-
torization methods which are intrinsically related
to SGNS and GloVe (Levy and Goldberg, 2014b;
Levy et al., 2015; Yin and Shen, 2018).

The embedding of all the words forms an em-
bedding matrix £ € R™*?, where the d here is the
dimension of each word vector and n is the size of
the vocabulary.

SGNS maximizes a likelihood function for word
and context pairs that occur in the dataset and min-
imizes it for randomly sampled unobserved pairs,
i.e. negative samples (NS). We denote the method
with £ NS as SGNSg.

GloVe factorizes the log-count matrix shifted by
the entire vocabulary’s bias term. The bias here are
parameters learned stochastically with an objective
weighted according to the frequency of words.

SVDpmuc SVD factorizes a signal matrix
M = UDVT, which aims at reducing the dimen-
sions of the cooccurrence matrix. The resulting

1

embedding is F = U:,l:de;d,Ld , where d is the
dimension of word embeddings. We denote the
method as SVDpyp, if the signal is the PMI matrix,
and SVDy ¢ if the signal is the log count matrix.

Although the scope of this paper focuses on stan-
dard word embeddings that were learned at the
word level, RPD could be adapted to analyze em-
beddings that were learned from word pieces, for
example, fastText (Bojanowski et al., 2017) and
contextualized embeddings (Peters et al., 2018; De-
vlin et al., 2019).

2.2 Relationship Between Embedding Spaces

Levy and Goldberg (2014b) provide a good anal-
ogy between SGNS and SVDpyy;. They suggest
that SGNS is essentially factorizing the pointwise
mutual information (PMI) matrix. However, their
analogy is based on the assumption of no dimen-
sion constraint in SGNS, which is not possible in
practice. Furthermore, their analogy is not suit-
able for analyzing methods besides SGNS and PMI
models since their theoretical derivation relies on
the specific objective of SGNS.

Yin and Shen (2018) provide a way to select
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the best dimension of word embeddings for spe-
cific tasks by exploring the relations of embed-
ding spaces of different dimension. They introduce
Pairwise Inner Product (PIP) loss (Yin and Shen,
2018), an unitary-invariant metric for measuring
word embeddings’ distance (Smith et al., 2017).
The unitary-invariance of word embeddings states
that two embedding vector spaces are equivalent if
one can be obtained from another by multiplying a
unitary matrix. However, PIP loss is not suitable for
comparing numerically across embedding spaces
since PIP loss has different energy for different
embedding spaces.

3 Quantifying Distances between
Embeddings

In this section, we describe the definition of RPD
and its properties, which make RPD a suitable
and effective method to quantify the distance be-
tween embedding spaces. Note that two embedding
spaces do not necessarily have the same vocabulary
for calculating the RPD.

3.1 RPD

For the following discussion, we always use the
Frobenius norm as the norm of matrices.

Definition 1. (RPD) The RPD between embedding
matrices /1 and F is defined as follows:

x «T = T
1|EvEy — ExEy |

RPD(El,Eg): — — .
2 |E\E) || BBy |

where E comes from dividing each entry of &/
by its standard deviation. For convenience, we let
E = E for the following discussion.

The numerator of RPD respects the unitary-
invariant property of word embeddings, which
means that unitary transformation (i.e. rotation)
preserves the relative geometry of an embedding
space. The denominator is a normalization, which
allows us to regard the whole embedding matrix as
an integrated part (i.e. RPD does not correlate with
the number of words of embedding spaces). This
step makes comparisons across methods possible.

3.2 Statistical Properties of RPD

We assume the widely used isotropic assump-
tion (Arora et al., 2016) that the ensemble of word
vectors consists of i.i.d draws generated by v = s,
where ¢ is from the spherical Gaussian distribution,
and s is a scalar random variable. In our case, we



can assume each entry of embedding comes from a
standard normal distribution E: v;; ~ N (0, 1).
Note that the assumption may not always work
in practice, especially for other embeddings such
as contextualized embeddings. However, under
the isotropic conditions, the statistical properties
derived are intuitively and empirically plausible.
Besides, those properties serve to better interpret
the value of RPD alone. Since RPD, in many cases,
is used for comparison, we should be comfortable
with the assumption.
Upper bound We estimate the asymptotic upper
bound of RPD. By factorizing the numerator of
RPD, we get (1).

_ 1B EY | + | E2E5 |
2 ||ELET ||| ELET ||

(E\ET, BET)

|E\ET ||| ELET ||

RPD(E, Es)

)

Applying the Cauchy-Schwarz inequality to the last
term of (1)%, we have the following estimation.

1B ET|? + || B2 B |2
1B E ||| B2 7 |

_BET| | EET|
IEEZ|l | EvEY |

2RPD(E1, EQ) <

2

By the law of large numbers, we can prove that
lim,, o0 [|EET|| nv/d (Appendix A). Then,
we can tell from (2) that RPD is bounded by 1
when n — oo. In practice, the number of words
n is large enough to let the maximum of RPD
stay around 1, which means RPD is well-defined
numerically.

Normality For RPD(F1, E»), if F is independent
of E5, we can prove that RPD distributes normally
from both an empirical and a theoretical perspec-
tive. Theoretically, by applying the central limit
theorem to the numerator and the law of large num-
bers to the denominator of RPD, we can get the
normality of RPD under the condition n — oo,
4 — ¢, where ¢ remains constant (Appendix B).
Empirically, we can use Monte Carlo simulation to
show the normality and estimate the mean and vari-
ance of RPD (Appendix C). With the help of RPD,
we can perform hypothesis test (z-test) to evaluate
the independence of two embedding spaces.

>The inner product of matrix A and B is defined as
(A, B) = trace(AT B)
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3.3 Geometric Interpretation of RPD

From equation (1), we can tell that the first term
goes to 1 when n — co. So we only need to discuss
the second term.

(LB EyET
| ELET ||| E2ET ||

For the i*" row in EET, we have vector 9; =
(vl viud | .. vol), where v; is the word i’s vec-
tor in embedding E, n is the number of words. We
can interpret 9; as another representation of word i
projected onto the space spanned by vy, va, ..., Up.
So for convenience, we denote £ = EET with its
ith row as v;.

We can prove that lim,,_,,, RPD(F1, Es)
1— L% cos(6;). The 0; € (0,%) is the angle
1) (Z'th

between 1“)1( row vector of £7) and 131(2) @@t
row vector of F) (Appendix D). Therefore, we can
understand the value of RPD from the perspective

of cosine similarity between vectors.
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Figure 1: The plot shows the difference in performance
as a function of RPD score. The x-axis for each point
represents the RPD between word embeddings pro-
duced by SGNS (with NS 15, 5, 1), GloVe, SVDpui,
SVD; ¢ and word embeddings produced by SGNSs5.
The y-axis for each point represents the sum of abso-
lute variation in the performance (word similarity and
word analogy).

3.4 RPD and Performance

As Yin and Shen (2018) discussed, usability of
word embeddings, such as using them to solve anal-
ogy and relatedness tasks, is important to practition-
ers. Through applying different sets of word em-
beddings to word similarity and word analogy tasks
(Mikolov et al., 2013), we study the relationship
between RPD and word embeddings’ performance.
Specifically, we set the word embeddings produced
by SGNS with 25 NS as a starting point and use



other word embeddings, for example, GloVe as an
end point. Then we get a two dimensional point
with x as their RPD, y as their absolute perfor-
mance change in word similarity®> and analogy*
tasks.

By putting those points in Figure 1, we can tell
in a certain range of RPD, the larger RPD between
the two sets of word embedding means the bigger
gap in their absolute performance. Intuitively, RPD
is strongly related to cosine similarity, which is the
measure of word similarity. RPD also shares the
same property of PIP loss, where a small RPD leads
to a small difference in relatedness and analogy
tasks. We obtain similar results when the starting
point is a different embedding space.

Note that this section serves to demonstrate the
performance (at least in word similarity and anal-
ogy tasks) variation of different embedding spaces
is correlated with their RPD. While we are aware
of the relevance of other downstream tasks, we do
not explore further since our focus lies in investi-
gating the intrinsic geometry relation of embedding
spaces.

4 Experiment

The following experiments serve to apply RPD
to explore some questions of interest and further
demonstrate that RPD is suitable for investigat-
ing the relations between embedding spaces. We
leave applying RPD to help improve specific NLP
tasks to future research. For example, RPD could
be used for combining different embeddings to-
gether, which could help us produce better meta-
embeddings (Kiela et al., 2018).

4.1 Setup

If not explicitly stated, the experiments are per-
formed on Text8 corpus (Mahoney, 2011), a stan-
dard benchmark corpus used for various natural
language tasks (Yin and Shen, 2018). For all meth-
ods we experiment, we train 300 dimension embed-
dings, with window size of 10, and normalize the
embedding matrices with their standard deviation.
The default NS for SGNS is 15.

30ur word similarity task can be found here: https:
//aclweb.org/aclwiki/WordSimilarity—-353_
Test_Collection_ (State_of_the_art)

*Our word analogy task can be found here:
https://aclweb.org/aclwiki/Google_
analogy_test_set_(State_of_the_art)

SThe code can be found on Bitbucket: https://
bitbucket.org/omerlevy/hyperwords
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Methods GloVe SVDpMI SVDLC
SGNSe5  0.792  0.609 0.847
SGNS5  0.773  0.594 0.837
SGNS; 0.725  0.550 0.805
SGNS; 0.719  0.511 0.799

Table 1: RPDs of SGNS vs other methods

4.2 Different Algorithms Produce Different
Embeddings

Dependence of SGNS and SVDpy1

As discussed in the introduction, the relation-
ship between embeddings trained with SGNS and
SVDppm remains controversial (Arora et al., 2016;
Mimno and Thompson, 2017). We use the results
we obtain in Section 3.2 to test their dependence.
For example, if one believes that F; trained with
SGNS and FEs trained with SVDpy have no rela-
tionship, then the null hypothesis Hy would be: E}
and F), are independent.

Under Hy, RPD(E1, E2) asymptotically follows
N (u, 0?). Then the test statistic z is calculated as
follows.

5 = RPD(E]_7E2) — U
o

In our case, we estimate p 0.953 and
o 0.001 with Monte Carlo simulation
with randomly initialized embeddings. Take
RPD(EscNs, -EsvDpy) = 0.511 from Table 1 as
an example, the statistic z = 442, which means the
p-value < 0.01. Thus, we can confidently reject
Hj. Notice that we can test any two sets of word
embeddings with this method. It is not hard to see
that no pair of word embeddings in Table 1 are
independent, which suggests that there exists an
unified theory behind these methods.

SGNS is Closest to SVDpy1

With the help of RPD, it is also interesting to in-
vestigate distances between embeddings produced
by different methods. Here, we calculate the RPDs
among SGNS (with negative sampling 25, 15, 5,
1), GloVe, SVDPMI, SVDLc.

Table 1 shows the RPDs between SGNS with dif-
ferent negative sampling numbers and other meth-
ods. From the table, we can tell that SGNS stays
close to SVDpy, which confirms Levy and Gold-
berg (2014b)’s theory.
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Figure 2: Plot of different methods. We create the plot
by fixing the position of SVDy ¢ and SVDpyy;. We then
derive the position of other word embeddings accord-
ing to their RPD with existing points on the plot.

Hyper-parameters Have Influence on
Embeddings

From Table 1, an interesting phenomenon is that
SGNS becomes closer to other methods with the
decrease of negative samples, which suggests that
negative sampling is one of the factors driving
SGNS away from matrix factorization methods.

With RPDs between different sets of word em-
beddings, we plot the embeddings in 2D by treat-
ing each embedding space as a single point. We
first fix point SVDpy; and SVDy ¢, then we draw
other points according to their RPDs with the other
methods. Figure 2 helps us see how negative sam-
pling affects the embedding intuitively. Increasing
the number of negative samples pulls SGNS away
from SVDpp. Combining Table 1 and Figure 2,
we can tell that although the hyper-parameters can
influence the embeddings to some extent, the main
difference comes from the algorithms.

4.3 Different Initializations Barely Influence
Embeddings

Random initializations produce different embed-
dings with the same algorithms and hyperparame-
ters. While those embeddings usually get similar
performance on the downstream tasks, people are
still concerned about their effects. We investigate
the influence of random initializations for GloVe
and SGNS.

We train the embedding in the same setting mul-
tiple times and get the average RPDs for each
method. For SGNS, the average RPDs of ran-
dom initialization is 0.027. For GloVe, the value is
0.059.

We can tell that different random initializations
produce essentially the same embeddings. Neither
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SGNS GloVe
Text8-WMT14 0.168 0.686
Text8-TED 0.119 0.758
WMTI14-TED 0.175 0.716

Table 2: RPDs between same method trained from dif-
ferent corpora

SGNS or GloVe has a significant RPD in differ-
ent initializations, which suggests random initial-
ization has little influence over word embeddings’
performance (Section 3.4). However, SGNS seems
to be more stable in this setting.

4.4 Different Corpora Produce Different
Embeddings

It is well known that different corpora produce dif-
ferent word embeddings. However, it is hard for
us to tell how different they are and whether the
difference influences downstream applications (An-
toniak and Mimno, 2018). Knowing this would
help researchers choose the algorithms in specific
scenarios, for example, evolving semantic discov-
ery (Yao et al., 2018; Kozlowski et al., 2019). They
focus on the semantic evolution of words, but cor-
pora are different in different time scales. Their
methods use word embeddings to study semantic
shift, which might be influenced by the word em-
beddings being trained on different corpora, thus
getting unreliable results. In this case, it would
be important to chose an algorithm less prone to
influences by differences in corpora.

We train word embeddings using each of
text8 (Wikipedia domain, 25097 unique words),
WMT14 news crawl® (Newswire domain, 24359
unique words), TED speech’ (Speech domain,
7389 unique words). We compute RPD on the
intersections of their vocabulary

From Table 2, we can tell that SGNS is consis-
tently more stable than GloVe in different domains.
We suggest that this is because GloVe trains the
embedding with co-occurrence matrix, which gets
influenced more by the corpus.

5 Discussion

While our work investigates some interesting prob-
lems about word embeddings, there are many other

*http://www.statmt.org/wmt14/
"https://workshop2016.iwslt.org/



problems about embeddings that can be demon-
strated with the help of RPD. We discuss some of
them as follows.

5.1 RPD and Crosslingual Word Embeddings

Artetxe et al. (2018) provide a framework to ob-
tain bilingual embeddings, whose the core step of
the framework is an orthogonal transformation and
other existing methods can be seen as its varia-
tions. The framework proposes to train monolin-
gual embeddings separately and then map them
into a shared-embedding space with linear transfor-
mation.

While linear transformation is no guarantee for
the alignment of two embedding spaces from dif-
ferent languages, RPD could potentially serve as a
way to indicate how different language pairs benefit
from mapping them with an orthogonal transfor-
mation. Since RPD is unitary-invariant, we can
calculate RPD between embedding spaces from
different language pairs. The smaller RPD is, the
better the framework could align this two language
embedding spaces.

5.2 RPD and Post-Processing Word
Embeddings

Post-processing word embeddings can be useful
in many ways. For example, Vuli¢ et al. (2018)
retrofit word embeddings with external linguistic
resources, such as WordNet to obtain better embed-
dings; Rothe and Schiitze (2016) decompose em-
bedding space to get better performance at special-
ized domains; and Mu and Viswanath (2018) obtain
stronger embeddings by eliminating the common
mean vector and a few top dominating directions.

RPD could serve as a metric to evaluate how the
embedding space changes intrinsically after post-
processing.

5.3 RPD and Contextualized Word
Embeddings

Contextualized embeddings are popular NLP tech-
niques which significantly improve a wide range
of NLP tasks (Bowman et al., 2015; Rajpurkar
etal., 2018). To understand why contextualized em-
beddings are beneficial to those NLP tasks, many
works investigate the the nature of syntactic (Liu
et al., 2019), semantic (Liu et al., 2019), and com-
monsense knowledge (Zhou et al., 2019) contained
in such representations.

However, we still know little about the vector
space of contextualized embeddings and their rela-
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tionship with traditional word embeddings, which
is important to further apply contextualized embed-
dings in various scenarios (Lin and Smith, 2019).
RPD can potentially serve to help us better un-
derstand contextualized embeddings in future re-
search.

6 Conclusion

In this paper, we propose RPD, a metric to quantify
the distance between embedding spaces (i.e differ-
ent sets of word embeddings). With the help of
RPD and its properties, we verify some intuitions
and answer some questions. Justifying RPD theo-
retically and empirically, we believe RPD can offer
us a new perspective to understand and compare
word embeddings.
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A Appendix A. Limitation of || EET ||

As discuss before, in our case, we can assume
iid. v;; ~ N(0,1), where v;; is the ' entry in
the " word vector v; of E.

> (v )2

EET|| =

IBET|| = ny | =5
_ Zg&j(viva)z Z?:j(”iU?)Q
- n? + n?

3)

By the assumption, we know that ’UZ"U]T identi-

cally distributes for any i # j,1 > i < n,1 >
7 < n. By applying the law of large numbers,
Yigy(wiv})? T2
=L goes to E((vivj )?) as n goes

J
S (v0T)?
to co. The term ”n% goes to zero as n

goes to co. Then, we know that ||EET|| —

4 /E((’UiU]T)2), n — o0o.

We only need to calculate £/ ((vlv]T)Q)

the term

E((ijT)Q) = Var(vivjr) + (E(Uiva))2 ()]

Simple calculation shows that Var(viva) =d,
E(viva) = 0. Then E((vivf)Q) = d, dis
the dimension of word embedding here. Thus,

||IEET|| = nvVd,n — oco.

B Appendix B. Normality of RPD

Let’s review the form of RPD.

1||E1EY — EyET|2
RPD(Ey, ) = L IE1EL — BB [0 )

2 BB (| B2 B

. . EL1ET||||E:ET
As we discuss in A, W
||1'“31E1T*2E'2EQT\|2

n — 0o. We only have to prove —
distributes normally. The key is how to apply the
central limit theorem (CLT).

We denote as follows.

— d, as

_||E\E] — BEF|]?
_ -
|ELEY |2 + || B2 ET ||> — 2{ E\ET , E2EY)

Hy

n2

(6)

Notice that the term ( E1E{ , B3 EY) does not
contribute to the variance if we analyze the sec-
ond moment of the numerator. So it is equivalent
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distributes nor-

|IElElTII2+2||EzE2TII2

to prove 1}, = -

mally.

We project the T, to

Sn =20 E(Talvij) — (n — 1) E(T,,)
Vars] =
1,n — oo, 7 = c. Then by the Hajek projection
theorem, we get 7;, has the same distribution as
S,,. It is not hard to see that each random variable
E(T),|vij) in Sy, is independent of others. This al-
lows us to apply CLT to S,, and get S,, ~ N (i, 0%).
Thus, H,, ~ N (i, 02).

Simple calculation would show that

C Appendix C. Monte Carlo Simulation

Here is how we perform Monte Carlo simulation.
We independently produce two matrix Fy, s €
R™ ¢ with each entry i.i.d as NV'(0,1). Then we
calculate RPD(FE7, E5) and get the first RPD value.
Repeat the process for 5000 times, we get a vector
of RPDs. Drawing the histogram of this vector
yields a normal distribution and we can estimate the
mean and variance of the distribution by calculating
the mean and variance of the vector of RPDs.

D Appendix D. Geometry Interpretation
of RPD

Now we consider a general case, where £ and F»
are embeddings with n words.

(1) (2)
1

v ’Ul
Uél) UéQ)
oD @
Then
3 n DT (2
(B By S o
|E|[[| B2l ||Eql]]|Ex| -
nTr (2 2
RN Tl
1o o] B E2]]
We denote gl P iy 2
cos(6;)

It is not hard to see that the w; ~ % when n
is large enough. Then we get RPD(E1, Fy) ~
1-— M Considering the isotropic assump-
tion again, another observation is that the cos(6;)

distributes normally.



Reflection-based Word Attribute Transfer

Yoichi Ishibashi, Katsuhito Sudoh, Koichiro Yoshino, Satoshi Nakamura
Nara Institute of Science and Technology
{ishibashi.yoichi.ir3, sudoh, koichiro, s-nakamura}@is.naist.jp

Abstract

Word embeddings, which often represent such
analogic relations as king — mar 4+ woman ~
M, can be used to change a word’s at-
tribute, including its gender. For transferring
king into queen in this analogy-based manner,
we subtract a difference vector man — woma
based on the knowledge that king is male.
However, developing such knowledge is very
costly for words and attributes. In this work,
we propose a novel method for word attribute
transfer based on reflection mappings without
such an analogy operation. Experimental re-
sults show that our proposed method can trans-
fer the word attributes of the given words with-
out changing the words that do not have the
target attributes.

1 Introduction

Word-embedding methods handle word semantics
in natural language processing (Mikolov et al.,
2013a,b; Pennington et al., 2014; Vilnis and McCal-
lum, 2015; Bojanowski et al., 2017). Such word-
embedding models as skip-gram with negative sam-
pling (SGNS; Mikolov et al., 2013b) or GloVe (Pen-
nin& et al., 2014) capture such analogic relations

as king—man+woman = queen. Previous work
(Levy and Goldberg, 2014b; Arora et al., 2016; Git-
tens et al., 2017; Ethayarajh et al., 2019; Allen
and Hospedales, 2019) offers theoretical explana-
tion based on Pointwise Mutual Information (PMI;
Church and Hanks, 1990) for maintaining analogic
relations in word vectors.

These relations can be used to transfer a cer-
tain attribute of a word, such as changing king into
queen by transferring its gender. This transfer can
be applied to perform data augmentation; for ex-
ample, rewriting He is a boy to She is a girl. It can
be used to generate negative examples for natural
language inference, for example. We tackle a novel
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Z
x Invert gender 3
»  mother
father—{
» fathers

Invert singular/plural

Figure 1: Examples of word attribute transfer

task that transfers any word associated with certain
attributes: word attribute transfer.

A naive way for word attribute transfer is to use a
difference vector based on anal&ic relations, such
as adding woman — mar to king to obtain queen.
This requires explicit knowledge whether an input
word is male or female; we have to add a difference
vector to a male word and subtract it from a female
word for the gender transfer. We also have to avoid
changing words without gender attributes, such
as is and a in the example above, since they are
non-attribute words. Developing such knowledge
is very costly for words and attributes in practice.
In this work, we propose a novel framework for a
word attribute transfer based on reflection that does
not require explicit knowledge of the given words
in its prediction.

The contribution of this work is two-fold: (1) We
propose a word attribute transfer method that ob-
tains a vector with an inverted binary attribute with-
out explicit knowledge. (2) The proposed method
demonstrates more accurate word attribute trans-
fer for words that have target attributes than other
baselines without changing the words that do not
have the target attributes.

2 Word Attribute Transfer Task

In this task, we focus on modeling the binary at-
tributes (e.g. male and female!). Let = denote
a word and let v, denote its vector representa-
tion. We assume that v, is learned in advance

! Gender-specific words are sometimes considered socially
problematic. Here we use this as an example from the man-
woman relation.
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with an embedding model, such as skip-gram. In
this task, we have two inputs, word x and vec-
tor z, which represent a certain target attribute,
and output word ¢ with the inverted attribute of
x for z. In this paper, z is a 300-dimensional
vector embedded from a target attribute ID us-
ing an embedding function of a deep learning
framework. For example, given a set of attributes
Z = {gender, antonym}, we assign different ran-
dom vectors Zgender for gender and zangonym for
antonym, respectively. Let A denote a set of triplets
(x,t,2), e.g., (man, woman, Zgender) € ‘A, and
N denote a set of words without attribute z, e.g.,
(person, Zgender) € N. This task transfers input
word vector v, to target word vector v; by transfer
function fz that inverts attribute z of v:

(D

vi R Vy = fz(ve).

The following property must be satisfied: (1) at-
tribute words {x|(x,t,z) € A} are transferred
to their counterparts and (2) non-attribute words
{z|(x,z) € N7} are not changed (transferred
back into themselves). For instance with zgender,
given input word man, gender attribute transfer
JZgende: (Vman) should result in a vector close to
Vwoman- Given another input word person as ,
the results should be vyerson-

3 Analogy-based Word Attribute
Transfer

Analogy is a general idea that can be used for word
attribute transfer. PMI-based word embedding,
such as SGNS and GloVe, captures analogic re-
lations, including Eq. 2 (Mikolov et al., 2013c;
Levy and Goldberg, 2014a; Linzen, 2016). By re-
arranging Eq. 2, Eq. 3 is obtained:

~
~

2)

Viing — (Vman - Vwoman)- (3)

Vgueen Vking — Vman T Vwoman,

~
~

The analogy-based transfer function is

{

where M is a set of words with a target attribute
(e.g., male) and F is a set of words with an inverse
attribute (e.g., female). d is a difference vector,
such as Vy,an — Vwoman. Eq. 4 indicates that
the operation changes depending on whether input
word x belongs to M or F. However, to transfer

if zeM,
if zeF,

v, —d
v, +d

fz(va) 4)
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the word attribute by analogy, we need such explicit
knowledge as attribute value (M, F or others) that
is contained by the input word.

4 Reflection-based Word Attribute
Transfer
4.1 Ideal Transfer without Knowledge

What is ideal transfer function fz for a word at-
tribute transfer? The following are the ideal natures
of such a transfer function:

V(ma w, Z) € ./4, Vm = fZ(Vw)> )
V(m, w, Z) € A, Vuw = fZ(Vm)> 6)
V(U,Z) € N, Vy = fZ(Vu)' (N

This function fz enables a word to be transferred
without explicit knowledge because operation fz
does not change depending on whether input word
belongs to M or F. By combining Egs. 5, 6 and 7,
we obtain the following formulas:

V(m,w,z) € A, Vi = fz( fz(Vin) ), (8)
V(m,w,z)EA, Vw:fZ(fZ("w)): (9)
V(U,Z) E./\/, Vu:fZ(fZ(Vu>)' (10)

Hence, the ideal transfer function is a mapping that
becomes an identity mapping when we apply it
twice for any v. Such a mapping is called involu-
tion in geometry. For example, f: v — —v is one
example of an involution.

4.2 Reflection

Reflection Refa ¢ is an ideal function because this
mapping is an involution:

Vv € R", v = Refa c(Refac(v)). (11)

Reflection reverses the location between two vec-
tors in a Euclidean space through an hyperplane
called a mirror. Reflection is different from inverse
mapping. When m and w are paired words, re-
flection can transfer v,, and v,, each other with
identical reflection mapping as in Eqs. 5 and 6,
but an inverse mapping cannot. Given vector v in
Euclidean space R", the formula for the reflection
in the mirror is given:

(v—c)-a

Refac(v) =v — 20— 2 25
a-a

(12)

where a € R" is a vector orthogonal to the mirror
and ¢ € R" is a point through which the mirror
passes. a and c are parameters that determine the
mirror.



4.3 Proposed method: Reflection-based

Word Attribute Transfer

Vector

Figure 2: Reflection-based word attribute transfer with
a single mirror

We apply reflection to the word attribute transfer.
We learn a mirror (hyperplane) in a pre-trained
embedding space using training word pairs with
binary attribute z (Fig. 2). Since the mirror is
uniquely determined by two parameter vectors, a
and c, we estimate a and c from target attribute z
using fully connected multi-layer perceptrons:

MLPy, (z),
MLPy,(z),

(13)
(14)

a

where 6 is a set of trainable parameters of MLPy.
Here, 61 and 65 are optimized for each attribute
dataset. Transferred vector v, is obtained by in-
verting attribute z of v, by reflection:

Vy = Refa,c(Vx). (15)

. mother

qufe“ <+— Reflection

. —_—
brother [ woman | —— Mirrors

father

king : person

man

o actress

actor . ¢ heroine

hero

Figure 3: Reflection with parameterized mirrors

Reflection with a mirror by Eqgs. 13 and 14 as-
sumes a single mirror that only depends on z. Pre-
vious discussion assumed pairs that share a stable
pair, such as king and queen. However, since gen-
dered words often do not come in pairs, gender is
not stable enough to be modeled by a single mir-
ror. For example, although actress is exclusively
feminine, actor is clearly neutral in many cases.
Thus, actor is not obviously a masculine counter-
part like king. In fact, bias exists in gender words
in the embedding space (Zhao et al., 2018; Kaneko
and Bollegala, 2019). This phenomenon can occur
not only with gender attributes but also with other
attributes. The single mirror assumption forces the
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mirror to be a hyperplane that goes through the
midpoints for all the word vector pairs. However,
the vector pair actor-actress shown on the right in
Fig. 3 cannot be transferred well since the single
mirror (the green line) does not satisfy this con-
straint due to the bias of the embedding space. To
solve this problem, we propose parameterized mir-
rors, based on the idea of using different mirrors
for different words. We define mirror parameters
a and c using word vector v, to be transferred in
addition to attribute vector z:

a MLPy, ([2; v2]), (16)
= MLPy, ([z; ve]), an
where [-; -] indicates the vector concatenation in the

column. The parameterized mirrors are expected to
work more flexibly on different words than a single
mirror because parameterized mirrors dynamically
determine similar mirrors for similar words. For
instance, as shown in Fig. 3, suppose we learned
the mirror (the blue line) that transfers v, to
Vheroine 1N advance. If input word vector vgcior
resembles vy,.,., a mirror that resembles the one for
Vhero Should be derived and used for the transfer.

On the other hand, the reflection works as an
identity mapping for a vector on the mirror (e.g.,
Vperson 1N Fig 3). That is, the proposed method
assumes that non-attribute word vectors are located
on the mirror. Since we used a 300-dimensional
embedded space in the experiment, we assume
that the non-attribute word vector exists in a 299-
dimensional subspace.

Here, it should be noted that Eq. 11 may not hold
for parameterized mirrors. In reflection with a sin-
gle mirror, it is true that v = Refa ¢( Refa c(Vv)).
However, with the v-parameterized reflection
Refa, c, (V), this is not guaranteed. Because mir-
ror parameters a, and c,, depend on an input word
vector as Eqs. 16 and 17. Thus, we exclude this
constraint and employ the constraints given by Eqgs.
5-7 for our loss function.

The following property must be satisfied in word
attribute transfer: (1) words with attribute z are
transferred and (2) words without it are not trans-
ferred. Thus, loss L(61, 62) is defined:

1
L(0y,0,) = Al Yo (vy-w)? (8)
(z,t,2)eA
b S (vy—va): (19
|N| (z,Z2)eN



where Eq. 18 is a term that draws target word vector
vy, closer to corresponding transferred vector v,
and Eq. 19 is a term that prevents words without
a target attribute from being moved by transfer
function. v, is the output of a reflection (Eq. 15).

S Experiment

We evaluated the performance of the word attribute
transfer using data with four different attributes.
We used 300-dimensional word2vec and GloVe as
the pre-trained word embedding. We used four
different datasets of word pairs with four binary
attributes: Male-Female, Singular-Plural, Capital-
Country, and Antonym (Table 1). These word pairs
were collected from analogy test sets (Mikolov
et al., 2013a; Gladkova et al., 2016) and the Inter-
net. Noun antonyms were taken from the literature
(Nguyen et al., 2017). For non-attribute dataset \V,
we sampled words from the vocabulary of word
embedding. We sampled from 4 to 50 words for
training and 1000 for the test (|Niest| = 1000).

Table 1: Statistics of binary attribute word pair datasets
(in number of word pairs)

Dataset A Train Val Test Total

Male-Female (MF) 29 12 12 53
Singular-Plural (SP) 90 25 25 140
Capital-Country (CC) 59 25 25 109
Antonym (AN) 1354 290 290 1934

5.1 Evaluation Metrics

We measured the accuracy and stability perfor-
mances of the word attribute transfer. The accuracy
measures how many input words in Aest Were
transferred correctly to the corresponding target
words. The stability score measures how many
words in Niest were not mapped to other words.
For example, in the Male-Female transfer, given
man, the transfer is regarded as correct if woman
is the closest word to the transferred vector; oth-
erwise it is incorrect. Given person, the transfer
is regarded as correct if person is the closest word
to the transferred vector; otherwise it is incorrect.
The accuracy and stability scores are calculated by
the following formula:

1 if argmax(cos(vy,vg)) =t
0(vy,t) = kev
0  otherwise,

(20)

1
Accuracy = Z d(vy,t), (21)
|~Atest|
(z,t,Z)EAtest
1
Stability = o(vy,x), (22
y |Mest| ( ) ) )

($7Z)€Mest

where V is the vocabulary of the word embedding

model and cos (v, vi) is the cosine similarity mea-
V- Vi

sure, defined as: cos(vy,, Vi) = modimer.
(vy: Vi) = 1, v

5.2 Methods and Configurations

In our experiment, we compared our proposed
method with the following baseline methods?:

REF Reflection-based word attribute transfer with
a single mirror. We used a fully connected
2-layer MLP with 300 hidden units and ReLU
(Glorot et al., 2011) to estimate a and c.

REF+PM Reflection-based word attribute trans-
fer with parameterized mirrors. We used the
same architecture of MLP as the REF.

MLP Fully connected MLP with 300 hidden units
and ReLU: v, = MLP([v,;z]). The highest
accuracy models in SGNS are a 2-layer MLP
for Capital-Country and 3-layer MLP for the
other datasets. The highest accuracy mod-
els in GloVe are a 2-layer MLP for Singular-
Plural and 3-layer MLP for the other datasets.

DIFF Analogy-based word attribute transfer with
a difference vector: d = v,,, — v,,, where m
and w are in the training data of .A. We chose
d that achieved the best accuracy in the vali-
dation data of A. We determined whether to
add or subtract d to v, based on the explicit
knowledge (Eq. 4). DIFFT and DIFF~ trans-
fer with a difference vector regardless of the
explicit knowledge. * and ~ add or subtract
the difference vector to any input word vector.

MEANDIFF Analogy-based word attribute trans-
fer with a mean difference vector d: d =
1
|Atrain| z(mivwhz)EAtrain (Vm B Vwi ) ;WG de_
termined whether to add or subtract d to v,
based on the explicit knowledge (Eq. 4).

For proposed methods, we used the Adam opti-
mizer (Kingma and Ba, 2015) with o = 10~ for
Male-Female, Singular-Plural and Capital-Country,

20ur code and datasets are available at:
github.com/ahclab/reflection

https://



and o = 1573 for Antonym (the other hyperparam-
eters were the same as the original one (Kingma
and Ba, 2015)). We did not use such regulariza-
tion methods as dropout (Srivastava et al., 2014)
or batch normalization (Ioffe and Szegedy, 2015)
because they did not show any improvement in our
pilot test. We implemented REF, REF+PM and
MLP with Chainer (Tokui et al., 2019), which is
one of the best deep learning frameworks.

5.3 Evaluation in Accuracy and Stability

Table 2 shows the accuracy and stability results.
Different pre-trained word embeddings GloVe or
word2vec gave similar results. REF+PM achieved
the best accuracy among the methods that did not
use explicit attribute knowledge. For example, the
accuracy of REF+-PM was 76% in Capital-Country,
but the accuracy of DIFFT was 26%. For stability,
reflection-based transfers achieved outstanding sta-
bility scores that exceeded 99%. The results show
that our proposed method transfers an input word
if it has a target attribute and does not transfer an
input word with better score than the baselines oth-
erwise, even though the proposed method does not
use attribute knowledge of the input words. MLP
worked poorly both in accuracy and stability. On
the antonym dataset, although the transfer accuracy
by the proposed method was a bit lower than that
by MLP, the proposed methods stability was 100%
and that of MLP was extremely poor: about 1%.

We investigated the relation between the training
data size of the non-attribute words, and the stabil-
ity of the learning-based methods by conducting
an additional experiment that varied |Niyain|. The
stability scores by MLP did not improve (Table 3).
On the other hand, REF+-PM achieved high sta-
bility scores with [Nipain| = 0 and maintained the
accuracy. We hypothesized that the high stability
came from the distance between the word and its
mirror. If non-attribute words are distributed on
the mirror, they will not be transferred. We inves-
tigated the distance between input word vector v,
and its mirror (Fig. 4). The result shows that non-
attribute words are close to the mirror, and attribute
words are distributed away from it. In Male-Female
and Singular-Plural, the distance is not significantly
farther than Antonym and Capital-Country. If the
distance between paired words is very small, the
distance between the word and its mirror is also
small. Fig. 5 shows the distribution of the dis-
tance between input v, and target word vector v;.

The distance of Male-Female and Singular-Plural is
much smaller than Capital-Country and Antonym.

5.4 Visualization of Parameterized Mirrors

Figure 6 shows the t-SNE results of mirror param-
eter a obtained for the test words. Paired mirror,
(az,a¢), is connected by a line segment. Fig. 6
suggests that the mirror parameters of the paired
words are similar to each other and that those with
the attribute form a cluster; words with the same
attribute have similar mirror parameters a.

Attribute word Non-attribute word
1.5 15
Male-Female Singular-Plural
210 1.0
2
3
Q05 05 /\
0.0 . 0.0 J —
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5
1.5 1.5
Capital-Country Antonym
2 1.0 1.0
‘@
c
o
005 0.5 /\
0.0 T 0.0 T T T
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5

Distance Distance

Figure 4: Distribution of distance between input word
vector and its mirror % learned by REF+PM.
Non-attribute words are close to the mirror, and at-

tribute words are distributed away from it.
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Figure 5: Distribution of distance between input word
vector v, and target word vector v
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Table 2: Results in accuracy and stability scores: MF, SP, CC, and AN are datasets.

word2vec GloVe

Method Knowledge Accuracy (%) Stability (%) Accuracy (%) Stability (%)

MF SP  CC AN MF SP CC AN MF SP  CC AN MF SP CcC AN
REF 208 0.0 360 0.0 99.8 100.0 99.8 100.0 125 20 260 0.0 100.0 100.0 100.0 100.0
REF+PM 41.7 22.0 58.0 288 999 994 994 100.0 458 50.0 76.0 335 99.7  99.1  99.2 100.0
MLP 83 40 120 359 2.2 0.0 27 1.9 42 100 18.0 36.7 5.1 7.0 5.2 1.2
DIFF + 250 20 320 - 72.1 779 539 - 250 2.0 26.0 - 99.3 942 993 -
DIFF ~ 250 20 30.0 - 49.6 782 563 - 250 20 24.0 - 1000 999 995 -
MEANDIFF + 42 00 220 - 98.6 994 87.6 - 0.0 00 220 - 100.0 100.0 100.0 -
MEANDIFF ~ 83 0.0 140 - 972 993 924 - 00 00 0.0 - 100.0 100.0 100.0 -
DIFF v 625 4.0 64.0 - - - - - 500 4.0 44.0 - - - - -
MEANDIFF v 125 0.0 36.0 - - - - - 00 00 00 - - - - -

Table 3: Relation among size of |Ni.in| and stability ¢ Related Work

of learning-based methods

Accuracy (%) Stability (%)
[Nirain| [ Norain|

0 4 10 50 0 4 10 50
REF 125 125 125 125 100.0 100.0 100.0 100.0
MF REF+PM 458 41.7 375 41.7 99.7 999 999 99.9
MLP 00 42 00 42 0.0 0.4 1.0 5.0
REF 00 00 20 00 100.0 100.0 100.0 100.0
SP REF+PM 48.0 40.0 50.0 46.0 533 991  99.1 99.8
MLP 40 6.0 6.0 10.0 0.0 0.5 1.7 7.0
REF 240 260 240 200 100.0 100.0 100.0 100.0
CC REF+PM 760 72.0 740 74.0 99.2 100.0 999 999
MLP 16.0 100 140 18.0 0.0 0.4 1.0 52
REF 00 00 00 0.0 100.0 100.0 100.0 100.0
AN REF+PM 269 267 335 25.7 100.0 100.0 100.0 100.0
MLP 29.5 29.7 36.7 36.6 0.1 0.5 1.2 4.6

5.5 Transfer Example

Table 4 shows the gender transfer results for a tiny
example sentence. Here the attribute transfer was
applied to every word in the sentence. MLP made
many wrong transfers. Analogy-based transfers
can transfer only in one direction. REF+PM can
transfer only attribute words. Table 5 shows that
words with different target attributes were trans-
ferred by each reflection-based transfer.

Table 4: Comparison of gender transfers. Each method
transfers words in a sentence one by one.

X ‘ the woman got married when you were a boy.
REF the woman got married when you were a boy.
REF+PM | the man got married when you were a girl.
DIFF * the man got married when you were a boy.
DIFF ~ she woman got married she you were a girl.
By _Katie_Klingsporn girlfriend Valerie_Glodowski
MLP fiancee Doughty_Evening_Chronicle ma’am
Bob_Grossweiner_& a mother.
Table 5: Transfer of different attributes with REF+PM
X ‘ the rich actor wants to visit the beautiful city in tokyo.
+ MF | the rich actress wants to visit the beautiful city in tokyo.
+ SP the rich actresses wants to visit the beautiful cities in tokyo.
+ CC | therich actresses wants to visit the beautiful cities in japan.
+ AN | the poor actresses wants to visit the beautiful cities in japan.
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The theory of analogic relations in word embed-
dings has been widely discussed (Levy and Gold-
berg, 2014b; Arora et al., 2016; Gittens et al., 2017,
Ethayarajh et al., 2019; Allen and Hospedales,
2019; Linzen, 2016). In our work, we focus on the
analogic relations in a word embedding space and
propose a novel framework to obtain a word vector
with inverted attributes. The style transfer task (Niu
et al., 2018; Prabhumoye et al., 2018; Logeswaran
et al., 2018; Jain et al., 2019; Dai et al., 2019; Lam-
ple et al., 2019) resembles ours. In style transfer,
the text style of the input sentences is changed.
For instance, Jain et al. (2019) transferred from
formal to informal sentences. These style transfer
tasks use sentence pairs; our word attribute trans-
fer task uses word pairs. Style transfer changes
sentence styles, but our task changes the word at-
tributes. Soricut and Och (2015) studied morpho-
logical transformation based on character informa-
tion. Our work aims for more general attribute
transfer, such as gender transfer and antonym, and
is not limited to morphological transformation.

7 Conclusion

This research aims to transfer word binary at-
tributes (e.g., gender) for applications such as data
augmentation of a sentence. We can transfer the
word attribute with analogy of word vectors, but it
requires explicit knowledge whether the input word
has the attribute or not (e.g., man € gender, woman
€ gender, person ¢ gender). The proposed method
transfers binary word attributes using reflection-
based mappings and keeps non-attribute words un-
changed, without attribute knowledge in inference
time. The experimental results showed that the
proposed method outperforms analogy-based and
MLP baselines in transfer accuracy for attribute
words and stability for non-attribute words.
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Abstract

This article proposes a new approach for build-
ing topic models on unbalanced collections in
topic modelling, based on the existing meth-
ods and our experiments with such methods.
Real-world data collections contain topics in
various proportions, and often documents of
the relatively small theme become distributed
all over the larger topics instead of being
grouped into one topic. To address this issue,
we design a new regularizer for © and ® matri-
ces in probabilistic Latent Semantic Analysis
(pLSA) model. We make sure this regularizer
increases the quality of topic models, trained
on unbalanced collections. Besides, we con-
ceptually support this regularizer by our exper-
iments.

1 Introduction

Topic modelling is a widespread approach to un-
supervised text analysis and clustering. Given
the number of latent variables — topics —
topic models extract hidden wordXxtopic and
topic x document probability distributions from text
corpora. Topic models have proven to be relevant
in a wide range of contexts and uni- and multilin-
gual tasks (Uys et al., 2008; De Smet and Moens,
2009; Boyd-Graber et al., 2017).

Two fundamental topic models are probabilis-
tic Latent Semantic Analysis — pLSA (Hofmann,
1999) and Latent Dirichlet Allocation — LDA (Blei
et al., 2003). Various extensions of pLSA and
LDA models have emerged over the past years, e.g.
Additive Regularization of Topic Models (ARTM)
(Vorontsov and Potapenko, 2015) modification of
PLSA, where required solution properties are in-
duced by the additional regularizer part in the
model. Through regularizers one can take into
consideration various problem-specific features of
data, and this is a reason why we apply ARTM-
framework in our work.
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Despite almost 30 years of model development
history, lots of problems and issues were raised in
the topic modelling field. Problem of the “order
effect” in LDA (Agrawal et al., 2018), for exam-
ple. It consists in converging to the different topics
set while during training on the unstructured data.
Even with the structured data solution in the pLSA
or LDA model is non-unique and unstable. Such un-
stability may be reduced by tuning the model with
regularizers, as in the ARTM model. Inserting ¢
and O prior distribution into the model, according
to the (Wallach et al., 2009), promotes convergence
to the better and stable solution along with regu-
larization. However, many problems with models
itself and with quality metrics remain unsolved.

In this article, we point out the topic balancing
problem. At this moment problem of training topic
models on the unbalanced collections is not studied
thoroughly and is far from the comprehensive solu-
tion. We examine previously suggested approach
to the topic balancing and propose a balancing pro-
cedure, based on the a priori ratio between topic
capacities.

2 Problem statement

2.1 Topic modelling introduction

Let D denote the text corpora, W denote the set
of words in the corpora, or the corpora vocabu-
lary, and T denote the set of the topics. Every
document d € D is presented as a token sequence
(w1, ws, ..., wy,) of length ng from the vocabu-
lary of size n. In the models, based on the “bag-
of-words” hypothesis, the more compact way to
represent a document is to consider the document
as a vocabulary multiset, where each token w € d
OCCurs ng,, times in the document.

Topic model describes conditional probabilities
p(wl|d) of the appearance of the tokens w in the
documents d through the probabilities of the to-
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kens in the topics ¢,,; = p(w|t) and topics in the
documents 6;; = p(t|d). To build a probabilistic
generative model, we consider further hypotheses
fulfilled:

e conditional independence hypothesis: each
topic generates tokens regardless of the docu-
ment;

p(wld, t) = p(w|t)

“bag-of-words” hypothesis: words order in
the document does not affect desired distribu-
tions;

a finite set of topics T' exist in the corpora,
and each token occurrence in each document
refers to some latent topic from 7.

According to the law of total probability and the
assumption of conditional independence

p(wld) = @uibia

teT

This probabilistic model describes how the col-
lection D is generated from the known distributions
p(w|t) and p(t|d). Learning a topic model is an in-
verse problem: obtaining tokens—topics and topics—
documents distributions p(w|t) and p(t|d) given a
corpora D. This problem is equivalent to finding a
stochastic matrix decomposition of counter matrix
as a product F' = $0O, where matrix ¢ represents
tokens probabilities for the topics and © represents
topic probabilities for the documents:

Nawd

F = (p(w|d))wxp, p(w|d) =

® = (Qut)wxT, Puwt = p(w|t)
© = (0ta)TxD> O1a = p(t|d)

In pLSA the topic model is learned by log-
likelihood maximization through EM-algorithm

L(®,0) = Z Ndw IOgZ Pwtbia — I}}}%X
deD,wed teT ’
(1)

Further details can be found in the Appendix A.
Since the matrix product O is defined up to
a linear transformation, solution of the problem
is not unique and, therefore, is unstable. Addi-
tional objectives called regularizers, depending on
the © and ® matrices, can be included in the log-
likelihood along with their non-negative regular-
ization coefficients T to reduce the solution domain.

60

Likelihood maximization problem (1) with r regu-
larizers then takes the following form:

— max
$,0

)

L(®,0) + Y 7iRi(®,0)
=1

Solution of the problem therefore transforms to

- Pwilia
b Z PuwtOra
teT
0 + oR
=norm | n _—
Pwt s wt T Puwt a@wt

0., = norm | nyg + 0 8—R
wt — P td tdaetd

)

Nyt = § NdwPtdw, Mtd = E NdwPtdw
deD wed

where

Regularization approach and theorem proofs can
be found in (Vorontsov and Potapenko, 2015)

2.2 Topic balancing problem statement

Let ng > p(t|d)ng denote the topic capacity
deD

of the topic t. Let k = >maz denote the imbal-
ance degree of the model; with p(t) 2L de-
noting the fopic probability and N (t) = |{d €

Dl|argmax 0;; = t}|, we can denote documents
t

imbalance degree k = % too. Probabilistic
topic models, based on the "matrix factorization,
tend to spread documents by topics uniformly and
extract topics with the equal capacity. In order to
maximize log-likelihood, model should engage all
inner parameters for data description. Reducing the
topics number, meaning reducing the number of
available parameters, is unprofitable for the model
in terms of EM-algorithm optimization, therefore
strong proportion reduction of the particular topic
is unprofitable too. Experiments show that in the
pLSA and LDA models imbalance degree rarely
exceeds 3-4.

Similar problem arises in the multiclass classi-
fication with imbalanced data, where classifying
model prefers predicting the label of the most com-
mon class for every object to reduce the number of
errors in classification. The standard approach to
imbalanced data problem is a class weighting. It
can help to provide some bias towards the minority
classes while training the model, and thus help in



improving performance of the model while classi-
fying various classes. Documents imbalance leads
to overweight of the vocabulary of predominant
topics in the collection. This effect exaggerates
”word burstiness‘ in the model (Doyle and Elkan,
2009; Lei et al., 2011) in terms of documents: if a
collection has disproportion of topics, a document
is likely to belong to the widely represented topic.

Let us call the model imbalanced if it can extract
and maintain topics with the imbalance degree k
up to 10. In this article, we examine different ways
of balancing topics in topic models and building
imbalanced models.

3 Topic balancing hypotheses

3.1 Iterative renormalization of parameter in
the Dirichlet distribution

While formulating the probabilistic generative
model in terms of LDA, topic distributions over
words and document distributions over topics are
generated from prior Dirichlet distributions. A
learning algorithm for LDA can also be consid-
ered as an EM-like algorithm with modified M-
step (Asuncion et al., 2009). The most simple and
frequently used modification is the following:

Gwt X Nyt + By Org X nyg + o

Thus probabilities of words in topics and proba-
bilities of topics in documents are estimated with
apriori shift. This LDA modification is covered by
the ARTM framework through the LDA regularizer

R(®,0) =3 > (B —1)log purt
+ ZZ(at — 1) log 64

d t

and parameters of Dirichlet distributions can be
manually adjusted.

We put forward a hypothesis that increasing
Dirichlet parameters in proportion to the topic ca-
pacities similar to the classes weighing in unbal-
anced classification can countervail tendency of the
EM-algorithm to decrease the capacity of the big
topics and increase the capacity of the small topics.

For the modelling experiment we chose synthetic
collection which consists of the two themes — busi-
ness and music — with 1000 and 150 documents
respectively. Two pairs of models were built to
compare modelling results and evaluate balancing
opportunity. First models were trained with two
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topics with and without renormalization, second —
with six topics. In the second pair, the separation
of topics was evident through each topic size and
top-tokens: five topics had top-tokens from a big
theme (with ~ 200 documents in each topic), the
last one topic had top-tokens from a small theme.
However, better topics were obtained with balanced
Dirichlet parameters. In the first pair of models we
implied that through the process of rebalancing
Dirichlet parameters we could obtain two topics
with ~ 150 and ~ 1000 documents each and dif-
ferent top-tokens. This hypothesis was not fully
confirmed in the experiment: without the parame-
ter renormalization EM-algorithm had converged
to the topics with almost similar topic capacities,
with parameter renormalization model maintained
documents imbalance degree equal 2 instead of 7.
Results of the experiment can be seen in Figure 1.

N(t) in the 2 topics model without balanced parameters.
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Figure 1: Results of LDA renormalization.



3.2 Rebalancing p(t|d, w)

Referring a weighting classes approach in the un-
balanced classification task, we considered pos-
sibility to rebalance p(t|d,w) (4). We proposed
dividing n:4,, by n;. However, the same experi-
ment as with LDA model gave no positive results,
and later, in the subsection, we are going to prove
this hypothesis failure.

We show that dividing p(t|d,w) by any value
Z, which depends on ¢ only, does not change ®,
but only leads to minor the topics redistribution in
documents. Proof can be found in the Appendix
B. We prove that during renormalization in the
EM-algorithm, M-step formulas for ® does not
change, because normalizing multiplier Z; is re-
duced. Therefore, pLSA renormalization does not
influence the topics.

3.3 & initialization

According to the (Wallach et al., 2009), ¢ and ©
prior distribution, inserted into the model, could
promote stability of the solution. We followed this
assumption and conducted an experiment, in which
® matrix was initialized not randomly, as in the
unmodified topic models, but with the previously
calculated probabilities according to the foregone
distribution of documents by topics. We suppose
that the “real” @ initialization along with the ©,
calculated from &, are the optimal factorization
of the counter matrix F' in terms of log-likelihood.
Therefore, the overall topic balance and relative
change of ® matrix value must not be small enough
(~1—3%).

For this experiment chose four synthetic collec-
tions with two themes about business and music:
first collection consisted of 1000 and 10 documents
per theme respectively, second consisted of 1000
and 100 documents, third consisted of 1000 and
300 documents, and fourth consisted of 1000 and
600 documents respectively.

The experiment was split into two levels: at the
first level, we trained models without a priori ¢
initialization, at the second level, beforehand cal-
culated ® matrix was used as an initial tokens—
topics distribution for each model. All zero a priori
probabilities in the calculated ¢ matrix were re-
placed with the minimal possible probability value
oc 1075, Zero probabilities emerge when a word
does not occur in any document of the foregone
topic; hence we are not artificially limiting topic vo-
cabularies by preserving zeroes. We were training
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Figure 2: Results of a priori ® initialization in pLSA
model.

and comparing pairs of basic model with two topics
and model with the initialization of the ® matrix
with two topics for each collection, eight models in
sum. Regardless of the data collection, after first 10
training iterations, uninitialized models converged
to the balanced solutions with almost equal N (¢),
though initial initialization supported documents
imbalance degree up to 6. This result is represented
in Figure 2 through the topic’s N(t). The left col-
umn represents the model without initialization, the
right column represents the model with initializa-
tion with true topic’s balance [10:1000, 100:1000,
300:1000, 600:1000] respectively.

4 Topic prior regularizer

4.1 Description of the regularizer

According to our experiments and modelling expe-
rience, log-likelihood functional optimization does
not preserve topic balance in models and does not
converge to the optimal solution from the user’s
point of view. We want an optimal solution to al-
low topics with relatively small topic capacities
or topics with relatively small p(¢|d) for the most
of corpora documents. Optimality in such terms
can be achieved in a solution, where some topic
variables, or degrees of freedom, are not fully uti-
lized. Current functional during the optimization



via EM-algorithm tends to redistribute p(¢|d) in
the most efficient way, without degenerate distribu-
tions. Thus topic capacities obtain similar values
during the training process.

We formed the hypothesis from our experiments,
that additional shift in tokens—topics ® may in-
fluence the EM-algorithm as a restriction of the
degrees of freedom, supporting topics imbalance.
By setting relative collection balance in ® in ad-
vance, we can control possible collection balance
after the training process. During the optimiza-
tion, all o,,; are specified according to the tokens
distribution in documents. We implemented this
hypothesis in a new ARTM regularizer Ry opicprior
called TopicPriorRegularizer with the parameter 3
to describe a priori topic balance in the collection.

RTOpiCPTiOT<¢)7 @) = Z Z /Bt IOg ¢wt
t w

To better understand the Rrpopicprior influ-
ence on the EM-algorithm, we calculated the
Rropicprior partial derivative:

OR _ B
0Pyt Pwt

and modified log-likelihood in case of one addi-
tional regularizer with regularization coefficient 7,
determining regularizing strength:

Owt X Nyt + TPy

In most of the cases, we lack knowledge about
topic capacities in the researched data collection,
therefore we cannot set precise § value. We gen-
eralize our regularization approach and propose
RropicPriorSampled Tégularizer, where (3 parameter
is being sampled from the Dirichlet distribution
with the parameter v € R, v is responsible for the
estimated data sparsity, thus v = 1 stands for the
random topic capacities in a model, v < 1 stands
for the equal topic capacities, v > 1 stands for the
significantly uneven topic capacities.

B ~Dir(y), v € R'

4.2 Modelling experiments

For the first modelling experiment we chose syn-
thetic collection with the two themes — business
and music — with 1000 and 100 documents re-
spectively. We build two models with two topics in

63

0000

uuuuu

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Figure 3: Results of unregularized and regularized
pLSA model training with 2 topics.
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Figure 4: Results (N(t)) of unregularized and regular-
ized pLSA model training with 8 topics.

each and train them for 15 epochs, however, the sec-
ond model is trained with the Rropicprior, Where
B = [0.1, 0.9]. After training we evaluate both



models by their perplexity, top-tokens and n(t) for
every topic in the model. The second model had
extracted a small theme as a distinct topic, while
the first unregularized model has two similar top-
ics. Training results are presented in Figure 3: the
first row represents model without regularizer, the
second row represents regularized model; the left
column represents N(t) of the topics, the right col-
umn represents n(t) of the topics.

For the second modelling experiment we choose
collection with the eight themes, balanced with
the following documents proportion: doc_prop =
[3000, 2000, 1500, 1000, 1000, 1000, 700, 350].
Two models were trained on this collection:
unregularized and regularized model, where
regularizer was initialized with 8 = #.

. . : -Prop)
Figure Figure 4 and Figure 5 show better topics
composition in the second model, compared to the
first model results.

5 Discussion and conclusion

Learning an unbalanced topic model from unbal-
anced text collection is a non-trivial task for all of
the existing modelling methods. In this paper we
discussed the problem of training topic models with
unbalanced text collections. No previous research
provides a thorough analysis of this problem or an
efficient training procedure for unbalanced models.
After reviewing the problem, we proposed an ap-
proach to building topic models, able to maintain
relatively high imbalance degree. We described
our approach in terms of pLSA regularization and
brought theoretical justification for the Rropicprior
regularizer.
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A pLSA and ARTM model optimization
problem

In pLSA the topic model is learned by log-
likelihood maximization through EM-algorithm

E Nw log E Pwtbqg — max
deD,wed teT
3)

with linear constraints of non-negativity and nor-
malization:

L(®,0) =

Zetd =1, 0421
teT

Z Ywt = 1, Qut > 1;
weW

Solution of the pLSA problem satisfies the fol-
lowing system of equations with auxiliary variables
Ptdw:

Puilia
Z (Pwtetd

teT
Z Nodw Ptdw )

deD

Pigw =
wt = NOrm nwt Nuwt =
14 weW ( ’

Owt = ntoel“q{n (ntd) y Ttd = E NdwPtdw
wed

Process of the calculation auxiliary variables
Didw 18 an E-step, while model parameters elab-
oration by the calculated pyg,, is an M-step in the
EM-algorithm.

B Proof of rebalancing failure

We considered possibility to rebalance p(t|d, w) in
accordance with weighting classes approach. We
proposed dividing 144, by 1.

We show that dividing p(t|d,w) by any value
Zy, which depends on ¢ only, doesn’t change @,
but only leads to minor the topics redistribution in
documents. We put R = 0 in (2) for the sake of
simplicity.
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Investigating M-step of the EM-algorithm, we
write down log-likelihood with renormalizing fac-
1
tor —-:
Zy

E DD nawwibia — max
t deD wed teT

and then separate variables ® and O:

DI~ log Put+

weW teT
+ Z Z —logﬁtd — max
deD teT

To solve this linear programming task, we ap-
ply Karush—Kuhn-Takker conditions. We write
Lagrangian:

= Z —= 10g Put—

weW teT

S (z)

teT

+ Z Z — log Orq—

deD teT
- Zud (Zetd_ 1)
teT

deD
and equate its derivations to zero:

oL
_ Nwt A =0
a‘Pwt Zttpwt
n n
Atpuwt = Zu; : At = 2

Put = I}U%rvrg(nwt)

and
oL Nq 0
00rg ~ Ziba 1T
n Ntd
Oy = — = = —
Hdbid 2 Hd ; .

Ttd

(%

0;q = norm
teT

)

M-step formulas for ® does not change, because
normalizing multiplier Z; is reduced. Therefore,
pLSA renormalization has no influence on the top-
ics.
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Abstract

In Neural Machine Translation, using word-
level tokens leads to degradation in transla-
tion quality. The dominant approaches use
subword-level tokens, but this increases the
length of the sequences and makes it difficult
to profit from word-level information such as
POS tags or semantic dependencies.

We propose a modification to the Transformer
model to combine subword-level representa-
tions into word-level ones in the first layers
of the encoder, reducing the effective length
of the sequences in the following layers and
providing a natural point to incorporate extra
word-level information.

Our experiments show that this approach main-
tains the translation quality with respect to
the normal Transformer model when no extra
word-level information is injected and that it
is superior to the currently dominant method
for incorporating word-level source language
information to models based on subword-level
vocabularies.

1 Introduction

Currently dominant Neural Machine Translation
(NMT) architectures receive as input sequences of
discrete tokens taken from fixed-size source and
target token vocabularies defined a priori. Before
being fed to the network, the input text is tokenized
and the positions of those tokens within the vo-
cabulary table are the actual network inputs. The
granularity of the tokens in those vocabularies can
range from character-level, to subword-level, to
word-level.

Character-level token granularity, while allow-
ing maximum representation ability with minimal
vocabulary size for alphabet-based scripts, also del-
egates word formation modeling to the network
and makes token sequences to be much longer than
with word-based tokens.
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Using word-level tokens leads to very large vo-
cabulary sizes, especially for morphologically rich
languages, where the number of surface forms per
lemma is high. Large token vocabularies are im-
practical for the current neural architectures and
hardware. It is frequent to constrain the vocabu-
lary size to a few tens of thousand tokens, which
is hardly enough to fit the number of symbols in a
complete word-based vocabulary. Compositional
word structures like numbers pose further problems
with such a granularity level, as well as proper
nouns. When word-based vocabularies are used,
the vocabulary is built with the most frequent sur-
face forms in the training data, which normally
leads to degradation of translation quality.

Subword-level token granularity offers a com-
promise between representational power and vo-
cabulary size, especially statistically extracted sub-
word vocabulary strategies like Byte Pair Encoding
(BPE) (Sennrich et al., 2016b).

Models with word-level token vocabularies can
incorporate word-level information as extra input to
the model by combining it one-to-one with the to-
ken representations. Some examples of word-level
information are Part of Speech (POS) tags, syntac-
tic dependency relationships or lemmas. In order
to make use of word-level information in models
with subword-level token vocabularies, a usual ap-
proach is to assign the word information to all its
subwords (Sennrich and Haddow, 2016). This ap-
proach, despite improving the translation quality,
introduces an information assignment mismatch.

We propose to modify the Transformer architec-
ture (Vaswani et al., 2017) to combine the learned
subword representations into word representations
in the encoder block. This allows to naturally in-
corporate any extra word-level information directly
at the level of word-level representations.

This work is structured as follows: the relevant
related work is described in section 2; the proposed
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approach is described in section 3, while the ex-
perimental setup is presented in section 4 and the
results are described and discussed in section 5.
Finally, the conclusions are drawn in section 6.

2 Related Work

The main difficulty in profiting from word-level
information in subword-based NMT architectures
is the word-subword token level mismatch.

Several lines of research have studied how to
combine subword-level representations into word-
level information in a task-agnostic way. While
the approaches by Bojanowski et al. (2017), Zhao
et al. (2018) and Li et al. (2018) aim at computing
pre-trained word representations, other proposals
integrate the computation of the word representa-
tion in the overall NMT model, either combining
information from character level, like those by Lu-
ong and Manning (2016) Costa-jussa and Fonollosa
(2016), from n-gram level, like the one by Ataman
and Federico (2018), or from multiple granulari-
ties like the work by Chen et al. (2018). Some
other approaches like those by Wang et al. (2019)
and Gu et al. (2018b) try to extend this idea to ob-
tain multilingual conceptual representations from
character-level representations.

Nevertheless, in all those approaches, the de-
coder only has access to the aggregated word-
level information and not to the original subword-
level information. This, while mitigating the un-
known word problem, cannot handle the scenario
where copying from source to target is necessary,
like with unseen proper names or with composi-
tional structures like numbers. To the best of our
knowledge, this type of neural architectures that
condense subword/character-level information into
word-level representations have not been used for
integrating extra word-level information as an ad-
ditional input to the model in a translation task.

On the other hand, word level information has
been injected to subword-based NMT models: Sen-
nrich and Haddow (2016) copy the word-level lin-
guistic information (e.g. lemma, POS tag) to each
of the subwords in a word. Such information is
used in an embedding and is concatenated with the
subword token embedding. In this method, the sub-
words are also injected information about whether
they are the leading subword in a word or they ap-
pear in the middle of a sequence of subwords or
they are the last subword.
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3 Subword to Word Transformer

In the standard Transformer architecture from
Vaswani et al. (2017), the encoder applies a se-
ries of self-attention layers to the input token em-
beddings. The output of the encoder is then used
at every layer of the decoder as key and value
of the multi-head attention. In these operations,
the token representations in the sequences in the
source batch are masked according to the original
sequence lengths in tokens.

— L

_feed forward

word-level self-attention

~———

~

N© x «x N@

sw

subword-to-word
combination

——

feed forward

subw-level self-attention

—— ——

-0

subw input embedding

subword-word
mapping

word-level extra info
(e.g. lemmas)

X N9

N© x

&
output embedding

Figure 1: Subword to Word Transformer model.

We propose to divide the encoder into two blocks
of self-attention layers. The first block receives
the embedded subword-level token representations
and processes them through N,SZ,) layers of self-
attention like those from the nominal Transformer.
The subword-level representations obtained as re-
sult of the first block are then combined into word
level representations. A second block of ng,e) self-
attention layers processes these word-level repre-
sentations. The output of the second encoder block
is then fed to the first Néjd) layers of the decoder,
while the following N, éff,) decoder layers are fed
with the output of the first block of the encoder.
The appropriate padding masks are used in the de-
coder depending on whether the encoder output
used is subword or word-level. This architecture is



shown in Figure 1.

In our first tests we directly used the encoder
word representations as keys and values to every de-
coder layer (instead of using the encoder subword
representations in the last layers of the decoder).
This, however, led to poor results. We understand
that such a configuration made it impossible for
the network to properly handle token copying from
source to target, which is usually needed in cases
of proper nouns or compositional structures like
numbers. Other possible causes for this degrada-
tion could be some mismatch on the encoder side
e.g. positional embeddings being subword-based
but encoder embeddings being word-level. To test
this hypothesis, we added positional encodings af-
ter the point where subword representations are
combined into word-level representations. This led
to no improvement, indicating that the inability to
copy was certainly the cause of the degradation.

The specific approach chosen to combine sub-
word representations into word representations is a
layer of Gated Recurrent Units (GRU) (Cho et al.,
2014), which receives as input the output of the
first encoder block. We take the output of the GRU
at the positions of the last subword tokens in each
word, providing the appropriate padding positions
to handle the minibatch sequences. This way, the
lengths of the sequences in the batch are now the
number of word tokens in each sentence.

Other subword-to-word combination approaches
tested during the early stages of this work in-
cluded using Long-Short Term Memories (LSTM)
(Hochreiter and Schmidhuber, 1997) and simply
adding all subwords within each word.

The proposed approach provides a natural point
to incorporate word-level information: after the
subword-level representations have been combined
into word-level ones. This way, as shown in Figure
1, the extra word-level information is embedded
into a vector space and added to the word-level
representations of the source sentence, after the
word-to-subword combination.

Note that, while applying this approach to the
encoder part is straightforward, applying it to the
decoder presents a key challenge: at inference time,
the target side tokens are generated one by one,
which implies that it is not possible to combine all
of the subword tokens of a word until they have all
been generated.
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4 Experimental Setup

We understand that there are two desirable proper-
ties for the proposed word-subword combination
model: to be able to retain the translation quality
obtained with the analogous subword-based model
and to be able to better profit from word-level in-
formation than other approaches.

In order to verify that the translation quality is re-
tained, we performed experiments on the IWSLT14
English-German data, both in English—German
and German—English translation directions, with
a BPE shared subword vocabulary with 10K merge
operations. We studied the resulting translation
quality with different hyperparameter sets in order
to understand their effect on the model.

In order to study the effectiveness of the pro-
posed model with other approaches to incorpo-
rate word-level information into a subword-based
model, we used the WMT16 English-Romanian
data with the back-translated synthetic data from
(Sennrich et al., 2016a), using a shared subword
vocabulary of 40k merge operations.

We used the proposal by (Sennrich and Haddow,
2016) as baseline, and compared it to a vanilla
Transformer baseline and to our proposed method.

For all experiments, we used the fairseq li-
brary (Ott et al., 2019), either with its built-in mod-
els for the baselines or with custom model imple-
mentations for the approach by Sennrich and Had-
dow (2016) and for our own proposed architecture.

For the IWSLT14 de-en and en-de baselines we
used the Transformer architecture (Vaswani et al.,
2017) with the hyperparameters proposed by the
fairseq authors', namely 6 layers in encoder
and decoder, 4 attention heads, embedding size
of 512 and 1024 for the feedforward expansion
size, together with dropout of 0.3 and a total batch
size of 4000 tokens, using label smoothing of 0.1.
For the WMT16 en-ro baseline we used the base
configuration of the Transformer model offered in
fairsegq, thatis, 6 layers in encoder and decoder,
8 attention heads, embedding size of 512 and 2048
for the feedforward expansion size, together with
dropout of 0.1 and total batch size of 32000 tokens,
without label smoothing (following the baseline
used by Gu et al. (2018a)).

All reported BLEU scores are computed with
the model weights averaged over the last 10 check-
points after training until convergence.

'nttps://github.com/pytorch/fairseq/
tree/master/examples/translation



5 Results

We studied the effect of different hyperparameter
values over translation quality. We measured the re-
sults obtained on the IWSLT14 de-en data by using
different types of subword combination strategies,
as well as combining subwords at different layer
levels, chosen arbitrarily. Table 1 shows how the
subword combination strategy that obtains best re-
sults is to use GRU units that receive the subwords
as input and return the outputs at the positions of
the final subword in each word. The difference
with the other alternatives is minimal, though. The
rest of the hyperparameters are the same as the
IWSLT14 baseline, with a total batch size of 12000
and the subword merging layers being Ns(fi,) =3

and IV, é%) =
Combination BLEU
Addition 33.93
GRU 34.02
LSTM 33.92

Table 1: BLEU scores on IWSLT14 German-English
for different subword combination strategies.

Regarding the influence over the translation qual-
ity of the level at which subword representations
are merged, Table 2 shows that the best results are
obtained when merging subwords after the fifth en-
coder layer, and using again the subword represen-
tations in the decoder after the third layer. The rest
of hyperparameters are the same as the IWSLT14
baseline, with a total batch size of 12000 and GRU
as subword combination strategy.

N N BLEU
3 5 3353
3 3 3402
5 3 3446

Table 2: BLEU scores on the IWSLT14 German-
English test set for different values of N, g(f,,) and N, g(ff,),
using GRU as subword combination strategy.

Once determined that using GRU as subword
combination and setting NN, §fu) = 5and N, 5(3) =31is
the hyperparameter configuration that gives the best
results, we checked whether the proposed architec-
ture maintains the translation quality with respect
to a vanilla Transformer baseline. As shown in
Table 3, the BLEU scores are practically the same
for both architectures and both German—English
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while for English—German there is a small de-
crease. As commented in section 4, the baseline
uses a batch size of 4000 while our approach uses
12000. Note that for the baseline architecture,
larger batch sizes actually decrease the resulting
translation quality.

en-de de-en
Base Transformer 28.75 3444
Word-subword model 28.29 34.46

Table 3: BLEU scores on the IWSLT14 German-
English data, using no extra word-level information.

Finally, in order to assess our proposed approach
at incorporating extra word-level information, we
compared it against the approach by Sennrich and
Haddow (2016) (with the Transformer as base ar-
chitecture), which copies the word level informa-
tion to each of the subwords in the word; in our im-
plementation, the subword embedding and the lin-
guistic information are combined by adding them
together, which is analogous to the original alterna-
tive that concatenates them. For the vanilla Trans-
former and the approach by Sennrich and Haddow
(2016) we used a total batch size of 32000 while
for the word-subword model (our proposal), we
used a total batch size of 40000, GRU as subword
combination strategy and V. 3(5,) = 5and N. gf) =3.

en-ro
Base Transformer 27.02
Word-level info copied to subwords 27.29

Word-subword model + word-level info 27.82

Table 4: BLEU scores measured on the WMT16
English-Romanian data, with lemmas as linguistic info.

The word-level linguistic information used was
only the lemma (using a vocabulary of 40k lem-
mas), which is the feature that should provide the
largest improvement according to Sennrich and
Haddow (2016). We used Stanford CoreNLP (Man-
ning et al., 2014) to annotate the corpus with the
English lemmas. The obtained results are shown in
Table 4, where our proposed approach obtains the
best BLEU score compared to the base Transformer
model (Vaswani et al., 2017) without any word-
level information, and to copying the word-level
info to subwords (Sennrich and Haddow, 2016).



6 Conclusion

In this work, we proposed a modification to the
Transformer architecture to merge the subword rep-
resentations from the first layers of the encoder
into word-level representations. Merging word-
level representations inside the model allows it to
use the subword-level representations in the final
decoder layers so that it can handle compositional
structures and other situations where copying from
source is needed. This approach provided an ap-
propriate point to incorporate linguistic word-level
information and it is superior at doing so compared
with the reference approach by Sennrich and Had-
dow (2016).

Future extensions to this work may include ap-
plying it to character-level instead of subword
representations, and using it for morphologically
richer languages, especially low-resourced agglu-
tinative ones, where our approach, together with
the incorporation of linguistic information, may
provide larger improvements in translation qual-
ity. Further extensions may include studying the
behavior of more powerful subword combination
strategies (e.g. convolutions, self-attention) and the
application of subword merging to the target side.
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Abstract

The primary limitation of North Korean to En-
glish translation is the lack of a parallel corpus;
therefore, high translation accuracy cannot be
achieved. To address this problem, we pro-
pose a zero-shot approach using South Korean
data, which are remarkably similar to North
Korean data. We train a neural machine trans-
lation model after tokenizing a South Korean
text at the character level and decomposing
characters into phonemes. We demonstrate that
our method can effectively learn North Korean
to English translation and improve the BLEU
scores by +1.01 points in comparison with the
baseline.

1 Introduction

Neural machine translation (NMT) has been
adapted to many languages; however, machine
translation of the North Korean language! has sel-
dom been performed. One of the reasons is the lack
of large-scale bilingual data for training North Ko-
rean neural models. It is known that large-scale
bilingual data are required to improve the transla-
tion accuracy of an NMT model. For example, one
of the previous works suggests that an NMT sys-
tem is less accurate than a phrase-based statistical
machine translation system if there are no more
than 100 million words in the bilingual training
data (Koehn and Knowles, 2017).

There are three approaches to solve low language
resource bottleneck. First, Wang et al. (2006) pro-
posed a method to train a translation model using a
pivot language as an intermediate language. This
approach translates from the source language to
manguage mainly used in the Korean peninsula;
however, there are some grammatical differences between the
Republic of Korea and the Democratic People’s Republic of
Korea. In this study, we refer to the Korean language used
in the Republic of Korea as “South Korean,” and the Korean

language used in the Democratic People’s Republic of Korea
as “North Korean.”

hirasawa-tosho}@ed.tmu.ac. jp,
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the pivot language and from the pivot language
to the target language. However, there is no good
pivot language between North Korean and English.
Second, Johnson et al. (2017) proposed a many-to-
many translation model, where multiple languages
are translated into other languages using a single
shared encoder and decoder. They demonstrated
that this model can translate a language pair that
is unseen in training data. However, North Korean
does not have any bilingual data between any lan-
guages. Third, Marujo et al. (2011) proposed a rule-
based method to convert similar languages into a
target language, such as Brazilian Portuguese to
European Portuguese, and extended the target lan-
guage resources. North Korean is a language re-
markably similar to South Korean, but conversion
from South Korean to North Korean needs to be
determined considering the context, which makes
rule-based conversion difficult.

Therefore, in this study, we propose a method
to tokenize South Korean input sentences at the
character level and decompose them into phonemes
to mitigate the grammatical differences between
South Korean and North Korean, and demonstrate
that the translation model from North Korean to
English can be effectively learned using bilingual
South Korean-English data. The main contributions
of this study are as follows.

e Because there is no evaluation dataset between
North Korean and English, we create a North
Korean-English evaluation dataset by man-
ually translating the South Korean-English
bilingual evaluation dataset into a North Ko-
rean one.

e We demonstrate that the North Korean-
English translation model can be trained effec-
tively on bilingual South Korean-English data
by character-level tokenization and phoneme-
level decomposition.
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Grammar differences SK NK EN Percentage
Word segmentation W2 7 27 many things 86.9
Initial sound rule T+ =T basketball 19.6
olal = Eﬁ fulfillment
o5} move
Compound word vtttz Hiob7b beach 0.3

Table 1: Grammatical differences between South Korean (SK) and North Korean (NK), and the percentage of
sentences with grammatical differences in South Korean evaluation data.

2 Related Work

The pivot language approach increases the trans-
lation error between the source language and the
target language, because the translation model of
each language is independently trained. Cheng et al.
(2017) addressed this problem by allowing interac-
tion during the translation model training. More-
over, Chen et al. (2017) proposed a method to train
a source-to-target model using a pretrained teacher
model as its guide.

Marujo et al. (2011) proposed a rule-based
method to convert similar languages into a target
language to extend the language resources of the
target side. Wang et al. (2016) presented a method
to extract the conversion rules between similar lan-
guages.

Firat et al. (2016) proposed a many-to-many
translation model with several encoders and de-
coders. However, the accuracy of a many-to-many
translation model with a single shared encoder and
decoder was found to be higher (Johnson et al.,
2017).

Finally, the translation accuracy was improved
by preprocessing of the bilingual data. Zhang and
Komachi (2018) demonstrated that higher trans-
lation accuracy can be obtained by decomposing
Kanji into ideographic characters and strokes in
Japanese-Chinese NMT. Stratos (2017) proposed
a speech-parsing model for South Korean with
character-level tokenization and decomposition into
phonemes, demonstrating an improvement in the
speech-parsing accuracy.

3 South-North Differences in the Korean
Language

3.1 Grammatical differences

The two Korean languages have grammatical dif-
ferences, including differences in word segmenta-
tion (WS), initial sound rule (ISR), and compound
words. Table 1 presents examples of grammatical
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differences between South Korean and North Ko-
rean words or phrases that have the same meaning.
We only consider the differences in the WS and ISR
in our study, as differences in compound words in
the evaluation data rarely appear.

Word segmentation. South Korean and North
Korean differ in the way to tokenize words contain-
ing formal and proper nouns and in quantitative
expressions. For example, words are separated in
both South Korean and North Korean when par-
ticles appear; however, they are not separated in
North Korean if the next word after a particle is a
formal noun. In Table 1, the word meaning “many
things” is written as “&-2 71" in South Korean and
is separated because “<2” is a particle. However,
since “71” is a formal noun, it is written consec-
utively in North Korean as “&-271.” To convert
WS from South Korean grammar to North Korean
grammar, it is necessary to consider the context.

Initial sound rule. In South Korean, a consonant
“=z” changes into “ o ” or “ L. when it is combined
with “ ¥, 4, o, ==, 7+, 1, 9, or other vowels,
whereas it does not change in North Korean. For
example, the word that means “basketball” in Table
1 is represented as ““5—-" in South Korean because
of the ISR, but is represented as “F—" in North
Korean. Additionally, some South Korean words
become polysemous owing to the ISR. In Table
1, the words that mean “fulfillment” and “move”
both become “©|38” in South Korean, but remain
“2] 8 and “©] S~ in North Korean, respectively.
It is difficult to mitigate the difference in the ISR
without considering the context.

3.2 Creating North Korean Evaluation Data

We created the North Korean to English translation
evaluation dataset by having a North Korean native
speaker manually convert the evaluation dataset
in the News Korean-English parallel corpus? into

Zhttps://github.com/jungyeul/korean-parallel-corpora



Hyperparameter Value
Embedding size 512
Hidden layer size 1,024
Enc./Dec. depth 1
Enc./Dec. recurrence transition depth 2
Tie decoder embeddings yes
Layer normalization yes
Hidden/Embedding dropout 0.5
Source/Target Word dropout 0.3
Label smoothing 0.2
Optimizer adam
Learning rate 0.0005
Batch size (tokens) 1,000
Early stopping patience 10
Validation interval 8,000

Table 2: Hyperparameters.

North Korean grammar. This North Korean-English
evaluation dataset will be published at the same ad-
dress 2. Table 1 presents the percentage of sentences
with grammatical differences between North Ko-
rean and South Korean evaluation data. From this
table, we can see that the WS and ISR are the main
grammatical differences between South Korean and
North Korean.

4 Korean Neural Machine Translation
using Character Tokenization and
Phoneme Decomposition

We propose a method to tokenize input sentences
into characters or decompose them into phonemes.
Using this method, it is possible to reduce the in-
fluence of grammatical differences between South
Korean and North Korean to train a machine trans-
lation model in North Korean using bilingual South
Korean data. In the following South Korean or
North Korean sentences, we indicate the word

Character model. In character level tokeniza-
tion, we split each word into characters. For exam-
ple, the word that means “many things” in Table 1 is

is no difference between the two languages. There-
fore, character level tokenization can overcome the
difference in WS to some extent.

Word (phoneme BPE) model. In word level
(phoneme BPE) tokenization, we decompose the
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Words
Sent. EN SK NK
train 93,975 2,297,744 1,567,469 -
dev 1,000 25,804 18,126 15,613
test 2,000 53,904 36,641 31,645
WS 1,733 48,720 33,574 28,578
ISR 350 10,766 7,283 6,184

Table 3: Statistics of News Korean-English parallel cor-
pus and North Korean-English evaluation data.

characters in a word into phonemes (vowels and
consonants). As a result, we can reduce the effect of
ISR. For example, the word “basketball” is written
as ““&—+” in South Korean and “=-" in North Ko-
rean; therefore, only one out of two tokens are com-
mon at the character level. When they are decom-
posed into phonemes, the former is “v 1 o 77 +”
in South Korean, and the latteris “2 1. o 7 +"in
North Korean, resulting in four out of five tokens
being common. In this way, decomposition into
phonemes can reduce the effect of ISR.

In addition, we retain the word or phrase bound-
ary in the input sentence in this model. For ex-
ample, when decomposing the sentence “Z—-

£ -8" into phonemes, it is decomposed as

“g Lo T uw v
ing byte-pair encoding (BPE, Sennrich et al., 2016)
to the sentence that has been decomposed into
phonemes, it is possible to segment the sentence
at the phoneme level while considering word or

phrase boundaries.

Character (phoneme BPE) model. In charac-
ter (phoneme BPE) tokenization, we tokenize a
sentence at the character level and decompose it
into phonemes. Tokenization at the character level
and decomposition into phonemes can mitigate
the differences in WS and ISR, and it is possi-
ble to combine both. For example, when the sen-

applying BPE to this sentence, it is possible to seg-
ment the sentence at the phoneme level while con-
sidering character boundaries.



South Korean

North Korean

Model dev test WS ISR dev test WS ISR
S&Z (2019) - 1037 - - - - - -
word 696 740 761 822  554+.22  5.32+.03 5.34+.03 5.53+.05
word (charBPE) 9.09 938 9.59 10.01 8.54+.32  9.02+.22  9.18+.21 9.28+.30
char 1026  9.89 10.17 1049 10.15+.07 9.84+.20 10.12+.22 10.32+.31
word (phonBPE) 938  9.67 9.71 10.67 8.87+.11 9.10+.06  9.21+.06  9.62+.37
char (phonBPE) 10.28 10.05 10.30 10.69 10.20+.16 10.03+.21 10.29+.19 10.60+.16

Table 4: Evaluation of each model in South Korean / North Korean to English translation. These are BLEU scores
of evaluation data set and WS and ISR subsets. These BLEU scores are the average of three models. The char
(phonBPE) model achieved the highest scores in dev, test and two subsets.

Types Tokens
word 213,552 1,567,469
word (charBPE) 32,083 2,057,155
SK char 15,372 4,231,099
word (phonBPE) 29,442 2,091,575
char (phonBPE) 1,736 4,316,529
EN word 53,222 2,297,744
word (charBPE) 16,024 2,494,763

Table 5: Data statistics after each preprocessing.

S Experiment

5.1 Settings

We train a BiDeep recurrent neural network using
Nematus® for implementation. We adjust the hyper-
parameters as in Sennrich and Zhang (2019) (Table
2). We use a News Korean-English parallel corpus
for training the model and convert it into North Ko-
rean grammar (3.2) for evaluating the model. We
perform tokenization and truecasing using Moses
scripts for all the input sentence pairs. We delete
sentences with more than 200 words from the train-
ing data. Table 3 presents the training, development,
and test data statistics. In the evaluation, we perform
detruecasing and detokenization for the translation
outputs using Moses script and evaluate the bilin-
gual evaluation understudy (BLEU) score using
sacreBLEU (Post, 2018). We select the model us-
ing South Korean and North Korean development
data.

In this study, in addition to the word level data of
South Korean and North Korean as input languages,
we use the four preprocessing methods, which are
described in the following paragraphs and presented
in Table 5.

3https://github.com/EdinburghNLP/nematus
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Word (character BPE) model. According to
Sennrich and Zhang (2019), we apply character
level BPE to each of the South Korean, North Ko-
rean, and English sides that had been split with
words. We set the merge operation to 30k and the
frequency threshold to 10. For the following South
Korean and North Korean preprocessing steps, the
English side used only the word (character BPE)
model. In addition to our re-implementation of Sen-
nrich and Zhang (2019), we cite the BLEU score
reported in their paper.

Character model. We perform character level
tokenization. As for English and Hanja included
in the South Korean and North Korean data, we
treat them as words without further tokenization.
In addition, we limit the token types to a maximum
frequency of 1,700.

Word (phoneme BPE) model. We decompose
the words into phonemes and apply BPE. We set the
merge operation to 30k and the frequency thresh-
old to 10. We use hgtk (Hangul toolkit)* for the
decomposition into phonemes.

Character (phoneme BPE) model. We perform
the character level tokenization, decomposition into
phonemes, and application of BPE. We set the
merge operation to 1k.

5.2 Results

Table 4 presents the BLEU scores for the evalua-
tion data. In the cases of both the South Korean and
North Korean languages, the char (phonBPE) mod-
els achieved the highest scores in the dev data. The
test data reveals an improvement of +0.67 points
for South Korean and +1.01 points for North Ko-
rean in comparison with the word (charBPE) model,
respectively.

“https://github.com/bluedisk/hangul-toolkit



Reference

A division of General Motors is getting some financial help from the Federal Reserve:

Source GM2| 22| b7 A= RAl == 7 AR A A de T HAd5H

word (charBPE)  GM’s job company is getting financial assistance from the Federal Reserve.

char GM’s automaker has been receiving financial assistance from the Federal Reserve.
word (phonBPE) GM’s company has received financial assistance from the Federal Reserve.

char (phonBPE) GM’s company has been receiving financial assistance from the Federal Reserve.
Source GM] A3l AFZ A 2 e AR ALS A H A5,

word (charBPE)  GM'’s own company is getting money from a scusty system.

char GM'’s automaker has been receiving financial assistance from the Federal Reserve.
word (phonBPE) GM'’s ZGM company gets financial assistance from the getaway.

char (phonBPE)  GM has received financial assistance from the Federal Reserve.

Table 6: Translation examples that differ in the WS and ISR (upper: South Korean, lower: North Korean). The
word that means “financial help” is written as “Z] %4 24> in South Korean, and in North Korean, it is written
consecutively as “ZjA A 2], Additionally, in South Korean, the word that means “federal” becomes “J=}”
because of the head ISR but remains “Z1H}” in North Korean.

Reference It added that it was consulting with the Ministry of Unification on the plan.
Source S A of Wetol ol 5o} 8] Foleh AL,

char The Ministry - said it is discussing the plan.

char (phonBPE) The Ministry - said it was discussing the plan.

Source SN AT o] rTel el 5 A5 o BOjFoleal GE L.

char The Ministry --- said the plan is under way with the Unification Ministry.

char (phonBPE) The Ministry - said the plan would be discussed with the Unification Ministry.

Table 7: The word that means “consulting” becomes “¥=2] % in South Korean owing to the ISR, but remains

“Z 9] in North Korean.

Model Fluency Adequacy
word (charBPE) 2.71 1.91
char 2.82 1.91
word (phonBPE) 2.67 1.90
char (phonBPE) 2.82 1.93

Table 8: Human evaluation of each model for North Ko-
rean to English translation. These scores are the aver-
age of the those assigned by three evaluators. In human
evaluation, also, the char (phonBPE) model achieved
the highest scores.

6 Discussion

We extract two subsets that have differences in the
WS or ISR in the test data to test the hypothesis that
each preprocessing step can absorb the grammatical
differences. Table 3 presents the WS and ISR subset
data statistics.

Word segmentation. Table 4 presents the results
of a test with a subset of WS. The char (phonBPE)
model exhibits the highest BLEU score in the North
Korean test. In addition, the BLEU difference be-
tween South Korean and North Korean is 0.01
point, indicating that the difference in WS is well-
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absorbed.

Initial sound rule. Table 4 presents the results
of a test with a subset of the ISR. Even for a sub-
set of the ISR, the char (phonBPE) model exhibits
the highest BLEU score in the North Korean test,
and the BLEU difference between South Korean
and North Korean is 0.09 point, indicating that the
difference in ISR is well-absorbed.

Output of each model. Table 6 presents the out-
puts of each model. The words that include gram-
matical differences, such as “ZJ| A 2 2] Q> and “H
HF )’ are not well-translated in the word-based mod-
els. However, the character-based models can trans-
late them correctly. Character-level tokenization
can mitigate both grammatical differences as shown
in the example of Table 6; however, character-level
tokenization cannot solve all the grammatical dif-
ferences. For example, Table 7 presents an example,
wherein the word “2 2] is affected by the ISR,
and only the char (phonBPE) model can translate
it in North Korean translation. Therefore, tokeniza-
tion at the character level and decomposition into
phonemes are necessary to reduce the differences
of the WS and ISR.



Human evaluation We randomly extracted 50
lines from each model output in the North Ko-
rean to English test. Three evaluators evaluated
the fluency and adequacy on a scale of 1-5. Ta-
ble 8 presents the results of the human evaluation.
The char (phonBPE) model exhibits the highest
scores in both metrics, with an improvement of
+0.11 points in the fluency evaluation and +0.02
points in the adequacy evaluation in comparison
with the word (charBPE) model. Additionally, the
human evaluation results indicate that character tok-
enization and phoneme decomposition can improve
the accuracy of the North Korean to English trans-
lation.

7 Conclusions and Future Work

In this study, to solve the language resource bottle-
neck in North Korean translation, we proposed a
method to tokenize input sentences in South Korean
and North Korean at the character level and decom-
pose them into phonemes. This method is simple
and mitigates the grammatical differences between
South Korean and North Korean; moreover, the
method demonstrates improvement in translation
accuracy for North Korean to English translation.

However, the differences that exist between
South Korean and North Korean are not only gram-
matical ones. There are some words that have the
same pronunciation and notation but different mean-
ings. For example, the meaning of “2]” is “squid”
in South Korean, but “octopus” in North Korean.
Therefore, the differences in word meanings are a
major challenge. In the future, we intend to use the
English translation data of North Korean news arti-
cles to create an evaluation dataset that considers
differences in words, and attempt to develop a trans-
lation method using a language model with context,
such as BERT (Devlin et al., 2019).
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Abstract

Media bias can strongly impact the public per-
ception of topics reported in the news. A dif-
ficult to detect, yet powerful form of slanted
news coverage is called bias by word choice
and labeling (WCL). WCL bias can occur, for
example, when journalists refer to the same
semantic concept by using different terms
that frame the concept differently and conse-
quently may lead to different assessments by
readers, such as the terms “freedom fighters”
and “terrorists,” or “gun rights” and “gun con-
trol.” In this research project, I aim to devise
methods that identify instances of WCL bias
and estimate the frames they induce, e.g., not
only is “terrorists” of negative polarity but also
ascribes to aggression and fear. To achieve
this, I plan to research methods using natural
language processing and deep learning while
employing models and using analysis concepts
from the social sciences, where researchers
have studied media bias for decades. The first
results indicate the effectiveness of this inter-
disciplinary research approach. My vision is
to devise a system that helps news readers to
become aware of the differences in media cov-
erage caused by bias.

1 Introduction

Media bias describes differences in the content or
presentation of news (Hamborg et al., 2018). Itis a
ubiquitous phenomenon in news coverage that can
have severely negative effects on individuals and so-
ciety, e.g., when slanted news coverage influences
voters and, in turn, also election outcomes (Alsem
et al., 2008; DellaVigna and Kaplan, 2007). Po-
tential issues of biased coverage, whether through
the selection of topics or how they are covered, are
compounded by the fact that in many countries only
a few corporations control large parts of the media
landscape—in the US, for example, six corporations
control 90% of the media (Business Insider, 2014).
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Even subtle changes in the words used in a news
text can strongly impact readers’ opinions (Pa-
pacharissi and de Fatima Oliveira, 2008; Price et al.,
2005; Rugg, 1941; Schuldt et al., 2011). When re-
ferring to a semantic concept, such as a politician
or other named entities (NEs), authors can label
the concept, e.g., “illegal aliens,” and choose from
various words to refer to it, e.g., “immigrants” or
“aliens.” Instances of bias by word choice and label-
ing (WCL) frame the referred concept differently
(Entman, 1993, 2007), whereby a broad spectrum
of effects occurs. For example, the frame may
change the polarity of the concept, i.e., positively
or negatively, or the frame may emphasize specific
parts of an issue, such as the economic or cultural
effects of immigration (Entman, 1993).

In the social sciences, research over the past
decades has resulted in comprehensive models to
describe media bias as well as effective methods
for the analysis of media bias, such as content anal-
ysis (McCarthy et al., 2008) and frame analysis
(Entman, 1993). Because researchers need to con-
duct these analyses mostly manually, the analyses
do not scale with the vast amount of news that is
published nowadays (Hamborg et al., 2019a). In
turn, such studies are always conducted for topics
in the past and do not deliver insights for the cur-
rent day (McCarthy et al., 2008; Oliver and Maney,
2000); this would, however, be of primary interest
to people reading the news. Revealing media bias
to news consumers would also help to mitigate bias
effects and, for example, support them in making
more informed choices (Baumer et al., 2017).

In contrast, in computational linguistics and com-
puter science, fewer approaches systematically an-
alyze media bias (Hamborg et al., 2019a). The
models used to analyze media bias tend to be sim-
pler (Hamborg et al., 2018; Park et al., 2009) com-
pared to previously mentioned models. Many ap-
proaches analyze media bias from the perspective
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of news consumers while neglecting both the es-
tablished approaches and the comprehensive mod-
els that have already been developed in the social
sciences (Evans et al., 2004; Mehler et al., 2006;
Munson et al., 2013, 2009; Oelke et al., 2012; Park
et al., 2009; Smith et al., 2014). Correspondingly,
their results are often inconclusive or superficial,
despite the approaches being technically superior.

2 Research Question, Tasks, and
Contributions

To address the issues described in Section 1, I de-
fine the following research question for my Ph.D.
research: How can an automated approach identify
instances of bias by word choice and labeling in a
set of English news articles reporting on the same
event? To address this research question, I derive
the following research tasks:

T1. Identify the strengths and weaknesses of man-
ual and of automated methods used to identify
media bias.

T2. Research NLP techniques and required
datasets to address these weaknesses. To do
so, use established bias models and (semi-)

automate currently manual analysis methods.

T3. Implement a prototype of a media bias iden-
tification system that employs the developed
methods to demonstrate the applicability of
the approach in real-world news article collec-
tions. The target group of the prototype are

non-expert people.

T4. Evaluate the effectiveness of the bias identifi-
cation methods with a test corpus and evaluate
the effectiveness of using the prototype in a

user study.

Combining the expertise of the social sciences
and computational linguistics appears beneficial for
research on media bias. Thus, the main contribu-
tion of my Ph.D. research will be an approach that
combines models and methods from multiple disci-
plines. On the one hand, it will leverage established
models from the social sciences to describe media
bias and will follow currently manual methods to
analyze media bias. On the other hand, it will take
advantage of scalable methods for text analysis de-
veloped and used in computational linguistics. 1
need to employ and extend the state-of-the-art in
two closely related NLP fields (cf. Section 4): (1)
cross-document coreference resolution (CDCR) as
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well as (2) target-dependent sentiment classifica-
tion (TSC) including “sentiment shift” and iden-
tification of framing effects and causes (see Sec-
tion 4.2). I plan to embed both techniques into
an approach that is inspired by the procedure of
manually conducted, inductive frame analyses (cf.
Section 3.1).

For the first technical contribution, a sieve-based
CDCR approach was already devised that addresses
characteristics of coreferences as they often occur
in bias by WCL. The examples in the Abstract
show that even phrases that are usually considered
contrary may be coreferential in a set of articles
reporting on a specific event. For the second tech-
nical contribution, i.e., to estimate how a semantic
concept may be perceived by people when read-
ing a news article, I primarily plan to devise and
test neural models that I will design specifically
for the task. I also plan to implement a prototype
that includes visualizations to reveal the identified
instances of bias by WCL to users of the system.

In the remainder of this document, I will give a
brief overview of manual techniques for the anal-
ysis of bias by WCL and exemplary results from
the social sciences as well as related, automated
approaches (Section 3). Section 3 concludes with
the current research gap, which motivates my Ph.D.
research. Section 4 describes the tasks that I have
already conducted as well as current and future
tasks to complete my Ph.D. research. Section 5
describes a preliminary evaluation, which I already
completed, as well as remaining tasks.

3 Related Work

The following summarizes an interdisciplinary lit-
erature review that I conducted as part of my Ph.D.
research (T1) (Hamborg et al., 2019a).

3.1 Manual Approaches

In the social sciences, the news production pro-
cess is an established model that defines nine forms
of media bias and describes where these forms
originate from (Baker et al., 1994; Hamborg et al.,
2019a, 2018; Park et al., 2009). For example,
journalists select events, sources, and from these
sources the information they want to publish in a
news article. While these initial selections are nec-
essary due to the multitude of real-world events,
they may also introduce bias to the resulting story.
While writing an article, authors can affect readers’
perception of a topic through word choice (cf. Sec-



tion 1, Baker et al., 1994; Gentzkow and Shapiro,
2006; Oelke et al., 2012). Lastly, for example, the
placement and size of an article on a website deter-
mine how much attention the article will receive.

Researchers in the social sciences primarily con-
duct frame analyses or, more generally, content
analyses to identify instances of bias by WCL (Mc-
Carthy et al., 2008; Oliver and Maney, 2000). In
content analysis, researchers first define one or
more analysis questions or hypotheses. Then, they
gather the relevant news data, and coders system-
atically read the texts, annotating parts of the texts
that indicate instances of bias relevant to the anal-
ysis question, e.g., phrases that change readers’
perception of a specific person or topic. In induc-
tive content analysis, coders read and annotate the
texts without prior knowledge other than the analy-
sis question. In deductive content analysis, coders
must adhere to a set of coding rules defined in a
codebook, which is usually created using the find-
ings from an earlier inductive content analysis. Af-
ter the coding, researchers quantify the annotated
instances to lastly accept or reject their hypotheses.

Content analyses conducted for WCL bias are
typically either topic-oriented or person-oriented.
Annotations range from basic forms, e.g., targeted
sentiment (Niven, 2002), to fine-grained “percep-
tion” categories, causes thereof, or other features,
e.g., Papacharissi and de Fatima Oliveira (2008) in-
vestigated WCL in the coverage of different news
outlets on topics related to terrorism. One high-
level finding was that the New York Times used
more dramatic tones than the Washington Post,
e.g., news articles dehumanized terrorists by not
ascribing any motive to terrorist attacks or use of
metaphors, such as “David and Goliath.” Both the
Financial Times and the Guardian focused their
articles on factual reporting.

3.2 (Semi-)Automated Approaches

Many automated approaches treat media bias
vaguely and view it only as “differences of [news]
coverage” (Park et al., 2011b), “diverse opinions’
(Munson and Resnick, 2010), “different perspec-
tives” (Hamborg et al., 2018), or “topic diversity”
(Munson et al., 2009), resulting in inconclusive or
superficial findings (Hamborg et al., 2019a). Only
a few approaches use comprehensive bias mod-
els or focus on a specific form of media bias (cf.
Section 3.1). Likewise, few approaches aim to
specifically identify instances of WCL bias. For
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example, Lim et al. (2018); Spinde et al. (2020b)
propose to investigate words with a low document
frequency in a set of news articles reporting on the
same event, to find potentially biasing words that
are characteristic for a single article. NewsCube
2.0 employs crowdsourcing to estimate the bias of
articles reporting on a topic. The system allows
users to annotate WCL in news articles collabora-
tively (Park et al., 2011a).

The most related, fully automated field of meth-
ods is TSC, which aims to find the connotation of
a phrase regarding a given target. On news texts,
however, to-date TSC methods perform poorly for
at least three reasons. First, news texts have rather
subtle connotations due to the expected journalistic
objectivity (Gauthier, 1993; Hamborg et al., 2018).
Second, to my knowledge, no news-tailored TSC
approaches, dictionaries, nor annotated datasets ex-
ist; generic approaches tend to perform poorly on
news texts (Balahur et al., 2010; Kaya et al., 2012;
Oelke et al., 2012). Third, the one-dimensional po-
larity scale used by all mature TSC methods may
fall short of representing complex news frames
(cf. Section 1). To avoid the difficulties of highly
context-dependent connotations in news texts, re-
searchers have proposed to perform TSC only on
quotes (Balahur et al., 2010) or on the readers’
comments (Park et al., 2011b), which more likely
contain explicit connotations. Researchers also
suggested to investigate emotions induced by head-
lines, but they achieved mixed results (Strapparava
and Mihalcea, 2007).

3.3 Research Gap

To my knowledge, there are currently no automated
approaches that identify or compare instances of
WCL bias, despite reliable analysis concepts used
in the social sciences and automated text analysis
methods in related fields, such as CDCR and TSC.

To address the difficulties due to the expected
objectivity of news texts and other previously men-
tioned factors, I plan to follow two main ideas: first,
the use of knowledge and models from sciences
that have long studied media bias. Second, I expect
the recent advent of word embeddings and deep
learning, including neural language models, such
as BERT (Devlin et al., 2018), to be strongly bene-
ficial to the outcome of this project. The advance-
ments in these fields have led to a performance
leap in many NLP disciplines, including corefer-
ence resolution and TSC, where, e.g., in the latter



macro F1 gained from F'1,, = 63.3 (Kiritchenko
et al., 2014) to F'1,,, = 75.8 on the Twitter set
(Zeng et al., 2019).

4 Methodology

Research task T2 will be the main contribution of
my Ph.D. research; hence, this section focuses on
completed and future tasks related to T2. Techni-
cally, addressing the research question represents
two main challenges. First, resolving coreferences
of semantic concepts across a set of news articles.
In bias by WCL, journalists often use coreferences
in a broader, sometimes even contradictory, sense
than the state-of-the-art in coreference resolution
and CDCR is capable of (Balahur et al., 2010;
Baumer et al., 2017; Hamborg et al., 2019b). Sec-
ond, classifying how actors and other semantic con-
cepts are framed due to their mentions and their
mentions’ contexts, for which I will use TSC.

I plan to integrate the two tasks into the analysis
shown in Figure 1 (RT3). Given a set of news
articles reporting on the same event, the analysis
will find subsets of articles and in-text phrases that
similarly frame the concepts involved in the event.
Lastly, the system will visualize the results to news
consumers. Because RT3 is not directly related to
NLP, it is described only briefly in Section 4.3.

4.1 Broad Cross-doc. Coreference Resolution

After the system has completed state-of-the-art
preprocessing (Manning et al., 2014), the second
phase in the analysis is broad CDCR, which aims
to resolve coreferences as they occur in WCL bias
(Hamborg et al., 2019b). The first task within this
phase is candidate extraction. Relevant phrases
containing bias by WCL commonly are noun
phrases (NPs), e.g., NEs such as politicians, or
verb phrases (VPs), i.e., describing an action, such
as “cross the border” or “invade the country.” The
approach currently focuses only on NPs and ex-
tracts mentions from two sources. First, mentions
from coreference chains identified by coreference
resolution, and second, NPs identified by parsing.
The second task, candidate merging, addresses
the main difficulty of broad CDCR. Journalists of-
ten use divergent terms to refer to the same seman-
tic concept (Hamborg et al., 2019a), sometimes
even terms that typically have opposing meanings,
such as “intervene” vs. “invade,” “coalition forces”
vs. “invading forces.” Such coreferences are highly
context-dependent and may only be valid in a sin-
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gle news article or across related articles (Ham-
borg et al., 2019b,c). Related state-of-the-art tech-
niques for coreference resolution capably resolve
generally valid synonyms, nominal and pronom-
inal coreferences, such as “Donald Trump,” “US
president,” and “he.” However, they cannot reliably
resolve the previously mentioned, broader exam-
ples of coreferences, which often occur in bias by
WCL (Hamborg et al., 2019a).

The candidate merging task uses a series of
sieves, where each analyzes specific characteris-
tics of two candidates to determine whether they
should be merged (see Figure 1). For example, the
first sieve merges candidates if they have similar
core meanings, specifically, if the head of each
candidate’s representative phrase is identical (Ham-
borg et al., 2019b). For a given coreference chain,
the representative phrase is defined as the mention
that best represents the chain’s meaning (Manning
et al., 2014). This way, the first sieve merges cases
such as “Donald Trump” and ‘“President Trump.’
The second sieve merges candidates if most of their
mentions are semantically similar. The sieve cur-
rently uses non-contextualized word embeddings,
specifically word2vec (Mikolov et al., 2013), to
vectorize each mention. Then, it calculates the
unweighted mean of all vectorized mentions of a
candidate. Lastly, the sieve will merge two candi-
dates if their mean vectors are similar by cosine
similarity. Analogously, the remaining sieves ad-
dress specific characteristics, e.g., using word em-
beddings (Le and Mikolov, 2014) and clustering
methods, such as affinity propagation (Frey and
Dueck, 2007). More information on the approach
is described by Hamborg et al. (2019b).

B

Future research directions for the CDCR task
most importantly include extending the capabilities
of the approach and improving its performance. For
the former, we want to investigate how coreferen-
tial mentions of activities (VPs) can be resolved. To
improve the CDCR performance, we plan to devise
a method that uses a language model to resolve
coreferential mentions. For example, BERT in-
creased the performance on single-document coref-
erence resolution from F1=73.0 to F1=77.1. Using
SpanBERT, a pre-training method focused on spans
rather than tokens, the performance is increased to
F1=79.6 (Joshi et al., 2019). We expect that using
a language model can yield similar improvements
for CDCR.
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Figure 1: Shown is the plan for the three-phase analysis pipeline as it preprocesses news articles reporting on the
same event, resolves coreferential mentions of semantic concepts across documents, and groups articles framing
these concepts similarly. Source: (Hamborg et al., 2019b)

4.2 Frame Identification

Approaches aiming to estimate how semantic con-
cepts are perceived, e.g., in the closely related field
of TSC by classifying the concepts’ polarity, or,
more broadly, approaches to identify bias, tradi-
tionally employ manually created dictionaries or
manually engineered features for machine learning
(ML). Such approaches can achieve high perfor-
mances in various domains, e.g., Recasens et al.
(2013) propose an approach that capably identifies
single bias-words in Wikipedia articles by using
dictionaries and further, non-complex features.

In news texts, however, such approaches fall
short. Since neutral language is expected (cf. Sec-
tion 3), token-based and ML methods fail to catch
the “meaning between the lines” (Hamborg et al.,
2019a,b; Balahur et al., 2010; Godbole et al., 2007).
Yet, recent NLP advancements, most importantly
language models, have proven to be very effective
in the news domain as in various other domains
and tasks (see Section 3.3).

I plan to devise a neural model that will, in part,
be inspired by state-of-the-art TSC approaches
such as LCF-BERT (Zeng et al., 2019) and domain-
adapted SPC-BERT (Rietzler et al., 2019), with
three main differences. First, the model will need
to consider characteristics specific to news articles.
For example, in news articles, sentiment may more
strongly depend on global context compared to
TSC prime domains, e.g., because the latter are
typically shorter texts (Adhikari et al., 2019).

Second, besides “absolute” sentiment polarity,
the model needs to consider the “sentiment shift”
induced by the context of a target mention. For
example, while TSC traditionally focuses on the
event’s or text’s sentiment regarding a target (cf.
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“text-level” as defined by Balahur et al. (2010)), bias
by WCL is concerned explicitly with the language,
e.g., words, used in the sentence. So, given a target
mention, I am interested in whether the mention
or its context sway the perception more positively
or negatively, also in relation to the sentiment at
event- or text-level (Balahur et al., 2010).

Third, for an identified non-neutral polarity, the
approach should be able to find in-text causes and
potential effects thereof. Causes include the use
of emotional words, loaded language, or aggres-
sive repetition of specific facts. Effects include
particularly how the target is framed (cf. “frame
properties” as defined by Hamborg et al. (2019b)
or “frames types” by Card et al. (2015)). Resolving
the dependencies of a target and its context is an
issue that is subject of current TSC research (Zeng
et al., 2019; Rietzler et al., 2019), which I expect
to be important in the proposed project as well.

4.3 System and Visualization

A system will integrate the previously described
analysis workflow and will visualize the results to
non-expert users (RT3). I devised visualizations
that are similar to Uls of popular news aggregators,
such as Google News, and bias-aware aggregators,
such as AllSides. In contrast to these, the system
will be able to identify in-text instances of bias
(Hamborg et al., 2017, 2020; Spinde et al., 2020a).
Hence, the system will not only give a bias-aware
overview of current topics but also will have a vi-
sualization for single articles, which will highlight
identified instances of WCL bias.

For research and evaluation of the previously
described system and its analysis methods, I cur-
rently use the datasets AllSides (Chen et al., 2018),
NewsWCL50 (Hamborg et al., 2019¢c), and PO-



LUSA (Gebhard and Hamborg, 2020), which have
high diversity concerning outlets’ political slant.

I plan to publish the code of the system and meth-
ods. Due to the system’s modularity, researchers
can extend it to support further forms of bias, e.g.,
commission and omission of information or picture
selection (Torres, 2018; Hamborg et al., 2019a).

5 Evaluation

I conducted preliminary evaluations of the two
main methods described in Section 4 (RT4). To
measure the CDCR performance on broad coref-
erences as they occur in WCL bias (Section 4.1),
I created a test dataset named NewsWCLS50. The
dataset was created by manually annotating coref-
erential mentions of persons, actions, and also
vaguely defined, abstract concepts across 50 news
articles (Hamborg et al., 2019b). The evaluation
seems to confirm the research direction for this
task. The approach currently achieves F'1 = 45.7,
or 84.4 if evaluated only on technically feasible an-
notations, compared to 29.8, or 42.1, respectively,
achieved by the best baseline. Technically feasible
refers to only comparing to annotations that the
approach theoretically should be able to resolve,
e.g., currently only NPs while excluding VPs.

A future evaluation will include a comparison
to state-of-the-art CDCR methods (Barhom et al.,
2019; Intel Al Lab, 2018). For improved sound-
ness, we plan to create a second dataset similar to
the NewsWCL50 dataset but with more coders and
more articles. To do so, we will crowdsource the
annotations of concept mentions on MTurk and use
an improved codebook. The improvements will ad-
dress issues of NewsWCL50’s codebook, e.g., by
making annotation types less ambiguous (Hamborg
et al., 2019b). Further, we plan to use two addi-
tional datasets: ECB+ (Cybulska and Vossen, 2014)
and NIdent (Recasens et al., 2012). Both datasets
are commonly used to evaluate CDCR approaches
and contain cross-document coreferences.

To evaluate the second task, frame identification,
I plan to create a comprehensive training and test
set for the TSC method described in Section 4.2.
I already created a preliminary dataset of 3000
sentences, each including a target mention and a
sentiment label agreed on by three coders. The
dataset was created analogously to established TSC
datasets (Dong et al., 2014; Pontiki et al., 2014;
Nakov et al., 2016; Rosenthal et al., 2017).

Preliminary results seem to indicate that TSC
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on the news domain is in part more difficult than
on TSC prime domains, such as product reviews,
where authors often express their opinion explic-
itly. State-of-the-art TSC achieves average recall
AvgRec = 70.0 on news articles, whereas perfor-
mances on common TSC test datasets range from
AvgRec = 75.6 (Twitter dataset) to 82.2 (Restau-
rant). Other baselines, e.g., using dictionaries and
semantic networks, such as ConceptNet, perform
very poorly (F'1 < 15.0), which seems to confirm
that token-based approaches fail to catch the sub-
tlety common to WCL bias.

Finally, we plan to evaluate the system’s effec-
tiveness regarding visualization of the identified
biases to non-expert users. An already conducted
pre-study confirmed the study design (Spinde et al.,
2020a). I will revisit this task once the classifica-
tion methods described in Section 4 can be used
within the study.

6 Conclusion and Implications

In summary, both everyday news consumers, as
well as researchers in the social sciences, could ben-
efit strongly from the automated identification of
bias by word choice and labeling (WCL) in news ar-
ticles. Devising suitable methods to resolve broad
coreferences across news articles reporting on the
same event and estimating the frames of the found
instances of WCL bias are at the heart of this re-
search project. One primary result of the project
will be the first automated approach capable of
identifying instances of bias by WCL in a set of
news articles reporting on the same event or topic.

My vision is that at a later point in time, such
methods might be integrated into popular news ag-
gregators, such as Google News, helping news read-
ers to explore and understand media bias through
their daily news consumption. Also, I think that
these methods could be integrated into the analysis
workflow of content analyses and frame analyses,
helping to automate further these currently mostly
manual and thus time-consuming analysis concepts
prevalent in the social sciences.
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SCAR: Sentence Compression using Autoencoders for Reconstruction
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Abstract

Sentence compression is the task of shortening
a sentence while retaining its meaning. Most
methods proposed for this task rely on labeled
or paired corpora (containing pairs of verbose
and compressed sentences), which is often ex-
pensive to collect. To overcome this limitation,
we present a novel unsupervised deep learn-
ing framework (SCAR) for deletion-based sen-
tence compression. SCAR is primarily com-
posed of two encoder-decoder pairs: a com-
pressor and a reconstructor. The compressor
masks the input, and the reconstructor tries to
regenerate it. The model is entirely trained
on unlabeled data and does not require addi-
tional inputs such as explicit syntactic informa-
tion or optimal compression length. SCAR’s
merit lies in the novel Linkage Loss function,
which correlates the compressor and its effect
on reconstruction, guiding it to drop inferable
tokens. SCAR achieves higher ROUGE scores
on benchmark datasets than the existing state-
of-the-art methods and baselines. We also con-
duct a user study to demonstrate the applica-
tion of our model as a text highlighting system.
Using our model to underscore salient informa-
tion facilitates speed-reading and reduces the
time required to skim a document.

1 Introduction

Our fast-paced lifestyle precludes us from reading
verbose and lengthy documents. How about a sys-
tem that highlights the salient content for us (as
shown in Fig.1)? We model this problem as the
well-known sentence compression task. Sentence
compression aims to generate a shorter representa-
tion of the input that captures its gist and preserves
its intent. Compression algorithms are broadly clas-
sified as abstractive and extractive. Extractive com-
pression or deletion-based algorithms only select
relevant words from the input, whereas abstractive
compression algorithms also allow paraphrasing.
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... the three convicted serial killers have been hanged till
death in tehran 's evin prison the newspaper reported ...

/1N

three serial killers hanged tehran prison

Figure 1: An example of a system that highlights the
salient content, allowing the user to skim through the
document quickly.

In the past, compression approaches have re-
volved around statistical methods (Knight and
Marcu, 2000) and syntactic rules (McDonald,
2006). Current state-of-the-art methods model
the problem as a sequence-to-sequence learning
task (Filippova et al., 2015). Although these meth-
ods perform well, they require massive parallel
training datasets that are difficult to collect (Fil-
ippova and Altun, 2013). Recently, unsupervised
approaches have been explored to overcome this
limitation. Fevry and Phang (2018) model com-
pression as a denoising task but barely reach the
baselines. Baziotis et al. (2019) propose SEQ?, an
autoencoder which uses a Gumbel-softmax to rep-
resent the distribution over summaries. But a qual-
itative analysis of their outputs shows that SEQ3
mimics the lead baseline.

In this work, we present an unsupervised deep
learning framework (SCAR) for deletion-based sen-
tence compression. SCAR is composed of a com-
pressor and a reconstructor. For each word in the
input, the compressor determines whether or not
to include it in the compression. A length loss
restricts the compression length. The reconstruc-
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tor tries to regenerate the input using the words
retained by the compressor. A reconstruction loss
motivates the compressor to include words that aid
in reconstruction. However, without an additional
loss to govern word masking, the network fails to
converge. We introduce a novel linkage loss that
ties together the compressor and the reconstructor.
It penalizes the network if a) it decides to drop a
word but is unable to reconstruct it or b) it decides
to include a word which it could reconstruct easily.

2 Related Work

Early compression algorithms were formulated us-
ing strong linguistic priors and language heuris-
tics (Jing, 2000; Knight and Marcu, 2002; Dorr
et al., 2003; Cohn and Lapata, 2008). McDonald
(2006) use syntactical evidence to condition the
output of the model. Berg-Kirkpatrick et al. (2011)
prune dependency edges to remove constituents for
compression.

Deep learning-based approaches have gained
popularity owing to their success in core NLP
tasks such as machine translation (Bahdanau et al.,
2014). Filippova et al. (2015) propose an RNN
based encoder-decoder network for deletion based
compression. Although this approach achieves su-
perior performance over metric-based approaches,
a large amount of paired sentences are needed to
train the network.

The first attempt to reduce the dependence on
paired corpora for deletion based deep learning
compression models was made by Miao and Blun-
som (2016). They train separate compressor and
reconstruction models, to allow for both supervised
and unsupervised training. The compressor con-
sists of a discrete variational autoencoder. The
model is trained end-to-end using the REINFORCE
algorithm. However, the reported results still use a
sizeable amount of labeled data.

Recent approaches have sought completely un-
supervised solutions. Fevry and Phang (2018) use
a denoising autoencoder (DAE) for sentence com-
pression. The input sentence is shuffled and ex-
tended to add noise. DAE tries to reconstruct the
original denoised sentence from the noisy input.
An additional signal is needed to specify the out-
put length. At test time, the sentence is fed to the
model without any noise. In an attempt to denoise
the input, the network generates a compressed out-
put. However, the model often fails to capture the
information present in the input and is barely able

&9

to reach the baselines.

SEQ? (Baziotis et al., 2019) proposes an au-
toencoder using a Gumbel-softmax to represent the
distribution over summaries. A compressor gener-
ates a summary, and a reconstructor tries to recon-
struct the input using the summary. A pre-trained
language model acts as a prior, to incentivize the
compressor to produce human-readable summaries.
An additional topic loss is required to ensure that
the summary contains relevant words, making the
model non-generic and fine-tuned to the domain.
A qualitative analysis of the outputs shows that
SEQ? merely mimics the lead baseline and gener-
ates compressions by blindly copying a prefix of
the input.

3 SCAR

SCAR is composed of two encoder-decoder pairs:
compressor C and reconstructor R, as shown in
Fig. 2. Given an input sentence s = wy, ws ...,
wy, containing k words, C generates an indicator
vector I, = I,,1, 1,9, ..., I, which indicates the
presence/absence of each word in the summary.
The summary is represented as s’ = s ® I, where
©® represents element-wise multiplication. There-
fore, words corresponding to L= 0 are effectively
skipped. The network tries to reconstruct the input
sentence from s'.

Formally, the network tries to find an I} such
that the probability p(s|s ® I) is maximized and
Zle I,; is minimized, jointly. The probability
p(s|s ® 1) can be decomposed further as shown in
Eq.(1)

k
I; = argmax | [ p(wi| (w1 x L),
v t=1

ey

ceny ('wk,1 X Ikal))

For every word in the sentence, we learn
a 300-dimensional embedding initialized with
GloVe (Pennington et al., 2014). These embed-
dings are sequentially fed as input to the Sentence
Encoder (E,), composed of a bi-LSTM. The input
is fed forwards and backward. The hidden states
are a concatenation of the forward and backward
states. The sentence representation is obtained
from the final hidden state of Es(i.e., he1). The
Indicator Extraction Module (IEM), a bi-LSTM
decoder, is initialized using he;. The output of
this decoder at each time step is passed through a
network of two fully connected layers to generate
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Figure 2: The figure shows the proposed SCAR architecture (details are described in Section 3)

a single indicator value. We intend this value to
be close to either one or zero, denoting the pres-
ence/absence of each word from the summary.
The masked sentence, s’ =s ® I, is encoded
using the Summary Encoder (£ /), composed of
a bi-LSTM. The Summary Decoder (DS/), alsoa
bi-LSTM, is initialized using the final hidden state
of E s(he2). This decoder aims to regenerate the
input sentence s from s’. This motivates [EM to
generate I, such that s can be easily reconstructed.
The output at each time step in D is fed to a dense
layer, W, which computes a distribution over the
vocabulary from the decoder’s hidden states.

3.1 Loss functions

Compression Length loss (L;.,,) is used to con-
strain the summary length. It is calculated from
the output of IEM as shown in Eq. (2). Len(s') is
the sum of elements of I,. We set » = 0.4 in our

experiments.
2
Len(s) T)

Sentence Reconstruction loss (L,..) is applied
to ensure s’ contains enough information to recon-
struct s. It is calculated from the output of D , as
shown in Eq. (3).

Len(s’)

Lien = ( )

Len(s)

Lrec = - Z logP(wi|w/<i7h62)
=1

3)

To help ease reconstruction, L,.. steers the
network to keep larger summaries, whereas L,
forces it to it cut down. This makes it hard for the
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model to converge optimally. We introduce a novel
Linkage loss (L;,,;.), which correlates the indicator
vector and its effect on reconstruction. It penalizes
the network if a) it decides to mask a word but is
unable to reconstruct it or b) it decides to include a
word which it could reconstruct easily. It is applied
to the outputs of IEM and D ;, as shown in Eq. (4).

Ref: the - village for the -
games  in - was  officially
opened on tuesday

Summ: ___olympic village ___ ___ winter _____ __ turin

_____________ opened - _______
Recon: the olympic village of the winter olympics a

turin was officially opened here wednesday

Figure 3: Linkage loss guides the model to drop words
that can be inferred during reconstruction (light green)
and retain words that are harder to infer (dark green).

Len(s)
Line = Y (Lae! ) +(1-L)ev 1) @)

=1

The variable y; € [0, 1], in Eq. (5), is the nor-
malized value of a word’s logit in a sentence. It
denotes the relative difficulty of decoding word wj,
given w’~; and heo. Ly is minimized when either
a) x; = 0 and I; = O (signifying that w; is easy
to decode and should be dropped) or b) y; = 1
and I,; = 1 (signifying that hard-to-decode words
should be retained). The effect of L, can be seen
in Fig. 3. The model retains words with a higher x;
(dark green), whereas words with a lower x; (light
green) can be inferred during reconstruction and



therefore dropped.

[log P(w;|w'<;, he2)|

maxlgngen(s)’lOgP(wj|w<ja he2)|

Xi = )
Binarization loss (Ly;,,) is applied to the output
of IEM, as shown in Eq. (6), to push the values of
I, close to 0 and 1 (since setting them to these hard
values directly introduces non-differentiability). In
our experiments, b is set to 5 and a is such that Ly,
is always non-negative. At test time, only the words
with I,; > 0.5 are included in the compression.

Len(s)
(a — b(Iy; — 0.5)%)
=1

1
Len(s)

3.2 Re-weighting Vocabulary Distribution

Due to the nature of Zipf’s law (Zipf, 1949), most
of the probability mass in the vocabulary distribu-
tion output by the Summary Decoder is retained
by stopwords. As a result, x; corresponding to
stopwords is much lower compared to content
words. This causes the network to blindly drop
stopwords and retain most content words. In this
case, many content words that may be inferable
are not dropped. To remedy this, we introduce
Stop Predictor (D), which assigns a score to
the next word based on whether it is a stopword
or not. When the network believes that the next
word is not a stopword, it re-distributes the proba-
bility mass from stopwords proportionally among
content words and vice-versa.

The word embeddings’ of s are sequentially fed
as input to Dgyep, a bi-LSTM decoder. The out-
put of Dy, at each time step is passed through a
network of two fully connected layers to generate
a single score, Ysiopi € [0,1]. In order to train
Dgiop we apply Ly, (mean-square-error loss with
the ground truth) as shown in Eq.(7). The ground
truth is obtained from the stopword-list, defined as
the collection of 50 most frequent words (0.25%
of the vocabulary size) found in the dataset.

We re-weight the vocabulary distribution using
Ystop,i» similar to pgen, in (See et al., 2017), as
shown in Eq. (8). I is a vocabulary sized vec-
tor with the 50 elements of stopword-list set to 1
and the rest to 0.

1 Len(s)
t 2
Lstp = m Zz; (ystOpﬂ' - ygtop,i) )
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P'(wi|w' <, hea) = softmax(Ls- ystop,i - P(w;)
+ (1 - Hs) : (1 - ystop,i) : P(wz)) (8)

This re-weighted distribution is plugged into
Eq.(5) and used to calculate L;,.

The final loss function (L) is a linear combi-
nation of the above losses. Since this is an unsu-
pervised approach, currently, the weights are ex-
perimentally determined. Initial weights for each
loss were selected to normalize the output range
of all loss functions. We performed a grid search
in the neighborhood of these initial weight values
to determine optimal weights that maximized the
ROUGE scores on the validation set. The weights
have been set to 8 (Ljen), 1 (Lyee), 5 (Link), 100
(Lpin) and 10 (L) in our experiments.

3.3 Training

In our experiments, we used the annotated Giga-
word corpus (Rush et al., 2015). The model is
trained only on the reference section. We only con-
sidered sentences where the length was between
15 and 40 words (3.5M samples). A small por-
tion of the training set (200k samples) was held
out for validation. The batch size is set to 128.
Vocabulary is restricted to 20000 most frequent
words from the dataset. All bi-LSTM cells are
of size 600 and weights are initialized normally
A (=0, 0 = 0.1). The output from IEM and
Diop is passed through a hidden layer (150 units)
and an output layer with ReLU and sigmoid ac-
tivations, respectively. We use Adam optimizer
(Kingma and Ba) (Ir=0.001, 51=0.9 and (39=0.999).
Gradients larger than 1.0 are clipped. The model is
trained for 5 epochs using early stopping by moni-
toring the performance on the validation set.!

4 Experiments

Since the test set of the Gigaword corpus is small
(1.9k samples) and does not capture the true be-
havior of the models, we report our results on the
significantly larger validation set (189k samples).
Note that SCAR does not make use of the valida-
tion set during training, and it can be treated as a
test set. We also test (without retraining) SCAR
on DUC-2003 and DUC-2004 shared tasks (Over
et al., 2007), containing 624/500 news articles each,
paired with 4 reference summaries capped at 75

"https://github.com/m-chanakya/scar



Gigaword DUC-2003 DUC-2004
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
Baselines
All-Text 28.07 10.02 24.49 - - - - - -
Prefix 26.28 9.54 24.73 | 20.82 6.14 18.44 | 22.18 6.30 19.33
Lead50 30.22 10.99 27.40 | 20.92 6.22 18.59 | 22.26 6.33 19.38
Unsupervised
SEQ? 30.23 10.24 27.26 | 20.89 6.07 18.54 | 22.12 6.17 19.29
DAE 26.84 7.35 23.15 | 1845 3.94 15.79 | 20.06 4.73 17.03
SCAR 29.80 7.52 26.10 | 21.71 4.73 18.81 | 22.92 5.52 19.85
Supervised
Seq2Seq 33.72 14.18 30.65 | 26.12 9.67 23.37 | 27.31 10.43 24.18
Ablation
w/0 Lk 27.24 5.16 23.87 | 20.31 341 17.60 | 19.94 3.25 17.07
w/0 Diop 28.86 7.02 25.29 | 21.46 4.66 18.62 | 21.94 4.70 19.10
r=0.3 27.80 5.07 24.39 | 20.25 3.16 17.46 | 20.28 3.09 17.53
r=20.2 25.36 3.36 22.38 | 18.97 2.31 16.23 | 18.43 2.20 15.90

Table 1: Average ROUGE scores on Gigaword and DUC datasets.

bytes. We report average ROUGE (1,2,L) F1 scores
(Lin, 2004) obtained by all the models in Table 1.

We compare our model with three standard base-
lines - Prefix (first 8 words for Gigaword/first 75
bytes for DUC), Lead50 (50% tokens) and All-
Text (entire input). To compare with supervised
approaches, we train a baseline Seq2Seq model,
similar to (Fevry and Phang, 2018). Finally, we
compare our model with the recent unsupervised
approaches, DAE (Fevry and Phang, 2018) 2, and
SEQ3 (Baziotis et al., 2019) .

4.1 Pitfalls of SEQ3

Lead50 achieves the highest ROUGE scores, but it
does not make for a viable compression method as
it blindly drops the latter half of the sentence. The
scores obtained by SEQ? are strikingly similar
to Lead50. The authors of SEQ? note that “the
model tends to copy the first words of the input
sentence in the compressed text”. We observed that
SEQ? introduces very little abstractiveness (only
0.001% of the words are different from the input)
and copies the first half of the sentence.

To corroborate our findings, we introduce the
notion of summary coverage. It is a measure of
how well each position of the input is represented
in the compression. We divide the input sentence
into equal-sized segments and measure how often

“https://github.com/zphang/usc_dae
3https://github.com/cbaziotis/seq3.git
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Figure 4: We divide the input sentence into equal-sized
segments and measure how often each segment (x-axis)
is included in the compression (y-axis).

each segment is included in the compression. We
plot the summary coverage for Lead50, S EQ?, and
SCAR, as shown in Fig.4. A visualization is shown
in Fig.5. Lead50 and SEQ? only cover the first
half (initial segments) of the input, leading to in-
complete/incorrect compressions. SCAR has more
uniform coverage and represents all segments of
the input well, leading to more informative com-
pressions.

4.2 Quantitative evaluation

Given the pitfalls of SEQ?3, SCAR achieves state-
of-the-art performance in unsupervised sentence
compression on Gigaword and DUC datasets.
SCAR’s R-2 scores on both benchmark sets are
low because it tends to drop the inferable portion



LEADS0:

malaysia ’s government on monday announced an immediate ##-million dollar plan to expand roads , build

underground bypasses and overhead bridges to ease kuala lumpur ’s traffic jams .

SEQ3:

malaysia ’s government on monday announced an immediate ##-million dollar plan to

expand roads ,

build underground bypasses and overhead bridges to ease kuala lumpur ’s traffic jams .

SCAR

malaysia ’s government on monday announced an immediate ##-million dollar plan to expand roads ,

build underground bypasses and overhead bridges to ease kuala lumpur ’s traffic jams .

Headline:

malaysia announces ##-million dollar plan to ease kuala lumpur traffic woes

Figure 5: Visualization of summary coverage by overlaying the compressions onto the reference.

Ref (SCAR president bill clinton this week unveils a budget proposal offering nearly ### billion dollars in

Highlight) tax relief over the nextsix years and calling for the elimination of the federal deficit by #### .

SEQ? president bill clinton this week unveils a budget proposal offering nearly ### billion dollars in tax relief
deficit (Wrong content retained)

DAE president bill clinton unveils the federal budget deficit this week by offering nearly ### billion dollars
(Wrong content retained)

SCAR bill this budget proposal nearly billion tax relief next six calling elimination federal deficit

Headline clinton calls for elimination of the federal deficit by ####

Figure 6: An example of the reference (with SCAR highlight), compressions, and headline.

Correct Unsure Time
Reference 93.4% 6.6%  2m3ls
SCAR (Highlight) 93.4% 6.6%  1m 54s
Compressions
SEQ? 533%  46.67% 2m13s
DAE 26.67% 73.34% 2m 29s
SCAR 66.67% 3333% 2m42s

Table 2: Average correctness and time scores.

of a bi-gram. Without Linkage loss (L), SCAR
loses its ability to drop inferable portions of the
input. Without D, a mechanism to re-distribute
probability mass from stop words, SCAR tends
only to drop stopwords. Lower values of r, cause
the model to generate smaller compressions. As
expected, all of the above factors cause a dip in
performance.

4.3 Qualitative evaluation

ROUGE only measures the content overlap and
does not account for coherence. We conduct a
Qualitative study to address the known issues with
ROUGE (Schluter, 2017) and evaluate SCAR’s
effectiveness as a speed reading system.

Human evaluators are asked to match the ref-
erence/compression that they are shown with the
correct headline from a set of 5 options. 3 incor-
rect options are generated by selecting Gigaword
headlines that share tokens with the reference. The
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fifth option is “unsure.” Fifteen English speaking
participants were divided into 5 sets. They were
shown the reference (1), the reference with SCAR
highlighting (2), compressions generated by SCAR
(3), SEQ? (4), and DAE (5), respectively. Each
user was asked to match 10 samples.

An example is shown in Fig.6. Compressions
generated by DAE fail to preserve the meaning and
intent of the reference. SEQ? habitually retains
the first half of the input, and the evaluators fail to
match the headline if it corresponds to the latter
half. Due to collocation, SCAR tends to drop the
inferable portion of a bi-gram. For example, "Bill”
is retained, and ”Clinton” is dropped. The average
correctness and time scores are reported in Table
2. Compared to other compressions, SCAR has the
highest score in terms of correctness. Using SCAR
to highlight, reduces reading time by 25%.

5 Conclusion and Future Work

SCAR addresses a significant limitation of the un-
availability of labeled data for sentence compres-
sion. It outperforms the existing state-of-the-art
unsupervised models. Since SCAR learns to drop
inferable components of the input and therefore
reduces noise, it can be used as a preprocessing
step for machine translation and other information
retrieval tasks.
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Abstract

Medical image captioning can reduce the
workload of physicians and save time and
expense by automatically generating
reports. However, current datasets are
small and limited, creating additional
challenges for researchers. In this study, we
propose a feature difference and tag
information combined long short-term
memory (LSTM) model for chest x-ray
report generation. A feature vector
extracted from the image conveys visual
information, but its ability to describe the
image is limited. Other image captioning
studies exhibited improved performance by
exploiting feature differences, so the
proposed model also utilizes them. First,
we propose a difference and tag (DiTag)
model containing the difference between
the patient and normal images. Then, we
propose a multi-difference and tag
(mDiTag) model that also contains
information about low-level differences,
such as contrast, texture, and localized area.
Evaluation of the proposed models
demonstrates that the mDiTag model
provides more information to generate
captions and outperforms all other models.

1 Introduction

Image captioning is a research area that generates
text describing natural images, representing a
convergence of computer vision and natural
language processing. There are several existing
methods for image captioning. One way involves
filling up templates with detected objects or
properties (Li et al., 2011; Yang et al., 2011), but
this has limitations about diversity. Especially,
sentences describing abnormal findings in medical
images are relatively diverse and rare. Another
involves retrieving the captions of images that are
similar to the query image and selecting relevant
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phrases from those captions to generate new
captions (Gupta et al., 2012; Kuznetsova et al.,
2014). However, this method does not generalize
well when applied to unfamiliar images.

To overcome the weaknesses of current
methods, we adopted the encoder-decoder
architecture with an attention mechanism. The
encoder encodes an image into a feature vector,
and the decoder decodes the feature vector into
text. The encoder-decoder is one of the neural
networks successfully used in other recent image
captioning studies (Vinyals et al., 2015; Xu et al.,
2015; Karpathy and Fei-Fei, 2015; You et al., 2016;
Zhou et al., 2017; Anderson et al., 2018).

@ < Report >

't no acute cardiopulmonary
’%o
r
-
A 8

findings. cardiomediastinal
silhouette and pulmonary
vasculature are within normal
Figure 1: An example of a medical image
captioning system that generates a report given a
chest x-ray image.

limits. lungs are clear. no
pneumothorax or pleural effusion.
no acute osseous findings.

Medical image captioning is the field of
generating medical reports that describe medical
images, as shown in Figure 1. The first challenge
in medical image captioning is the lack of quality
in training sets. Researchers have difficulty
accessing chest x-ray datasets, which slows the
development of related technologies. There are
publicly available datasets that have images and
reports: [U X-RAY, PEIR GROSS, and ICLEF-
CAPTION (Kougia et al., 2019). Using only these
datasets, state-of-the-art caption generation
models do not generate medical reports correctly.
Recently, MIMIC-CXR (Johnson et al., 2019), the
largest dataset with images, reports, and labels, is
released. The second challenge is that there are too
many normal descriptions in the dataset, which
creates a skewed dataset that poses problems for
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supervised learning. Besides, some types of
significant abnormal findings appear too rarely in
the dataset to appropriately train the model.

In this study, we propose a model that can
identify and focus on abnormal findings more
specifically and precisely, similar to the way that
physicians would typically read, interpret, and
write chest x-ray reports. Since physicians look for
the differences between the normal group and the
disease group, we also focus on image feature
differences. Therefore, the proposed model sets the
criteria based on a normal x-ray image and creates
a feature difference vector that explains the
difference between a normal x-ray image and a
patient’s x-ray image. This feature difference
vector is a subtraction of visual feature vectors
extracted from the two images. To improve the
model, we also exploit tag information obtained
from the medical report. Tags provide important
information about the images and also convey
meaningful semantics to the decoder. Several
previous studies (Jhamtani and Berg-Kirkpatrick,
2018; Tan et al., 2019; Forbes et al., 2019) show
methods that leverage feature vectors of images to
account for differences between two images.

Next, since physicians obtain information not
only from the overall image but also from the
localized lesion areas, we consider that each
convolutional level would also convey meaningful
details such as contrast, texture, and localized area.
Therefore, another proposed model fully exploits
information contained in each layer. Previous
studies (Darlow et al., 2018; Bau et al., 2017; Zhou
et al., 2018) analyze and interpret convolutional
neural networks (CNNs) utilizing feature vectors
extracted from lower convolutional layers.

The following section describes the organization
of the dataset, and section 3 introduces the baseline
and our proposed models. Section 4 provides the
experimental settings and results with analysis, and
draws some conclusions in Section 5.

2 Dataset

This study uses IU X-RAY, which consists of a
series of image-text-tag triplets. This dataset is
anonymous and is from the Open Access

! https://openi.nlm.nih.gov/
2 https://ii.nlm.nih.gov/MTI/
3 https://www.nlm.nih.gov/mesh/meshhome.html
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Biomedical Image Search Engine (Openl) '
(Demner-Fushman et al., 2016).

The 7,470 chest x-ray images have two views:
posteroanterior (PA) and lateral. The baseline
model uses all images, but the proposed model uses
only 3,821 images, which are PA views. The report
corresponding to each image has four sections:
comparison, indication, findings, and impression.
The output of the model is a concatenation of the
findings and the impression section (Jing et al.,
2018). The findings section describes observations
in each area of the body, and the most crucial
impression section explains the problem and then
provides a diagnosis. The output excludes the
comparison and indication sections, which contain
patient information and symptoms.

One or more tags are automatically extracted
from each report using the Medical Text Indexer
(MTI)? program (Jing et al., 2018). MTI produces
index recommendations based on Medical Subject
Heading (MeSH)? terms. There are a total of 210
unique tags, with an average of 2 tags per image.
Without the normal tag, there is an average of 25
images per tag. Class imbalance arises because
1,502 images contain normal tag, so we randomly
sample 75 images for a better balance between tags.
The tags still have a class imbalance because the
scope is too broad, making the term rare.

The prepared datasets are 3,821 image-text-tag
triplets, all PA view images. After adjusting the
number of images with the normal tag, we use
random selection to get 1,911, 238, and 245
triplets for the training, validation, and test sets.

3 Models

3.1 Baseline Model

Among the recent models, the basis is the Jing
(2018) model®. Our baseline model is similar to
this model, which includes a CNN-RNN (encoder-
decoder) with an attention mechanism. The Jing
(2018) model’s encoder part utilizes VGG-19
(Simonyan and Zisserman, 2014) for the visual
feature extractor, multi-label classification (MLC)
for tag classification, and decoder part uses
Hierarchical LSTM (Hochreiter and Schmidhuber,

4 Reference code available at
https://github.com/ZexinYan/Medical-Report-Generation
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Figure 2: Two difference and tag (DiTag) model structures. The DiTag model uses only feature difference vector
and sends it to MLC and co-attention. The combined DiTag (cDiTag) model uses a combined feature vector (*),
which is a concatenation of patient visual feature vector and feature difference vector.

1997) with a co-attention mechanism. The only
difference between the Jing (2018) model and our
baseline model is that we use ResNet-152 (He et
al., 2016) instead of VGG-19 to extract the visual
feature vector. MLC uses the visual feature vector
to predict one or more tags and generates semantic
feature vectors that are word embedding of the
predicted tags. To obtain an embedding vector of
each tag, we train an embedding layer from the
training data. Hierarchical LSTM combines

sentence LSTM with co-attention and word LSTM.

Sentence LSTM creates a topic vector and a stop
vector by independently attending to the visual
feature vector and semantic feature vector using
co-attention. The word LSTM concatenates the
topic vector and previous word embedding for a
new embedding as input to generate words. The
way to get a word embedding vector is the same as
the tag, but the embedding matrix is different.

The overall loss is the sum of tag loss, stop loss,
and word loss. First, tag loss L is a cross-entropy
loss between predicted tag distributions by MLC
and the normalized real tag distributions. Second,
stop loss Lg,, is a cross-entropy loss between
predicted stop distributions by Sentence LSTM
and ground truth distributions. The stop loss is
binary cross-entropy, and the class is stop or
continue. Third, word loss L,,,,4 1S a cross-entropy
loss between predicted word distribution by Word
LSTM and real word distribution. A,55,  Astop»
Awora Scale all the losses. The report consists of S
sentences, with each sentence having W, words.
Total loss for the baseline model is:

S
Lbase = Atathag + Astop Zs:l Lsstop +

W.
Awora Zgzl ZWS:1 LS'Wword (1
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3.2

The weakness of our baseline model is that it
mainly generates general content (such as “the
heart is normal in size” and “the lungs are clear”)
and does not correctly describe the aspects of the
patient image associated with the disease. The
model does not adequately capture the differences
between the images because the chest x-ray images
are similar. Also, when clinicians diagnose patients,
they look for the differences between the patient
group and the normal group.

Therefore, the first goal of this study was to
provide the model with more information about
these differences. Our difference and tag (DiTag)
model creates a feature difference vector that
contains the differences between the patient image
and the normal image. The feature difference
vector is the result of subtracting the visual feature
vector of the normal image from the visual feature
vector of the patient image extracted through
ResNet-152. The visual feature vector is a global
average pooling of feature map produced by the
last convolution layer.

We experimented with this feature difference
vector using two model structures, as shown in
Figure 2. The first structure, the DiTag model,
passes the feature difference vector directly to the
MLC and the co-attention and does not use the
combined feature vector. Co-attention allows the
model to attend to the feature difference vector
{d,}N_,and the semantic feature vector {t,,}M_,
independently to create a context vector, which is
then passed to the sentence LSTM to generate topic
vector and stop vector, as shown in Figure 3. The
co-attention is only associated with the sentence
LSTM, not the word LSTM. The co-attention

Difference and Tag Model
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Figure 3: An example of generating a second
sentence. For each sentence LSTM step, the co-
attention creates a context vector, and the sentence
LSTM outputs a topic vector and a stop vector. The
word LSTM generates words based on the topic
vector and embedding of the previous word.

computes attention score a independently to create
a feature difference context vector d® and a
semantic context vector t° at time step s:

N M
ds = Zn:l Agndn, t° = zmzlat,mtm )
Concatenate these context vectors, then use a fully
connected layer W to obtain the final context
vector ¢ at time step s:

¢S = W[d; t5] 3)

A topic vector contains context information by
combining the current hidden state of the sentence
LSTM and the context vector of the current step. A
stop vector decides to stop or continue generating
the topic vector and words by combining the
previous and current hidden state of sentence
LSTM to calculate the probability of stopping.
Figure 3 also shows how the word LSTM works.
The second structure is the combined DiTag
(cDiTag) model, which sends the combined feature
vector that represents the concatenation of the
feature difference vector and the patient visual
feature vector to the MLC and the co-attention. Co-
attention is the same as DiTag model, except that it
attends to the combined feature vector rather than
the feature difference vector. The overall loss of
both structures is the same as the baseline model.

3.3 Multi-Difference and Tag Model

Physicians provide diagnoses using information
obtained not only from the overall image but also
from localized lesion areas. Therefore, the second
goal of this study was to offer lower-level
differences to the model, such as the contrast,
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texture, and localized area. The DiTag model
extracts the visual feature vector from the last
convolutional layer of ResNet-152, while the
mDiTag model further extracts additional visual
feature vectors from three lower convolutional
layers. Using four visual features from the patient
images and four from the normal images, we
experimented with the three model structures to
compare the effects of model components, as
shown in Figure 4.

The mDiTag(-) model subtracts the normal visual
feature vector from the patient visual feature vector
obtained in each layer to generate four feature
difference vectors and then sends all four vectors
to the co-attention. The model excludes the MLC,
and co-attention attends to the four feature
difference vectors and creates a context vector and
sends it to the LSTM. Total loss for the mDiTag(-)
model is:

Lpirag = Astop Zj:l Lsstop +
Aword Z§=1 ZV\VI//=1 LS'Wword
“4)
The mDiTag(+) model obtains new visual
feature vectors by sending the visual feature
vectors of each layer into four different MLCs, one
for each layer. The co-attention is identical to that
of the mDiTag(-) model. The total loss is the sum
of the four tag losses, each occurring in four layers,
stop loss and word loss. The model is
backpropagated based on the previous four tag
losses and then backpropagated based on the
overall loss.

% ==t
1 1 .
' | semantic
1
1

MLC for each layer | feature vectors

:from each layer

patient
feature Sentence

difference LSTM

MLC for each layer vectors for !
g each layer

normal
Word
LSTM

—>

Co-Attention

u '

Figure 4: Three mDiTag model structures. The
mDiTag(-) model excludes MLC and semantic
feature vectors. The mDiTag(+) model excludes
only the semantic feature vectors. The whole
structure is mDiTag(s) model.



Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 | ROUGE-L CIDEr
Baseline model 0.2738 0.1585 0.1045 0.0682 0.2099 0.1226
DiTag model 0.3015 0.1795 0.1204 0.0811 0.2438 0.1939
cDiTag model 0.2501 0.1413 0.0913 0.0597 0.2177 0.0903
mDiTag(-) model 0.3293 0.1985 0.1354 0.0945 0.2731 0.1944
mDiTag(+) model 0.3227 0.1919 0.1271 0.0852 0.2575 0.1829
mDiTag(s) model 0.2086 0.1225 0.0795 0.0566 0.1719 0.1252

Table 1: Metric Evaluation for all models. The DiTag model utilizes feature difference vector, the cDiTag model
uses combined feature vector, and the mDiTag models use multiple feature difference vectors. The mDiTag(-)
model excludes MLC and semantic feature vectors, the mDiTag(+) model excludes semantic feature vectors,
and the mDiTag(s) model uses all. The best model for all metric scores is the mDiTag(-) model.

The mDiTag(s) model is similar to the mDiTag(+)
model, but MLC obtains a new visual feature
vector and a semantic feature vector. The model
sends four feature difference vectors and four
semantic feature vectors to the decoder. Co-
attention attends to the four feature difference
vectors and four semantic feature vectors to create
a context vector, and then sends it to the LSTM.
The loss function and backpropagation method of
this model is the same as that of the mDiTag(+)
model. There are four tag losses in each
intermediate convolutional layer of mDiTag(+) and
mDiTag(s) model. Total loss for these models is:

Lmpirag = Atag 1Ltag 1 + Atag 2Ltag 2 +
Atag_sLtagj + Atag_4Ltag_4 +
Astop Z::l L¥stop +
Aword Z§=1 Zw=1 L

word

)
4 Experimental Settings and Results

4.1 Experimental Settings

All model experiments use the same parameters
and hyperparameters. For MLC, the number of
classes corresponding is 210, the number of classes
to predict is 10, and the generated semantic feature
vector dimension is 512. In the decoder, the
Sentence LSTM is 1 layer, the Word LSTM is 1
layer, the hidden vector dimension is 512, the
maximum number of sentences generated is 6, and
the maximum number of words created is 30. The
learning rate starts from le — 4 and is optimized by
Adam optimizer. Total epoch is 1,000 but tested
with a model of minimum loss. It took four days to
train with a 1080Ti GPU with 11G Memory.

4.2

Table 1 provides information on the performance
of the models evaluated for the test dataset. We use
BLEU score (Papineni et al., 2002), ROUGE-L

Metric Evaluation
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(Lin, 2004), and CIDEr (Vedantam et al., 2015) for
the metrics. The DiTag model has higher metric
scores than the baseline model, and for cDiTag
model, only the ROUGE-L score increases. Since
the DiTag model structure is more suitable,
mDiTag model structures also only utilizes the
feature difference vector.

Next, based on all metric scores, the best model
is the mDiTag(-) model. When the model includes
MLC, the metric score reduces. Since there are two
tags per image on average, when predicting 10 tags,
there are wrong tag information. Also, the

Model generation result
no acute cardiopulmonary
Baseline | abnormality the heart is normal in
Model size the heart and lungs have in
the interval
<num> no acute cardiopulmonary
abnormality <num> chronic
mDiTag(-) | changes consistent with
Model emphysema the heart is normal in
size the lungs are clear no pleural
effusion or pneumothorax is seen
no acute cardiopulmonary
mDiTag(+) abnormality the heart is normal in
Model size the; lungs are cl;:ar there is no
focal air space opacity to suggest a
pneumonia
left base atelectasis lungs
otherwise clear there is minimal
Ground oo
Truth opacity in the left lung base
Report representhg atelectasis th; lupgs
are otherwise clear heart size is
normal no <unk>
Image ' ‘

Table 2: The first example of the models' outputs
with corresponding ground truth report, and image.



significant class imbalance makes MLC
challenging to train. Further, when the model uses
the semantic feature vector, metric scores reduce.
The semantic feature vector is word embedding of
the top 10 tags predicted by MLC. However, the
semantic feature vector provides incorrect
information because of the wrong tags among the
10 predicted tags.

4.3  Analysis of Model Output

Table 2 and Table 3 show examples of the models’
output. To make the model outputs easier to see, we
eliminate the repeated sentences in the table. The
mDiTag(-) model generates more detailed reports
than the other models. There are some abnormal
findings in the images and ground truth reports in
Table 2 and Table 3. The baseline model only
explains about the normal findings, while the
mDiTag(-) model produces some disease-related
sentences, but is not accurate. The outputs show

Model generation result
. no acute cardiopulmonary
Baseline . . .
abnormality the heart is normal in
Model :
size the lungs are clear
<num> no acute cardiopulmonary
abnormality <num> left midlung
mDiTag(-) subsegmental gtelectas1§ versus
scar the heart is normal in size the
Model Lo .
mediastinum is unremarkable no
pleural effusion or pneumothorax
no acute bony abnormality
no acute cardiopulmonary
mDiTag(+) ajbnormahty the heart is normal in
size the lungs are clear no focal
Model . S
airspace consolidation or pleural
<unk>
low lung volumes no acute
cardiopulmonary findings the
cardiomediastinal silhouette is
Ground stable lung volumes remain low
Truth there is no pleural line to suggest
Report pneumothorax or costophrenic
blunting to suggest large pleural
effusion bony structures are
within normal <unk>
Image

Table 3. The second example of the models'
outputs with corresponding ground truth report,
and image.
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that exploiting multiple feature differences allows
the model to generate a relatively diverse
explanation of the patient’s disease. However, the
output still produces general description and does
not present enough information about specific
features of the disease. As expected, there are
incorrect disease descriptions because the tag
prediction is not accurate. In addition, as there are
too many types of abnormal findings, the terms
become too rare to train the model adequately. The
components of the text generation part should be
modified to resolve the issue of the repeated
sentence. Another limitation of this paper is the
lack of human evaluation.

5 Conclusion

We propose models that exploit feature differences
and tag information. As expected, the model that
uses low-level convolutional features from the
CNN model can convey low-level details, such as
contrast, texture, and localized area. Some of our
models outperform the conventional image
captioning models in terms of BLEU score,
ROUGE-L, and CIDEr. The mDiTag(-) model
performs best according to every metric. Based on
these experiments, we can conclude that the feature
differences between images and semantic tags are
crucial elements necessary for training. In the
future, we will strengthen tags that contain
semantic information to extract keywords for more
accurate information, such as disease information,
location, and size. Furthermore, improving the
accuracy of multiple tag prediction is crucial to
deliver semantic facts accurately. We are also
considering obtaining more images from hospitals
to reduce the proportion of abnormal images in the
datasets.
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Abstract

Neural machine translation (NMT) has
achieved impressive performance recently
by using large-scale parallel corpora.
However, it struggles in the low-resource
and morphologically-rich scenarios of
agglutinative language translation task.
Inspired by the finding that monolingual
data can greatly improve the NMT
performance, we propose a multi-task
neural model that jointly learns to perform
bi-directional translation and agglutinative
language stemming. Our approach employs
the shared encoder and decoder to train a
single model without changing the standard
NMT architecture but instead adding a
token before each source-side sentence to
specify the desired target outputs of the two
different tasks. Experimental results on
Turkish-English and  Uyghur-Chinese
show that our proposed approach can
significantly improve the translation
performance on agglutinative languages by
using a small amount of monolingual data.

1 Introduction

Neural machine translation (NMT) has achieved
impressive performance on many high-resource
machine translation tasks (Bahdanau et al., 2015;
Luong et al., 2015a; Vaswani et al., 2017). The
standard NMT model uses the encoder to map the
source sentence to a continuous representation
vector, and then it feeds the resulting vector to the
decoder to produce the target sentence.

However, the NMT model still suffers from the
low-resource and morphologically-rich scenarios
of agglutinative language translation tasks, such as
Turkish-English and Uyghur-Chinese. Both
Turkish and Uyghur are agglutinative languages
with complex morphology. The morpheme
structure of the word can be denoted as: prefixI
+ ... + prefixN + stem + suffixIl + ... + suffixN
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(Ablimit et al., 2010). Since the suffixes have
many inflected and morphological variants, the
vocabulary size of an agglutinative language is
considerable even in small-scale training data.
Moreover, many words have different morphemes
and meanings in different context, which leads to
inaccurate translation results.

Recently, researchers show their great interest
in utilizing monolingual data to further improve
the NMT model performance (Cheng et al., 2016;
Ramachandran et al., 2017; Currey et al., 2017).
Sennrich et al. (2016) pair the target-side
monolingual data with automatic back-translation
as additional training data to train the NMT model.
Zhang and Zong (2016) use the source-side
monolingual data and employ the multi-task
learning framework for translation and source
sentence reordering. Domhan and Hieber (2017)
modify the decoder to enable multi-task learning
for translation and language modeling. However,
the above works mainly focus on boosting the
translation fluency, and lack the consideration of
morphological and linguistic knowledge.

Stemming is a morphological analysis method,
which is widely used for information retrieval tasks
(Kishida, 2005). By removing the suffixes in the
word, stemming allows the variants of the same
word to share representations and reduces data
sparseness. We consider that stemming can lead to
better generalization on agglutinative languages,
which helps NMT to capture the in-depth semantic
information. Thus we use stemming as an auxiliary
task for agglutinative language translation.

In this paper, we investigate a method to exploit
the monolingual data of the agglutinative language
to enhance the representation ability of the encoder.
This is achieved by training a multi-task neural
model to jointly perform bi-directional translation
and agglutinative language stemming, which
utilizes the shared encoder and decoder. We treat
stemming as a sequence generation task.
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Training data ‘ Bilingual Data ‘ ‘ Monolingual Data ‘

‘ <MT> + English sentence ‘

‘ <MT> + Turkish sentence ‘ »

‘ <ST> + Turkish sentence ‘

Turkish sentence
* English sentence
stem sequence

Figure 1: The architecture of the multi-task neural model
that jointly learns to perform bi-directional translation
between Turkish and English, and stemming for Turkish
sentence.

Encoder-Decoder
Framework

2 Related Work

Multi-task learning (MTL) aims to improve the
generalization performance of a main task by using
the other related tasks, which has been successfully
applied to various research fields ranging from
language (Liu et al., 2015; Luong et al., 2015a),
vision (Yim et al., 2015; Misra et al., 2016), and
speech (Chen and Mak, 2015; Kim et al., 2016).
Many natural language processing (NLP) tasks
have been chosen as auxiliary task to deal with the
increasingly complex tasks. Luong et al. (2015b)
employ a small amount of data of syntactic parsing
and image caption for English-German translation.
Hashimoto et al. (2017) present a joint MTL model
to handle the tasks of part-of-speech (POS) tagging,
dependency parsing, semantic relatedness, and
textual entailment for English. Kiperwasser and
Ballesteros (2018) utilize the POS tagging and
dependency parsing for English-German machine
translation. To the best of our knowledge, we are
the first to incorporate stemming task into MTL
framework to further improve the translation
performance on agglutinative languages.

Recently, several works have combined the
MTL method with sequence-to-sequence NMT
model for machine translation tasks. Dong et al.
(2015) follow a one-to-many setting that utilizes a
shared encoder for all the source languages with
respective attention mechanisms and multiple
decoders for the different target languages. Luong
et al. (2015b) follow a many-to-many setting that
uses multiple encoders and decoders with two
separate unsupervised objective functions. Zoph
and Knight (2016) follow a many-to-one setting
that employs multiple encoders for all the source
languages and one decoder for the desired target
language. Johnson et al. (2017) propose a more
simple method in one-to-one setting, which trains
a single NMT model with the shared encoder and
decoder in order to enable multilingual translation.
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The method requires no changes to the standard
NMT architecture but instead requires adding a
token at the beginning of each source sentence to
specify the desired target sentence. Inspired by
their work, we employ the standard NMT model
with one encoder and one decoder for parameter
sharing and model generalization. In addition, we
build a joint vocabulary on the concatenation of the
source-side and target-side words.

Several works on morphologically-rich NMT
have focused on using morphological analysis to
pre-process the training data (Luong et al., 2016;
Huck et al., 2017; Tawfik et al., 2019). Gulcehre et
al. (2015) segment each Turkish sentence into a
sequence of morpheme units and remove any non-
surface morphemes for Turkish-English translation.
Ataman et al. (2017) propose a vocabulary
reduction method that considers the morphological
properties of the agglutinative language, which is
based on the unsupervised morphology learning.
This work takes inspiration from our previously
proposed segmentation method (Pan et al., 2020)
that segments the word into a sequence of sub-
word units with morpheme structure, which can
effectively reduce language complexity.

3 Multi-Task Neural Model

3.1 Overview

We propose a multi-task neural model for machine
translation from and into a low-resource and
morphologically-rich agglutinative language. We
train the model to jointly learn to perform both the
bi-directional translation task and the stemming
task on an agglutinative language by using the
standard NMT framework. Moreover, we add an
artificial token before each source sentence to
specify the desired target outputs for different tasks.
The architecture of the proposed model is shown in
Figure 1. We take the Turkish-English translation
task as example. The “<MT>" token denotes the
bilingual translation task and the “<ST>" token
denotes the stemming task on Turkish sentence.

3.2 Neural Machine Translation (NMT)

Our proposed multi-task neural model on using the
source-side monolingual data for agglutinative
language translation task can be applied in any
NMT structures with encoder-decoder framework.
In this work, we follow the NMT model proposed
by Vaswani et al. (2017), which is implemented as
Transformer. We will briefly summarize it here.



Task | Data | # Sent | # Src #Trg
Tr-En | train | 355,251 | 6,356,767 | 8,021,161
valid | 2,455 37,153 52,125
test | 4,962 69,006 96,291
Uy- train | 333,097 | 6,026,953 | 5,748,298
Ch valid | 700 17,821 17,085
test 1,000 20,580 18,179

Table 1: The statistics of the training, validation, and
test datasets on Turkish-English and Uyghur-Chinese
machine translation tasks. The “# Src” denotes the
number of the source tokens, and the “# Trg” denotes
the numbers of the target tokens.

bir dilin sonkendisiyle birlikte mezara

Morpheme Segmentation
hece+ler+it+ni

l Stem+Combined Suffix
hecetlerini
l Apply BPE on Stem

he@@+ce@@-+lerini

Figure 2: The example of morphological segmentation
method for the word in Turkish.

Firstly, the Transformer model maps the source
sequence X = (xq, ..., X;,) and the target sentence
y = (y1,...,Yy) into a word embedding matrix,
respectively. Secondly, in order to make use of the
word order in the sequence, the above word
embedding matrices sum with their positional
encoding matrices to generate the source-side and
target-side positional embedding matrices. The
encoder is composed of a stack of N identical
layers. Each layer has two sub-layers consisting of
the multi-head self-attention and the fully
connected feed-forward network, which maps the
source-side positional embedding matrix into a
representation vector.

The decoder is also composed of a stack of N
identical layers. Each layer has three sub-layers:
the multi-head self-attention, the multi-head
attention, and the fully connected feed-forward
network. The multi-head attention attends to the
outputs of the encoder and decoder to generate a
context vector. The feed-forward network followed
by a linear layer maps the context vector into a
vector with the original space dimension. Finally,
the softmax function is applied on the vector to
predict the target word sequence.

! https://wit3.fbk.eu/archive/2018-01/additional TED_ xml/
2 http://data.statmt.org/wmt18/translation-task/
3 http://uy.ts.cn/
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4 Experiment

4.1

The statistics of the training, validation, and test
datasets on Turkish-English and Uyghur-Chinese
machine translation tasks are shown in Table 1.

For the Turkish-English machine translation,
following (Sennrich et al., 2015a), we use the WIT
corpus (Cettolo et al., 2012) and the SETimes
corpus (Tyers and Alperen, 2010) as the training
dataset, merge the dev2010 and tst2010 as the
validation dataset, and use tst2011, tst2012, tst2013,
tst2014 from the IWSLT as the test datasets. We
also use the talks data from the IWSLT evaluation
campaign' in 2018 and the news data from News
Crawl corpora® in 2017 as external monolingual
data for the stemming task on Turkish sentences.

For the Uyghur-Chinese machine translation, we
use the news data from the China Workshop on
Machine Translation in 2017 (CWMT2017) as the
training dataset and validation dataset, use the
news data from CWMT2015 as the test dataset.
Each Uyghur sentence has four Chinese reference
sentences. Moreover, we use the news data from
the Tianshan website® as external monolingual data
for the stemming task on Uyghur sentences.

Dataset

4.2 Data Preprocessing

We normalize and tokenize the experimental data.
We utilize the jieba toolkit* to segment the Chinese
sentences, we utilize the Zemberek toolkit® with
morphological disambiguation (Sak et al., 2007)
and the morphological analysis tool (Tursun et al.,
2016) to annotate the morpheme structure of the
words in Turkish and Uyghur, respectively.

We use our previously proposed morphological
segmentation method (Pan et al., 2020), which
segments the word into smaller subword units with
morpheme structure. Since Turkish and Uyghur
only have a few prefixes, we combine the prefixes
with stem into the stem unit. As shown in Figure 2,
the morpheme structure of the Turkish word
“hecelerini”’ (syllables) is: hece + lerini. Then the
byte pair encoding (BPE) technique (Sennrich et
al., 2015b) is applied on the stem unit “hece” to
segment it into “he@@” and “ce@@”. Thus the
Turkish word is segmented into a sequence of sub-
word units: he@@ + ce@@ + lerini.

4 https://github.com/fxsjy/jicba
3 https://github.com/ahmetaa/zemberek-nlp



Task Training Sentence Samples
En-Tr <MT> We go through initiation
Translation | rit@@ es.

Basla@@ ma ritiel@@ lerini

yas@@ 1yoruz.
Tr-En <MT> Basla@@ ma ritiel@@
Translation | lerini yas@(@ tyoruz.

We go through initiation rit@@ es.
Turkish <ST> Basla@(@ maritiiel @@ lerini
Stemming | yas@@ 1yoruz.

Basla@@ ritiel@@ yas@@

Table 2: The training sentence samples for multi-task
neural model on Turkish-English machine translation
task. We add “<MT>" and “<ST>" before each source
sentence to specify the desired target outputs for
different tasks.

Lang | Method | # Merge | Vocab | Avg.Len
Tr Morph 15K 36,468 | 28
Tr BPE 36K 36,040 | 22
En BPE 32K 31,306 | 25
Uy Morph 10K 38,164 | 28
Uy BPE 38K 38,292 | 21
Ch BPE 32K 40,835 | 19

Table 3: The detailed statistics of using different word
segmentation methods on Turkish, English, Uyghur,
and Chinese.

In this paper, we utilize the above morphological
segmentation method for our experiments by
applying BPE on the stem units with 15K merge
operations for the Turkish words and 10K merge
operations for the Uyghur words. The standard
NMT model trained on this experimental data is
denoted as “baseline NMT model”. Moreover, we
employ BPE to segment the words in English and
Chinese by learning separate vocabulary with 32K
merge operations. Table 2 shows the training
sentence samples for multi-task neural model on
Turkish-English machine translation task.

In addition, to certify the effectiveness of the
morphological segmentation method, we employ
the pure BPE to segment the words in Turkish and
Uyghur by learning a separate vocabulary with
36K and 38K merge operations, respectively. The
standard NMT model trained on this experimental
data is denoted as “general NMT model”. Table 3
shows the detailed statistics of using different word
segmentation methods on Turkish, English,
Uyghur, and Chinese. The “Vocab” token denotes
the vocabulary size after data preprocessing. The
“Avg.Len” token denotes the average sentence
length.
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4.3 Training and Evaluation Details

We employ the Transformer model implemented in
the Sockeye toolkit (Hieber et al., 2017). The
number of layer in both the encoder and decoder is
set to N=6, the number of head is set to 8, and the
number of hidden unit in the feed-forward network
is set to 1024. We use an embedding size of both
the source and target words of 512 dimension, and
use a batch size of 128 sentences. The maximum
sentence length is set to 100 tokens with 0.1 label
smoothing. We apply layer normalization and add
dropout to the embedding and transformer layers
with 0.1 probability. Moreover, we use the Adam
optimizer (Kingma and Ba, 2015) with an initial
learning rate of 0.0002, and save the checkpoint
every 1500 updates.

Model training process stops after 8 checkpoints
without improvements on the validation perplexity.
Following Niu et al. (2018a), we select the 4 best
checkpoint based on the validation perplexity
values and combine them in a linear ensemble for
decoding. Decoding is performed by using beam
search with a beam size of 5. We evaluate the
machine translation performance by using the
case-sensitive BLEU score (Papineni et al., 2002)
with standard tokenization.

4.4 Neural Translation Models

In this paper, we select 4 neural translation models
for comparison. More details about the models are
shown below:

General NMT Model: The standard NMT model
trained on the experimental data segmented by
BPE.

Baseline NMT Model: The standard NMT model
trained on the experimental data segmented by
morphological segmentation. The following
models also use this word segmentation method.
Bi-Directional NMT Model: Following Niu et al.
(2018b), we train a single NMT model to perform
bi-directional machine translation. We concatenate
the bilingual parallel sentences in both directions.
Since the source and target sentences come from
the same language pairs, we share the source and
target vocabulary, and tie their word embedding
during model training.

Multi-Task Neural Model: We simply use the
monolingual data of the agglutinative language
from the bilingual parallel sentences. We use a joint
vocabulary, tie the word embedding as well as the
output layer’s weight matrix.



Task | Model tstll | tst12 | tst13 | tst14
Tr- general 2592 | 26.55 | 27.34 | 26.35
En baseline | 26.48 | 27.02 | 27.91 | 26.33
En- | general 13.73 | 14.68 | 13.84 | 14.65
Tr baseline | 14.85 | 15.93 | 15.45 | 15.93

Table 4: The BLEU scores of the general NMT model
and baseline NMT model on the machine translation
task between Turkish and English.

Task | Model tstll | tst12 | tst13 | tstl4
Tr- baseline 2648 | 27.02 | 27.91 | 26.33
En bi- 26.21 | 27.17 | 28.68 | 26.90
directional
multi-task | 26.82 | 27.96 | 29.16 | 27.98
En- | baseline 14.85 | 1593 | 15.45 | 15.93
Tr bi- 15.08 | 16.20 | 16.25 | 16.56
directional
multi-task | 15.65 | 17.10 | 16.35 | 16.41
Table 5: The BLEU scores of the baseline NMT model,

bi-directional NMT model, and multi-task neural
model on the machine translation task between Turkish
and English.

5 Results and Discussion

Table 4 shows the BLEU scores of the general
NMT model and baseline NMT model on machine
translation task. We can observe that the baseline
NMT model is comparable to the general NMT
model, and it achieves the highest BLEU scores on
almost all the test datasets in both directions, which
indicates that the NMT baseline based on our
proposed segmentation method is competitive.

5.1 Using Original Monolingual Data

Table 5 shows the BLEU scores of the baseline
NMT model, bi-directional NMT model, and
multi-task neural model on the machine translation
task between Turkish and English. The table shows
that the multi-task neural model outperforms both
the baseline NMT model and bi-directional NMT
model, and it achieves the highest BLEU scores on
almost all the test datasets in both directions, which
suggests that the multi-task neural model is capable
of improving the bi-directional translation quality
on agglutinative languages. The main reason is that
compared with the bi-directional NMT model, our
proposed multi-task neural model additionally
employs the stemming task for the agglutinative
language, which is effective for the NMT model to
learn both the source-side semantic information
and the target-side language modeling.
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Figure 3: The function of epochs (x-axis) and perplexity
(y-axis) values on the validation dataset in different
neural translation models for the translation task.

Translation Examples

source iiniversite hayat1 taklit ediyordu.
reference | College was imitating life.

baseline It was emulating a university life.

bi- The university was emulating its
directional | lives.

multi-task | The university was imitating life.

Table 6: A translation example for the different NMT
models on Turkish-English.

The function of epochs and perplexity values on
the validation dataset in different neural translation
models are shown in Figure 3. We can see that the
perplexity values are consistently lower on the
multi-task neural model, and it converges rapidly.

Table 6 shows a translation example for the
different models on Turkish-English. We can see
that the translation result of the multi-task neural
model is more accurate. The Turkish word “taklit”
means “imitate” in English, both the baseline NMT
and bi-directional NMT translate it into a synonym
“emulate”. However, they are not able to express
the meaning of the sentence correctly. The main
reason is that the auxiliary task of stemming forces
the proposed model to focus more strongly on the
core meaning of each word (or stem), therefore
helping the model make the correct lexical choices
and capture the in-depth semantic information.

5.2 Using External Monolingual Data

Moreover, we evaluate the multi-task neural model
on using external monolingual data for Turkish
stemming task. We employ the parallel sentences
and the monolingual data in a 1-1 ratio, and shuffle
them randomly before each training epoch. More
details about the data are shown below:



Task | Data tstll | tstl12 | tst13 | tstl4
Tr-En | original | 26.82 | 27.96 | 29.16 | 27.98
talks 26.55 | 27.94 | 29.13 | 28.02
news 26.47 | 28.18 | 28.89 | 27.40
mixed | 26.60 | 27.93 | 29.58 | 27.32
En-Tr | original | 15.65 | 17.10 | 16.35 | 16.41
talks 15.57 | 16.97 | 16.22 | 16.91
news 15.67 | 17.19 | 16.26 | 16.69
mixed | 15.96 | 17.35 | 16.55 | 16.89

Table 7: The BLEU scores of the multi-task neural
model on using external monolingual data of talks data,
news data, and mixed data.

Task Model BLEU

Uy-Ch | general NMT model 35.12
baseline NMT model 35.46
multi-task neural model with | 36.47
external monolingual data

Ch-Uy | general NMT model 21.00
baseline NMT model 21.57
multi-task neural model with | 23.02
external monolingual data

Table 8: The BLEU scores of the general NMT model,
baseline NMT model, and the multi-task neural model
with external monolingual data on Uyghur-Chinese
and Chinese-Uyghur machine translation tasks.

Original Data: The monolingual data comes from
the original bilingual parallel sentences.
Talks Data: The monolingual data contains talks.
News Data: The monolingual data contains news.
Talks and News Mixed Data: The monolingual
data contains talks and news in a 3:4 ratio as the
same with the original bilingual parallel sentences.
Table 7 shows the BLEU scores of the proposed
multi-task neural model on using different external
monolingual data. We can see that there is no
obvious difference on Turkish-English translation
performance by using different monolingual data,
whether the data is in-domain or out-of-domain to
the test dataset. However, for the English-Turkish
machine translation task, which can be seen as
agglutinative language generation task, using the
mixed data of talks and news achieves further
improvements of the BLEU scores on almost all
the test datasets. The main reason is that the
proposed multi-task neural model incorporates
many morphological and linguistic information of
Turkish rather than that of English, which mainly
pays attention to the source-side representation
ability on agglutinative languages rather than the
target-side language modeling.
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We also evaluate the translation performance of
the general NMT model, baseline NMT model, and
multi-task neural model with external news data on
the machine translation task between Uyghur and
Chinese. The experimental results are shown in
Table 8. The results indicate that the multi-task
neural model achieves the highest BLEU scores on
the test dataset by utilizing external monolingual
data for the stemming task on Uyghur sentences.

6 Conclusions

In this paper, we propose a multi-task neural model
for translation task from and into a low-resource
and morphologically-rich agglutinative language.
The model jointly learns to perform bi-directional
translation and agglutinative language stemming
by utilizing the shared encoder and decoder under
standard NMT framework. Extensive experimental
results show that the proposed model is beneficial
for the agglutinative language machine translation,
and only a small amount of the agglutinative data
can improve the translation performance in both
directions. Moreover, the proposed approach with
external monolingual data is more useful for
translating into the agglutinative language, which
achieves an improvement of +7.42 BLEU points
for translation from English into Turkish and +1.45
BLEU points from Chinese into Uyghur.

In future work, we plan to utilize other word
segmentation methods for model training. We also
plan to combine the proposed multi-task neural
model with back-translation method to enhance the
ability of the NMT model on target-side language
modeling.
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Abstract

Recently, state-of-the-art NLP models gained
an increasing syntactic and semantic under-
standing of language, and explanation meth-
ods are crucial to understand their decisions.
Occlusion is a well established method that
provides explanations on discrete language
data, e.g. by removing a language unit from an
input and measuring the impact on a model’s
decision. We argue that current occlusion-
based methods often produce invalid or syntac-
tically incorrect language data, neglecting the
improved abilities of recent NLP models. Fur-
thermore, gradient-based explanation methods
disregard the discrete distribution of data in
NLP. Thus, we propose OLM: a novel expla-
nation method that combines occlusion and
language models to sample valid and syntac-
tically correct replacements with high likeli-
hood, given the context of the original input.
We lay out a theoretical foundation that alle-
viates these weaknesses of other explanation
methods in NLP and provide results that under-
line the importance of considering data likeli-
hood in occlusion-based explanation. !

1 Introduction

Explanation methods are a useful tool to analyze
and understand the decisions made by complex non-
linear models, e.g. neural networks. For example,
they can attribute relevance scores to input features
(e.g. word or sub-word units in NLP). Nevertheless,
explanation methods can be misleading (Adebayo
et al., 2018) and they need to be analyzed for their
well-foundedness.

Gradient-based methods provide explanations by
analyzing local infinitesimal changes to determine
the shape of a network’s function. The implicit
assumption is that the local shape of a function is

'Our experiments are available at https://github.
com/DFKI-NLP/OLM
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Figure 1: Schematic display of data likelihood in NLP.
There are discrete inputs, i.e. combination of tokens,
with a data likelihood greater than zero. All other in-
puts in the embedding space have likelihood zero be-
cause they have no corresponding tokens. Occlusion
methods (green) create unlikely input. Gradient-based
explanation methods (red arrow) consider infinitesimal
changes to the input and thus data with no likelihood.

indicative or useful to calculate the relevance of an
input feature for a model’s prediction. In computer
vision, for example, infinitesimal changes to an
input image still produce another valid image and
the change in prediction is a valid tool to analyze
what led to it (e.g., Zintgraf et al., 2017). The same
applies to methods that analyze the function’s gradi-
ent at multiple points, such as Integrated Gradients
(Sundararajan et al., 2017).

In NLP, however, the input consists of natural
language, which is discrete, i.e., the data that has
positive likelihood is a discrete distribution (see
Figure 1). This means that local neighborhoods
need not be indicative of the model’s prediction be-
haviour and a model’s prediction function at points
with zero likelihood need not be relevant to the
model’s decision. Thus, we argue that black-box
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Method Relevances Max. value
OLM (ours) forced , familiar and thoroughly 0.76
OLM-S (ours) WOREA . familior and thoroughly 0.47
Delete forced , familiar and thoroughly 1

UNK forced , familiar and thoroughly 0.35
Sensitivity Analysis | forced , familiar and ' thoroughly 0.025
Gradient*Input - , familiar and - 0.00011
Integrated Gradients | forced , familiar and thoroughly 0.68

Table 1: Relevance scores of different gradient- and occlusion-based explanation methods for a sentence from
the SST-2 dataset, correctly classified as negative sentiment by RoBERTa. Red indicates an input token, with a
contribution to the true label (negative sentiment), blue indicates a detraction from the true label. Coloring are
normalized for each method for visibility, the maximum value of each method is indicated in the last column. The
relevances of the first four and last method can be interpreted as prediction difference if that token is missing
(see Sensitivity-1 in 2.1). The first token “forced” only has high relevance for our methods, the most commonly
resampled tokens can be found in Table 2. Punctuation marks have less relevance than words for our method

compared to gradient methods.

models in NLP should be analyzed only at inputs
of non-zero likelihood and explanation methods
should not rely on gradients.

Occlusion is a well suited method due to its abil-
ity to produce explanations on data with discrete
likelihood. For example, by replacing or deleting a
language unit in the original input and measuring
the impact on the model’s prediction. However, the
likelihood of the replacement data is usually low.
Consider, for example, a sentiment classification
task and assume a model that assigns syntactically
incorrect inputs a negative sentiment. It correctly
predicts “It ’s a masterpiece .” as positive, but as-
signs negative sentiment to syntactically incorrect
inputs produced by occlusion, e.g. “Itf 's a.” or
“It ’s a <UNK> .”, which have low data likelihood
(see Figure 1). This may result in a large prediction
difference for many tokens in a positive sentiment
example and no prediction difference for many to-
kens in a negative sentiment example (see Table 1),
independent of whether they carry any sentiment
information and thus may be relevant to the model.
This example shows that the relevance attributed
by current occlusion-based methods may depend
solely on the model’s syntactic understanding in-
stead of the input feature’s information regarding
the task.

We argue that current NLP state-of-the-art mod-
els have increasing syntactic (Hewitt and Manning,
2019) and hierarchical (Liu et al., 2019a) under-
standing. Therefore, methods that explain these
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models should consider syntactically correct re-
placement that is likely given the unit’s context,
e.g. in Figure 1 “classic” or “failure” as replace-
ments for “masterpiece” in “It ’s a masterpiece .”
Our experiments show that presenting these models
with perturbed ungrammatical input changes the
explanations.

1.1 Contributions

e We present OLM, a novel black-box relevance
explanation method which considers syntactic
understanding. It is suitable for any model that
performs an NLP classification task and we an-
alyze which axioms for explanation methods it
fulfills.

e We introduce the class zero-sum axiom for ex-
planation methods.

e We experimentally compare the relevances pro-
duced by our method to those of other black-box
and gradient-based explanation approaches.

2 Methods

In this section, we introduce our novel explana-
tion method that combines occlusion with language
modeling. Instead of deleting or replacing a linguis-
tic unit in the input with an unlikely replacement,
OLM substitutes it with one generated by a lan-
guage model. This produces a contextualized dis-
tribution of valid and syntactically likely reference
inputs and allows a more faithful analysis of mod-
els with increasing syntactic capabilities. This is



followed by an axiomatic analysis of OLM’s prop-
erties. Finally, we introduce OLM-S, an extension
that measures sensitivity of a model at a feature’s
position.

For our approach we employ the difference of
probabilities formula from Robnik—éikonja and
Kononenko (2008). Let x; be an attribute of in-
put z and z\; the incomplete input without this
attribute. Then the relevance r given the prediction
function f and class c is

rfe(Ti) = fe(x) = fe(2\i)- (1)

Note that f.(w\;) is not accurately defined and
needs to be approximated, as \; is an incomplete
input. For vision, Zintgraf et al. (2017) approxi-
mate f.(z\;) by using the input data distribution
Ddata to sample z; independently of = or use a
Gaussian distribution for Z; conditioned on sur-
rounding pixels. We argue sampling should be
conditioned on the whole input and depend on the
probability of the data distribution. We argue that
in NLP a language model py s generates input that
is as natural as possible for the model and thus
approximate

fel@ng) =) pra(Elang) fol(ny, 2i).

Ty

2)

In general, x; should be units of interest such as
phrases, words or subword tokens. Thus, OLM’s
relevance for a language unit is the difference in
prediction between the original input and inputs
with the unit resampled by conditioning on infor-
mation in its context. The relevance of every lan-
guage unit is in the interval [—1, 1], with the sign
indicating contradiction or support, and can be in-
terpreted as the value of information added by the
unit for the model.

2.1 Axiomatic Analysis

Sundararajan et al. (2017) introduced axiomatic
development and analysis of explanation meth-
ods. We follow their argument that an explanation
method should be derived theoretically, not experi-
mentally, as we want to analyze a model, not our
understanding of it. First, we introduce a new ax-
iom. Then we discuss which existing axioms our
method fulfills.?

Class Zero-Sum Axiom. We introduce an ax-
iom that follows from the intuition that for a nor-
malized DNN every input feature contributes as

2Proofs for the following analysis can be found in Ap-
pendix A.
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token freq. | pred. token freq. | pred.
familiar | 9 1 old 2 1
warm 4 Te-4 perfect 2 3.9e-4
ancient 3 0.074 quiet 2 1

cold 3 1 real 2 6.5¢e-3
beautiful | 2 1.4e-4 || sweet 2 1.9e-4
bold 2 0.63 wonderful | 2 3.1e-4
low 2 1 yes 2 1

nice 2 8.3e-4 || young 2 0.99

Table 2: Most frequently resampled words for “forced”
in “forced , familiar and thoroughly condescending .”
from Table 1. The last column indicates the prediction
of the negative sentiment neuron, which is the true la-
bel. We sample 100 times per token, the prediction
is rounded to two significant digits. Many resampled
words (pred. < 0.5) lead to a positive sentiment classi-
fication. The high variance of the model prediction for
replacements of this token is not captured by another
method.

much to a specific class as it detracts from all other
classes. Let f be a prediction function where the
output is normalized over all classes C. Every
input feature contributes as much to the classifi-
cation of a specific class as it detracts from other
classes. A relevance method that gives a feature
positive relevance for every class is not helpful in
understanding the model. An explanation method
satisfies Class Zero-Sum if the summed relevance
of each input feature x; over all classes is zero.

Z rre(xi) =0

ceC

3)

This axiom can be seen as an alternative to the
Completeness axiom given by Bach et al. (2015).
Completeness states that the sum of the relevances
of an input is equal to its prediction. They can not
be fulfilled simultaneously. Gosiewska and Biecek
(2019) show that a linear distribution of relevance
as with Completeness is not necessarily desirable
for non-linear models. They argue that explana-
tions that force the sum of relevances to be equal
to the prediction do not capture the interaction of
features faithfully. OLM fulfills Class Zero-Sum, as
do other occlusion methods and gradient methods.
Other axioms OLM fulfills are:

Implementation Invariance. Two neural net-
works that represent the same function, i.e. give the
same output for each possible input, should receive
the same relevances for every input (Sundararajan
et al., 2017).

Linearity. A network, which is a linear com-
bination of other networks, should have explana-
tions which are the same linear combination of the



original networks explanations (Sundararajan et al.,
2017).

Sensitivity-1. The relevance of an input variable
should be the difference of prediction when the
input variable is occluded (Ancona et al., 2018).

2.2 OLM-S

From our approach we can also deduce a method
that describes the sensitivity of the classification
at the position of an input feature. To this end,
we compute the standard deviation of the language
model predictions.

sfe(wi) = \/ZPLM(MHSV) (felani, &) — ,LL)Q,

Z;

“4)
where p is the mean value from equation 2. We
call this OLM-S(ensitivity). Note that this measure
is independent of x; and only describes the sen-
sitivity of the feature’s position. This means that
it measures a model’s sensitivity at a given lan-
guage unit’s position given the context. OLM and
OLM-S are thus using mean and standard deviation,
respectively, of the prediction when resampling a
token.

3 Experiments

In our experiments, we aim to answer the following
question: Do relevances produced by our method
differ from those that either ignore the discrete
structure of language data or produce syntactically
incorrect input, and if so, how?

We first train a state-of-the-art NLP model
(RoBERTa, Liu et al., 2019b) on three sentence
classification tasks (Section 3.2). We then compare
the explanations produced by OLM and OLM-S to
five occlusion and gradient-based methods (Sec-
tion 3.1). To this end, we calculate the relevances
of words over a whole input regarding the true label.
We calculate the Pearson correlation coefficients
of these relevances for every sentence and average
this over the whole development set of each task. In
our experiments we use BERT base (Devlin et al.,
2019) for OLM resampling.

3.1 Baseline Methods

We compare OLM with occlusion (Robnik-Sikonja
and Kononenko, 2008; Zintgraf et al., 2017) in
two variants. One method of occlusion is deletion
of the word. The other method is replacing the
word with the <UNK> token for unknown words.

These methods can produce ungrammatical input,
as we argue in Section 1.

Furthermore, we compare with the following
gradient-based methods. Sensitivity Analysis (Si-
monyan et al., 2013) is the absolute value of the
gradient. Gradient*Input (Shrikumar et al., 2016)
is simple component-wise multiplication of an in-
put with its gradient. Integrated Gradients (Sun-
dararajan et al., 2017) integrate the gradients from
a reference input to the current input. As these
gradient-based methods provide relevance for ev-
ery word vector value, we sum up all vector values
belonging to a word. Gradient-based methods do
not consider likelihood in NLP (see Section 1) and
are thus also merely a comparison and not a gold
standard.

3.2 Tasks

We select a representative set of NLP sentence clas-
sification tasks that focus on different aspects of
context and linguistic properties:

MNLI (matched) The Multi-Genre Natural
Language Inference Corpus (Williams et al., 2018)
contains 400k pairs of premise and hypothesis sen-
tences and the task is to predict whether the premise
entails the hypothesis. We re-use the RoBERTa
large model fine-tuned on MNLI (Liu et al., 2019b),
with a dev set accuracy of 90.2.

SST-2 The Stanford Sentiment Treebank
(Socher et al., 2013) contains 70k sentences labeled
with positive or negative sentiment. We fine-tune
the pre-trained RoBERTa base to the classification
task and achieve an accuracy of 94.5 on the dev set.

CoLA The Corpus of Linguistic Acceptability
(Warstadt et al., 2018) contains 10k sentences la-
beled as grammatical or ungrammatical, e.g. “They
can sing.” (acceptable) vs. ‘many evidence was
provided.” (unacceptable). Similar to SST-2, we
fine-tune RoBERTa base to the task and achieve a
Matthew’s corr. of 61.3 on the dev set.

3.3 Results

Table 3 shows the correlation of our two proposed
occlusion methods (OLM and OLM-S) with other
explanation methods on three NLP tasks. For
OLM-S we only report correlation to Sensitivity
because both inform about the magnitude of possi-
ble change. They both provide non-negative values
and therefore are not necessarily comparable to the
other methods. We find that across all tasks OLM
correlates the most with the two occlusion-based
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MNLI

SST-2 CoLA
OLM OLM-S OLM OLM-S OLM OLM-S
0.52 - 0.25 -
0.47 - 0.21 -
0.30 0.37 0.20 0.29
0.02 - 0.02 -
0.35 - 0.15 -

Delete 0.60 -
UNK 0.58 -
Sensitivity Analysis  0.27 0.35
Gradient*Input -0.03 -
Integrated Gradients  0.28 -

Table 3: Correlation between explanation methods on MNLI, SST-2, and CoL A development sets. OLM correlates
with every method except for Gradient*Input. The correlation is highest with the other Occlusion methods for
MNLI and SST-2 but not close to 1. For all methods, the correlation is lowest on CoLA.

methods (Unk and Delete) but the overall corre-
lation is low, with a maximum of 0.6 on MNLI.
Also the level differs greatly between tasks, rang-
ing from 0.21 and 0.25 (Unk, Delete) on CoLA
to 0.58 and 0.6 on MNLI. As this is an average
of correlations, this shows that resampling creates
distinctive explanations that can not be approxi-
mated by other occlusion methods. An example
input from SST-2 can be found in Table 1, which
clearly highlights the difference in explanations.
Table 2 shows the corresponding tokens resampled
by OLM, using BERT base as the language model.
For gradient-based methods the correlation with
OLM is even lower, ranging from -0.03 for Gradi-
ent*Input on MNLI to 0.35 for Integrated Gradi-
ents on SST-2. For OLM-S we observe a correlation
between 0.29 (CoLA) and 0.35 (MNLI), which is
still low. Gradient*Input shows almost no corre-
lation to OLM across tasks. The overall low cor-
relation of gradient-based methods with OLM and
OLM-S suggests that ignoring the discrete structure
of language data might be problematic in NLP.

4 Related Work

There exist many other popular black-box expla-
nation methods for DNNs. SHAP (Lundberg and
Lee, 2017) is a framework that uses Shapley Values
which are a game-theoretic black-box approach to
determining relevance by occluding subsets of all
features. They do not necessarily consider the like-
lihood of data. The occlusion SHAP employs may
be combined with OLM but the approximation er-
ror of the language model could increase with more
features occluded. LIME (Ribeiro et al., 2016) ex-
plains by learning a local explainable model. LIME
tries to be locally faithful to a model, which is,
as we argue, not as important as likely data for
explanations in NLP.
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There are also explanation methods for DNNs
which give layer-specific rules to retrieve relevance.
LRP (Bach et al., 2015) propagates relevance from
the output to the input such that Completeness is sat-
isfied for every layer. DeepLIFT (Shrikumar et al.,
2017) compares the activations of an input with
activations reference inputs. In contrast to OLM,
these layer-specific explanation methods have been
shown not to satisfy Implementation Invariance
(Sundararajan et al., 2017).

Most state-of-the-art models in NLP are trans-
formers which use attention. There is a discus-
sion on whether attention weights (Bahdanau et al.,
2015; Vaswani et al., 2017) should be considered
as explanation method in Jain and Wallace (2019)
and Wiegreffe and Pinter (2019). They are not
based on an axiomatic attribution of relevances.
It is unclear whether they satisfy any axiom. An
advantage to analyzing attention weights is that
attention weights naturally show what the model
does. Thus, even if they do not always provide a
faithful explanation, their analysis might be helpful
for a specific input.

5 Conclusion

We argue that current black-box and gradient-based
explanation methods do not yet consider the like-
lihood of data and present OLM, a novel expla-
nation method, which uses a language model to
resample occluded words. It is especially suited for
word-level relevance of sentence classification with
state-of-the-art NLP models. We also introduce the
Class Zero-Sum Axiom for explanation methods,
compare it with an existing axiom. Furthermore,
we show other axioms that OLM satisfies. We ar-
gue that with this more solid theoretical foundation
OLM can be regarded as an improvement over ex-
isting NLP classification explanation methods. In



our experiments, we compare our methods to other
occlusion and gradient explanation methods. We
do not consider these experiments to be exhaustive.
Unfortunately, there is no general evaluation for
explanation methods.

We show that our method adds value by showing
distinctive results and better founded theory. A
practical difficulty of OLM is the approximation
with a language model. First, a language model
can create syntactically correct data, that does not
make sense for the task. Second, even state-of-
the-art language models do not always produce
syntactically correct data. However, we argue that
using a language model is a suitable way for finding
reference inputs.

In the future, we want to extend this method to
language features other than words. NLP tasks
with longer input are probably not very sensitive to
single word occlusion, which could be measured
with OLM-S.
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A Proof Appendix

Let f be a neural network that predicts a probability
distribution over classes C,i.e. Y .o fe(z) = 1.
Let x = (z1, ..., ;) be a input split into n input
features.

1. Class Zero-Sum and Completeness rule
each other out. Assume 7 . fulfills both, then we

have .
Z Z rf,c(xi) =0
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)
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from Class Zero-Sum and
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from Completeness. Contradiction.

2. OLM satisfies Class Zero-Sum. Let 7y
now be the OLM relevance method from equations
(1) and (2) in the paper.
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3. OLM satisfies Implementation Invariance.
OLM is a black box method and only evaluates
the function of the neural network. Thus, it has to
satisfy Implementation Invariance.

4. OLM satisfies Sensitivity-1. OLM is defined
as an Occlusion method, so it necessarily gives the
difference of prediction when an input variable is
occluded.

5. OLM satisfies Linearity. Let f
> i1 ajg’ be a linear combination of models.
Then we have
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Abstract

Current models of dialogue mainly focus on
utterances within a topically coherent dis-
course segment, rather than new-topic utter-
ances (NTUs), which begin a new topic not
correlating with the content of prior discourse.
As a result, these models may sufficiently ac-
count for discourse context of task-oriented
but not social conversations. We conduct a
pilot annotation study of NTUs as a first step
towards a model capable of rationalizing con-
versational coherence in social talk. We start
with the naturally occurring social dialogues in
the Disco-SPICE corpus, annotated with dis-
course relations in the Penn Discourse Tree-
bank (PDTB) and Cognitive approach to Co-
herence Relations (CCR) frameworks. We
first annotate content-based coherence rela-
tions that are not available in Disco-SPICE,
and then heuristically identify NTUs, which
lack a coherence relation to prior discourse.
Based on the interaction between NTUs and
their discourse context, we construct a clas-
sification for NTUs that actually convey cer-
tain non-topical coherence in social talk. This
classification introduces new sequence-based
social intents that traditional taxonomies of
speech acts do not capture. The new find-
ings advocates the development of a Bayesian
game-theoretic model for social talk.'

1 Introduction and Background

Social talk or casual conversation, one of the most
popular instances of spontaneous discourse, is com-
monly defined as the speech event type in which
“all participants have the same role: to be “equals;”
no purposes are pre-established; and the range of
possible topics is open-ended, although convention-
ally constrained” (Scha et al., 1986). Even though
we do not establish any purposes in terms of infor-
mation exchange or practical tasks, we do share

'The live version of this publication is located at
https://osf.io/nvtkq/.
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certain social goal from the back of our mind when
deciding to engage in a casual conversation. This
work rests upon the assumption that casual con-
versations can be modeled as goal-directed ratio-
nal interactions, similar to task-oriented conversa-
tions, and therefore both of these types demonstrate
Grice’s Cooperative Principle, i.e. conversational
moves are constrained by “a common purpose or
set of purposes, or at least a mutually accepted di-
rection” which “may be fixed from the start” or
“evolve during the exchange”, “may be fairly defi-
nite” or “so indefinite as to leave very considerable
latitude to the participant” (Grice, 1975). A similar
assumption is made in Grosz and Sidner (1986)’s
discourse structure framework as it affirms the pri-
mary role of speakers’ intentions in “explaining
discourse structure, defining discourse coherence,
and providing a coherent conceptualization of the
term “discourse” itself.” We adopt the following
terminology from Grosz and Sidner (1986):

e utterances — basic discourse units.

e discourse segments — functional sequences of
naturally aggregated utterances (not necessar-
ily consecutive), each corresponding to a dis-
course segment purpose (DSP) — an extension
of Gricean utterance-level intentions.

To account for conversational coherence, cur-
rent models® of dialogue mainly focus on utter-
ances within a topically coherent discourse seg-
ment, rather than new-topic utterances (NTUs),
which begin a new topic not linguistically® cor-
relating with the content of prior discourse. For
example, the excerpt shown in Table 1 has two
NTUs, utterances 119 and 123.

In terms of theoretical models, Asher and Las-

"Here we only consider the dialogue models that involve
symbolic representation of discourse context (in comparison
with, for example, end-to-end trained neural dialogue models).

3“Linguistically” means “via linguistic calculation at the
meaning levels such as semantic or pragmatic.”
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Utt. Simplified transcript

104-B | And what ’s the story with them

105-B | Are they still separated

106-A | Yes still separated

107-A | And Mummy was going she can’t
have children

108-A | Why Mummy it ’s not her fault she
can’t have children

109-A | If he love her they could adopt

110-A | If he really wanted children of his
own they [unclear speech]

111-B | I know

112-B | Sure he ’s what forty odd five

113-B | Isn’t he

114-A | Aye

115-B | Fucking hell

116-B | If he really wanted children
he could 've had them long ago

117-A | That ’s what I say

118-B | So uhm

119-A | Uh uh hold on

120-A | [unclear speech]

121-A | Think my mobile ’s about to go

122-A | Ah it ’s only John

123-A | Alright so how was your day

124-B | Not bad

Table 1: An except, with indexed utterances, from di-
alogue P1A-095 in the SPICE-Ireland corpus (Kallen
and Kirk, 2012) between two interlocutors A and B.

carides (2003)’s Segmented Discourse Represen-
tation Theory attributes conversational coherence
to the existence of rhetorical relations between
utterances, while Ginzburg (2012) and (Roberts,
1996/2012) propose that a conversational move
is coherent if it is relevant to the Question Un-
der Discussion. Computational models such as
Belief-Desire-Intention (Allen, 1995, chapter 17)
and Information State Update (Larsson and Traum,
2000) assume coherence to be a natural property
of dialogues within a specific task domain. These
models, both theoretical and computational, may
adequately account for discourse dynamics of task-
oriented conversations, where adjacent utterances
tend to share a lot of linguistic material and speak-
ers’ intents are drawn from a narrow set of task-
related goals. However, without any enrichment,
they are not capable of handling the complexity of
conversational coherence in social talk in which
both speaker goals and utterances are less con-
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strained. Specifically, all of these models treat
NTUs as incoherent conversational moves.

This work, therefore, seeks to identify the con-
straints on new topics in casual conversations as a
first step towards a model which is capable of ratio-
nalizing NTUs and accounting for conversational
coherence in social talk. The main contributions of
this paper are as follows. We introduce NTUs as a
novel research object that is capable of advancing
our understanding of the interactive and rational
aspects of social talk. We propose an annotation
strategy for exploring NTUs in naturally occurring
dialogues. A pilot annotation study of NTUs in a
significant amount of spoken conversation text led
us to amend the available taxonomies of speech
acts with new sequence-based social intents that
shed light on non-topical coherence in social talk.
These new findings feed into a framework for the
Bayesian game-theoretic models that are capable
of predicting the emergence of the newly identified
intents and accounting for conversational coher-
ence in social talk.

2 Methodology Overview

Before studying the interaction between NTUs and
their discourse context, we need to locate them
in instances of social talk. Riou (2015) handles a
similar task by annotating every turn-constructional
unit (TCU) in casual conversations with two topic-
related variables:

e topic transition vs. topic continuity.

e stepwise vs. disjunctive transition (Jefferson,

1984) if the TCU is annotated as a transition.

The TCUs triggering disjunctive transitions are
intentionally equivalent to NTUs and the corre-
sponding transitions can also be called disjunctive
topic changes* (DTCs), i.e. conversational moves
whose linguistic representation is an NTU. To per-
form the annotation task in Riou (2015), the anno-
tators completely rely on their own intuition rather
than guidelines.’ This negatively affects annota-
tion reliability, especially for topic transition cases,
which are much less frequent in the studied data.

*Sharing Jefferson’s characterization of troubles-telling
exit devices in that the new topic “does not emerge from [prior
talk], is not topically coherent with it, but constitutes a break
from it” (Jefferson, 1984), and comparable to TOPIC-SHIFT
(Carlson and Marcu, 2001) in RST Discourse Treebank.

>This is because the author aims to investigate the lin-
guistic design of topic transitions and therefore cannot give
the annotators the linguistic description of these transitions.
Otherwise, she would face the risk of circularity in her study.



To improve the reliability and rigor of NTU de-
tection, we approach the task reversely: we first an-
notate content-based coherence relations between
utterances and then identify NTUs as those utter-
ances that bear no coherence relation to the content
of prior discourse. This approach shares certain fea-
tures with the integration of new utterances in free
dialogues presented in Reichman (1978): if a new
utterance is not covered by the current conversa-
tional topic, the hearer can expand the current topic
to cover it, or connect its topic with the current
topic using a semantic relation from a predefined
set. This similarity reflects the following view of
discourse coherence: “[a discourse is] coherent
just in case (a) every proposition (and question and
request) that’s introduced in the discourse is rhetor-
ically connected to another bit of information in the
discourse, resulting in a ‘single’ connected struc-
ture for the whole discourse; and (b) all anaphoric
expressions can be resolved”; and therefore, “[a]
discourse is incoherent whenever there’s a propo-
sition introduced in the discourse which doesn’t
seem to be connected to any of the other bits of
the discourse in any meaningful way.” (Asher and
Lascarides, 2003, p. 4).

The main difference between Reichman (1978)’s
model of topic shift and our work is that the former
allows the total shift relation, the succeeding topic
of which is totally new, only when all of the preced-
ing topics have been exhausted and closed, while
we do not impose any constraints on the nature of
DTCs. We assume that interlocutors are coherent in
naturally occurring conversations (wherein incoher-
ent moves need convincing evidence). Analyzing
the coherence of a conversation, we put ourselves
in conversational participants’ shoes and rely on
our communicative competence to identify all pos-
sible DSPs that account for the relevance of each
conversational move. We are interested in the cases
where an identified DSP cannot be assigned to a
pre-existing coherence relation. We hypothesize
that the pre-existing coherence relations account
for topical coherence (i.e. talk-about), but not non-
topical coherence such as interactional coherence
(i.e. talk-that-does) (Clift, 2016, p.92).

3 Annotating Coherence Relations

We start with the casual telephone dialogues in
the Disco-SPICE corpus6 (Rehbein et al., 2016),

SThis corpus is unique as it is publicly accessible, and
highly relevant to our work in that the discourse relations are
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based on the SPICE-Ireland corpus’ (Kallen and
Kirk, 2012), in which discourse relations — triples
consisting of a discourse-level predicate and its two
arguments — are annotated with the CCR (Sanders
et al., 1992) and the early version of the PDTB
3.0 (Webber et al., 2016) schemes. We ignore the
CCR annotations in favour of the PDTB 3.0-based
annotation because the latter covers more discourse
relations in the corpus, including:

e explicit discourse relations between any two
discourse segments (whose predicate is an ex-
plicit discourse connective such as “because”
or “however”).
implicit/AltLex relations between utterances
given by the same speaker (whose predicate is
not represented by an explicit discourse con-
nective but can be inferred or alternatively lex-
icalized by some non-connective expression,
respectively).
entity-based coherence relations (EntRel) be-
tween adjacent utterances given by the same
speaker (whose predicate is an abstract place-
holder linking two arguments that mention the
same entity).

In the excerpt shown in Table 1, utterances 104
and 105 are two arguments of an implicit relation
that can be realized by a connective “in particular”,
while 121 and 122 are the arguments of an entity-
based relation that is signaled by the pronoun “it”.

We enrich Disco-SPICE with SPICE-Ireland’s
original pragmatic annotation, consisting of Sear-
lean speech acts (Searle, 1976), prosody, and quo-
tatives among others. This information is helpful
in identifying, for example, the quote content, or
speech act guery, i.e. asking for information, even
in declarative clauses.

We use the latest version of the PDTB 3.0 taxon-
omy of discourse relations (Webber et al., 2019),
and annotate the instances which are not covered
in the Disco-SPICE corpus, such as:

e implicit/AltLex discourse relations between

utterances given by different speakers.

e entity-based coherence relations between ad-

jacent utterances given by different speakers.

e entity-based coherence relations between non-

adjacent utterances.

annotated in a significant amount of spoken conversation text.
"This corpus can be obtained upon request to its directors.
8Here we make an assumption that the same annotation
strategy is applied to both implicit and AltLex discourse rela-
tions, since AltLex relations must first be identified as implicit
ones (Webber et al., 2016).



Specifically, if a relation is not entity-based, it
will be labeled with a sense in the PDTB 3.0 sense
hierarchy. Annotators are encouraged to choose
the most fine-grained labels. For example, expan-
sion.equivalence is preferred over expansion for
an expansion.equivalence relation, although both
are acceptable. In total, there are 53 sense labels
available for explicit/implicit/AltLex discourse re-
lations.

We also enrich our repertory of content-based
coherence relations with additional semantic rela-
tions from ISO 24617-8 and ISO 24617-2, which
take care of the interactive nature of dialogue:

e functional dependence relations characteriz-
ing the semantic dependence between two di-
alogue acts due to their communicative func-
tions (cf. adjacency pairs in Conversation
Analysis)®, named after the first pair part:

information-seeking: propositionalQ,
checkQ, setQ, choiceQ.

directive: request, instruct, suggest.
commissive: promise, offer.

social obligation management: apology,
thanking, greeting, goodbye.

e feedback dependence relations connecting a
stretch of discourse and a response utterance
that provides or elicits information about the
success in processing that stretch.

additional entity-based coherence relations re-
lating to other communicative functions such
as topic closing (as a discourse structuring
function) and completion (as a partner com-
munication management function).

In Table 1, utterances 105 and 106 are two argu-
ments of a propositionalQ functional dependence
relation, while 109 and 111 are the arguments of a
feedback relation.

It is worth noting that the argument order of
annotated coherence relations is chronological, i.e.
the second argument always appears after the first
argument in the conversational flow.

We aim at annotating coherence relations that
cover as many utterances as possible (rather than
exhaustively annotating every relation), adding
notes to the ones that are not very clear and there-
fore can be considered non-existent in the next step
— NTU identification. In case of multiple relations
available to the same pair of arguments, annotating
just one relation is sufficient. Table 2 shows the key

“Examples of adjacency pairs are greeting - greeting, ques-
tion - answer, request - grant/refuse, etc.
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10 dialogues - 2,719 utterances
Inherited from Disco-SPICE:
1,273 coherence relations (158 entity-based)
Newly annotated:
1,870 coherence relations

implicit discourse relations 10
entity-based discourse relations 1,490
functional dependence relations 324
e information seeking 291
e directive 4
e commissive 1
e social obligation management 28
feedback dependence relations 487

Table 2: Statistics of coherence relation annotation.

statistics of the annotation in this work, performed
solely by the student author (see further details of
the annotation in Appendix A).

As seen in Table 2, the ratio of the coherence rela-
tions inherited from Disco-SPICE to the newly an-
notated ones is 1,273/1,870 ~ 2/3, which means
that using Disco-SPICE saves us a considerable por-
tion of annotation workload. While this efficiency
is optimal for a pilot study, it does not provide the
full picture of our proposed annotation task. We
plan to use this study’s annotation guidelines to
conduct a full-blown annotation project on the data
set'” composed by Riou (2015), aiming at (1) per-
forming in-depth empirical studies such as detailed
analyses of the distribution of annotated relations
and annotation disagreements, and (2) enriching
the linguistic resources for studying dialogue co-
herence. In addition, the results of this study can
serve as an assessment of the reliability of Riou
(2015)’s annotation methodology.

4 Identifying NTU Candidates

Based on both inherited and newly annotated re-
lations described in Section 3, excluding those re-
lations noted as “not very clear”, which account
for less than 3% of the newly annotated relations,
we heuristically identified 72 candidates for NTUs,
each of which is:

e not the first utterance of a dialogue,

o the first utterance token of the first argument

of some coherence relation,

"This data set includes 15-min extracts of 8 conversations
from the Santa Barbara Corpus of Spoken American English
(Du Bois et al., 2000). The advantage of this data set over

Disco-SPICE is that its audio files are publicly accessible,
which is invaluable for our annotation.



e not part of 2" argument of another relation,
e not in the dialogue span of another relation.

5 Identifying NTUs and Patterns of
DTCs

An NTU candidate identified in Section 4 is valid
only if there is no a content-based coherence rela-
tion with respect to prior discourse, which can be
missed or annotated as “not very clear” in Section
3. To separate genuine NTUs from other NTU can-
didates, we carry out a more detailed inspection.
Specifically, the following pieces of information
are further annotated for each NTU candidate:

o the immediately preceding topic.

e the current topic, its focused entity'!, and its
information status, i.e. given-new w.r.t. dis-
course/hearer (Prince, 1992; Birner, 2006).
the interlocutors involved in content, if any,
and their roles (speaker/hearer).
the links between the current topic and:

— the pre-dialogue common ground.

— the utterance situation (time and space).

— the content of prior discourse.

We were able to single out 38 true cases of
NTUs, roughly 50% of NTU candidates, which
contain discourse-new topics and new focused en-
tities. Based on the annotated information about
the interaction between the NTUs and their dis-
course context, we identified the following patterns
of DTCs (see detailed examples in Appendix B):
Grosz and Sidner (1986)’s true interruption.
forgotten topic (when the speaker cannot ar-
ticulate the topic she intents to talk about).

o the first topic after greeting.

e goodbye-initialized topic (when saying good-
bye opens a new discussion thread).
interlocutor-decentric move (from a topic fo-
cusing on one of the interlocutors).
interlocutor-centric move:

— interlocutor-centric return (from a topic

not focusing on the interlocutors).

— interlocutor-centric switching (from a
topic focusing on one interlocutor to a
topic focusing on the other).

— urgent interlocutor-centric topic in extra-
linguistic utterance situation (when the
speaker suddenly prioritizes an urgent
topic related to one of the interlocutors).

"nspired by the ideas of focus of attention and local co-
herence in Grosz et al. (1995).
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— speaker-centric distraction (an off-track
topic focusing on the speaker).

— speaker-centric wrap-up (when the at-
tempt to wrap up the conversation opens
a new discussion thread).

— hearer-centric related topic (from a topic
not focusing on interlocutors).

e cushioning topic (from interlocutor-decentric
to interlocutor-centric) - topic immediately
relevant to an interlocutor’s life.

The presence of cushioning topics implies that
the speaker may plan, at least, “two steps ahead”,
including:

o the interpretation the hearer may have, and

o the potential of topic extension based on that
interpretation.

In addition, the patterns of goodbye-initialized
topic and speaker-centric wrap-up can elicit better
insight into the findings in Gilmartin et al. (2018)
about the extended leave-taking sequences.

6 Classifying NTUs

The patterns of DTCs identified in Section 5 (ex-
cept for Grosz and Sidner (1986)’s true interrup-
tion and the forgotten topic, covering 7 identified
instances of NTUs) show that non-topical coher-
ence, sustained or built by DTCs, is created via
sequential adjustment of the distances between the
active conversational topic and each interlocutor.
This adjustment seems to be constrained by the
relational work between the interlocutors, i.e. the
social aspect of the conversations, rather than the
content-based relevance.

Based on the interlocutors’ intents, a simple ver-
sion of the classification of NTUs in social dia-
logues, covering 31 identified instances of NTUs,
can be proposed as below:

e socially initialized topic (the first topic after
greeting) - 2 instances.
topic merely motivated by changing social fo-
cus (urgent interlocutor-centric topic in extra-
linguistic utterance situation, speaker-centric
distraction) - 3 instances.
topic merely motivated by changing the
degree of relevance of social domains
(interlocutor-decentric move, cushioning
topic, interlocutor-centric return) - 9 in-
stances.
topic motivated by changing both social focus
and the degree of relevance of social domains
(generally embodied in the other patterns of



DTCs) - 17 instances.

This classification introduces new sequence-
based social intents'? that traditional taxonomies
of speech acts do not capture as the social intents
proposed in these taxonomies, if any, do not demon-
strate the sequential dynamics of the relational
work between the interlocutors (e.g. ISO 24617-2’s
social obligation management functions, Kliiwer
(2011)’s dialogue acts for social talk, or van der
Zwaan et al. (2012)’s social support categories).

These newly found intents, characterizing non-
topical coherence in social talk, convincingly
demonstrate social talk as a sophisticated form of
goal-directed rational interactions rather than a ran-
dom walk through loosely connected topics. This
shows real promise and new perspectives for re-
search in dialogue modeling. We hypothesize that
a workable dialogue model for social talk needs
to explicitly handle all of the key aspects of goal-
directed rational interactions.

7 Toward a Game-theoretic Model

To formally capture the interactive and rational
aspects of social conditioned language use in
conversation, recent work such as Iterated Best
Response (Franke, 2009), Rational Speech Act
(Frank and Goodman, 2012), and Social Meaning
Game (Burnett, 2019) pairs Lewis (1969/2002)’s
signaling games with the Bayesian approach to
speaker/listener reasoning. In essence, these mod-
els formalize Gricean inference by predicting:

Speaker behavior: the probability P(o|h, Cs)
that the speaker uses the observed linguistic value
o to convey hidden meaning & in the speaker’s
context model Cj is a function of Us(o, h, Cs)),
the utility of o in C; given the speaker’s desire to
communicate h.

e Py(olh,Cy) x exp(a x Us(o, h,Cs))

(where « is a normalizing constant)

Listener behavior: the probability P;(hlo, C))
that the listener interprets the meaning of o as h in
the listener’s context model C; depends on the prior
probability P(h) of the speaker having / in mind
(e.g. based on certain sociocultural convention)
and on the probability P(o|h, C}) that the speaker
uses o to convey h in Cj, estimated by the listener.

e Pi(hlo,C}) x P(h) x Ps(olh,Cy)

Based on this framework, we can develop a min-
imally workable model that accounts for the emer-

"2These intents should be taken with the caveat concerning
the cross-cultural generalization about their validity.
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gence of sequence-based social intents in marked
linguistic environments where NTUs occur (cf. Ac-
ton and Burnett (2019) for social meaning):

e Hidden: the speaker’s social intents.

e Observed: Topics chosen / topic transitions.

e Cost: content-based complexity of the topic
transitions (e.g. from the perspective of cog-
nitive processing).

e Utility: subtraction of the cost from the co-
herence measure (which reflects both types of
coherence: topical and non-topical).

However, this model design is not robust enough
to predict the emergence of the newly classified
sequence-based social intents due to the simplicity
of the utility function. Specifically, the forthright
division of labor between the cost and coherence
measure does not capture the real interactions be-
tween the components of these metric concepts,
such as multiple sociolinguistic dimensions of the
discourse context. We will address this challenge
in our further work.

8 Conclusion and Future Work

In this paper, we present a pilot annotation study'?
as a first step towards a dialogue model which is
capable of rationalizing NTUs and conversational
coherence in social talk. Analyzing the interaction
between the identified NTUs and their discourse
context, we discover a set of patterns of DTCs, rep-
resented by the NTUs. Based on these patterns, we
propose a simple classification of NTUs in social
talk, yet introducing new sequence-based social
intents that traditional taxonomies of speech acts
do not capture. These intents not only adequately
account for non-topical coherence in social talk
but also convincingly demonstrate social talk as a
sophisticated form of goal-directed rational inter-
actions. We hypothesize that the Bayesian game-
theoretic framework, which explicitly models the
interactive and rational aspects of social interaction,
is a sensible architecture for handling social talk.

Next, we aim to develop an actionable Bayesian
game-theoretic model for social talk, focusing on
decomposing its utility function. Particularly, we
seek to learn from social interaction work such
as Stevanovic and Koski (2018) for designing the
goal-directedness aspect of the model.

3The annotation results can be accessible upon the evi-
dence of the possession of SPICE-Ireland corpus.
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A Coherence relation annotation in
practice

As the input data of this annotation task includes
different useful information layers, namely the
PDTB 3.0 discourse relations of Disco-SPICE and
pragmatic annotation of SPICE-Ireland, the FoLiA
format is selected for data representation because
this rich XML-based annotation format accommo-
dates multiple linguistic annotation types with arbi-
trary tagsets and is accompanied by FLAT, a mod-
ern web-based annotation tool whose user-interface
can show different linguistic annotation layers at
the same time (van Gompel et al., 2017). Specifi-
cally, each dialogue is a sequence of utterances, as
shown in Figure 1, each of which includes:

o the ‘speaker’ token (highlighted in green),
combining the dialogue ID and the speaker ID,
whose “Description” field contains SPICE-
Ireland pragmatic annotations (see Figure 3
for an example of an utterance annotated as
a directive, i.e. <dir>, and a complete into-
national unit, i.e. ended with %, whose final
token them is spoken in a rising tone, i.e. 2),

o the tokenized content, which may consist of:

— explicit discourse connectives or AltLex
expressions, i.e. non-connective expres-
sions which lexicalize the corresponding
discourse relations, (highlighted in vari-
ous colors).

— implicit discourse connective tokens (in
gray).

— real [None] tokens (in black), equiva-
lent to empty event tokens in the original
Disco-SPICE .xml file.

— hidden [None] tokens (in gray), place-
holders of EntRel discourse relations.



Figure 2 shows that when a token is hovered
over, it is highlighted in black while its text turns
yellow, and its annotation layers are displayed in a
pop-up box.

Figure 3 shows that when a token is clicked, it
is highlighted in yellow, and its annotation layers
become editable in the Annotation Editor.

The annotation of one coherence relation is
treated as the annotation of one ‘connective’ en-
tity and two ‘argument’ chunks. Each ‘connective’
entity has its co-index with its ‘argument’ chunks
in its “Description” field. Figure 4 shows that the
‘connective’ entity in_particular has its co-index
72 with its ‘argument’ chunks, namely ARGI-72
and ARG2-72. This is an example of an implicit
relation inherited from Disco-SPICE.

Figures 5, 6 and 7 show several newly anno-
tated relations, namely propositionalQ, EntRel, and
feedback respectively. Notice that the ‘argument’
chunks only need associating with the ‘speaker’ to-
kens of the utterances containing the actual chunks.
To annotate a ‘connective’ entity that does not con-
nect to any real text token, we create a hidden token
[None] right before the ‘speaker’ token of the ‘2"
argument’ chunk in the corresponding relation.

B Examples of DTCs

Table 3 displays the DTCs, corresponding to the
NTUs of the excerpt shown in Table 1. ICP and
OCEP stand for initiating conversational participant
and other conversational participant(s) respectively
(Grosz and Sidner, 1986).
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P1A-095$B: And what 's the story with them
L g
P1A-095%B: Are they still separated
P1A-095%A: Yes still separated
(ARG1-73 — - -
P1A-095%$A: And Mummy was going she can't have children
F S — SR R N SRR =

P1A-095%A: Why Mummy it 's not her fault she can't have children

(ARG2-127 — =y (ARG1-127 — )
P1A-095%A: If he loved her they could adopt

. e e
P1A-095%A: If he really wanted children of his own they 5 sylls
P1A-095$B: I know
P1A-095$B: Sure he 's what forty odd five
P1A-095%$B: Isn't he
P1A-095%$A: Aye
P1A-095$B: Fucking hell

i u— e ——————
P1A-095%$B: If he really wanted children he could 've had them long ago
P1A-095%$A: That 's what I say
P1A-095$B: So uhm
P1A-095%$A: Uh uh hold on
P1A-095%A: 4 sylls

(ARG1-74 — = = =0
P1A-095%$A: Think my mobile 's about to go
i e— s
P1A-095%$A: Ah it 's only John
P1A-095%A: Alright so how was your day
e —
P1A-095%$B: Not bad
R
(ARG1-76  —)
P1A-095$B: Not bad
Figure 1: FLAT-based representation of the excerpt shown in Table 1.
Utt. | Preceding topic Current topic Involved CPs | Topic change type
119 | Jamie’s husband hav- | Reaction to an event in the utter- | ICP (A) as the | Grosz and Sidner’s
ing another woman | ance situation - Discourse New | speaker true interruption
123 | An event happening | New focused entity: OCP’s day | OCP (B) as | Hearer-centric re-
in ICP’s place - Discourse New the hearer lated topic

Table 3: Examples of DTC patterns in the excerpt shown in Table 1.
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P1A-095%B: And what 's the story with them

(ARG2-72 = TZ 5

P1A-095¢=

P1A-095¢ Text

P1A-09 Sﬂ on/folia/master/setdefinitions/text.foliaset.t

t/

P1A-0959 Entity Speaker

P1A-09594 ¢

_01_1.foliaset.xml

P1A-0954
P1A-0954

- N
Word/Token » UTT-104.w.1

https://raw.githubusercontent.com/proyc P1A-095 $ B:

https://gitlab.com/alexluu_public/folia/se P1A-095 $ B:
definitions/raw/master/dimo/dimo_entity Descr ip tion:

And what 's the story with
2thEm%

P1A-095

P1A-095$B:
P1A-095%A:
P1A-095$B:

P1A-095$B:
P1A-095%A:
P1A-095$B:
P1A-095%A:
P1A-095%A:

P1A-095%A:

P1A-095%A:
P1A-095%A:

P1A-095%B:

P1A-095%$B: |

. SUTT TICT S WITau 1TUT \.Y ouaua TTve
Isn't he

Aye

Fucking hell

(ARG2-129  — — —) (ARG1-129 — — — = -
If he really wanted children he could 've had them long ago
That 's what I say
So uhm
Uh uh hold on
4 sylls
(ARG1-74 — = = = =9
Think  my mobile 's about to go

(ARG2-74 = =
Ah [None] it 's only John
Alright so how was your day

(ARG1-75 —)
Not bad

e
(ARG1-76 —)

one] Not bad

Figure 2: Quick access to the annotation of a token in FLAT.
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P1A-095%$B: And what 's the story with them

Annotation Editor X

P1A-095$8B: Select span>

DN

DN
[

<dir> And what 's the story with
2thEm% </dir>

Text -- https://raw.git..nitions/text.foliaset.ttl

(ARG2-74 — — =)
- Ah [None] it 's only John
Alright so how was your day
e
Not bad
e
(ARG1-76 —)

P1A-095$B: [None] Not bad

Figure 3: Annotation Editor for a token in FLAT.
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P1A-095%B:

P1A-095$B:
P1A-095%A:

P1A-095%A:
P1A-095%A:
P1A-095%A:

P1A-095%A: 1
P1A-095$B:
P1A-095%B:
P1A-095$B:
P1A-095%A:
P1A-095$B:

P1A-095$B:
P1A-095%A:
P1A-095$B:
P1A-095%A:
P1A-095%A:

P1A-095%A:

P1A-095%A:
P1A-095%A:

P1A-095$B:

(ARG1-72  =TTC =
And

- - -)
what 's the story with them
(ARG2-72 = —

Are

Yes still separated

-)
they still separated

Hidden Word/Token * UTT-105.hiddenw.1
4 Text

https://raw.githubusercontent.com/proyc
on/folia/master/setdefinitions/text.foliaset.t
t/

] Entity Expansion.Specification.Arg2-as-detail
https://gitlab.com/alexluu_public/folia/se in pa rticular

t definitions/raw/master/dimo/dimo_entity @ escri p tion: 72 ]
_01_1.foliaset.xml =

in_particular

Sure he 's what forty odd five
Isn't he

Aye

Fucking hell

(ARG2-129 — - —) (ARG1-129 — — — = -
If he really wanted children he
That 's what I say
So uhm
Uh uh hold on
4 sylls

(ARG1-74 — -
Think  my mobile 's about to go

(ARG2-74 — — -
Ah [None] it 's only John
Alright so how was your day

(ARG1-75 =)
Not bad

S
(ARG1-76 —)

—)
could 've had them long ago

==

Figure 4: FLAT-based representation of a coherence relation inherited from Disco-SPICE.
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P1A-095$B:

(argl.rl)

P1A-095$B:

And what 's the story with them

(ARG2-72 —  —
in_particular Are

(arg2.r1)
P1A-095$A: Yes still separated

they still separated

Hidden Word/Token « UTT-106.hiddenw.1

P1A-0¢ Text

https://raw.githubusercontent.com/proyc [ Non e]

P1A-09 on/folia/master/setdefinitions/text. foliaset.t

t/

P1A-09 Entity

P1A-09 t_definitions/raw/master/dimo/dimo_entity b esc, riptio n:ri
P1A-09 01 _1.foliaset.xml

propositionalQ
https://gitlab.com/alexiuu_public/folia/se [None]

P1A-095$B:
P1A-095$B:
P1A-095%A:
P1A-095$B:

P1A-095$B:
P1A-095%A:
P1A-095$B:
P1A-095%A:
P1A-095%A:

P1A-095%A:

P1A-095%A:
P1A-095%A:

P1A-095$B:

Sure he 's what forty odd five
Isn't he

Aye

Fucking hell

(ARG2-129 = =

That 's what I say
So uhm

Uh uh hold on

4 sylls

—) (ARG1-129
If he really wanted children he

(ARG1-74 — == = =g
Think  my mobile 's about to go

(ARG2-74 — — =)
Ah [None] it 's only John
Alright so how was your day

(ARG1-75 =)
Not bad

(ARG2-75 =y
(ARG1-76 —)

= =="="="=

could 've had them long ago

Figure 5: FLAT-based representation of a propositionalQ relation.
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P1A-095%$B: And what 's the story with them

(argl.rl) (ARG2-72 — — =)
P1A-095%$B: in particular Are they still separated
rg
‘None] P1A-095%A: Yes still separated
(ARG1-73 — = =
P1A-095%A: And Mummy was going she can't have children
(argi.r2) (ARG2-73 = — = = = = == = =
P1A-095%A: but Why Mummy it 's not her fault she can't have children
(arg2.r2) (ARG2-127 =TIy (ARG1-127 = =
P1A-095%A: If he loved her they could adopt
. Hidden Word/Token  UTT-109.hiddenw. 1
P1A Text
Eiﬁ http.s://raw. githubus.er.'c.ontent. com/-proyc [ None ]
on/folia/master/setdefinitions/text.foliaset.t
P1A| 4
P1A Entity r2
P1A https://gitlab.com/alexluu_public/folia/se [ None]
t_definitions/raw/master/dimo/dimo_entity [Description: EntRel ] - —)
Eiﬁ _01-Lfoliaset.xml [Comment: intra-speaker ) G

P1A-095$B: So uhm
P1A-095$A: Uh uh hold on
P1A-095%A: 4 sylls

(ARG1-74 = — == =)

P1A-095%A: Think my mobile 's about to go
(ARG2-74 — — -)

P1A-095%$A: Ah [None] it 's only John

P1A-095%A: Alright so how was your day

P1A-095$B: Not bad

(ARG2-75  —)

Figure 6: FLAT-based representation of an EntRel relation.
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P1A-095%$B: And what ‘s the story with them

(argl.rl) (ARG2-72 — - —)

P1A-095%$B: in particular Are they still separated

L
'None] P1LA-095%A: Yes still separated

(ARG1-73 = = =

P1A-095%$A: And Mummy was going she can't have children
(argi.r2) (ARG2-73 = == = = = = = =)
P1A-095%$A: but Why Mummy it 's not her fault she can't have children

'(argl.r3) '

(arg2.r2) (ARG2-127 —  —) (ARG1-127 — —
‘None] P1LA-095%A: If he loved her they could adopt

(ARG2-128 — = = — =Ty (ARG1-128)

P1A-095%A: If he really wanted children of his own they 5 sylls

(arg2.r3)

P1A-095$B: I know
P1A-095%$B: Sure he 's what forty odd five
P1A-095%$B: Isn't he

Nd A AT an

Hidden Word/Token » UTT-111.hiddenw.1
TeXt ........................................
https://raw.githubusercontent.com/proyc [ None ] B - =)
on/folia/master/setdefinitions/text.foliaset.t em lon g ago
tl

Entity -
https://gitlab.com/alexluu_public/folia/se [ None ]
t definitions/raw/master/dimo/dimo_entity lb esc ripti on: feedback ]
_01_1.foliaset.xml -
P IA-UY955AT ThINK mYy moDbIlle 'S about to go

(ARG2-74 — = =)

P1A-095%$A: Ah [None] it 's only John

P1A-095%$A: Alright so how was your day
e

P1A-095$B: Not bad

Figure 7: FLAT-based representation of a feedback relation.

133



Why is penguin more similar to polar bear than to sea gull?
Analyzing conceptual knowledge in distributional models

Pia Sommerauer
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Abstract

What do powerful models of word mean-
ing created from distributional data (e.g.
Word2vec (Mikolov et al., 2013) BERT (De-
vlin et al.,, 2019) and ELMO (Peters et al.,
2018)) represent? What causes words to be
similar in the semantic space? What type of
information is lacking? This thesis proposal
presents a framework for investigating the in-
formation encoded in distributional semantic
models. Several analysis methods have been
suggested, but they have been shown to be
limited and are not well understood. This ap-
proach pairs observations made on actual cor-
pora with insights obtained from data manipu-
lation experiments. The expected outcome is a
better understanding of (1) the semantic infor-
mation we can infer purely based on linguistic
co-occurrence patterns and (2) the potential of
distributional semantic models to pick up lin-
guistic evidence.

1 Introduction

Distributional semantic representations capture se-
mantic similarity and relatedness and, perhaps
more importantly, enable machine learning-based
Natural Language Processing models to abstract
over lexical representations. But what type of se-
mantic information do they contain? Could distri-
butional models show that the concepts lemon and
moon share shape and color, but differ with respect
to almost everything else? Understanding what se-
mantic knowledge is represented in embeddings
can not only help us improve those representations
but also shed light on questions about lexical rep-
resentation raised in cognitive linguistics (e.g. the
suitability of embeddings for models of metaphor
interpretation (Utsumi, 2011)). Understanding the
way components of meaning are represented could
eventually enable us to use data-derived, distribu-
tional representations for lexical reasoning.
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While exiting model analysis methods (Hupkes
et al., 2018; Belinkov and Glass, 2019; Saphra and
Lopez, 2018) have yielded initial insights, they are
still limited when applied to distributional word
representations. Gaining insights into semantic
representations derived from massive amounts of
textual data thus entails answering two core ques-
tions: (1) What information about concepts can we
find in the linguistic data and how does it relate
to people’s knowledge about concepts? (2) What
linguistic information in the data can be picked up
by a distributional semantic model and how is it
represented? Answering these questions entails the
following four steps:

1. Formulate linguistic hypotheses about what
kind of knowledge about concepts we expect
to be reflected by linguistic corpora based on
theoretical and experimental research.

Build a corpus of human judgments reflecting
human knowledge about concepts suitable to
test the hypotheses.

. Investigate the potential of distributional mod-
els and model analysis methods by simulating
different types of linguistic evidence of se-
mantic properties in text corpora.

Test hypotheses about what is represented in
distributional models and data and interpret
the results with respect to the potential of dis-
tributional models and analysis methods.

The core questions of this research proposal and
their interaction are illustrated in Figure 1. The
remainder of this paper is structured as follows:
After discussing related work in Section 2, I present
linguistic hypotheses in Section 3. The corpus
of human judgments of property-concept pairs for
testing these hypotheses is presented in Section
4. Section 5 outlines model analysis methods and
simulation experiments, followed by a conclusion
and reflection on possible outcomes in Section 6.
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(linguistic hypotheses)

VAN

semantic } [ linguistic
relations evidence
h 4
What do What do
people know? people say?

I
| [What do models | | What can models]

represent? represent?
A
embedding simulated
model model

model analysis

Figure 1: Framework for investigating conceptual
knowledge in distributional models from two perspec-
tives: (1) linguistic hypotheses about semantic knowl-
edge and textual evidence and (2) the potential of
model analysis methods and models. The questions
are approached through model analysis methods on real
and simulated data.

2 Related work

Several studies investigate the relation between se-
mantic features recorded in feature norm datasets
(McRae et al., 2005; Devereux et al., 2014; Vinson
and Vigliocco, 2008; Vigliocco et al., 2004) and em-
bedding vectors (Fagarasan et al., 2015; Tsvetkov
et al., 2015, 2016; Herbelot and Vecchi, 2015; Her-
belot, 2013; Riordan and Jones, 2011; Glenberg
and Robertson, 2000; Derby et al., 2018; Forbes
et al., 2019; Rubinstein et al., 2015). These studies
indicate that (at least partial) mappings between
distributional and conceptual spaces are possible
and that conceptual knowledge can complement
distributional representations. Erk (2016) shows
that distributional similarity can indicate property-
overlap. Gupta et al. (2015) show that attributes
of the type of knowledge recorded in knowledge
bases can, to some extent, be learned from word
embeddings. Herbelot (2013) hypothesizes that
Gricean maxims determine what is mentioned in
text, based on limited datasets. These studies pro-
vide partial evidence for conceptual knowledge in
distributional data, but they do not provide a sys-
tematic account of the underlying factors at play.
A major reason for this gap is the difficulty
of interpreting representations resulting from ma-
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chine learning models. Diagnostic classification
has proven successful in the analysis of such rep-
resentations (Hupkes et al., 2018; Belinkov and
Glass, 2019) and word embedding representations
(Yaghoobzadeh and Schiitze, 2016; Sommerauer
and Fokkens, 2018; Yaghoobzadeh et al., 2019).
However, the results of these experiments provide
limited insights.

Unverified negative examples. For instance, in
the CSLB norms (Devereux et al., 2014), has_legs
is listed for several birds, but not for owl, duck,
and eagle. This introduces noise to already rather
small datasets used to investigate property knowl-
edge in distributional data (Derby et al., 2018).
Yaghoobzadeh et al. (2019) apply diagnostic clas-
sification to investigate semantic classes using a
large, automatically generated dataset derived from
Wikipedia, which is likely to contain noise. Som-
merauer and Fokkens (2018) and Herbelot and Vec-
chi (2015) have provided small sets of verified ex-
amples to combat this issue.

Distribution of examples. A classifier is likely
to be able to separate words which are located in
entirely different areas of the semantic space, but
this does not mean it has recognized a specific prop-
erty. For instance, the ability to separate red fruits
(e.g. strawberry) from furniture (e.g. table) does
not indicate that the property red was recognized.
Sommerauer and Fokkens (2018) provide a small,
qualitative analysis with respect to example dis-
tribution, but to the best of my knowledge, this
has not been investigated systematically. Rubin-
stein et al. (2015) show that taxonomic properties
yield higher performance in diagnostic classifica-
tion experiments than (mostly physical) attributes.
A possible explanation for this could be that taxo-
nomic properties (e.g. is_animal are much easier
to detect because of many correlating properties
resulting in high general similarity in the semantic
space.

Interpretation of performance. Saphra and
Lopez (2018) point out that diagnostic classifiers
can achieve high performance purely based in noise
in the data instead of meaningful signals (Zhang
and Bowman, 2018; Wieting and Kiela, 2018). To
the best of my knowledge, this has not been taken
into account yet in studies on embeddings.

The research proposed here is the first attempt to
combine a systematic analysis in terms of linguistic
hypotheses with with a methodological investiga-
tion addressing these limitations.



3 Linguistic hypotheses

This sections presents hypotheses about (a) what
aspects of conceptual information people mention
in texts (Section 3.1) and (b) 2ow they mention it
(Section 3.2).

3.1 Semantic relations

I define semantic relations representative of four
major factors: impliedness, typicality, affordedness
and variability. The factors are based on theoreti-
cal and empirical accounts in cognitive and com-
putational linguistics (Grice, 1975; Gibson, 1954;
Glenberg, 1997; Dale and Reiter, 1995; Sommer-
auer et al., 2019). The relations are used to label
a corpus of property-concept pairs. To test the
hypotheses by means of model analysis methods,
it is necessary to have reliable information about
negative examples of properties. I distinguish sev-
eral negative relations (e.g. it can be impossible or
unusual that a property applies to instances of a
concept) to facilitate the annotation task.

Impliedness. Most conceptual knowledge can
be seen as highly implied. Mentioning it would con-
stitute a violation of the Gricean maxim of quantity.
This is likely to be particularly relevant for proper-
ties which are inherited from lexical categories. For
instance, the knowledge that a dog is an animate
being with a heartbeat is unlikely to be mentioned
explicitly. This tendency could be connected to
claims about lexical retrieval (Collins and Quillian,
1970). Whether this is indeed the case is a question
for further research.

Typicality. Corpus research has shown that peo-
ple tend to express property-concept relations ex-
plicitly for cases in which a concept is a particularly
good example of a property (Veale and Hao, 2007,
Veale, 2011, 2013). For instance, colors tend to be
described in terms of things which illustrate them
particularly well (e.g. as white as snow, as red as
blood, as black as ebony wood"). In contrast, prop-
erties which are typical of a concept (and evoked
in many participants in elicitation tasks such as
the CSLB norms (Devereux et al., 2014)) are most
likely strongly implied conceptual knowledge and
not mentioned explicitly (e.g. green - broccoli).

Affordedness. According to research in cogni-
tive linguistics, a central component of semantic
knowledge consists of the actions which are avail-
able to a person in a particular situation (called

"nttps://www.pitt.edu/~dash/grimm053.
html (last accessed 2020-02-18)
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afforded actions) (Gibson, 1954; Glenberg, 1997;
Glenberg and Robertson, 2000). For instance, you
can do several things with a rock, such as throw
or drop it (Fulda et al., 2017). Many texts refer
to events, which consist of actions involving par-
ticipants. From this perspective, it is very likely
that activities in which instances of concepts are
involved are also mentioned in natural language.
Glenberg and Robertson (2000) show that distri-
butional models give good indications of activi-
ties usually associated with concepts, but cannot
distinguish possible but unusual from impossible
activities. Fulda et al. (2017) show that embed-
ding models are helpful in affordance extraction. It
can thus be expected that frequently performed ac-
tions are mentioned in text and can give indications
about other properties (e.g. round objects such as
bowling balls tend to roll). Possible but unusual
activities are unlikely to be mentioned consistently.

Variability. Instances of concepts can vary with
respect to a particular property. For instance, bell
peppers can be red, green or yellow. Since neither
of the colors is implied by the concept, informa-
tion about it is more likely to be mentioned. In
some cases, the property can even indicate an im-
portant distinction between different sub-concepts
(e.g. brown, black and grey can distinguish differ-
ent types of bears). In such cases, important and
potentially distinguishing information is expressed
via the property.

Negative relations. Several relations with no
or only a loose association between property and
concept can be distinguished. Linguistic corpora
are unlikely to contain consistent evidence of such
cases. The main reason for defining different types
of negative relations is to facilitate the annotation
task. Furthermore, they can be informative for fur-
ther analysis. The relations include: properties
which apply to concepts in rare cases, properties
which can apply in unusual (such as fictional) cases
and impossible combinations. We also include
properties which can apply in creative, figurative
expressions.

3.2 Linguistic evidence

Linguistic evidence of a semantic property can ap-
pear in different forms:

Direct. A property is expressed by its corre-
sponding lexical form. For instance, a direct expres-
sion of the semantic property red is the adjective
red and its morphological variants (if they exist),



for instance reddish.

Indirect. Semantic properties can be expressed
indirectly in terms of a logical consequence or be-
havior that is tied to a property. For instance, things
which have the semantic property round usually
roll. Words such as roll and their morphological
variants act as indirect evidence.

Property-preserving. Words can express prop-
erties which partially overlap with the semantic
property in question. For instance, the semantic
property swim can be expressed by float or glide
in some contexts. Those expressions can also ex-
press other semantic properties and are thus not
exclusively tied to the target property.

Related. Semantic properties can be related to
other properties of concepts. For instance, the se-
mantic property swim is closely related to different
kinds of water, such as sea, river or pond and pos-
sibly also beach or sand. These expressions are
related to a wide variety of properties and most cer-
tainly not exclusively tied to instances of concepts
which swim.

Correlation. Properties which are not expressed
can correlate strongly with an entire category of
concepts. For instance, all birds lay eggs. While
this is something chickens usually do/are used for,
the activity is less prominent for canaries and thus
unlikely to be mentioned in texts. However, it is
likely that something like belonging to the cate-
gory of birds is apparent from linguistic context,
as indicated by Hearst patterns (Hearst, 1992) and
research about predicting hyponymy relations from
embeddings (Fu et al., 2014). Thus, the close con-
nection between category and property may result
in a form of linguistic evidence indicating a cate-
gory which is very closely tied to a semantic prop-
erty.

Property-category. Expressions of properties
belonging to the same category (e.g. red, yellow
and green express colors) in the context of a con-
cept can indicate an entire property-category. This
is likely to be the case if instances of a concept can
have one of a variety of properties that belong to
the same category (e.g. color) and the properties
occur with similar frequencies (e.g. white, red, blue
(etc.) t-shirts).

Table 1 shows the specific semantic relations
with respect to the (sub-)set of instances of a con-
cept they apply to and the type of corpus evidence
we expect to find for property-concept pair.

4 Dataset design and crowd annotation

The dataset for this thesis should contain concept-
property pairs annotated with the fine-grained se-
mantic relations introduced in Section 3.1. The
dataset should contain (1) enough positive and neg-
ative examples of a property to allow for diagnostic
experiments and (2) positive and negative examples
which cannot easily be separated based on general
similarity in the semantic space (Sommerauer and
Fokkens, 2018; Sommerauer et al., 2019).

To address these aspects, the property-concept
pairs were collected following the strategy outlined
in Sommerauer et al. (2019). Firstly, properties
which are expected to apply to concepts across
different semantic categories were selected (e.g.
colors). Secondly, existing resources (the CSLB
feature norms (Devereux et al., 2014) (an extended
and improved version of the norms collected by
(McRae et al., 2005)), but also WordNet (Miller,
1995; Fellbaum, 2010), ConceptNet (Speer and
Havasi, 2012) and stereotype data (Veale, 2013)
were used to collect positive and negative example
candidates for these properties. Where possible,
candidates were selected from diverse semantic
categories. The candidates were extended by using
a large-scale distributional model (GoogleNews
Word2vec model?).

The candidate pairs are labeled with semantic
relations in a crowd task. Crowd workers are pre-
sented with natural language statements about a
specific pair illustrating a semantic relation and
asked to indicate whether they agree or disagree.’
Test runs indicate that workers can complete around
70 questions in about 10 minutes.*

Each property-concept pair should have at least
one relation which is perceived as appropriate
by most participants (and is thus labeled with
‘agree’).” However, it has been shown that am-
biguity is inherent to many semantic annotation
tasks (Dumitrache et al., 2018), leading to disagree-
ments. Disagreement in this task is likely to arise

“Downloaded from https://code.google.com/
archive/p/word2vec/

3An example of such a statement illustrating
typical_of_concept would be: “Fly” is one for
the first things which come to mind when I hear “stork’
because flying is one of the typical movements of (a/an)
stork’.  The full set of statements can be found at
https://github.com/cltl/SPT_annotation

*The task was set up using the Lingoturk framework (Pusse
et al., 2016) and is being distributed via the platform Prolific
https://www.prolific.co/.

>More than one relation can apply (e.g. both typicality
relations).
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set of instances  factor relation evidence
impliedness implied correlation
typicality typ}cal,of,concept sparse - none .
typical_of property direct, property-preserving, re-
most - all
lated
affording.activity indirect, property-preserving, re-
affordedness lated
afforded._usual direct, property-preserving, re-
lated
afforded_unusual sparse to none
some variability var}ab:ILl }ty,l imited direct, property-category
variability_open property-category
rare sparse - none
f . unusual sparse - none
ew-none negative cases : .
impossible sparse - none
creative sparse - none

Table 1: Summary of linguistic hypotheses about semantic relations and types of evidence.

from two factors: (1) ambiguity in the interpreta-
tion of the concept, property, relation or combina-
tion and (2) different levels of knowledge about
the world. Disagreement caused by interpretation
differences is particularly relevant for this dataset,
as this is can indicate polysemy, which has been
shown to have an impact on embedding represen-
tations (Del Tredici and Bel, 2015; Yaghoobzadeh
etal., 2019, e.g.). It is, however, still an open ques-
tion how exactly it relates to the representation of
semantic properties. Table 2 shows the answers
collected for a clear pair, an ambiguous pair and an
ambiguous pair additionally perceived as difficult.

relation pl p2 p3
typical_of property 10 3 3
typical_of_concept 10 5 5
affording.activity 10 4 5
implied_category 8 6 4
variability_ limited 7 7 3
variability_open 2 3 7
rare 1 2 5
unusual 0 4 4
impossible 0 3 0
creative 0 4 3

Table 2: Number of annotators (out of 10) who selected
‘agree’ for a semantic relation shown for three pairs of
varying difficulties: sweet-honey (p1) (clear), made of
wood - beam (p2) (ambiguous) and hot-chutney (p3)
(not well known according to a worker).

Inter-annotator agreement alone cannot be used
to evaluate the quality of the dataset. Disagreement
is not only an expected, but a desired and meaning-
ful outcome. Instead, I consider the quality of the
annotations from multiple perspectives: (1) As a
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basis for comparison, I apply IAA metrics to the
entire dataset and portions of the dataset which I
expect to trigger high or low agreement. These por-
tions have been selected in advance. (2) I consider
the quality of the workers in terms of whether they
contradict themselves in their answers (e.g. label a
single pair as typical and impossible). A low num-
ber of contradictions can be seen as an indication
of a clear task. Workers with high contradiction
rates can be excluded, which should increase the
IAA on the remaining annotations.(3) I analyze the
data with the crowd-truth framework (Dumitrache
etal., 2018), which provides a fine-grained analysis
of workers, annotation units and labels. (4) A sub-
set of pairs is being annotated by trained experts.
These annotations serve as a gold standard and
can provide more insights into disagreements and
worker behavior. They can help to reveal additional,
possibly unexpected factors causing disagreement.

5 Method

Various analysis methods have been suggested to
interpret latent representations resulting from ma-
chine learning (particularly deep learning) mod-
els. While they have yielded important insights,
they still struggle with a number of limitations (Be-
linkov and Glass, 2019; Saphra and Lopez, 2018).
I plan to approach these limitations by pairing anal-
ysis methods (described in Section 5.1) with data
simulation experiments (described in Section 5.2).
This combination is expected to yield insights into
(1) the analysis methods and their potential and (2)
the representation of linguistic evidence in a text
corpus in distributional models.



5.1 Analyzing latent representations

I plan to use diagnostic classification (Hupkes et al.,
2018; Belinkov and Glass, 2019) and SVCCA
(Singular Vector Canonical Correlation Analysis)
(Raghu et al., 2017). SVCCA has been suggested
to address some of the limitations of diagnostic
classification (Saphra and Lopez, 2018).

Both methods require a specific distribution of
positive and negative examples. Distributional
models place generally similar concepts in similar
areas in the embedding space because they occur
in similar contexts. This means that positive exam-
ples which are similar to one another, but dissimilar
from the negative examples will be easily recog-
nizable (e.g. fly: seagull vs table). Distinguishing
them, however, does not mean that evidence of
the particular property was discovered. If however,
a diverse group of positive examples can be dis-
tinguished from negative examples similar to the
positive ones (e.g. fly: seagull vs penguin), we con-
clude that the property has actually been identified
with higher confidence. While this type of dataset
control cannot eliminate all possible correlations,
it is a first step towards more solid evidence.

5.2 Simulation experiments

The following questions should be answered be-
fore we can draw conclusions from the analysis
of embedding models trained on natural language
corpora:

1. How much evidence in the context of a con-
cept is necessary to have an impact on the
representation in an embedding model?

How do embedding models represent different

kinds of evidence? Can they abstract over mor-

phological variants or synonyms of a word?

. What is the performance of a model analysis
methods if there is very clear evidence of a
property? What is the difference between em-
beddings with clear evidence and embeddings
without clear evidence?

I approach these questions by introducing arti-
ficial evidence to text corpora and training distri-
butional models on these corpora. In the case of
distributional models and linguistic evidence, it is
challenging to design small and controlled experi-
ments, as the models rely on a substantial amount
of data. Building an entirely artificial corpus (as
for instance done by Yaghoobzadeh and Schiitze
(2016)) would entail the risk of losing information
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responsible for the general structure of a semantic
space. Therefore, I will simulate textual evidence
of a property by introducing artificial ‘evidence
words’ to the contexts of a random set of words
in an otherwise unchanged corpus. Embeddings
resulting from this manipulated corpus can then be
used to test how much evidence is sufficient for in-
formation to be recognized by analysis methods. I
expect this approach to show how the performance
of diagnostic methods relates to the presence or
absence of textual evidence. These insights are
crucial form the interpretation of analysis methods
applied to a natural corpus.

6 Conclusion

This proposal presents a framework for investigat-
ing the semantic content of distributional word
representations from two perspectives: Firstly, I
propose to test linguistic hypotheses about what
aspects of conceptual knowledge are represented in
natural language. Secondly, I propose to interpret
the results against the background of a methodolog-
ical investigation of model analysis methods and
the potential of distributional models.

The linguistic hypotheses to be tested may be
falsified. While this would be a negative result,
it is still a relevant insight and can be used as a
basis for new predictions. Furthermore, it can be
expected that the methodological insights gained
in the simulation experiments can inform other ap-
proaches investigating non-transparent embedding
representations and yield important insights about
the behavior of distributional models.

I expect that the corpus and insights gathered in
this project can be complementary to resources cap-
turing common-sense knowledge explicitly, such
as Conceptnet (Speer et al., 2017) and common
sense challenges (e.g. (Talmor et al., 2019)).
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Abstract

We present a simple and effective dependency
parser for Telugu, a morphologically rich, free
word order language. We propose to replace
the rich linguistic feature templates used in
the past approaches with a minimal feature
function using contextual vector representa-
tions. We train a BERT model on the Telugu
Wikipedia data and use vector representations
from this model to train the parser. Each sen-
tence token is associated with a vector repre-
senting the token in the context of that sen-
tence and the feature vectors are constructed
by concatenating two token representations
from the stack and one from the buffer. We
put the feature representations through a feed
forward network and train with a greedy transi-
tion based approach. The resulting parser has
a very simple architecture with minimal fea-
ture engineering and achieves state-of-the-art
results for Telugu.

1 Introduction

Dependency parsing is extremely useful for many
downstream tasks. However, robust dependency
parsers are not available for several Indian lan-
guages. One reason is the unavailability of an-
notated treebanks. Another reason is that most
of the existing dependency parsers for Indian lan-
guages use hand-crafted features using linguistic
information like part-of-speech and morphology
(Kosaraju et al., 2010; Bharati et al., 2008; Jain
et al., 2012) which are very expensive to annotate.
Telugu is a low resource language and there hasn’t
been much recent work done on parsing. Most of
the previous work on Telugu dependency parsing
has been focused on rule based systems or data-
driven transition based systems. This paper focuses
on improving feature representations for a low re-
source, agglutinative language like Telugu using
the latest developments in the field of NLP such as
contextual vector representations.
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Contextual word representations (Howard and
Ruder, 2018; Peters et al., 2018; Devlin et al., 2019)
are derived from a language model and each word
can be uniquely represented based on its context.
One such model is BERT (Devlin et al., 2019).
BERT vectors are deep bidirectional representa-
tions pre-trained by jointly conditioning on both
left and right context of a word and have been
shown to perform better on variety of NLP tasks.

In this paper, we use BERT representations for
parsing Telugu. We replace the rich hand-crafted
linguistic features with a minimal feature function
using a small number of contextual word represen-
tations. We show that for a morphologically rich,
agglutinative language like Telugu, just three word
features with good quality vector representations
can effectively capture the information required for
parsing. We put the feature representations through
a feed forward network and train using a greedy
transition based parser (Nivre, 2004, 2008).

Past work on Telugu dependency parsing has
only been focused on predicting inter-chunk de-
pendency relations (Kosaraju et al., 2010; Kesidi
et al., 2011; Kanneganti et al., 2016, 2017; Tandon
and Sharma, 2017). In this paper, we also report
parser accuracies on intra-chunk annotated Telugu
treebank for the first time.

2 Related Work

Extensive work has been done on dependency pars-
ing in the last decade, especially due to the CoNLL
shared tasks on dependency parsing. Creation of
Universal Dependencies (Nivre et al., 2016) led
to an increased focus on common approaches to
parsing several different languages. There were
new transition based approaches making use of
more robust input representations (Chen and Man-
ning, 2014; Kiperwasser and Goldberg, 2016) and
improved network architectures (Ma et al., 2018).
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Graph based approaches to dependency parsing
have also become more common over the last few
years (Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2017, inter alia).

However, there hasn’t been much recent work on
parsing Indian languages and much less on Telugu.
Most of the previous work on Telugu dependency
parsing has been focused on rule based systems
(Kesidi et al., 2011) or data-driven transition based
systems (Kanneganti et al., 2016) using Malt parser
(Nivre et al., 2006). The Malt parser uses a clas-
sifier to predict the transition operations taking a
feature template as input. The feature templates
used in Telugu parsers commonly consist of sev-
eral hand-crafted features like words, their part-
of-speech tags, gender, number and other morpho-
logical features (Kosaraju et al., 2010; Kanneganti
et al., 2016). There has been some work done on
representing these linguistic features using dense
vector representations in a neural network based
parser (Tandon and Sharma, 2017).

Recent developments in the field of NLP led to
the arrival of contextual word vectors (Howard and
Ruder, 2018; Peters et al., 2018; Devlin et al., 2019)
and their extensive use in downstream NLP tasks,
from POS tagging (Peters et al., 2018) to more
complex tasks like Question Answering and Natu-
ral Language Inference tasks (Devlin et al., 2019).
Contextual vectors have also been applied to de-
pendency parsing systems. The top-ranked system
in CoNLL-2018 shared task on Dependency Pars-
ing(Che et al., 2018) used ELMo representations
along with conventional word vectors in a graph
based parser. Kulmizev et al. (2019); Kondratyuk
and Straka (2019) use contextual vector representa-
tions for multilingual dependency parsing.

In this paper, we train a BERT-baseline model
(Devlin et al., 2019) on Telugu Wikipedia data and
use these vector representations to improve Telugu
dependency parsing.

3 Telugu Dependency Treebank

We use the Telugu treebank made available for
ICON 2010 tools contest. We extend this treebank
by another 900 sentences from the HCU Telugu
treebank. The size of the combined treebank is
around 2400 sentences. The treebank is annotated
using Computational Paninian grammar (Bharati
et al., 1995; Begum et al., 2008) proposed for In-
dian languages. The treebank is annotated at inter-
chunk level (Bharati et al., 2009) in SSF (Bharati

et al., 2007) format. Only chunk heads in a sen-
tence are annotated with dependency labels.

K7p k1

cAIA_ Js xeSAllo NN |_pEm  parisWiwi_NN
‘many’ ‘countries-in’ ‘this’ ‘situation’
B_NP I_NP B_NP I_NP

lexu_vm ._sYm
‘is-not-there’
B_VGF I_VGF

Figure 1: Inter-chunk dependency tree. B_x denotes
the beginning of a new chunk.

We automatically annotate the intra-chunk de-
pendencies (Bhat, 2017) using a Shift-Reduce
parser based on Context Free Grammar rules within
a chunk, written for Telugu'!. Annotating the intra-
chunk dependencies provides a complete parse tree
for each sentence.

nmodfadj\ k7p

cAlIA  xeSAllo |

nmod ki rsym

v\ N

parisWiwi  lexu

Figure 2: Intra-chunk dependency tree

The treebank is converted from SSF to CoNLL-
X format (Buchholz and Marsi, 2006)2.

4 Our Approach

We propose to replace the rich hand-crafted feature
templates used in Malt parser systems with a mini-
mally defined feature set which uses automatically
learned word representations from BERT. We do
not make use of any additional pipeline features
like POS or morphological information assuming
this information is captured within the vectors. We
train a BERT baseline model (Devlin et al., 2019)
on the Telugu wikipedia data, which comprises
71289 articles. We use the ILMT tokenizer in-
cluded in the Telugu shallow parser 3 to segment
the data into sentences. The sentence segmented
data consists of approximately 2.6M sentences. We
convert all of the data from UTF to WX* notation
for faster processing. We use byte-pair encoding
(Sennrich et al., 2016) to tokenize the data and gen-
erate a vocabulary file. We pass this vocabulary

"https://github.com/ltrc/
Shift-Reduce-Chunk-Expander

https://github.com/ltrc/
SSF-to—-CONLL-Convertor

3https://ltrc.iiit.ac.in/showfile.php?
filename=downloads/shallow_parser.php

“https://en.wikipedia.org/wiki/WX_
notation
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file to BERT ? for pre-training. After pre-training,
we extract contextual token representations for all
the sentences in the treebank from the pre-trained
BERT model. In case a single word is split into
multiple tokens, we treat these tokens as continuous
bag of words and add the representations of all the
tokens in a word to obtain the word representation.
We find that this approach works better than con-
sidering only the first word-piece vector (Kulmizev
et al., 2019; Kondratyuk and Straka, 2019). We use
these word representations as input features to the
parser. Our feature function is a concatenation of a
small number of BERT vectors and we integrate it
into a transition based parser. The specific details
are mentioned in Section 4.2

4.1 Transition based Dependency Parsing

Transition based parsers process a sentence sequen-
tially and treat parsing as a sequence of actions that
produce a parse tree. They predict a sequence of
transition operations starting from an initial config-
uration to a terminal configuration, and construct
a dependency parse tree in the process. A configu-
ration consists of a stack, an input buffer of words,
and a set of relations representing a dependency
tree. They make use of a classifier to predict the
next transition operation based on a set of features
derived from the current configuration. A couple
of widely used transition systems are Arc-standard
(Nivre, 2004) and Arc-eager (Nivre, 2008). We
make use of the Arc-standard transition system in
our parser and briefly describe it here.

4.1.1 Arc-standard Transition System

In the arc-standard system, a configuration con-
sists of a stack, a buffer, and a set of depen-
dency arcs. The initial configuration for a sentence
s = wy, ..., wy, consists of stack = [ROOT, buffer
= [wy, ..., w,] and dependencies = []. In the termi-
nal configuration, buffer = [] and stack = [ROOT,
and the parse tree is given by dependencies. The
root node of the parse tree is attached as the child
of ROOT.

The arc-standard system defines three types of tran-
sitions that operate on the top two elements of the
stack and first element of the buffer:

e LEFT-ARC: Adds a head-dependent relation
between the word at the top of stack and the

5 https://github.com/google-research/

bert
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word below it and removes the lower word
from the stack.

o RIGHT-ARC: Adds a head-dependent relation
between the second word on the stack and the
top word and removes the top word from the
stack.

e SHIFT: Moves the word from the front of the
buffer onto the stack.

In the labeled version of parsing, there are a to-
tal of 2¢ + 1 transitions, where ¢ is the number of
different dependency labels. There is a left-arc and
a right-arc transition corresponding to each label.
The label left-arc_vmod adds a head-dependent rela-
tion between the top two words of the stack (sg, s1)
with label vimod, dependencies=[(sg, s1, vmod),...]

4.2 Feature Function

We use a minimally defined feature set consisting
solely of word representations obtained from BERT.
We do not incorporate any part-of-speech or mor-
phological information separately. The intuition
is that such information is already captured within
the BERT representations. Our feature set consists
of word representations of the top two elements of
the stack (so, s1) and the first element of the buffer
(bo). We compute a feature vector,

F =g, 0vg, 0wy,

by concatenating (o) the vector representations of
all the words in the feature set, where v; is the
vector representation of the word %,

4.3 Classifier

We use a fully connected Feed Forward Network
with one hidden layer with ReLLU activation to
score all the possible parser transitions. The next
transition is predicted based on the features ex-
tracted from the current configuration. We compute
the scores of all transitions,

transition_scores(f) = W2-relu(W?'- f+b')+b?

where f is the feature vector obtained from the cur-
rent configuration. A softmax layer is applied over
the transition scores to get the probability distribu-
tion. We pick a valid transition with the highest
probability. We use a dropout layer with probability
0.2 for regularization.



Intra-chunk UAS LS LAS
Max 9543 83.05 81.81
Min 85.04 67.09 64.17
Average 9092 7195 7049
Table 1: Parser 10-fold cross-validation results on

intra-chunk annotated treebank.

Inter-chunk UAS LS LAS
Max 9450 7890 77.20
Min 78.16 56.14 52.14
Average 90.37 67.57 65.74
Table 2: Parser 10-fold cross-validation results on

inter-chunk annotated treebank.

5 Experiments and Results

The Telugu dependency treebank is quite small in
size consisting of only 2400 sentences. We also
observe that the sentence length and quality of an-
notation in the treebank is not uniform and has a
high amount of variation. We therefore evaluate
our parser on the treebank using ten-fold cross-
validation. We report the cross-validation accura-
cies on both inter-chunk (Table 2) and intra-chunk
(Table 1) annotated treebanks. Parser accuracies on
intra-chunk annotated Telugu treebank are reported
for the first time in this paper. The overall parser
accuracies improve on the intra-chunk annotated
treebank.

We compare these results with a baseline us-
ing only word2vec word representations and sub-
sequently adding Part-of-speech (POS) and suffix
representations described in (Tandon and Sharma,
2017). We also try to reproduce Tandon and
Sharma (2017) experiments on both inter-chunk
and intra-chunk annotated treebanks. Tandon and
Sharma (2017) report their best results for Telugu
on the inter-chunk annotated treebank using word,
POS and suffix representations. Their results are
reported on a test set and since their exact dataset
is not available, we report average 10-fold cross
validation accuracies. The reproduced results are
listed in Table 3. As can be seen from the table the
average cross-validation accuracies are lower. The
discrepancy between rows 3 and 4 is because of a
larger feature set and a different optimizer. Tandon
and Sharma (2017) use 13 features from the parse
configuration instead of our three features which
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introduce unnecessary noise, when the average sen-
tence length is as small as five. We also find that
Adam optimizer performs better than the Adagard
optimizer used in their setup.

Implementation details: The parser comprises
of simple feed forward neural network with one
hidden layer consisting of 1024 hidden units and
a relu activation function and a dropout layer with
dropout probability of 0.2. We use xavier uniform
initialization (Glorot and Bengio, 2010) to initial-
ize the network parameters and Adam optimizer
(Diederik P. Kingma, 2015) with default momen-
tum and learning rates provided by PyTorch. We
use BERT baseline model for pre-training and each
BERT token representation is of dimension 768.

Arc-standard vs Arc-eager: We experiment
with both Arc-standard (Nivre, 2004) and Arc-
Eager (Nivre, 2008) transition systems and find
that Arc-standard works better in our case (Table 4).
We use Arc-standard transition system in all further
experiments.

Feature Function: We experiment with different
feature sets and find that using just three features,
the top two elements of the stack and the top-most
element of the buffer result in the highest accura-
cies. Extending the feature set to include more
elements from the stack or buffer causes the ac-
curacies to fall. Parser accuracies using different
feature sets are reported in Table 5.

Peters et al. (2018) and Che et al. (2018) suggest
that concatenating conventional word vectors with
contextual word vectors could result in a boost in
accuracies. We try out the same by concatenating
word2vec vectors with BERT vectors and observe
some improvement in label scores. The results are
mentioned in Table 6.

BERT layers: We also experiment with vector
representations from different layers of BERT. The
results are mentioned in Table 7. We find that the
44, layer from the top of our BERT baseline model
results in the highest accuracy for the parser. This
finding is consistent with the work of Tenney et al.
(2019) which suggests that dependencies are better
captured between layers 6 and 9. We use the vector
representations from 4, layer from the top in all
our experiments.

BPE vs Inverse-BPE: Byte-pair encoding (Sen-
nrich et al., 2016) segments words from left to
right. In Telugu, most grammatical information



System Annotation Method UAS LS LAS
Baseline Intra-chunk  MLP with word 84.56 6587 63.39
Baseline + POS Intra-chunk  MLP with word, POS 88.90 68.99 67.46
Baseline + POS + suffix Intra-chunk  MLP with word, POS, suffix 89.93 71.97 70.38
Tandon et al, 2017 re-impl  Intra-chunk  MLP with word, POS, suffix 88.67 67.27  65.29
This work Intra-chunk  MLP using BERT 90.92 7195 70.49
Tandon et al, 2017 Inter-chunk  MLP with word, POS, suffix 94.117 74321 73.14f
Tandon et al, 2017 re-impl  Inter-chunk  MLP with word, POS, suffix 88.13 6148 59.54
This work Inter-chunk  MLP using BERT 90.37 67.57 65.74

Table 3: Parsing results on Telugu treebank. The results with T are reported test-set accuracies and the rest are

10-fold cross-validation accuracies.

Transition System UAS LS LAS
Arc-Standard 9092 7195 70.49
Arc-Eager 8991 71.15 69.52

Table 4: Cross-validation results for arc-standard and
arc-eager transition systems using features (s, s1, bo)

Feature set UAS LS LAS

(0, 51, bo) 90.92 7195 70.49
(0, 51, bo, 9085 7157 70.08
le1so,mC180)

(50, 51, 52, bo, 9091 7150 70.13
le1so, me150)

(0, 51, 52, bo, 9076 7125  69.86

leyso, rerso,
lersy,rerst)

Table 5: Parser cross-validation results using different
feature sets. (lcy,rcy) refer to the left-most and right-
most children.

Vector representa- UAS LS LAS
tion

BERTwvector 9092 71.95 70.49
BFERTvectoro 90.89 72.11 70.60
wordvector

Table 6: Parser cross-validation results with and with-
out concatenating word vectors with BERT vectors for
the feature set (s, $1, bo)
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BERT Layers UAS LS LAS

Layer -1 90.21 7122 69.59
Layer -2 90.58 71.63  69.99
Layer -3 90.19 7120 69.65
Layer -4 90.92 7195 70.49
Layer -5 90.31 7152  69.99
Layer -6 90.22 71770 70.20

Table 7: Parser cross-validation results using represen-
tations from different layers of BERT. Layer —n repre-
sents the nyy, layer from the top.

Tokenization UAS LS LAS
BPE 90.92 71.95 70.49
Inverse-BPE 91.06 7171 70.22

Table 8: Parser cross-validation results on BERT mod-
els trained with BPE and Inverse-BPE.

is encoded in the suffixes. Intuitively, segmenting
the words from right to left (inverse-BPE) could
lead to linguistically better word segments. We
test out this assumption (Table 8). We use 60k
merge operations in both cases. Inverse-BPE leads
to slightly better unlabeled attachment scores but
causes a slight drop in label scores.

6 Error Analysis

In this section we look at some of the most common
errors made by this parser and try to understand
why those errors might be occurring. We evaluate
the parser on a test-set of 240 sentences. The most
frequently occurring errors are k1(agent/subject)
and k2(object/patient) mismatch, k1 is labeled
as k2 and vice versa. k1 and k2 are the most fre-



quently occurring labels after ROOT. 78% sen-
tences in the test-set contain k1 dependency and
50% sentences contain k2 dependency. k1 is la-
beled as k2 15% of the time and k2 is labeled as
k1 18% of the time. These errors are usually seen
when the words occur without case-markers. In
these cases, k1 and k2 can be distinguished by
looking at the verb agreement. Fixing these two
errors would greatly improve the parser.

Other frequently occurring errors are confu-
sion between k2 and k4(recipient) since they
sometimes take the same case-markers, nmod and
nmod__adj, vmod and adv , sent_adv labels. The
label vmod is ambiguous in general and can be
easily confused with adverbs.

7 Conclusion and Future Work

We present a simple yet effective dependency
parser for Telugu using contextual word represen-
tations. We demonstrate that even with vectors
trained on a small corpus of 2.6M sentences, we
can reduce the need for explicit linguistic features
in deep learning based models. We show based on
the results of the parser that BERT vectors effec-
tively capture much of the linguistic information
required for parsing. We also show that with good
vector representations, a small feature set is more
effective for a morphologically rich, agglutinative
language like Telugu.

Future work could include finding a way to incor-
porate other linguistic features like case-markers,
gender, number, person, tense, aspect and verb
agreement information into the parser.
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Abstract

The prevailing approach for training and eval-
uating paraphrase identification models is con-
structed as a binary classification problem: the
model is given a pair of sentences, and is
judged by how accurately it classifies pairs as
either paraphrases or non-paraphrases. This
pointwise-based evaluation method does not
match well the objective of most real world ap-
plications, so the goal of our work is to under-
stand how models which perform well under
pointwise evaluation may fail in practice and
find better methods for evaluating paraphrase
identification models. As a first step towards
that goal, we show that although the standard
way of fine-tuning BERT for paraphrase iden-
tification by pairing two sentences as one se-
quence results in a model with state-of-the-art
performance, that model may perform poorly
on simple tasks like identifying pairs with
two identical sentences. Moreover, we show
that these models may even predict a pair of
randomly-selected sentences with higher para-
phrase score than a pair of identical ones.

1 Introduction

Paraphrase identification is a well-studied sentence
pair modeling task that refers to the problem of
determining whether two sentences are semanti-
cally equivalent. Detecting paraphrases can be very
useful for many NLP applications such as machine
translation (MT), question answering (QA), and in-
formation retrieval (IR). In a QA system, we would
like to find the most probable question paraphrases
from a database of question answer pairs for a given
input question (Rinaldi et al., 2003; Dong et al.,
2017). In a MT model, we would like to obtain the
best translation by comparing the target sentence
to a list of translated sentences. Even though pre-
trained language models have reached state-of-the-
art performance on paraphrase identification tasks,
the current problem setup is insufficient to produce
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models with consistent and robust performance on
unseen samples and real world problems.

The typical current problem setup for paraphrase
identification is different from intended uses in
real world applications. They often involve find-
ing best paraphrases from a group of documents
given a particular query, rather than just determin-
ing whether two sentences are paraphrases of each
other. Besides, getting the order and identifying the
most relevant documents is usually more important
than getting the binary decision of a pair of sen-
tences (Zuccon et al., 2012). However, to make the
task simpler, current methods and existing datasets
such as Quora Question Pairs (QQP) (Iyer et al.,
2017) and Microsoft Research Paraphrase Corpus
(MRPC) (Lan et al., 2017) are all framed as a binary
classification problem at the sentence pair level.

Contributions As a first step to improve the way
paraphrase identification is evaluated for ranking
tasks, we analyze some of the anomalies found in
the current pointwise task setting. We first demon-
strate the standard way of fine-tuning BERT for
pointwise paraphrase evaluation makes the model
sometimes fails on simple problems including rec-
ognizing two identical sentences and reversing the
order of two sentences in a pair (Section 3). We find
that it performs worse than a bag-of-words model
due to its asymmetrical model architecture. Lastly,
we show that the model may fail to capture the cor-
rect relative order of two sentence pairs using the
pointwise approach, sometimes even predicting a
pair of random sentences with a higher paraphrase
score than a pair of identical ones (Section 4).

2 Background

This section provides background on the para-
phrase identification task, evaluation methods, and
the datasets and models we use in our experiments.
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2.1 Paraphrase Identification

We consider the general definition of paraphrase as
sentences having the same meaning. In addition,
paraphrase requires a symmetric relation. Para-
phrase identification originates from the real-world
applications such as machine translation (Dolan
et al., 2004; Quirk et al., 2004) and document sum-
marization (Barzilay and McKeown, 2001), where
an essential task is to evaluate the semantic related-
ness of translated sentences or generated texts.

2.2 Evaluation Methods

The current problem setting for paraphrase iden-
tification is similar to the pointwise method
for learning-to-rank problems in information re-
trieval (Li, 2011). There are three types of ap-
proaches to solve learning-to-rank: pointwise, pair-
wise, and listwise (Liu, 2009). The pointwise ap-
proach learns to predict a binary relevance judge-
ment for a single document given a specific query.
It retrieves the most relevant document by comput-
ing the relevance score between each candidate doc-
ument and the query and returning the document
with the maximum score. The pairwise approach
learns to predict the relative order of a pair of docu-
ments, (d,dz), for a given query ¢. This is closer
to the nature of ranking than the pointwise ap-
proach. However, both the pointwise and pairwise
approaches neglect the fact that some documents
are related to the same query. The listwise approach
directly optimizes the model on the permutations
of a list of documents D = {dy,dg, ..., d,} (Cao
et al., 2007), and hence it most closely matches the
objective of ranking.

2.3 Datasets

For our experiments, we use four datasets designed
for evaluating paraphrase identification models.

Quora Question Pairs (QQP) consists of 400k
question pairs from Quora (Iyer et al., 2017). The
goal is to reduce the number of duplicate questions
on the platform. Each question pair is either labeled
as duplicate or non-duplicate. Recently, it has been
shown to have selection bias, where models can
simply rely on the frequency of the sentences or
the intersection of the neighbor sentences to make
predictions (Zhang et al., 2019a).

Paraphrase Adversaries from Word Scram-
bling (PAWS) contains two datasets constructed
from Wikipedia and QQP (Zhang et al., 2019b). To

BERT BOW
Dataset Acc F1 Acc F1
QQP 90.10 86.7 64.75 51.56
QQP+PAWSqqp 90.69 87.48 64.13 51.28
MRPC 83.65 8797 68.12 7945
Twitter URL 89.98 76.75 84.32 50.44

Table 1: Model accuracy and F1 scores trained on dif-
ferent datasets. Both metrics are scaled by 100. QQP
+ PAWSqqp indicates models are trained and evaluated
on both datasets.

compare with the original QQP dataset, we only
tested PAWSqqp. The sentence pairs are created by
swapping words that have the same part-of-speech
or named entity tags to construct higher lexical
overlap sentences. The training set contains 11,988
sentence pairs, and the testing set contains 667.

Microsoft Research Paraphrase Corpus
(MRPC) contains 5801 sentence pairs extracted
from online news articles (Dolan and Brockett,
2005). The sentence pairs are created with very
similar syntactic features and high n-gram overlap
causing the model to make skewed decisions based
on these shallow features (Das and Smith, 2009).

Twitter URL Paraphrase Corpus is extracted
from tweets posted by 22 English news accounts
on Twitter (Lan et al., 2017). Relevant tweets are
paired up based on the same embedded URLs, and
each pair is then labeled by 6 human annotators. Af-
ter discarding sentence pairs with neutral decisions
(3 out of 6 annotators labeled it as paraphrase), the
dataset consists of 42k sentence pairs for training
and 9k pairs for testing.

2.4 Models

We fine-tuned the BERTgasg model on different
paraphrase datasets with the default configura-
tion (Devlin et al., 2018). We also implemented
early stopping during the training process. For
baseline comparison, we trained a bag-of-words
(BOW) model with unigram and bigram encodings.
The model makes predictions based on the con-
sine similarity between the encodings of the two
sentences. A consine similarity value above 0.5 is
considered a paraphrase. The performance of both
models for each task is shown in Table 1.

We include the results for testing QQP model
on its adversarial set, PAWSqqp, in Table 2, and it
shows BERT performing as poorly as BOW of this
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QQP — PAWSqqp
Models Acc Fl
BERT 32.94 42.68
BOW 28.21 44.01

Table 2: Model accuracy and F1 score tested in the ad-
versarial setting, where models are trained on QQP and
evaluated on PAWSqqp development set.

dataset. We also report the results of models that
trained and tested on a concatenated set of QQP
and PAWSqqp in Table 1.

3 Asymmetry

For semantic matching tasks, the BERT para-
phrase identification model considers two sen-
tences (s1, s2) as a single sequence by concatenat-
ing them with a separator token. However, due to
this asymmetrical approach, the sequence represen-
tations before the final classification layer would
be entirely different if we permute the order of the
two input sentences. We explore two implications
of this method for identifying paraphrases: sensi-
tivity to input order (Section 3.1) and possibility
of considering identical sentences non-paraphrases
(Section 3.2).

3.1 Sensitivity to Sentence Order

In the original datasets, each sentence pair is only
concatenated in one way as (s1, s2) and a label y
will be predicted by the model. We constructed
new sentence pairs in the reverse order as (s2, s1),
and tested the model on these sentence pairs and
got their predicted labels 3. To find out how much
it would affect the prediction results, we computed
the ratio of sentence pairs that are predicted with a
different label (y # 3/'). The results for BERT and
BOW models are shown in the second and third
column of Table 3.

In normal setting (model is trained and evaluated
on the the same dataset), there are more than 3% of
sentence pairs that are predicted with an opposite la-
bel by BERT. The ratio decreases on PAW Sqqp, but
it increases when the model includes adversarial
examples in the training data. The percentages are
even higher on MRPC and Twitter corpus. BOW,
trivially, has zero disagreement since the order does
not effect the bag-of-words model.

We reproduced the same experiment in sec-
tion 3.1 on the RoOBERTagasg model (Liu et al.,
2019), and found that the model also has inherent

asymmetry issue as BERT. The ratio of sentence
pairs from the QQP development set with opposite
labels is around 4.7% (But it performs well on iden-
tifying identical sentences with an error rate less
than 1%). We further tried fine-tuning BERT on
the augmented QQP dataset that includes sentence
pairs in both original and reverse order. Although
the ratio of sentence pairs with opposite predicted
labels decreases about half, the asymmetrical is-
sue is not completely eliminated. These results
suggest that these pre-trained language model do
not really understand the symmetric relation within
paraphrases. One possible reason is combining two
sentences as a single input encourages the model
to learn paraphrase as an asymmetric relation.

Datasets Reverse Order Identical
BERT BOW BERT BOW
QQP—QQP 3.70 0.0 2.40 0.0
QQP—PAWSqop  2.66 0.0 7.36 0.0
QQP+PAWSqp 4.0 0.0 0.54 0.0

MRPC
Twitter URL

8.46 0.0 0.0 0.0
7.08 0.0 0.0 0.0

Table 3: The percentage (%) of sentence pairs with
asymmetrical prediction results. Reverse Order: sen-
tence pairs predicted with different labels when revers-
ing the order of the sentences. Identical: identical pairs
that are predicted as non-paraphrases. (Please see Sec-
tion 2.3 for actual data sizes.)

3.2 Inability to Recognize Identical Sentences

We would like to know if the asymmetrical struc-
ture also affect BERT’s ability to identify identical
sentences as paraphrases. We collected distinct sen-
tences for each dataset and constructed a new set of
sentence pairs by pairing each one with itself. Each
pair is labeled as paraphrase. We calculated the
ratio of pairs that are predicted as non-paraphrase
by the model. As shown in Table 3, BERT trained
on QQP recognizes 2.4% of identical pairs as non-
paraphrases and the ratio increases about 5% when
tested on PAWSqqp. BOW trivially achieves per-
fect accuracy on pairs of identical sentences, since
they have exactly the same bags of words.

The models trained on MRPC and Twitter corpus
do recognize all the identical pairs as paraphrases.
This may be the fact that many sentences appear
in Twitter corpus multiple times pairing with dif-
ferent sentence each time. Thus, the model may
better capture the difference between a variety of
sentences. As for MRPC, many sentence pairs look
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QQP — QQP QQP — PAWSqgop QQP +PAWSqoop MRPC  Twitter URL
Paraphrase > Identical 30.51 41.88 21.27 4.18 1.76
Avg Score Difference 5.09 3.07 2.58 0.12 0.60
Non-paraphrase > Identical 0.97 43.21 0.41 0.0 0.03
Avg Score Difference 6.28 2.53 3.01 0.0 1.52

Table 4: Percentage of paraphrase and non-paraphrase pairs with higher paraphrase score (%) than a pair of
identical sentences given the same query sentence. Avg Score Differences: average score difference between
paraphrase/non-paraphrase and identical pairs. (Only pairs with higher scores than the identical ones are included.)

quite alike, and hence the model can better identify
small differences between sentences even though
most sentences only appear once. Since PAWSqqp
contains higher lexical overlap sentence pairs, the
model trained on both QQP and PAWSqqp de-
creases the error rate to less than 1%.

We also fine-tuned a BERT model on the aug-
mented QQP training set with identical sentence
pairs, and it can correctly identify every identical
pairs as paraphrases. This suggests that the amount
of lexical overlap in the dataset would affect the
model’s ability to identify identical sentences.

4 Problems with Pointwise Evaluation

For a given query sentence, we assume that a
well-generalized paraphrase identification model
should output a higher paraphrase score to the
query sentence itself than a randomly-selected sen-
tence. However, models trained with pointwise
evaluation cannot learn the relative order based on
the degree of semantic equivalence. We test this by
considering how often models recognize a random
sentence as more similar than the query sentence
itself, and looking at the distribution of paraphrase
scores across a dataset.

4.1 Random Sentences

We augmented the original datasets with sentence
pairs concatenated in opposite order, as in Sec-
tion 3.1, and labeled them same as their origi-
nal pairs. We then compared each sentence pair,
(s, '), to a pair of identical sentences, (s, s), given
the same query sentence s. We fine-tuned BERT
on each dataset to learn a paraphrase score func-
tion f, and computed the fraction of tests where
a randomly-selected pair gets a higher paraphrase
score than an identical pair, f(s,s’) > f(s,s). Ta-
ble 4 shows the results, revealing a similar pattern
as in Section 3.2. The model trained on QQP con-
siders more than 30% of randomly-selected para-
phrase sentence pairs to be more similar than the
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identical pairs, but the ratio decreases to 21% when
adding the adversarial set into training. For MRPC
and Twitter URL corpus, less than 5% of para-
phrase pairs are considered to be more similar than
the identical pairs.

For a randomly-selected sentence pair, (s, s’),
and a pair of identical sentences, (s, s), given the
same query s sentence, we computed the score dif-
ference as f(s,s’) — f(s, s). The distributions of
the score differences are shown in Figure 1a. We
filtered out the pairs that have lower paraphrase
score than the identical pairs, and report the av-
erage score difference in Table 4. In Figure 1la,
the model trained on QQP has the largest score
difference between paraphrase and identical pairs.
After augmenting the training set with PAWSqqp,
the right tail of the distribution for paraphrase pairs
diminishes. This indicates that the model considers
fewer non-identical sentences as more similar to
the query sentence than itself.

4.2 Paraphrase Score Distribution

To better understand how the scores are distributed,
we plot the histograms of paraphrase score for ran-
dom, paraphrase, non-paraphrase, and identical
sentence pairs in Figure 1b. In the normal set-
ting, there are two peaks in the distributions of
randomly-selected pairs since they include both
paraphrase and non-paraphrase pairs. On the other
hand, the sentence pairs from PAWSqqp all seem
very similar to the model. The distributions clearly
show the model cannot distinguish them. Com-
pared with the distribution for the Twitter corpus,
the distribution of paraphrase pairs from QQP is
more spread out, and it has slightly larger gap be-
tween the distribution of paraphrase and identical
pairs.

5 Discussion

Defining Paraphrases. Our experiments assume
that the “best” paraphrase for a given sentence s
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Figure 1: Histograms of (a) the score difference between randomly-selected and identical pairs and (b) paraphrase
score for sentence pairs. Randomly-selected pairs contain the sentence pairs their original and reverse order. (We
do not include the plot for MRPC since most paraphrase pairs from the dataset look alike, and it is hard to distin-

guish the distributions from the graph.)

is s itself. This assumes an equivalent in meaning
definition of paraphrase, but other definitions may
be appropriate. Bhagat and Hovy (2013) defined
paraphrases as “sentences that convey the same
meaning using different wording”. By this defini-
tion, identical sentences are not paraphrases. Of
course, we do not need a complex model to identify
identical sentences when a simple equality test will
do. However, when considering paraphrase detec-
tion as a test for how well language models can un-
derstand meaning, it would be counterproductive to
consider identical sentences non-paraphrases, and
require a trivial modification to consider them per-
fect paraphrases. Thus, we would expect a model
to be able to identify sentence pairs with the same
meaning as paraphrases regardless of whether they
are the same in their surface forms.

Our experiments also assume that the paraphrase
relationship should be symmetrical. This is con-
sistent with the notion that the paraphrase identi-
fication task is meant to identify sentences with
similar meaning, but not consistent with the pur-
pose of many uses of paraphrase identification (e.g.,
in some real world question retrieval tasks, finding
questions that contain the query, or that have the
opposite meaning, would still be useful). This sug-
gests the importance of a clear notion of what a
paraphrase is, in both constructing test datasets and
in determining how a given application can use a
paraphrase detection model.

Selection Bias in the Pointwise Setting. Previ-

ous studies have addressed the problem of selec-
tion bias when constructing the task as a pointwise
learning problem (Wang et al., 2016; Zadrozny,
2004). Datasets tend to have inconsistent frequency
of sentences causing the model biased towards the
dominating sentences. For instance, we found that
some sentences from the Twitter corpus are re-
peated almost a hundred times as the first input
sentence. This is part of the reason that the model
gets more asymmetrical prediction results for sen-
tences in reverse order (Table 3).

6 Conclusion

Although the state-of-art paraphrase identification
models can achieve impressive performance under
the pointwise evaluation method, they cannot han-
dle real-world problems and unseen data well and
even have worse results than a BOW model on sim-
ple tasks. We show that the asymmetry in BERT
can produce inconsistent prediction results when
reversing the order of the two sentences. We exam-
ined the relation of semantic equivalence learned
by models trained with pointwise approach, and
found that they may consider a random sentence
as more similar to the query sentence itself. This
suggests future work to reconsider how to match
the training and evaluation to the actual objective
of downstream applications, and thus create more
reliable evaluation metrics and benchmarks.
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Abstract

A large percentage of the world’s population
speaks a language of the Indian subcontinent,
comprising languages from both Indo-Aryan
(e.g. Hindi, Punjabi, Gujarati, etc.) and
Dravidian (e.g. Tamil, Telugu, Malayalam,
etc.) families. A universal characteristic of In-
dian languages is their complex morphology,
which, when combined with the general lack
of sufficient quantities of high-quality paral-
lel data, can make developing machine trans-
lation (MT) systems for these languages dif-
ficult. Neural Machine Translation (NMT)
is a rapidly advancing MT paradigm and has
shown promising results for many language
pairs, especially in large training data sce-
narios. Since the condition of large paral-
lel corpora is not met for Indian-English lan-
guage pairs, we present our efforts towards
building efficient NMT systems between In-
dian languages (specifically Indo-Aryan lan-
guages) and English via efficiently exploiting
parallel data from the related languages. We
propose a technique called Unified Transliter-
ation and Subword Segmentation to leverage
language similarity while exploiting parallel
data from related language pairs. We also
propose a Multilingual Transfer Learning tech-
nique to leverage parallel data from multiple
related languages to assist translation for low-
resource language pair of interest. Our ex-
periments demonstrate an overall average im-
provement of 5 BLEU points over the standard
Transformer-based NMT baselines.

1 Introduction

In recent years, Neural Machine Translation (Lu-
ong et al., 2015; Bahdanau et al., 2014; Johnson
etal., 2017; Wu et al., 2017; Vaswani et al., 2017)
(NMT) has become the most prominent approach
to Machine Translation (MT) due to its simplicity,
generality and effectiveness. In NMT, a single neu-
ral network often consisting of an encoder and a de-
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coder is used to directly maximize the conditional
probabilities of target sentences given the source
sentences in an end-to-end paradigm. NMT mod-
els have been shown to surpass the performance of
previously dominant statistical machine translation
(SMT) (Koehn, 2009) on many well-established
translation tasks.

However, in order to reach high accuracies,
NMT systems tend to require very large parallel
training corpora (Koehn and Knowles, 2017). As
a matter of fact, such corpora are not yet available
for many language pairs. Indian languages are not
an exception to this; however they are extremely
diverse, belonging to different language families,
employing various scripts and spanning a multi-
tude of dialects. The majority of Indian languages
are morphologically rich and depict unique char-
acteristics, which are significantly different from
languages such as English.

Since NMT models learn poorly from small cor-
pora, building effective NMT systems for low-
resource languages (e.g. Indian languages) be-
comes a primary challenge. The bulk of research
on low-resource NMT has focused on exploiting
monolingual data, or parallel data involving other
language pairs. Some of the most well-known
methods to improve NMT models with monolin-
gual data range from backtranslation (Sennrich
et al., 2016), dual learning (He et al., 2016) to Un-
supervised MT (Artetxe et al., 2017; Lample et al.,
2017, 2018). Similarly, parallel data from other
languages can be exploited to either pretrain the
network or jointly learn the representations (Zoph
et al., 2016; Firat et al., 2017; Johnson et al., 2017;
Kocmi and Bojar, 2018).

Currently, Transfer Learning (TL) is being
widely used for low-resource language translation
because it is one of the vital directions for address-
ing the data sparsity problem in low-resource NMT
(Zoph et al., 2016; Nguyen and Chiang, 2017; Pass-
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ban et al., 2017; Kocmi and Bojar, 2018). However,
most of the existing approaches that take advantage
of transfer learning have a major limitation: they
do not exploit multiple languages together and in
an efficient manner. The idea presented by Zoph
et al. (2016) may have the shortcoming of exploit-
ing only one high-resource model (parent) at a time
to optimize the low-resource model (child). Ac-
tually, the use of highly related multiple language
pairs might help to increase the translation quality
of the child model. The original Transfer Learning
method (Zoph et al., 2016) also makes no assump-
tion about the relatedness of the parent and child
languages. Multilingual NMT (Firat et al., 2017;
Johnson et al., 2017) approaches which also use
parallel data from different languages to improve
the translation quality of NMT models does not
exploit language relatedness either.

In this paper, we present our efforts towards
building efficient NMT systems between Indian
languages (specifically Indo-Aryan languages) and
English by exploiting parallel data from related lan-
guages. We aim to deal with the problem of how
to make full use of these corpora of highly related
languages, to increase the translation quality of
low-resource languages. To this end, we introduce
two simple and yet effective approaches:

e Multilingual Transfer Learning: to enable
the low-resource languages (child model) to
exploit parallel data from multiple related
languages which may or may not be high-
resourced, and

o Unified Transliteration and Subword Segmen-
tation: to exploit the language similarity be-
tween the related language pairs.

Experiments show that our approaches are ef-
fective and significantly outperform the state-of-
the-art Transformer (Johnson et al., 2017) base-
line. Our proposed approach of Multilingual
Transfer Learning also significantly outperforms
simple Transfer Learning (Zoph et al., 2016) ap-
proach, where NMT models are also built using
Unified Transliteration and Subword Segmentation
approach.

2 Methodology

The core idea of our method is to extend the Multi-
lingual Learning (Johnson et al., 2017) and Transfer
Learning (Zoph et al., 2016) approaches to eftec-
tively exploit parallel data from multiple related
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languages. In Section 2.2, we explain our Unified
Transliteration and Subword Segmentation tech-
nique to exploit language relatedness among the
parallel data of related languages. Sections 2.3
and 2.4 describe our modified Multilingual Learn-
ing and Transfer Learning techniques for NMT. In
Section 2.5, we describe our Multilingual Transfer
Learning approach.

2.1 Language Relatedness

In this work, we experiment on Indo-Aryan
languages specifically Hindi, Punjabi, Gujarati,
Marathi and Bengali. Being from one language
family, these languages are closely related to each
other and share many features. These languages
are morphologically rich and depict unique char-
acteristics, which are significantly different from
languages such as English. Some of these charac-
teristics are the relatively free word-order with a
tendency towards the Subject-Object-Verb (SOV)
construction, a high degree of inflection, usage of
reduplication and conjunct verbs. These languages
share many common words which have the same
root and meaning. They use different Indic scripts
derived from the ancient Brahmi script, but corre-
spondences can be established between equivalent
characters across scripts.

2.2 Unified Transliteration and Subword
Segmentation

Unlike the original Transfer Learning (Zoph et al.,
2016) and the Multilingual Neural MT (Johnson
et al., 2017) methods which do not exploit any lan-
guage relatedness, the basic idea of this approach
is to exploit the relationship between the related
language lexicons while using parallel data from
related languages to assist with translation of low-
resource languages. To do so, we find a represen-
tation of the data that ensures a sufficient overlap
between the vocabularies of the related languages.

Since the languages involved in the models have
different orthographies, the data processing should
help to map them into a common orthography but
here we take a minimalist approach; we translit-
erate all the Indian languages ( Hindi, Gujarati,
Bengali, Marathi and Punjabi) into a common De-
vanagari script to share the same surface form. This
unified transliteration is a string homomorphism,
replacing characters in all the languages mentioned
above with Hindi characters (script conversion to
Devanagari) or consonant clusters independent of
context.
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IF:
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Figure 1: Our pipeline for building Multilingual NMT models for Indian languages.

Now, to increase the overlap between the vocab-
ularies of the languages used in a model, which
are already transliterated into a common script and
consequently share the same surface form, we use
Byte Pair Encoding (BPE) (Sennrich et al., 2015)
to break words into subwords. For the BPE merge
rules to not only find the common subwords be-
tween two related languages but also ensure con-
sistency between source and target segmentation
among each language pair, we learn the rules from
the union of source and target data of all the lan-
guage pairs involved in the model construction.
The rules are then used to segment the corpora.
It is important to note that this results in a single
vocabulary, used for both the source and target lan-
guages in all the language pairs.

2.3 Multilingual Learning for NMT

The objective of Multilingual Learning for NMT
is to construct a single model for translating to
and from multiple languages. Early work in multi-
lingual NMT utilizes a separate encoder, decoder
and an attention mechanism to support the trans-
lation of either one-to-many or many-to-one lan-
guage directions. Firat et al. (2017) introduced a
many-to-many system, which still relied upon sep-
arate encoder-decoder setup with a shared attention
mechanism. In a simplified manner and yet deliver-
ing better performance, Johnson et al. (2017) intro-
duced a “language flag”-based approach that shares
the attention mechanism and a single encoder-
decoder network to enable multilingual models.
A language flag or token is prepended to the input
sequence to indicate which direction to translate in.
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The decoder learns to generate the target given this
input.

However, the Multilingual NMT approaches do
not consider the relatedness of the languages or
how many shared words there are among the dif-
ferent source and target languages. Mainly, they
aim at exploiting many different source and target
languages rather than focusing on similarities be-
tween many languages that are used in the training
and the languages that is used in testing. Accord-
ingly, we modify the Multilingual NMT approach
(Johnson et al., 2017) with Unified Transliteration
and Subword segmentation technique to exploit
the language relatedness. We experiment with this
modified approach in our work on efficient NMT
for Indian languages.

2.4 Transfer Learning for NMT

Zoph et al. (2016) proposed how Transfer Learn-
ing between two NMT models can improve a low-
resource NMT task. In their approach, a lan-
guage pair with a relatively large amount of paral-
lel data is first utilized to train a parent model in a
phase known as “pretraining”. Then the encoder-
decoder parameters are transferred to initialize a
child model for a low-resource language pair of in-
terest. After initializing, the model enters the “fine-
tuning” stage, where the child model is fine-tuned
on the low-resource language pair. This enables
the inductive transfer of knowledge from the par-
ent model to the child model. This approach does
not make any assumption between the relatedness
of the parent and child language pair. However,
in our work we use a relatively high-resource lan-
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Finetuning

Initialize weights

Figure 2: Our pipeline for building Transfer Learning models for Indian languages.

guage pair as our parent model which has similar
syntactic and morphological properties as the child
language pair. We further exploit the language re-
latedness of parent and child language pairs via
our Unified Transliteration and Subword Segmen-
tation technique. We experiment with this modified
Transfer Learning technique and demonstrate huge
BLEU improvements over the Transformer NMT
baseline for low-resource Indian languages.

2.5 Multilingual Transfer Learning for NMT

In the normal Transfer Learning (Zoph et al., 2016)
approach for NMT, the parent model is trained on
a single high-resource language pair which may or
may not be related to the child language pair of
interest. Passban et al. (2017) presented a double
transfer learning technique which first trains a par-
ent model on a single high-resource language pair,
then initializes the next parent model on the same
single high-resource language pair but with differ-
ent domain and corpus size, and finally fine-tunes it
on the child task. To the best of our knowledge, pre-
vious Transfer Learning approaches do not exploit
parallel data from multiple languages. However,
learning from multiple languages can result in bet-
ter knowledge transfer.

Therefore, in this work, we propose a new Trans-
fer Learning approach called as Multilingual Trans-
fer Learning to enable the low-resource languages
to efficiently learn from multiple related languages
which may or may not be high-resourced. In this
approach, the parent model is a Multilingual NMT
model of related languages and also the child lan-
guage pair. This Multilingual parent NMT model
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also uses the Unified Transliteration and Subword
Segmentation technique to exploit language relat-
edness more efficiently as discussed in Section 2.2.
After pretraining the parent model, the child model
is initialyzed with parent model parameters and is
then fine-tuned on the low-resource language pair
of interest.

The proposed approach may deliver better re-
sults than Multilingual NMT and Transfer Learn-
ing because adding more languages into one model
may result in better knowledge transfer (i.e multi-
lingual NMT) but it can also result in ambiguities
between languages at the inference time. Accord-
ingly, a multilingual NMT model fine-tuned on the
language pair of interest can potentially remove all
the inconsistencies at the inference time.

3 Experimental Settings

3.1 Dataset

In our experiments, we use the IIT-Bombay
(Kunchukuttan et al., 2017) parallel data for Hindi-
English. The training corpus consists of data from
mixed domains. We use the multilingual ILCI
(Indian Language Corpora Initiative) corpus (Jha,
2010), which contains roughly 50,000 parallel sen-
tences for each of the Indian languages ( Gujarati,
Punjabi, Marathi, Bengali) and also for English.
The ILCI data is from tourism and health domains.
For every XX-EN language pair ( where XX is Gu-
jarati, Marathi, Bengali or Punjabi), the English
side of the data is same because of the multilingual
nature of the corpus. We check and clean the ILCI
corpus manually as it contains a lot of misalign-



ments and mistranslations.

Table 1: Statistics of our cleaned and processed par-
allel data, where XX is Gujarati, Marathi, Bengali or
Punjabi

Dataset Sentences
IITB HI-EN Train | 1,528,631
ILCI XX-EN Train 46,490
ILCI XX-EN Test 2,000
ILCI XX-EN Dev 500

3.2 Data Processing

We use the Moses (Koehn et al., 2007) toolkit!
for tokenization and cleaning the English side of
the data. All the Indian language data is first nor-
malized with the Indic NLP library? followed by
tokenization with the same library. As our prepro-
cessing step, we remove all sentences of length
greater than 80 words from our training corpus
and lowercase the English side of the data. In all
cases, we use BPE segmentation with 16k merge
operations as described in Section 2.2.

3.3 Training Details

For all of our experiments, we use the OpenNMT-
py (Klein et al., 2018) toolkit®>. We use the Trans-
former model with 6 layers in both the encoder and
decoder, each with 512 hidden units. The word
embedding size is set to 512 with 8 heads. The
training is done in batches of maximum 4096 to-
kens at a time with dropout set to 0.3. We use the
Adam (Kingma and Ba, 2014) optimizer to opti-
mize model parameters. We validate the model
every 5,000 steps via BLEU (Papineni et al., 2002)
and perplexity on the development set. We train
all our NMT models for 150k steps except for fine-
tuning which is done for 10k steps. After transla-
tion at the test time, we rejoin the translated BPE
segments and convert the translated sentences back
to their original language scripts. Finally, we eval-
uate the accuracy of our translation models using
BLEU.

4 Results

We report the results of Multilingual Learning,

Transfer Learning and Multilingual Transfer Learn-

ing for Gujarati-English, Bengali-English, Marathi-
"https://github.com/moses-smt/mosesdecoder

*https://anoopkunchukuttan. github.io/indic_nlp_library/
*https://github.com/OpenNMT/OpenNMT-py/
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English and Punjabi-English language pairs for
both translation directions (XX-EN and EN-XX).
Table 2 shows our main results for the Indian lan-
guage to English (XX-EN) translation direction.
Multilingual models for XX-EN language direc-
tion do not show any improvements. The reason
for this might be the multiparallel nature of the
ILCI data where each English sentence on the tar-
get side appears 4 times in the model, thereby creat-
ing ambiguities in the model. The transfer learning
model built using Unified Transliteration and Sub-
word Segmentation that was trained on the IITB
HI-EN data and then fine-tuned on XX-EN data
(see model no. 8 in Table 2) resulted in an average
improvement of 5 BLEU points.

Table 3 shows our main results for the English
to Indian language (EN-XX) translation direction.
In this case, the multilingual model using all ILCI
data shows significant improvements over the base-
line, unlike in the XX-EN translation direction.
The reason for this is that in the EN-XX direction,
language flags are used on the source side which
guides the decoder to which language the model
translate in, whereas the same is not possible for
the XX-EN direction as verified by our preliminary
experiments. The other two multilingual models
containing the IITB EN-HI data show performance
degradation, potentially due to the mismatch be-
tween the size of the IITB EN-HI ( 1.5M sentences)
and ILCI data ( 47k sentences). The transfer learn-
ing model that was trained on II'TB EN-HI data and
then fine-tuned on EN-XX data (see model no. 8 in
Table 3) also resulted in an average improvement
of 5 BLEU points.

In both translation directions, the multilingual
models do not prove to be effective. Fine-tuning the
multilingual models (multilingual transfer learning)
on XX-EN or EN-XX data removes some ambigu-
ities in the model and shows significant improve-
ments compared to their simple multilingual model
counterparts. The best performance (almost 5-6
BLEU improvements over the baseline) is achieved
by fine-tuning the multilingual model (trained on
IITB HI-EN or EN-HI data and all the ILCI data)
on EN-XX or XX-EN outperforming all the NMT,
Multilingual NMT and Transfer Learning baselines
thus demonstrating the effectiveness of our tech-
nique.



Table 2: BLEU scores of the contrastive experiments for Indian Language to English translation (XX to EN).

‘ Model No. ‘ Model Description ‘ Gujarati Bengali ‘ Marathi ‘ Punjabi ‘
1 Baseline 28.37 22.40 25.29 30.51
2 Multilingual Model of all ILCI data 25.14 21.47 23.56 2543
3 Multilingual Model of IITB HI-EN data & all ILCI data 28.62 22.71 26.90 29.46
4 Multilingual Model of II'TB HI-EN data & ILCI data of XX-EN 29.18 23.93 27.15 30.54
5 Fine-tuning model no. 2 on XX-EN 26.83 22.72 25.36 27.12
6 Fine-tuning model no. 3 on XX-EN 33.78 (+5.41) | 27.55 (+5.15) | 31.79 (+6.5) | 34.70 (+4.19)
7 Fine-tuning model no. 4 on XX-EN 33.72 27.40 31.80 34.68
8 Fine-tuning model pretrained on IITB HI-EN data on XX-EN 33.13 27.06 31.27 34.54

Table 3: BLEU scores of the contrastive experiments for English to Indian Language translation (EN to XX).

‘ Model No. ‘ Model Description ‘ Gujarati ‘ Bengali ‘ Marathi ‘ Punjabi ‘
1 Baseline 20.67 16.59 15.13 25.20
2 Multilingual Model of all ILCI data 24.61 19.81 17.92 28.02
3 Multilingual Model of IITB EN-HI data & all ILCI data 20.63 16.51 15.05 21.76
4 Multilingual Model of IITB EN-HI data & ILCI data of EN-XX 14.30 6.38 8.88 14.54
5 Fine-tuning model no. 2 on EN-XX 24.75 20.25 18.75 28.16
6 Fine-tuning model no. 3 on EN-XX 26.22 (+5.55) | 21.62 (+5.03) | 19.90 (+4.77) | 30.27 (+5.07)
7 Fine-tuning model no. 4 on EN-XX 25.52 20.45 19.77 29.53
8 Fine-tuning model pretrained on IITB EN-HI data on EN-XX 25.35 21.77 19.58 29.54
S Conclusion & Future Work References

In this paper, we explore effective methods
to exploit parallel data from multiple related
languages to improve the translation between
Indian languages and English. Our results show
that Multilingual Learning for translation between
Indian Languages and English is not very effective
given the set of data we have. However, the
performance of multilingual models can easily be
enhanced by fine-tuning them on the low-resource
language pairs of interest. Our experiments show
that using a Multilingual NMT model as a parent
model (consisting of multiple language pairs
with related languages either on the source side
or on the target side) and fine-tuning it on the
low-resource language pair of interest yields an
overall average improvement of 5 BLEU points

over a standard Transformer-based NMT baseline.

Our proposed Multilingual Transfer Learning
approach also outperforms the simple Transfer

Learning approach by a significant amount.

In future, we would like to work on effective
techniques to exploit monolingual data and parallel
data from other languages together to improve the
translation of low-resource languages.
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Abstract

We propose an interpretable approach for
event extraction that mitigates the tension be-
tween generalization and interpretability by
jointly training for the two goals. Our ap-
proach uses an encoder-decoder architecture,
which jointly trains a classifier for event ex-
traction, and a rule decoder that generates
syntactico-semantic rules that explain the de-
cisions of the event classifier. We evaluate
the proposed approach on three biomedical
events and show that the decoder generates
interpretable rules that serve as accurate ex-
planations for the event classifier’s decisions,
and, importantly, that the joint training gen-
erally improves the performance of the event
classifier. Lastly, we show that our approach
can be used for semi-supervised learning, and
that its performance improves when trained on
automatically-labeled data generated by a rule-
based system.

1 Introduction

Interpretability is a key requirement for machine
learning (ML) in many domains, e.g., legal, medi-
cal, finance. In the words of (Ribeiro et al., 2016),
“if users do not trust the model or a prediction, they
will not use it.” However, there is a tension between
generalization and interpretability in deep learning,
as interpretable models are often generated by “dis-
tilling” a model with good generalization, e.g., a
deep learning one that relies on distributed repre-
sentations, into models that are more interpretable
but lose some generalization, e.g., linear models or
decision trees (Craven and Shavlik, 1996; Ribeiro
et al., 2016; Frosst and Hinton, 2017). Here, we
argue that both generalization and interpretability
are equally important. For example, in the medical
space, a patient will likely reject a treatment rec-
ommended by an algorithm without an explanation.
Closer to natural language processing (NLP), a sta-
tistical information extraction method that converts

free text in a specific domain to structured knowl-
edge should also provide human-understandable
explanations of its extractions. This allows the sub-
ject matter expert to quality check such output with-
out a deep knowledge of the underlying machinery,
which is a necessity in successful inter-disciplinary
NLP collaborations.

In this work, we propose an interpretable ap-
proach for event extraction (EE) that mitigates the
tension between generalization and interpretabil-
ity through multitask learning (MTL). Our ap-
proach uses an attention-based encoder to en-
code the input text and given entities of interest
(e.g., proteins in the biomedical domain), and a
decoder that jointly trains two tasks. The first
task is event classification, which identifies which
event applies for a given entity (e.g., phosphory-
lation). The second task decodes a rule in the
Odin language (Valenzuela-Escarcega et al., 2018;
Valenzuela-Escédrcega et al., 2016), which explains
the prediction of the classifier in a format that can
be read and understood by human end users. An
example of such a rule is shown in Figure 1. Im-
portantly, both tasks share the same encoder, and
are trained using a joint objective function.

Supporting earlier findings, we observe that joint
training leads to performance improvements both
within and across tasks. In our unique pairing of
tasks, however, we are able to shed light on an
opaque process by generating rules that provide
an interpretable distillation of an event classifier’s
decisions.

The major contributions of this paper are:

(1) A simple neural architecture for EE that jointly
learns to extract events and explain its decisions.
While here we investigate event extraction, we be-
lieve this approach is applicable to many other in-
formation extraction tasks.

(2) We extend a subset of the BioNLP 2013 GENIA
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label: Phosphorylation
pattern: |
trigger =
[lemma=/phosphorylation/ & !word=/(?i) "(de|auto)

theme: Protein
prep_of appos? /nn|conj_(andl|or) |cc/{,2}

Label(s) to assign to a match.
Lexical constraints on the event’s predicate.

/1

argName:ArgType, where ArgType indicates the semantic cate-

gory expected for this argument.

Figure 1: An example of an event extraction rule in
the Odin language that extracts phosphorylation events
driven by a nominal trigger (“phosphorylation”). The
event’s sole argument or theme (the phosphorylated
protein) is identified through both semantic constraints
(its type must be Protein), and syntactic ones (it
must be attached to the trigger through a certain syntac-
tic dependency pattern: a prep_of followed by an op-
tional (?) appositive (appos), followed by up to two
({, 2}) other dependencies, e.g., nn). This rule would
extract a Phosphorylation (PKC) event from the
text “...which includes the phosphorylation of PKC

2

by...”.

event extraction (Kim et al., 2013) dataset with a
set of rules designed to extract and explain three
of the GENIA biomedical events: protein phospho-
rylation, localization, and gene expression. The
result is a parallel dataset that aligns some of the
GENIA event labels with rules that extract them.
We release this dataset' for reproducibility.

(3) We train and evaluate our approach on this
dataset and demonstrate that: (a) our approach
achieves reasonable event classification perfor-
mance, despite the fact that it uses no syntactic or
part-of-speech information; (b) it decodes explana-
tions with high accuracy, e.g., with a BLEU overlap
score between the generated rules and hand-written
rules of up to 93%, and (c) most importantly, we
show that MTL improves performance over the
individual event classification task. To our knowl-
edge, this is the first work that demonstrates that in-
terpretability improves classification performance.

(4) Our approach can be easily extended to a semi-
supervised setting, where we use the rules associ-
ated with the events of interest to extract additional
training data with “silver” labels, i.e., where we use
the rule predictions as training labels for the classi-
fier. We show that despite the inherent noise in this
process, the performance of our approach improves
considerably in this semi-supervised setting.

'nttps://github.com/clulab/releases/
tree/master/aclsrw2020-edin/
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2 Related Work

Interpretability in machine learning is an area of
active research involving a multitude of approaches.
In this work, we focus on post-hoc interpretations
that explain a model’s output (Lipton, 2016).

A common theme of prior research in inter-
pretable machine learning is producing a definite
decision process (e.g., a decision tree) that pre-
serves generalization. (Craven and Shavlik, 1996)
explored converting a trained network to a decision
tree. Similarly, (Frosst and Hinton, 2017) trained
soft binary decision trees using the predictions of
a neural model. These decision trees are trained
with mini-batch gradient descent using as labels a
trained network’s results. In the same vein, (Che
et al., 2016) proposed a mimic learning framework,
which trains gradient boosting trees to mimic the
soft predictions of the original neural network. One
unaddressed challenge with this direction, however,
is that a decision tree’s interpretability tends to de-
cay as the tree increases in size.

Rather than converting a statistical model into an
interpretable model such as a decision tree, other
efforts have focused on jointly learning a statistical
model with explanations for the model’s output.
Our work falls in this camp as well. (Hendricks
et al., 2016) proposed a system for image clas-
sification that generates a natural language (NL)
explanation to accompany each decision. Similarly,
(Blunsom et al., 2018) learned NL explanations for
the natural language inference (NLI) task, and (Ye
et al., 2018) applied this idea to crime case predic-
tion. Inspired by such approaches, here we learn
to generate declarative information extraction rules
that serve to explain the predictions of an event
classifier.

3 Approach

Our approach jointly addresses classification and
interpretability through an encoder-decoder archi-
tecture, where the decoder uses MTL for event
extraction (Task 1) and rule generation (Task 2). In
this paper, we apply this architecture to the extrac-
tion of unary events in the biomedical domain. The
two tasks are framed as follows:

Task 1 (T1): Given a sentence and an entity in
focus, it must identify which event applies to the
entity, and what is its trigger, i.e., the verbal or
nominal predicates that drives the lexicalization of
the event (e.g., “phosphorylation”).



Task 2 (T2): Decode a rule in the Odin language
that explains the prediction of the event classifier.
That is, the rule should identify the lexical con-
straints on the event trigger, e.g., its lemma, the
semantic type expected of the argument, e.g., that
is must be a Protein, and the syntactic pattern
that connects the event trigger with the argument
(Figure 1 shows a complete example for such a
rule).

Consider this text as a walkthrough example:
which includes the phosphorylation of PKC by . ..,
where the text in bold indicates the entity that is
provided in the input in this task. This follows
the settings of the standard event extraction task
of BioNLP 2013 (Kim et al., 2013). For Task 1,
we train a series of binary event classifiers (one for
each event type), which predict the position of the
event’s lexical predicate (i.e., trigger) that modifies
each given entity (phosphorylation here). Drawing
upon the state information from Task 1, we prime
our decoder in Task 2 using a contextualized repre-
sentation of the predicted event trigger to generate
an information extraction rule in the Odin language
that captures the same event (i.e., entity-predicate
structure) identified in Task 1 (see Figure 1). We
detail these two tasks next.

3.1 Task 1: Event Classifier

We train a binary event classifier for each event
type, which must identify if the corresponding
event type applies to the entity under considera-
tion, and, if so, which token in the input sentence
is the event’s trigger.

The classifier uses an encoder with entity atten-
tion to encode its input. For each sentence with
words wy, ..., w, and a given entity z, we asso-
ciate each word ¢ with a representation z; that con-
catenates three embeddings: z; = e(w;) o e(p;) o
char(w;), where e(w;) is the word embedding of
token ¢, p; is the word’s relative position to the
entity under consideration, and char(w;) is the
output of a bidirectional character-level LSTM
(charLSTM) applied over w;. e(w;) is initial-
ized with the pretrained embeddings of (Hahn-
Powell et al., 2016) using the word2vec Skip-gram
model (Mikolov et al., 2013) trained on the full
text of over 1 million biomedical papers taken
from the PubMed Central Open Access Subset.”
while e(p;) and char(w;) are initialized randomly.

https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/
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The sequence of x;s serves as input to a sentence-
level bidirectional LSTM (biLSTM), whose hidden
states h;s serve as input to the attention layer below.

The entity-attention layer computes a sequence
of context vectors (the matrix C in the equations
below), which weighs the biLSTM’s hidden states
by their importance to the entity z. Our atten-
tion mechanism is inspired by the transformer net-
work (Vaswani et al., 2017). Similarly, we com-
pute the attention function on a set of keys and val-
ues that are packed together into matrices K and
V. The difference is that our approach is entity-
focused in its query, so we only compute the atten-
tion on a single query vector ¢. Further, unlike the
conventional encoder in a transformer network, we
don’t produce a single vector, but a sequence of
vectors (the matrix C).

q=Wgh, (D
K =W,HF (2)
V=Ww,H" 3

s=qK (4)
a = softmax(s) (5)
C=Voa (6)

where W, Wy,, W, are learned matrices of dimen-
sion 200 x 200, HE contains the biLSTM’s hidden
states, and h,, is the hidden state of the entity z from
H¥. We concatenate each context vector (C;) with
the entity vector (H lE ) and feed the concatenated
vector to two feedforward layers with a softmax
function, and use its output to predict if there is a
trigger in this position. We calculate the classifier’s
loss using the binary log loss function.

3.2 Task 2: Rule Decoder

Inspired by neural machine translation (Luong
et al., 2015), we use another LSTM with attention
as the decoder. To center rule decoding around the
trigger, which must be generated first, we first feed
the trigger vector from the encoder’s context as the
initial state in the decoder. Then, in each timestep
t, we generate the attention context vector C'P by
using the current hidden state of the decoder, h):

si(j) = CFW*np (7)



a; = softmax(s;) )]
CP =Y a;(j)h? )
J

where W4 is a learned matrix of dimensions 100
x 200, and C¥ are the context vectors from the
previous entity-focused attention layer. Note that
the learned matrix W+ here is distinct from the
matrices learned in the previous entity-attention
layer. We feed this C' vector to a single feed for-
ward layer that is coupled with a softmax function.
We predict the next word from a vocabulary ex-
tracted from the existing Odin rules used in our
experiments (see next section for details). During
training, we calculate the decoder’s loss using the
multiclass cross-entropy loss function.

Note that the losses corresponding to these two
tasks are jointly optimized. Formally, the loss func-
tion is defined as:

loss = loss,. + lossy (10)

losse = » _ —(t{log(y:) + (1 — t§) log(1 — ;) (1)

i

lossg =Y _ —log(pi)

%

(12)

where loss, is the cross-entropy loss of the event
classifier, which relies on: t€, the target label (i.e.,
1 for positive examples, 0 for negative), and y, the
likelihood predicted by the model. lossq is the
cross-entropy loss of the rule decoder, where 7 it-
erates over the tokens in the rule, and p; is the de-
coder’s probability of the correct token at position
i.

4 Experiments

4.1 Dataset

We train and evaluate on three events from the
BioNLP 2013 GENIA Events extraction shared
task (Kim et al., 2013): Phosphorylation (P), Local-
ization (L), and Gene Expression (GE). To facilitate
comparison with previous work, we use the stan-
dard training, development, and test partitions from
the original dataset. To generate data for the rule
decoder, we extend this dataset with rules from the
rule-based system of (Valenzuela-Escércega et al.,
2018), which reported high-precision results for
Phosphorylation (92%). We manually added new
rules using existing syntactic templates that cover

common syntactic forms of subject-verb-object pat-
terns to cover more events. Further, because the
system of Valenzuela-Escarcega et al. (2018) did
not cover L and GE events, we extended it with
rules for these two events. All in all, we used: 32,
20, and 21 rules for P, L, and GE, respectively.
Most of these rules rely on syntactic structures de-
noted in terms of dependency paths to extract event
arguments (see Figure 1 for an example of such a
rule). From these rules, we obtained a token-level
vocabulary for the rule decoder. This poses an ad-
ditional challenge on our decoder, which must now
decode from raw text both the semantics necessary
for these events, and the syntactic patterns needed
to match event arguments. Further, note that these
rules do not have perfect recall, i.e., there are events
in the data that are not covered by rules. In other
words, the two tasks in our MTL framework are
not perfectly aligned: there are data points which
are part of the training examples of T1, but not of
T2 (for those training examples, the loss of decoder
is set to be 0).

In addition to using these rules for explainabil-
ity, we used the rule-based system to generate
additional “silver” training data for these three
events, by using its extractions from a collection of
PubMed publications. From these papers, we ex-
tracted an additional 6592, 6321, and 2056 positive
training examples for P, L, and GE, respectively. To
avoid biasing the classifier to the positive classes,
we also generated 3467, 3532, and 2876 negative
training examples for P, L, and GE by extracting en-
tities assign to extract evented to other event types
in the BioNLP data.

4.2 Evaluation Metrics

We used precision, recall, and F1 scores to measure
the performance of the event extractor (classifier),
and used the BLEU score to measure the quality
of generated rules, i.e., how close they are to the
corresponding gold rules that extracted the same
output. Note that the BLEU score provides an
incomplete evaluation of rule quality. The more
complete solution would be to evaluate these rules
by executing them over free text and verifying the
quality of the extracted output. However, this is not
a trivial process, as some of the decoded rules break
the Odin syntax, and are only executable after a
manual cleanup process. We leave this evaluation
for future work.
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Phosphorylation (P) Localization (L) Gene Expression (GE)
Precision  Recall F1 Precision  Recall F1 Precision  Recall F1
Rule baseline 92.68 48.12  63.35 66.13 4444 5316 51.08 69.79  58.98
T1 87.78 49.38  63.20 100.00 4.04 7.77 89.32 64.30 74.77
T1 + Silver 62.75 82.50 71.28 54.55 3434 42.15 68.43 7431 71.25
T1 + Silver + T2 84.38 68.75  75.77 76.60 39.39 52.03 69.92 71.24  70.58
BioNLP best 83.95 85.62 8478 86.21 53.54  66.05 91.29 82.55 86.70
BioNLP median 79.83 81.57 80.64 88.55 4091  55.89 82.58 78.11  80.09

Table 1: Results for the three events in the BioNLP 2013 test partition. T1 and T2 indicate the two tasks in our
MTL approach, i.e., the event classifier and the rule decoder, respectively. Silver indicates that that configuration
used the silver data created by the rule-based system (see §4.1). BioNLP best and median indicate the best/median
results during the 2013 shared task. We do not include T1 + T2 results because in this configuration we observed

that there is not sufficient data to train the decoder.

4.3 Baseline

We compared our proposed methods with the rule-
based baseline proposed by (Valenzuela-Escédrcega
et al., 2018). They used their rule-based system
to extract Phosphorylation events in BioNLP 2013
Genia Events (GE) task data using 42 manually
written rules (which we extended for our exper-
iments — see Section 4.1). On the development
partition, they reported a precision of 92.9%, a
recall of 56.0%, and an F1 score of 69.9%. We
also evaluated their system on the formal test parti-
tion and obtained a precision of 84.2%, a recall of
43.8%, and an F1 score of 57.6%. As mentioned
in Section 4.1, we adjusted the grammar in this
system to cover gene expression and localization
events. The complete results for this system are
listed in Table 1 as “Rule baseline.”

4.4 Results and Discussion

Tables 1 analyzes the performance of our approach
for the three events, compared against the rule-
based system described in §4.1. These results high-
light several important observations:

(1) T1 by itself performs generally worse than the
rule baseline and the median BioNLP result. This
is caused by: (a) the small size of this dataset,
e.g., there are only 117 training examples for P;
and (b) the fact that our approach uses no part-of-
speech (POS) or syntactic information, which have
been shown to be important for this BioNLP task
(Kim et al., 2013). However, adding the silver data
improves T1 performance considerably, e.g., 35 F1
points for Localization. This demonstrates that our
approach provides a simple but effective platform
for semi-supervised learning.

(2) Most importantly, jointly training for classifica-
tion and explainability helps the classification task
(T1) itself. As shown in the tables, combining T1

Exact Non-exact, Explainable
BLEU Matches Matches
P 93.80 86.11 2/15
L 83.78 84.33 1/9
GE 78.99 76.45 10/43

Table 2: Evaluation of decoded rules, on the BioNLP develop-
ment partition. BLEU measures the overlap with hand-written
rules. Exact Matches shows the percentage of decoded rules
that exactly match hand-written ones. Explainable Matches
shows the number of decoded rules that do not match exactly
hand-written ones, but were considered good explanations by
human experts.

and T2 generally improves F1 scores considerably,
e.g., 4 F1 points for Phosphorylation and 10 for Lo-
calization. To our knowledge, this is the first NLP
work to demonstrate that aiming for interpretability
also helps the main task addressed. All in all, we ap-
proach the median performance in the shared task,
a respectable result considering that our approach
uses only raw text as input, whereas all participants
in this shared task used some form of syntactic rep-
resentation. Importantly, our approach outperforms
considerably the rule-based method of (Valenzuela-
Escarcega et al., 2018), which served as the starting
point of this work (see Section 4.3).

(3) The only negative results in our experiments
are the GE results in the test partition, where T1
outperforms both T1 + Silver and T1 + Silver
+ T2. We hypothesize that this is caused by the
larger training data for this event, e.g., there are 6
times more training samples for GE than P, which
allows the T1 classifier to learn by itself, without
the scaffolding offered by MTL, and the additional
(noisy) data in the silver dataset. This suggests
that our approach is best suited for EE scenarios
with minimal training data, an important subset of
information extraction tasks.

But are the decoded rules actually interpretable?
To answer this, we compared in Table 2 the de-
coded rules against the hand-written rules that
matched in the BioNLP development partition.
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Hand-written Rule

Decoded Rule

trigger = [ lemma = /phosphorylate/ & ! word = /(?i)*(de|auto)/ & tag = /A(V|JJ)/ & ! mention | trigger = [ lemma = /phosphorylate/ & ! word = /(?i)*(de|auto)/ & tag = /A(V[JJ)/ & ! =

= ModificationTrigger ]

theme : BioChemicalEntity = > nsubjpass prep_of ? /conj_(and|or|nor)|nn|cc/ {, 2 }

trigger = [ lemma = /detect|localiz|locat|releas|secret|translocat/ & ! word = /(?i)*de/ ]

theme : BioChemicalEntity = prep_of ? appos ? /conj_(and|or|nor)|cc|nn/{, 2}

ModificationTrigger ]

theme : BioChemicalEntity = > nsubjpass prep_of ? /conj_(and|or|nor)|nn|cc/ {, 2 }

1rigﬁer = [ lemma = /d

|localiz|locat]rel

et|translocat/ & ! word = /(?i)*de/|SINCUIGOIRGE

theme : BioChemicalEntity = EiliGonjIENAIGTRGHARICoRIEH|CHRGRICElRlprepRoim2)

trigger = [ lemma =/ phosphorylation / & ! word =/ (? i) * (de | auto ) / & ! outgoing =/
prep_(by|of)/]

trigger = [ lemma =/ phosphorylate / & 'word =/ (? i) (de|auto)/&tag=/"(V|JJ)/&!
mention = ModificationTrigger ]

theme : BioChemicalEntity = </ conj_ (and | or | nor )/ ? / conj_ ( and |or|nor)|cc|nn| cause : BioChemicalEntity ? = < xcomp ? ( nsubj | agent | < vmod )/ appos | nn | conj_ (and | or |

prep_of / {2} site : Site ?=nn | < dobj ? / prep_(at|on)/num ?

theme : BioChemicalEntity =
>>[word =by]) {2} site : Site ? = dobj

nor)|cc/{2}

( dobj | xcomp )/ conj_ (and | o nor) dep | cc | nn | prep_of /
'?)prep (at]on)|nn]|conj_(an ||0r| nor ?ch/%

Table 3: Examples of mistakes in the decoded rules. The first column shows hand-written rules, while the second shows
the rules decoded by our approach from sentences where the corresponding hand-written rules matched. We highlight in the
hand-written rules the tokens that were missed during decoding (false negatives) in green, and in the decoded rules we highlight
the spurious tokens (false positives) in red. The first row lists a partial mistake, which does not affect the interpretability of the
decoded rule, since it only misses one token that can be inferred by the human experts from context. The second row lists a
partial mistake, which impacts the semantics of the rule. For example, the decoder missed that the path between the trigger and
the theme argument starts with an optional prop_of and appos. This rule was marked as partially correct because some
simple syntactic patterns, e.g., nn, can still be correctly matched by the decoded rule. The last row lists a larger decoding error
that was marked as completely incorrect by the annotator. For example, in the last decoded rule, the decoder generated an
incorrect cause argument, which does not exist in the data, as well as an incorrect syntactic pattern for the theme argument,

i.e., the protein being phosphorylated.

That is, we performed this analysis on the subset of
the development partition, where each data point
is accompanied by a matching hand-written rule.
This reduced this dataset to approximately 60% of
the total BioNLP development set. In particular,
we analyzed 108, 82, and 296 event instances with
matching rules for P, L, and GE events, respec-
tively. The table shows that our rules have high
BLEU overlap with hand-written rules, e.g., 93%
for P, and, by and large, they exactly match them.
We believe this is an exciting result, as it shows
that our approach is able to decode directly from
the raw text the declarative semantics necessary for
the task, as well as the syntactic patterns that match
the event arguments.

Lastly, Table 3 shows examples of typical de-
coding errors, ranging from partial mistakes that
do not affect the interpretability of rules to com-
plete decoding mistakes. As we mentioned above,
we cannot ensure the validation of the generated
rules with our current approach. Table 3 shows that
this indeed happens in our output. For example,
the decoder generates a binary operator such “!="
without the left operand (first row in the table).

5 Conclusions

We introduced an interpretable approach for event
extraction that jointly trains an event classifier with
a component that translates the classifier’s deci-
sions into interpretable extraction rules. We im-
plemented this approach using an encoder-decoder
architecture, where the decoder jointly optimizes
the decoding of extraction rules and event clas-
sification. We evaluated the proposed approach
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on three biomedical events and demonstrated that
the decoder generates interpretable rules, and that
the joint training improves the performance of the
event classifier. We also showed that the perfor-
mance of our approach further improves when
trained on automatically-labeled data generated by
a rule-based system.

In the longer term, we envision a decoder with
constraints, which enforces that the generated rules
follow correct Odin syntax. We plan to include
constraints as part of decoding to aid in rule syn-
thesis. For example, in the Odin language, brackets
must be paired to produce syntactically valid rules.
This can be enforced with different strategies in
the decoder, ranging from constrained greedy de-
coding to globally optimal solutions that could be
implemented with integer linear programming. We
suspect that including such validity constraints will
further improve the quality of the decoded rules.

Further, we plan to use this decoder in an iter-
ative, semi-supervised learning scenario akin to
co-training (Blum and Mitchell, 1998). That is,
the newly decoded, executable rules can be applied
over large, unannotated texts to generate new train-
ing examples for the event classifier.
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Detection?
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Abstract

Recent shared tasks in humor classification
have struggled with two issues: scope and sub-
jectivity. Regarding scope, many task datasets
either comprise a highly constrained genre of
humor which does not broadly represent the
genre, or the data collection is so indiscrimi-
nate that the inter-annotator agreement on its
comic content is drastically low. In terms
of subjectivity, these tasks typically average
over all annotators’ judgments, in spite of the
fact that humor is highly subjective and varies
both between and within cultures. We propose
a dataset which maintains a broad scope but
which addresses subjectivity. We will collect
demographic information about the data’s hu-
mor annotators in order to bin ratings more
sensibly. We also suggest the addition of an
“offensive’ label to reflect the fact a text may
be humorous to one group, but offensive to
another. This would allow for more meaning-
ful shared tasks and could lead to better per-
formance on downstream applications, such as
content moderation.

1 Introduction

Interest in computational humor (CH) is flourish-
ing, and since 2017, the proliferation of shared
humor detection tasks in NLP has attracted new re-
searchers to the field. However, leading researchers
in CH have bemoaned the fact that NLP’s contribu-
tion is not always informed by the long and inter-
disciplinary history of humor research (Taylor and
Attardo, 2016) (Davies, 2008). This may result in
the creation of humor detection systems which pro-
duce excellent evaluation results, but which may
not scale to other humor datasets, improve down-
stream tasks like content moderation, or contribute
to our understanding of humor.

A central issue is the conception of humor classi-
fication tasks as humor-or-not, similar to image
classification’s view of an image as dog-or-not.

However, while one can be an expert in whether or
not an image depicts a dog, and this is stable within
and between cultures, humor is more nuanced than
that. Unlike image classification:

e Humor differs between cultures. Even within
the same language, different nationalities per-
ceive jokes differently. This is particularly rel-
evant to stereotyped humor, which may be per-
ceived as funny to one culture, but offensive
to another. (Rosenthal and Bindman, 2015)

o Humor differs within cultures. Age, gender
and socio-economic status are known to im-
pact what is perceived as humorous. (Kuipers,
2017)

e Humor differs within the same person. Mood
is thought to impact what is considered to be
humorous or not. (Wagner and Ruch, 2020)

Currently in NLP shared tasks, there is scant
admission of these issues. Humor is treated as a
stable target, and humorous texts are subjected to
binary classification and humor score prediction,
with little recognition that gold standard labels for
these constructs simply do not exist.

1.1 Proposal

To the extent that humor is multi-faceted, and sub-
ject to multiple interpretations, incremental im-
provements to shared tasks can be made by:

e Acknowledging that texts may not be per-
ceived as humorous by all readers, and allow-
ing for a different interpretation, e.g. offen-
sive.

o Collecting demographic information about the
annotators of humor datasets to learn more
about which sectors of society find a text hu-
morous versus offensive.
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1.2 Why Offensive as an Alternative Label?

Cultural shifts in many parts of the world have seen
a decline in racist and sexist jokes, and the growth
of humor that acknowledges marginalized people.
Lockyer and Pickering (2005) argue that this is
not just a recent phenomenon, but that all pluralist
societies navigate the space between humor and
offensiveness, between ‘free speech and cultural
respect’

Despite the shift away from using racist or sex-
ist comments as humor, offensive language is still
plentiful on the internet (Davidson et al., 2017),
(Nobata et al., 2016). This can reinforce racial
stereotypes, or have a damaging impact on commu-
nities. In light of the fact that many shared tasks
source their data online, either by scraping Twitter,
Reddit, or crowdsourcing, we believe it is worth
capturing the impact of these texts on users.

1.3 Why Demographic Factors?

Studies as far back as 1937 demonstrate gender
and age differences in the appreciation of jokes,
where young men gave higher ratings to ’shady’
(e.g. sexual) jokes than their female, and older
counterparts did (Omwake, 1937).

More recently, in the Netherlands, Kuipers
(2017) found significant differences in humor pref-
erences along the lines of gender, age, and in partic-
ular, social class or education level. An interesting
finding was that the older generation rated their
younger counterparts’ humor as offensive. This
contradicts the popular opinion that the millennial
generation is perpetually offended (Fisher, 2019).

In terms of gender-specific offensive humor, a
US study found that males tended to give higher
ratings to female-hostile jokes, and females did the
same with male-hostile jokes. Both genders found
female-hostile jokes more offensive overall (Abel
and Flick, 2012).

The body of work from CH on demographic
differences in humor perception is absent in current
work, but can be incorporated into shared tasks with
some simple adjustments.

2 Previous Work

SemEval 2017 posed two humor detection tasks.
Task 7 (Miller et al., 2017) covered puns,
which we do not include here as the identifica-
tion/interpretation of puns is less ambiguous than
other forms of humor, except in the case that the

177

audience does not possess the tacit linguistic knowl-
edge required to understand them (Aarons, 2017).

2.1 Limited Scope

Task 6, Hashtag Wars (Potash et al., 2017), sourced
its name and data from a segment in the Com-
edy Central Show @Midnight with Chris Hard-
wick, which solicited humorous responses to a
given hashtag from its viewers, submitted on Twit-
ter. These submissions were effectively annotated
twice: the producers selected ten tweets as most hu-
morous, and most appropriate for the show’s type
of humor. The show’s audience then voted on their
number one submission. Task 1 was to pair the
tweets, and for each pair, predict which one had
achieved a higher ranking, according to the audi-
ence. Task 2 was to predict the labels given by
this stratified annotation: submitted but not top-10,
top-10, number one in top-10.

The task’s organisers highlighted the data’s lim-
ited scope, and were keen to point out that this task
does not aim to build an all-purpose, cross-cultural
humor classifier, but rather to characterise the hu-
mor from one source - the show @Midnight. This
task’s dual annotation and ecologically valid task
make it arguably one of the most effective humor
challenges in recent years. However, it remains to
be seen how well a system built on this data would
generalize to another humor detection task.

Semeval 2020 featured another humor challenge
with two subtasks: predicting the mean funniness
rating of each humorous text, and given two hu-
morous texts, predicting which was rated as fun-
nier (Hossain et al., 2019). Instead of collecting
previously existing humorous texts, the organisers
generated them by scraping news headlines from
Reddit, and then paying crowdworkers to edit the
headlines to make them funny, and annotators to
rate the funniness of the new headlines.

Edits were defined as ‘the insertion of a single-
word noun or verb to replace an existing entity or
single-word noun or verb’. The annotators rated
the headline as funny from 0-4. An abusive/spam
option was included, but presumably to discard
ineffective edits, rather than highlight a text which
would cause offense. Nonetheless, inter-annotator
agreement between raters was moderately high,
(Krippendorff’s o 0.64)

Of interest to CH research is that the authors’
analysis of the generated humor finds support for
established humor theories, such as incongruity,



superiority and setup and punchline being central
to the this task. However, the editing rules enforced
such tight linguistic constraints that many common
features of language were not permitted, e.g. the
use of named entities with two words, phrasal verbs,
even apostrophes. This scales down the humor that
can be generated, not in terms of genre, as was
the case with the 2017 SemEval task, but rather in
terms of arbitrary linguistic constraints.

Finally we must consider that, given that the hu-
morous texts were presented alongside the original
headline, it’s possible that affirmative humor rat-
ings do not mean that the text is humorous in and of
itself, only that it is funnier than the contemporary
news — arguably a low bar in the current climate.

2.2 Unlimited Scope

The HAHA challenge (Humor Analysis based on
Human Annotation) has run in 2018 (Castro et al.,
2018) and 2019 (Chiruzzo et al., 2019) with two
subtasks: binary classification of humor, and pre-
diction of the average humor score assigned to each
text.

The data were collected from fifty Spanish-
speaking Twitter accounts which typically post hu-
morous content, representing a range of different
dialects of Spanish. These were then uploaded to
an online platform, which was open to the public
who were asked the following questions to annotate
the data:

1. Does this tweet intend to be humorous? (Yes,
or No)

2. [If yes] How humorous do you find it, from 1
to 5?

A strength of this annotation process is that the
first question allows the user to objectively identify
the genre of the text by identifying its intention,
before giving their subjective opinion of it. How-
ever, the inter-annotator agreement for the second
question was extremely low (Krippendorf’s o of
0.1625). It’s possible that sourcing the texts from
fifty different accounts introduced too many genres
to gain a consensus about what was funny amongst
annotators. Similarly, the organizers targeted as
many different Spanish dialects as possible in their
data collection, which could lead to cultural and lin-
guistic differences in humor appreciation. Finally,
the annotations were sourced on an open platform,
with only three test tweets to assess whether an an-
notator provided usable ratings or not. There were
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no questions as to whether the user was a Spanish
speaker, and as the task was unpaid, there may have
been little incentive to do it accurately.

3 Methodology

The datasets featured in both SemEval tasks had
tight constraints on the genre of humor involved.
This led to high inter-annotator reliability, but may
not generalize well to other forms of humor. The
Spanish tasks featured no such constraints, how-
ever, there was extremely low inter-annotator agree-
ment, suggesting that the dataset is noisy, and that
a system which is built on this may also fail to
generalize.

This proposal aims to include a wide range
of genres, and to increase the reliability of the
annotations by collecting information on well-
known latent variables in humor appreciation —
the demographic characteristics of the humor audi-
ence/annotators. This will allow for more nuanced
tasks, as an alternative to simple humor-or-not defi-
nitions.

3.1 Data Collection

We plan to follow a similar data collection pro-
tocol to (Castro et al., 2018) and collect tweets
from a wide variety of humorous Twitter accounts.
However, unlike Castro et al., we plan to limit the
dialect of the jokes collected to US English, and
use a crowdsourcing platform which allows us to
select annotators who use this dialect. This will
help us to avoid introducing confounds such as lack
of cultural knowledge, or divergent language us-
age. Furthermore, we will hand select the Twitter
accounts which typically post humorous content,
in order to ensure that the data features a wide vari-
ety of genres of humor, e.g. observational humor,
wordplay, humorous vignettes, etc.

3.2 Annotation

As mentioned above, averaging over the opinions
of the audience, similar to approaches in image
detection is not ecologically valid for humor de-
tection. For this reason, we plan to collect demo-
graphic information about the annotators, in order
to bin the ratings into groups that may perceive
humor in a similar way. In this way, we hope to
increase inter-annotator reliability. We also plan to
include a second label for each text — offensive.

Following Castro et al., annotators will be asked
the following questions for each text:



1. Is the intention of this text to be humorous?

2. [If so] How humorous do you perceive this
text to be?

3. Is this text offensive?

4. [If so] How offensive do you perceive this text
to be?

The annotator guidelines will reflect that offen-
siveness can encompass an insult to the audience
itself, or to others who are likely to find the text
distasteful.

All annotators will be paid for their work, to
incentivize quality ratings. They will be selected
to undertake the task by virtue of fitting into the
following demographic bins:

o Age: 18-25, 26-40, 41-55, 56-70 the bins
are broadly designed to capture Generation Z,
Millenials, Generation X and Baby Boomers
respectively (Dimock, 2019).

e Gender: Male, Female, Non-binary

e Level of Education: High School, Undergrad-
uate, Postgraduate. This will be used as an
index of socioeconomic status (Mirowsky and
Ross, 2003).

Subsequent to data annotation, we will select
the demographic factor that gives the highest inter-
rater reliability for this dataset. Annotations will be
averaged by bin, rather than averaging over all of
a text’s ratings, as was the case in previous shared
tasks.

3.3 Pilot Study

To examine the integrity of our assumptions, we ran
a short pilot task in which we used the Prolific Aca-
demic platform to crowdsource annotations from
users in the youngest and oldest age groups.

We searched for texts which related to
race/origin, religion, gender, sexuality and body
type. We used keywords from Fortuna’s (2017) sub-
categories of offensive speech to source texts which
could be offensive jokes, such as ‘black’, ‘woman’,
‘girlfriend’, ‘blind’, ‘gay’, ‘Muslim’, ‘Jew’, etc.
From a readily available dataset (The Short Jokes
dataset from Kaggle), we sourced 40 jokes, 20 in
which the keyword also referred to the butt of the
joke (average number of tokens per text = 18.4),
and 20 in which it did not (average number of to-
kens = 19.1). Twenty neutral texts were selected

from Twitter, ensuring that the semantic meaning
of the keyword stayed they same, e.g. ‘black’ re-
ferred to race, and not to Black Friday, and that
the texts were not intended to be humorous. The
average number of tokens per text in this group was
20.2.

o Keyword is not target of joke: ‘What is the
Terminators Muslim name? Al Bi Baq’

o Keyword is target of joke: ‘Mattel released
a Muslim Barbie... It’s a blow-up doll.’

o Random tweet with keyword: ‘The Mosque
will close this weekend due to the pandemic’.

We asked 2 groups of annotators, aged 18-25
(n=10) or aged 55-70 (n=10) to imagine they were
social media moderators. Their task was to iden-
tify the genre of the texts as label them as ‘humor-
ous’, ‘offensive’, ‘humorous and offensive’ and
‘other’. We highlighted that they did not need to
find the text humorous, or personally offensive to
label them as such. If they identified the intent as
humorous, or the text as possibly offensive to oth-
ers, they should use the corresponding label. We
omitted the numerical rating task for reasons of
brevity.

In terms of results, the clearest trends emerge
when the groups were split by age. Both age groups
of users made use of the "humorous and offensive’
label, suggesting that annotators could identify the
genre of the text as humorous, but found it in bad
taste. However, there was a trend for the younger
group using this label more frequently than the
older group.

Examining where differences in annotation oc-
curred, Table 1 demonstrates the disparity in la-
belling on the following gender-related text:

We should really use the blackjack scale
to rate women. For example: “Every
girl here is ugly” “Well, what about her?”
“Eh, she’s like a 15 or 16. Not sure if I'd
hit it”

Table 1: Variation in labelling between age groups

Humorous &

Age Humorous Offensive Offensive Other
18-25 3 3 3 1
56-70 2 7 0 1

As we did not have balanced groups based on
level of education, or a critical mass of non-binary
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users so we omit analysis for these. Similarly, re-
garding gender differences, there were no clear
trends in terms of labelling between females and
males, and there were no statistically significant
differences between groups.

The results of our pilot study suggest that pursu-
ing demographic differentiation in humor annota-
tion/classification is worthwhile. Specifically, we
can see that age group may be relevant as the demo-
graphic factor which most distinguishes annotators’
response to humor.

3.4 Tasks

We will ask systems to predict, given a group with
a specific set of user demographics:

e s this text humorous to the group, and if so,
how humorous?

e Is this text offensive to the group, and if so,
how offensive?

Our data will comprise texts which are either hu-
morous and not offensive, humorous and offensive,
not humorous and offensive, and not humorous and
not-offensive.

In the case that there are no clear distinctions
between the groups in terms of labels and ratings,
we will average over these annotations, as typical
tasks have done and proceed with classification and
regression, as above.

The evaluation metrics for the classification task
will be precision, recall and F1. The metric for
predicting the humor and offensiveness scores will
be root mean squared error.

4 Contribution to Computational Humor

In line with CH research, we affirm that humor
is a moving target in terms of differing interpreta-
tions between demographic groups and across the
lifetime. Our dataset will be the first to model the
reception of a wide variety of humor genres from
Twitter, presented to users of different demograph-
ics. It will also be, to the best of our knowledge,
the first CH dataset to take into account the ratings
of non-binary annotators.

In line with Hossain (2019), we aim to use clus-
tering methods on the humor and/or offensive texts
to determine themes that evoke these classes for
different groups. We also aim to explore whether
theories of humor, such as surprisal, superiority
and incongruity are equally appreciated among dif-
ferent groups.
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5 Conclusion

Humor detection and rating is a multi-faceted prob-
lem. We hope that the inclusion of demographic
information will shift the state of the art away from
objective classification, towards a more subjective
approach. Future qualitative work could also sug-
gest further variables whose inclusion would en-
hance our knowledge of humor perception. This
could set a new standard for shared tasks which
aim to model humor in future, and could outline
a methodology that can be replicated with other
cultures and languages.
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Abstract

Parallel corpora are key to developing good
machine translation systems. However, abun-
dant parallel data are hard to come by, es-
pecially for languages with a low number of
speakers. When rich morphology exacerbates
the data sparsity problem, it is imperative to
have accurate alignment and filtering methods
that can help make the most of what is avail-
able by maximising the number of correctly
translated segments in a corpus and minimis-
ing noise by removing incorrect translations
and segments containing extraneous data. This
paper sets out a research plan for improving
alignment and filtering methods for parallel
texts in low-resource settings. We propose
an effective unsupervised alignment method to
tackle the alignment problem. Moreover, we
propose a strategy to supplement state-of-the-
art models with automatically extracted infor-
mation using basic NLP tools to effectively
handle rich morphology.

1 Introduction

Machine translation (MT) quality has improved
substantially with the advent of neural machine
translation systems (NMT). However, while the
quality gains over statistical machine translation
(SMT) systems can be large, in low-resource and
domain mismatch settings they are significantly re-
duced (Koehn and Knowles, 2017). In recent years,
unsupervised NMT trained only on monolingual
corpora has attracted considerable attention, and
has been proposed for scenarios where there is a
lack of bilingual data (Artetxe et al., 2018b; Lam-
ple et al., 2018). These methods have been shown
to perform well for related language pairs (e.g. Wu
et al. (2019)), but as the languages differ more the
unsupervised methods become less effective (Leng
et al., 2019). Kim et al. (2020) show that super-
vised and semi-supervised baselines with only a
small parallel corpus of 50K bilingual sentences

@adaptcentre.ie

consistently outperform the best unsupervised sys-
tems for a range of languages, similar and distant.
They also show that unsupervised NMT is very
sensitive to domain mismatch, which poses a prob-
lem to low-resource language pairs where it can be
difficult to match the data domain on both sides.
Thus, it is evident that to achieve high quality MT,
sentence aligned-texts in two or more languages
are required.

NMT systems have been shown to be sensitive
to noise in the training data (Khayrallah and Koehn,
2018), where noise is defined as segments that de-
crease output quality of systems trained on the
data. It is, therefore, important to be able to ac-
curately align multilingual texts and precisely fil-
ter out misalignments and bad translations that ad-
versely affect performance. In the study, conducted
on the impact of various types of noise on MT
quality, untranslated and misaligned segments had
the most detrimental effect. Misaligned segments
were by far the most prevalent type of noise in
the ParaCrawl' parallel corpus they used, twice as
common as accepted segments. However, misalign-
ments vary; a segment can have one extraneous
word, it can have twice the content its counterpart
has, or anything in between. It can be very useful
to understand the intricacies of the effects different
types and levels of noise have, why it is important
not to have noise and whether some kinds of noise
are more acceptable than others. This leads us to
our first research question:

RQ1: How do different kinds of misalign-
ments in a parallel corpus affect translation
quality of an MT (SMT or NMT) system
trained on that corpus?

If we can measure the effects of various misalign-
ments, it could help us construct more effective
methods to filter parallel corpora for MT.

'https://paracrawl.eu/
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As the usefulness of parallel corpora for MT
was first becoming apparent, Harris (1988) pointed
out that aligning such texts was a serious problem.
Moreover, collecting multilingual texts is expen-
sive and time-consuming, and for some languages
it can be hard to obtain access to even small amount
of texts. Thus, we need to be able to make the most
out of what is available.

We describe a method using Bleualign (Sen-
nrich and Volk, 2011) and Monoses (Artetxe et al.,
2018b), an unsupervised SMT system, to align
parallel corpora using only monolingual texts for
training. The proposed method is language pair-
independent and only assumes unaligned bitexts
and monolingual corpora for both languages. It
is the first step towards answering our second re-
search question:

RQ2: How can we best build useful parallel
corpora from bilingual texts, having no other
resources but monolingual corpora?

In morphological typology, languages can be
classified as analytic or synthetic (see e.g. Haspel-
math and Sims (2013), Steinbergs (1996)). Ana-
lytic languages primarily rely on word order and
auxiliary words to convey meaning, while syn-
thetic languages use inflection. “Morphologically
rich” languages are synthetic languages which com-
monly have a large number of different surface
forms for any given lexeme. This can lead to a
high rate of out-of-vocabulary (OOV) words, a data
sparsity problem that machine learning algorithms
struggle with.

Icelandic is a synthetic language with relatively
few native speakers (approx. 350,000) where data
sparsity problems are prevalent in most NLP tasks.
In our work, we will focus on building a paral-
lel corpus for the English-Icelandic language pair
and confronting the issues that arise when work-
ing with a less-resourced and morphologically rich
language.

When doing sentence alignment and filtering
noise from parallel corpora, the sparsity problem
caused by rich morphology leads to lower confi-
dence scores for segment pairs resulting in lower
classification accuracy, and thus smaller or less
accurate parallel corpora. When Parlce (Barkar-
son and Steingrimsson, 2019), an English-Icelandic
parallel corpus was compiled, the filtering process
resulted in an estimated 20% reduction in corpus
size. Out of what remained, about 5% was faulty
(see Section 3). We will work with the same data

183

with the goal of minimising these numbers. This
leads us to the third and last research question this
research proposal centres around:

RQ3: How can we filter parallel corpora to
minimize noise, and still lose little or no useful
data from the original texts?

Our approach to try to answer these questions
is to experiment with common and recent meth-
ods from the alignment and filtering literature. We
will build a toolset that can employ various known
methods and compare and contrast them. We will
investigate how word embeddings, a lemmatizer,
a part-of-speech (PoS) tagger or a parser can help
tackle the data sparsity problem, and which known
methods benefit most from them. Evaluation data
sets will be created for the purposes of the project
and the methods evaluated according to a set of
evaluation metrics. Finally, we will train and eval-
uate our system on a different language pair with
comparable issues.

2 Related Work

Filtering parallel data is the task of removing incor-
rect translations, noise and otherwise faulty data
from a set of two (or more) aligned texts. Align-
ment is the task of finding target segments with a
corresponding meaning to that of source segments
in multilingual texts. While these may seem to
be different tasks, the same methods may apply
partly to both problems. Filtering is often done by
scoring sentences and removing the lowest-scoring
ones, whereas in alignment the highest-scoring sen-
tences can be used as anchors: elements in the data
that can reliably be aligned and thus direct further
processing. In the next subsections, we describe
alignment and filtering methods used in prior work.

2.1 Alignment

The first approaches to automatic sentence align-
ment were length-based. Gale and Church (1991)
found that “the correlation between the length of a
paragraph in characters and the length of its transla-
tion was extremely high”. Motivated by that, they
describe a method for aligning sentences based
on a simple statistical model of character lengths.
Brown et al. (1991) also describe a length-based
method, but use tokens instead of characters. In
addition, they use signals in the markup as anchor
points to segment the corpus into smaller chunks.
Kay and Roscheisen (1993) used bilingual lex-
icons induced from the corpus being aligned.



Haruno and Yamazaki (1996) show that combin-
ing an induced lexicon with an external dictionary
yields better results. Papageorgiou et al. (1994) use
part-of-speech, commonly preserved in translation,
by computing the optimum alignment based on the
PoS-tags. Tschorn and Liideling (2003) use a mor-
phological analyzer to improve a dictionary-based
distance measure, and Ma (2006) increases the ro-
bustness of a lexicon-based aligner by assigning
greater weights to less frequent translated words.

Sennrich and Volk (2010) use machine transla-
tions and BLEU (Papineni et al., 2002) as a similar-
ity score to find reliable alignments to use as anchor
points. The gaps between the anchor points are
filled using BLEU-based and length-based heuris-
tics.

Thompson and Koehn (2019) describe a method
based on bilingual sentence embeddings, using the
similarity between the embeddings as the scoring
function for alignment.

2.2 Filtering

Recently, neural networks have been used to find
anchor points and detect misalignments. Many of
these methods have been devised to extract parallel
sentences from comparable corpora, by training
classifiers to determine if source and target sen-
tences are parallel.

Earlier work includes employing the IBM mod-
els (Brown et al., 1993) for word alignment.
Khadivi and Ney (2005) filter out the noisy part of
a corpus based on IBM models 1 and 4 and length-
based models, and score the alignments on a linear
combination of these. Taghipour et al. (2011) do
outlier detection and show that their filtered cor-
pus results in improved translation quality, even
though sentences have been removed. Sarikaya
et al. (2009) use context extrapolation to boost the
sentence pair coverage, checking whether the dis-
tance of the sentences from an anchor point is the
same, and whether the sentences have the highest
similarity score compared to other pairs within a
window, despite being below a defined threshold.

Crosslingual word embeddings have been used
to calculate distance between equivalences in dif-
ferent languages (Luong et al., 2015; Artetxe et al.,
2016). Defauw et al. (2019) treat filtering as a su-
pervised regression problem and show that Leven-
shtein distance (Levenshtein, 1966) between the tar-
get and MT-translated source, as well as cosine dis-
tance between sentence embeddings of the source
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and target, are important features. While they use
InferSent (Conneau et al., 2017), BERT (Devlin
et al., 2019) has recently been employed for cal-
culating crosslingual semantic textual similarity
to detect misalignment with good results (Lo and
Simard, 2019).

Zipporah (Xu and Koehn, 2017) uses a logistic
regression model trained to classify sentence pairs.
Noisy data is synthesized and used as negative sam-
ples in training. BiCleaner (Sdnchez-Cartagena
et al., 2018) uses a set of handcrafted hard rules to
detect flawed sentences and then proceeds to use
a random forest classifier based on lexical transla-
tions and several shallow features such as respec-
tive length, matching numbers and punctuation.
Finally, it scores sentences based on fluency using
5-gram language models.

In 2019, at the fourth Conference on Machine
Translation, WMT, the shared task on parallel cor-
pora filtering focused on low-resource conditions.
The method central to the best-performing submis-
sion was the use of crosslingual sentence embed-
dings, trained from parallel sentence pairs (Chaud-
hary et al., 2019). Artetxe and Schwenk (2019a)
devised a similar method. Both papers tackle the
inconsistencies of cosine similarity by investigating
the neighbourhood of a given sentence pair, outper-
forming systems using only cosine similarity.

3 Experimental Framework

The continuum of morphologically rich languages
is quite diverse with the one end of the continuum
being agglutinative languages, that primarily rely
on discrete particles for inflection, and the other
being fusional languages, which tend to use a sin-
gle inflectional morpheme to denote multiple fea-
tures. While it may be worthwhile to investigate if
the same unsupervised methods work across differ-
ent language categories, it can be expected that if
further processing is needed, different approaches
have to be taken. Decompounding (Alfonseca et al.,
2008) may be more useful for agglutinative lan-
guages to tackle the OOV problem, and for many
fusional languages internal change and suppletion
call for different approaches. In our study we focus
on fusional languages. English is primarily an an-
alytic language and Icelandic a fusional language
with moderately rich morphology. We will be using
the English-Icelandic language pair as a test case.



3.1 Data

Parlce, an English-Icelandic parallel corpus, was
compiled from data consisting of 4.3 million trans-
lation segments. It was aligned with LF Aligner,
which uses Hunalign (Varga et al., 2005), and then
filtered using a sentence-scoring algorithm based
on a bilingual lexicon bag-of-words method and
a comparison between the original segment and
an MT-generated translation. The filtering process
resulted in 3.5 million translated segments. Man-
ual evaluation of approximately 2000 sample pairs
from the corpus indicate that approximately 5% are
faulty, while over 50% of the deleted segments are
estimated to be faulty using automatic methods.

From these numbers we can deduce that in the
raw 4.3 million segment Parlce corpus, there are ap-
prox. 3.7 million good segments and around 600K
faulty ones. Many of the faulty segments in the
corpus are due to misalignment. We will be work-
ing with the raw data that made up the 4.3 million
segment Parlce corpus. In order to compile a better
corpus, we need improved alignment methods to
reduce the number of faulty alignments, and we
need a classifier that is able to identify the quality
of the segments with high precision and recall in
order to build as big a corpus as possible with as
few faulty segments as possible.

3.2 Evaluation

We are building three evaluation sets, for alignment,
filtering, and MT, all sub-sampled and extracted
from the Parlce corpus. The MT evaluation set
will contain 3000 manually aligned and error-free
segments. The alignment evaluation set will have
2000 manually aligned sentences and the filtering
set 2000 automatically aligned segments, each as-
signed one of four classes: correct, partially mis-
aligned, partially incorrect translation, incorrect.

To evaluate the usefulness of our methods for
MT, we will use our aligned and filtered corpora
to train SMT and NMT systems and compare the
results to a baseline where the raw Parlce corpus is
used for training.

3.3 Tools and Models

In Section 4, we will discuss some of the methods
we will be experimenting with. These include ap-
plying a variety of available tools and models as
well as developing our own. ABLTagger (Stein-
grimsson et al., 2019) will be used for PoS-tagging
Icelandic texts. The tagger employs biLSTMs and

an external morphological lexicon (Bjarnadottir
etal., 2019). Lemmatising will be carried out using
Nefnir (Ingdlfsdéttir et al., 2019). For all English
processing we will use tools available in the NLTK
toolkit (Bird et al., 2009) or SpaCy.>

We will focus on the most common word em-
bedding models: word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), FastText (Bo-
janowski et al., 2017) and ELMo (Peters et al.,
2018). As using bilingual sentence embeddings
with BERT has been shown to be effective for filter-
ing (Lo and Simard, 2019), we want to experiment
with different contextualized embedding models.
The main hindrance with these models is the mas-
sive computational resources needed to train, which
may limit our possibilites.

For alignment and filtering we experiment with
Bleualign, Hunalign and vecalign for sentence
alignment, Giza++ (Och and Ney, 2003) for word
alignments, and Zipporah, BiCleaner and LASER
(Artetxe and Schwenk, 2019b) for filtering, and
possibly to help with anchoring the parallel texts
for more effective alignment.

Moses (Koehn et al., 2007) will be employed for
phrase-based SMT and our NMT system uses the
reference implementation of Vaswani et al. (2017)
of the transformer-base architecture that is part of
the Tensor2Tensor package (Vaswani et al., 2018).

4 Research Plan

Our first goal is to set up an unsupervised pipeline
for aligning parallel texts. While this is the first
step in tackling RQ2, it is also necessary to devise
a method to answer RQ1. We will outline how we
seek to answer these questions, as well as RQ3. A
secondary goal is to investigate methods to improve
upon the unsupervised pipeline by exploring how
basic NLP tools can help us deal with the data
sparsity problem inherent to many morphologically
rich languages. In the following subsections we
describe how we intend to research these questions.

4.1 Unsupervised Alignment

Our initial pipeline for aligning parallel texts is
trained only on monolingual corpora. While this
is a starting point for language pairs lacking pre-
existing parallel corpora or glossaries to use with
alignment, it also serves as a baseline to compare
to when additional processing modules are added,
such as a lemmatizer or other NLP tools.

https://spacy.io/
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LF Aligner Bleualign + Monoses
Regulatory | Literary Total Regulatory | Literary Total
texts texts texts texts

Aligned pairs 184 69 253 166 61 227
- of which correct 143 57 79.1% 154 54 91.6%
- of which faulty 41 12 20.9% 12 7 8.4%
Aligned words 2470/2485 | 1652/1652 | 4122/4137 | 2427/2485 | 1539/1652 | 3966/4137
- of which correct 1980 1337 80.5% 2110 1539 92.0%

Table 1: Alignment results for both systems and number of source language words in the alignments. When no

alignment was found the segments were discarded.

As stated in Section 1, we initially employ
Bleualign for unsupervised alignment, but instead
of bootstrapping an initial training set with length-
based methods like Sennrich and Volk (2011), we
train Monoses and use that to provide Bleualign
with machine translations of the sentences being
aligned. Monoses is trained by building cross-
lingual word embeddings from monolingual cor-
pora using word2vec and Vecmap (Artetxe et al.,
2018a), inducing a phrase table. An SMT system
is then trained on this data and used to translate the
monolingual corpus in one of the two languages.
The translated data is then used to train a stan-
dard SMT system in the opposite direction. A new
phrase table is built and the process iterated three
times for a final model.

To investigate the feasibility of our method we
aligned two parallel texts, selected randomly from
the Parlce data. We compared the results to LF
Aligner, which employs Hunalign. To be able to
evaluate the alignment methods accurately, evalua-
tion sets are being compiled (see Section 3.2). Here,
we present preliminary results acquired by manu-
ally evaluating the alignments. Results, given in
Table 1, show that the Bleualign + Monoses method
gives better results as measured by accuracy of the
aligned pairs, with a total of 91.6% of the result-
ing pairs correctly aligned, vs. only 79.1% of the
alignments by LF Aligner. Although our method
yields 10% fewer aligned pairs, it results in a par-
allel corpus which has substantially more correct
alignments both in terms of absolute numbers and
percentage of alignments, regardless of whether we
are looking at aligned pairs or aligned words.

There are a variety of ways to improve upon the
unsupervised method. By training larger word em-
bedding models we can increase the vocabulary.
By investigating common n-grams within word em-
bedding models we may be able to better pinpoint

phrases or multi-word expressions. By extending
the iteration process to the bitexts by selecting the
highest-scoring sentence pairs after training and
alignment, and add them to the training set of the
SMT system, we would have more accurate train-
ing data, and probably derive better translations
after each iteration. That in turn would likely raise
the confidence for selecting the best alignments.

4.2 Investigating Misalignments

After setting up alignment pipelines and creating
evaluation sets, we will initiate the filtering process
using methods and strategies that have previously
given good results for other language pairs.

One aspect of the filtering process is to decide
which noise is most important to filter out. While
Khayrallah and Koehn (2018) highlight the impor-
tance of filtering out certain types of noise in paral-
lel corpora, we want more fine-grained results. We
will conduct a similar study but investigate differ-
ent classes of misalignments especially. This will
help us decide whether to treat all misalignments
the same or if some are worse than others.

We will do this by using available tools (see
Section 3.3) to aggressively filter out possible faulty
alignments to have as clean a corpus as possible.
We will then systematically change the alignments
to introduce different types of misalignments in
the corpus. The effects of these variations will
be investigated by training both SMT and NMT
systems, and comparing the effect on changes in
resulting translations. This method is intended to
give us insight into the problem we pose in RQ1.
We will use the results to help us make decisions
on how to best set up a filtering system.

4.3 Filtering

We then start the filtering process again, with in-
formation about which type of faulty sentences
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are likely to have the worst effect on MT systems
trained by the data. To try to answer RQ3 we will
investigate the practicality of applying different
mechanisms to scoring sentences. We will look at
features such as sentence length; word similarity
based on dictionary lookup, both using an exter-
nal dictionary and an induced one from raw paral-
lel data; word similarity from word embeddings;
distance between a machine-translated source sen-
tence and the target sentence; and sentence similar-
ity scores based on bilingual sentence embeddings.

4.4 Language Independence

After studying the effects of misalignments on MT
systems and finding a good balance between the
different mechanisms used for scoring the aligned
segments, we will investigate the extent of this bal-
ance being language pair-dependent by running the
same process for other language pairs. These could
be English-Irish, Danish-Faroese or others that
have some of the same characteristics the English-
Icelandic pair has, e.g, at least one morphologically
rich language and data sparsity. This will give us
further insight to answer the three research ques-
tions posed in Section 1.

4.5 Aligning Morphologically Rich
Languages

While the first goal is to create a completely un-
supervised pipeline for building parallel corpora,
applicable to any language pair, we also want to
investigate the case of morphologically rich lan-
guages specifically by extracting latent information
in the data that can help us tackle the data sparsity
problem. This includes lemmas derived from the
word forms, PoS-tags or constituent structures as
additional features for sentence-pair scoring, and
by training embedding models, both to help with
the morphology and with semantics for unknown
words. For this we use available tools such as a
PoS-tagger and lemmatizer to try to outperform the
unsupervised m