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Abstract

Sentence representation (SR) is the most cru-
cial and challenging task in Machine Reading
Comprehension (MRC). MRC systems typi-
cally only utilize the information contained in
the sentence itself, while human beings can
leverage their semantic knowledge. To bridge
the gap, we proposed a novel Frame-based
Sentence Representation (FSR) method, which
employs frame semantic knowledge to facili-
tate sentence modelling. Specifically, differen-
t from existing methods that only model lexi-
cal units (LUs), Frame Representation Models,
which utilize both LUs in frame and Frame-to-
Frame (F-to-F) relations, are designed to mod-
el frames and sentences with attention schema.
Our proposed FSR method is able to inte-
grate multiple-frame semantic information to
get much better sentence representations. Our
extensive experimental results show that it per-
forms better than state-of-the-art technologies
on machine reading comprehension task.

1 Introduction

Machine Reading Comprehension (MRC) requires
machines to read and understand a text passage, and
answer relevant questions about it. Human beings
can easily understand the meaning of a sentence
based on their semantic knowledge. For instance,
given a sentence Katie bought some chocolate cook-
ies, people know Katie is a buyer, chocolate cook-
ies are goods and belong to Food class etc. Existing
machine learning approaches, however, face great
challenges to address complicated MRC questions,
as they do not have above semantic knowledge.

Nevertheless, FrameNet (Fillmore, 1976; Bak-
er et al., 1998), as a knowledge base, provides
schematic scenario representation that could be po-
tentially leveraged to better understand sentences.

∗Corresponding author: Ru Li.

F Commerce buy
FEs Buyer, Goods, ...
LUs buy.v, buy.n, buyer.n, purchase.n,...

T
[Katie]Buyer boughtCommerce buy
[some chocolate cookies]Goods

F-to-F
Commerce buy—-Shopping—
Seeking—Locating

Table 1: Example of F, FEs, LUs, T and F-to-F.

It enables the development of wide-coverage frame
parsers (Gildea and Jurafsky, 2002; Das et al.,
2014), as well as various real-world application-
s, ranging form event recognition (Liu et al., 2016),
textual entailment (Burchardt et al., 2009), question
answering (Ofoghi et al., 2009), narrative schemas
(Chambers and Jurafsky, 2010) and paraphrase i-
dentification (Zhang et al., 2018), etc. In particular,
Frame (F) is defined as a composition of Lexical
Units (LUs) and a set of Frame Elements (FEs).
Given a sentence, if its certain word evokes a frame
by matching a LU, then it is called Target (T). It is
worth mentioning that FrameNet arranges different
relevant frames into a network by defining Frame-
to-Frame (F-to-F) relations. Table 1 provides an
example of F, FEs, LUs, T and F-to-F, where tar-
get word bought in sentence Katie bought some
chocolate cookies evokes a frame Commerce buy
as it matches with a LU buy. Note target word
chocolate cookies evokes a different frame Food.

How to utilize semantic knowledge from
FrameNet? We observe the existing works mainly
focus on LU vector embedding within a frame (Her-
mann and Blunsom, 2014; Bojanowski et al., 2017;
Glavas et al., 2019), without modeling a frame as
a whole. In addition, many sentences could have
more than one target words that will evoke mul-
tiple frames, but there is less existing method to
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Figure 1: Lexical Units Attention Model.

integrate rich multi-frame relations from FrameNet
together. To address the above problems, in this
paper, we proposed a novel Frame-based Sentence
Representation (FSR) method, which leverages rich
frame semantic knowledge, including both gener-
alizations of LUs and F-to-F relations, to better
model sentences. The key contributions of this
work are summarized as follows:

1. We propose novel attention-based frame rep-
resentation models, which take full advantage
of LUs and F-to-F relations to model frames
with attention schema.

2. We propose a new Frame-based Sentence
Representation (FSR) method that integrates
multi-frame semantic information to obtain
richer semantic aggregation for better sen-
tence representation.

3. Our experimental results demonstrate our pro-
posed frame-based sentence representation
(FSR) method is very effective on Machine
Reading Comprehension (MRC) task.

2 Frame Representation Model

In this section, we present our Frame Representa-
tion Model, considering both LUs and F-to-F.

Let F = {F1, F2, . . . , Fm, . . .} represents a set
of all frames in FrameNet, where Fm ∈ RH is
the representation of m-th frame of F. Let UFm =
{uFm

1 , uFm
2 , . . . , uFm

n , . . .} be the LUs set of Fm,
where UFm ∈ R(H·N), N stands for the total num-
ber of LUs in Fm, and uFm

n be the n-th LU of Fm.
tFm is a target word, matching a LU in Fm. We
proposed 3 different frame representation models.

Figure 2: Frame Relation Attention Model.

2.1 Lexical Units Aggregation Model (LUA)

Lexical Units Aggregation Model (LUA) is a s-
traightforward idea. Given a frame Fm, it av-
erages all its underlying LU representation uFm

n

(uFm
n ∈ UFm) to represent the frame entirely:

Fm =
1

N

∑
UFm

uFm
n (1)

2.2 Lexical Units Attention Model (TLUA)

Each frame in above LUA model has the same rep-
resentation for different sentences, as they do not
distinguish the importance of each LU in the frame.
To address this issue, we propose TLUA model, uti-
lizing an attention scheme to automatically weight
different LUs for the frame, according to target
word T in the given sentence, shown in Figure 1.

More specifically, we compute the weighted sum
of target word T’s representation and other LUs’
representations based on their importance wrt T. In
other words, we emphasize T as it occurs in the giv-
en sentence, which can reduce the potential noise
introduced by irrelevant LUs in the same frame.
It should be noted that we encode multiple word
target by averaging of all words representations in
it.

Fm = tFm +
∑
ŨFm

att(uFm
n ) · uFm

n (2)

att(uFm
n ) =

exp(tFm · uFm
n )∑

uFm
k ∈ŨFm exp(tFm · uFm

k )
(3)

Here, ŨFm represents the LUs set of Fm which
is not include tFm , and ŨFm ∈ RH·(N−1).
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Figure 3: A sentence of FrameNet annotations.

2.3 Frame Relation Attention Model (FRA)
The key problem in MRC is to analyze semantic
relations among multiple sentences. As such, we
propose a novel FRA model, which takes advantage
of F-to-F relations to get much richer semantic
information, shown in Figure 2.

Given frame Fm, F+
m = {Fm,1, . . . , Fm,w, . . .}

represents its expanded frames, including all the
frames that can be linked to Fm through F-to-F
relation chains in FrameNet, with no more than 3
hops to only keep close relations. Note attention
schemes have been designed for both intra-frame
and inter-frames. Particularly, intra-frame atten-
tion focuses on relevant LUs, while inter-frames
attention emphasizes relevant frames, avoiding the
influence from less relevant but linked frames.

F ∗m = Fm +
W∑
w=1

att(Fm,w) · Fm,w (4)

att(Fm,w) =
exp(Fm · Fm,w)∑W
k=1 exp(Fm · Fm,k)

(5)

3 Frame-based Sentence Representation

Given a sentence s = {x1, x2, . . . , xk, . . . } where
each xk is a word, let Tk be the k-th frame-evoking
target of s, and Tk evokes Fk frame. FEki denotes
the i-th frame element of Fk, and Pki denotes the i-
th span fulfillingFEki. We define a frame semantic
quadruple ck =< Tk, Fk, FEkn, Pkn >, where ck
represents the k-th quadruple of s.

3.1 Sentence Semantic Annotations with
Multiple Frames

In this paper, we employ SEMAFOR (Das et al.,
2014) to automatically process sentences with mul-
tiple semantic annotations (Kshirsagar et al., 2015).

Figure 3 provides an example sentence with
three T, namely bought, some, chocolate cookies.
Each T has its evoked semantic frame right below
it. For each frame, its FE are shown enclosed in the
block where dark grey indicates the corresponding
T, and the words fulfilling the FEs are connected to
the corresponding text. For example, T bought e-
vokes the Commerce buy frame, and has the Buyer,

Figure 4: Frame Integration Representation Model.

Goods FEs fulfilled by Katie and some chocolate
cookies.

The sentence s in Figure 3 has three quadruples:
1. c1= <bought, Commerce buy, [Buyer, Good-

s], [Katie, chocolate cookies]>
2. c2= < some, Proportional quantity, [Denot-

ed quantity], [some]>
3. c3= <chocolate cookies, Food, [Food],

[chocolate cookies]>

3.2 Frame Integration Representation
In Figure 4, ck (k=1, 2, 3) is the input. We first
compute its matrix representation ctk, with columns
denoting different semantic information. Then, we
formalize sentence representation as follows:

cs = N (ct) (6)

ct = φ(ctk, Pk) (k = 1, . . . ,K) (7)

Where K represents the total number of quadru-
ples in the sentence. φ(ctk, Pk) is aggregate opera-
tion, used to form frame set representation ct based
on the information of P and T in the sequence.
Finally, we encode sentence information by neural
network models.

4 Experiments

4.1 Models for MRC
To better analyze the performance of our proposed
method on MRC, we apply both BERT (Devlin
et al., 2018) and LSTM (Hochreiter and Schmidhu-
ber, 1997) as our neural models. Also, we construct
the input as: the passage as sequence A, and the
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Method MCTest-160 (%) MCTest-500 (%)
Richardson et al. (2013) 69.16 63.33
Wang et al. (2015) 75.27 69.94
Li et al. (2018) 74.58 72.67
Attentive Reader (Hermann et al., 2015) 46.3 41.9
Neural Reasoner (Peng et al., 2015) 47.6 45.6
Parallel-Hierarchical (Trischler et al., 2016) 74.58 71.00
Reading Strategies (Sun et al., 2018) 81.7 82.0
Bert (Zhang et al., 2019) 73.8 80.4
BERT+DCMN+ (Zhang et al., 2019) 85.0 86.5
FSR 86.1 84.2

Table 2: The Performance Comparison of 10 Different Models on Two MCTest Datasets.

Method 160 (%) 500 (%)
Bert (Zhang et al., 2019) 73.8 80.4
Bert (Our implementation) 82.5 80.9
Bert+LUA 82.7 79.5
Bert+TLUA 84.6 82.7
Bert+FRA 86.1 84.2
bi-LSTM 54.2 49.5
bi-LSTM+LUA 59.4 57.5
bi-LSTM+TLUA 61.5 58.2
bi-LSTM+FRA 62.7 59.6

Table 3: Performance Comparison with Three Differen-
t Frame Representation Models.

concatenation of question and one choice of answer
as sequence B.

In addition, we apply a linear layer and a softmax
layer on the final hidden state, and maximize the
log-probability of correct labels during training.

4.2 Datasets for MRC

We employ MCTest (Richardson et al., 2013) to
test the system performance of multiple-choice ma-
chine comprehension task. It consists of two data
sets, namely MCTest-160 and MCTest-500.

4.3 Experiment Results

Table 2 shows our FSR model achieves 86.1% ac-
curacy on MCTest-160, which is significantly bet-
ter than all the nine state-of-the-art methods. In
addition, it also achieves very competitive results
on MCTest-500, i,e, much better than eight exist-
ing methods, slightly worse than BERT+DCMN+
model. This is encouraging, as our model is much
simpler than BERT+DCMN+, which uses much
more sophisticated architecture.

Passage Katie went to the store...She looked
around for the flowers. She want-
ed cookies not chips. She found
some chocolate cookies. Katie then
looked for a bow. ...

Question What snack did Katie buy?

Option
A) Chips B) Chocolate cookies
C) Flowers D) Bows

Answer B

Frame
Semantic

{Chips , Chocolate cookies} ∈ Food
{Flowers , Bows}/∈Food
Found and Buy have relations, as
their frames are connected.

Table 4: A Case Study Example.

Recall in Section 2, we proposed three different
methods, namely, LUA, TLUA, FRA, for frame
representation. Table 3 shows their detailed results:

(1) No matter for BERT or bi-LSTM, if we add
frame semantic information, the performance im-
proves by several percents, indicating frame infor-
mation is valuable in semantic understanding.

(2) Comparing TLUA with LUA, TLUA per-
forms better, signifying attention scheme in TLUA
can capture semantic information more accurately.

(3) Finally, FRA further improves LUA and
TLUA’s performance, as sentences within a pas-
sage typically have semantic connections with each
other, and it is thus necessary to take advantage of
F-to-F relations to enrich semantic information.

4.4 Case Study

For case study, Table 4 shows an example in M-
CTest, where we are able to answer it correctly.
Both Chips, Chocolate cookies belong to the Food
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frame, while Flowers and Bows evoke two differ-
ent frames Plants and Accoutrements respectively.
The target words Found and Buy in the given pas-
sage/question evoking different frames Locationg
and Commerce buy — note in FrameNet they are
connected due to their semantic relations, facilitat-
ing us to find answer B) Chocolate cookies.

5 Conclusion

We propose a novel Frame-based Sentence Repre-
sentation method, which integrates multi-frame se-
mantic information to facilitate sentence modelling.
Our extensive experimental results demonstrate it
works very well for the challenging machine read-
ing comprehension task.
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