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Abstract

Clustering short text streams is a challeng-
ing task due to its unique properties: infi-
nite length, sparse data representation and clus-
ter evolution. Existing approaches often ex-
ploit short text streams in a batch way. How-
ever, determine the optimal batch size is usu-
ally a difficult task since we have no prior
knowledge when the topics evolve. In ad-
dition, traditional independent word represen-
tation in the graphical model tends to cause
“term ambiguity” problem in short text clus-
tering. Therefore, in this paper, we propose
an Online Semantic-enhanced Dirichlet Model
for short text stream clustering, called OSDM,
which integrates the word-occurrence seman-
tic information (i.e., context) into a new graph-
ical model and clusters for each arriving short
text automatically in an online way. Extensive
results have demonstrated that OSDM gives
better performance compared to many state-of-
the-art algorithms on both synthetic and real-
world data sets.

1 Introduction

A massive amount of short text data is constantly
generated with online social platforms such as mi-
croblogs, Twitter and Facebook. Clustering of such
short text streams has thus gained increasing at-
tention in recent years due to many real-world ap-
plications like event tracking, hot topic detection,
and news recommendation (Hadifar et al., 2019).
However, due to the unique properties of short text
streams such as infinite length, evolving patterns
and sparse data representation, short text stream
clustering is still a big challenge (Aggarwal et al.,
2003; Mahdiraji, 2009).

∗*Corresponding author: Junming Shao

During the past decade, many approaches have
been proposed to address the text stream clustering
problem from different points of view, and each
method comes with specific advantages and draw-
backs. Initially, traditional clustering algorithms
for static data were enhanced and transformed for
text streams (Zhong, 2005). Very soon, they are
replaced by model-based algorithms such as LDA
(Blei et al., 2003), DTM (Blei and Lafferty, 2006),
TDPM (Ahmed and Xing, 2008), GSDMM(Yin
and Wang, 2016b), DPMFP (Huang et al., 2013),
TM-LDA (Wang et al., 2012), NPMM (Chen et al.,
2019) and MStream (Yin et al., 2018), to mention
a few. However, for most established approaches,
they often work in a batch way, and assume the
instances within a batch are interchangeable. This
assumption usually cannot hold for topic-evolving
text data corpus. Determining an optimal batch size
is also a non-trivial task for different text streams
(Howard and Ruder, 2018).

Additionally, unlike long text documents, short
text clustering further suffers from the lack of sup-
portive term occurrence to capture semantics (Gong
et al., 2018). For most existing short text clus-
tering algorithms like Sumblr (Shou et al., 2013),
DCT (Liang et al., 2016) and MStreamF (Yin et al.,
2018), exploiting independent word representation
in their cluster models tends to cause ambiguity.
Let us show the following four tweets, for exam-
ple:

T1: “A regular intake of an Apple can improve
your health and muscle stamina.”

T1: “A glass of fresh apple juice is recommended
for breakfast.”

T2: “New Apple Watch can monitor your health.”
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T2: “Apple will launch new smartphone iPhoneX
this december.”

Tweets of these two topics share few common
terms, i.e., ’health’ or ’apple’. It creates an am-
biguity if the model deals with only single term
representation to calculate the similarity. However,
the co-occurring terms representation (i.e., context)
helps a model to identify the topic1 correctly.

To solve these aforementioned issues, we pro-
pose an online semantic-enhanced dirichlet model
for short text stream clustering. Compared to ex-
isting approaches, it has following advantages. (1)
It allows processing each arriving short text in an
online way. The online model is not only free of
determining the optimal batch size, but also lends it-
self to handling large-scale data streams efficiently;
(2) To the best of our knowledge, it is the first work
to integrate semantic information for model-based
online clustering, which is able to handle “term
ambiguity" problem effectively and finally support
high-quality clustering; (3) Equipped with Poly
Urn Scheme, the number of clusters (topics) are
determined automatically in our cluster model.

2 Related Work

During the past decade, many text stream clustering
algorithms have been proposed. Here, due to the
space limitation, we only report some model-based
approaches which are highly related to our work.
For more details, please refer to comprehensive
surveys, e.g., (Mahdiraji, 2009; Silva et al., 2013;
Nguyen et al., 2015; Aggarwal, 2018).

The early classical attempt for text clustering
is Latent Dirichlet Allocation (LDA) (Blei et al.,
2003). However, it cannot handle the temporal
data for text streams. For this purpose, many
LDA variants have been proposed to consider the
text streams such as dynamic topic model (DTM)
(Blei and Lafferty, 2006), dynamic mixture model
(DMM) (Wei et al., 2007), temporal LDA (T-
LDA) (Wang et al., 2012), streaming LDA (S-LDA)
(Amoualian et al., 2016), and dirichlet mixture
model with feature partition (DPMFP) (Zhao et al.,
2016). These models assume that each document
contains rich content, and thus they are not suit-
able for dealing with the short text streams. Later,
Dirichlet multinomial mixture model-based dy-
namic clustering topic (DCT) model was designed
to deal with short text streams by assigning each

1Topic and cluster will be interchangeably used in this
paper

document with single topic (Liang et al., 2016).
Very soon, GSDMM was proposed to extend DMM
with collapsed gibbs sampling to infer the number
of clusters (Yin and Wang, 2014). However, most
of these models did not investigate the evolving
topics (clusters) in text streams where the number
of topics usually evolves over time.

To automatically detecting the number of clus-
ters, (Ahmed and Xing, 2008) proposed a temporal
dirichlet process mixture model (TDMP). It divides
the text stream into many chunks (batches), and as-
sumes that the documents inside each batch are
interchangeable. Later, GSDPMM was proposed
with collapsed gibbs sampling to infer the num-
ber of clusters in each batch. In contrast to LDA,
GSDPMM not only converges faster but also dy-
namically assigns the number of clusters over time
(Yin and Wang, 2016a). However, both TDMP and
GSDPMM models do not examine the evolving
topics, and, these models process the text stream
for multiple times. Thereafter, MStreamF (Yin
et al., 2018) was thus proposed by incorporating
a forgetting mechanism to cope with cluster evo-
lution, and allows processing each batch only one
time. The NPMM model (Chen et al., 2019) was
recently introduced by using the word-embeddings
to eliminate a cluster generating parameter of the
model.

In summary, for most existing approaches, they
usually work in a batch way. However, determining
optimal batch sizes for different text streams is
usually a difficult task. More importantly, due to
the intrinsic sparse data representation of short-
text data, the semantics, is little investigated in
established approaches. Actually, they need to be
carefully considered to decrease the term ambiguity
in short text clustering.

3 Preliminaries

Here, the problem statement is first given, followed
with a brief introduction about dirichlet process
and Poly Urn scheme.

3.1 Problem Formulation

Formally, a text stream is continuous arrival of text
documents over time: St = {dt}∞t=1. Where dt de-
notes a document arrived at time t. Each document
contains specific words dt = {w1, w2, . . . , wn}
and may have different length. The key objec-
tive of the clustering task is to group similar doc-
uments into clusters: Z = {zt}∞t=1, and each clus-
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ter zt contains documents represented as zt =
{dzt1 , d

zt
2 , . . . , d

zt
n }. For short text clustering, each

document is the member of only one topic, so
zi ∩ zj = φ, where i 6= j.

3.2 Dirichlet Process

Dirichlet Process (DP) is a non-parametric stochas-
tic processes to model the data (Teh et al., 2006).
It is the process to draw a sample from (base) dis-
tribution, where each sample itself is a distribution,
denoted asN ∼ DP(α,N0). Here,N is the drawn
sample from the base distribution N0. The draw-
ing procedure of a sample from the distribution is
controlled by a concentration parameter α.

3.3 Poly Urn Scheme (PUS)

The procedure to draw the sequential samples
N1,N2 . . . from a distribution is described by the
poly urn scheme (Blackwell et al., 1973). It can be
summarized as:

Nn|N1:n−1 ∼
α

α+ n− 1
+

∑n−1
k=1 δ (Nn −Nk)
α+ n− 1

Here, δ(x) = 1 if x = 0 and δ(x) = 0 otherwise.
Initially, the urn is empty, so we draw a color from
the base distribution i.e. N1 ∼ N0, and put a ball
of drawn color into the urn. In the next turn, either
we draw a color from the distribution which is al-
ready drawn with probability of n−1

α+n−1 , or draw a
new color with probability of αN0

α+n−1 . Since, draw-
ing samples from distribution is repeated, so the
same color may appear more than once. This de-
fines that we have K number of distinct colors and
n number of draws. This condition is defined by
a well-known process called Chinese restaurant
process (CRP) (Ferguson and Thomas S Ferguson,
1973). In CRP, we suppose that there are infinite
number of tables in a restaurant, and each table
surrounds infinite number of empty chairs. The
first customer sits on first table, and later on the
next customer either chooses to sit on any occu-
pied table with probability of nk

α+n−1 or chooses an
empty table with probability of α

α+n−1 . Here, nk
is number of customers sitting on a specific table.
A new customer is tend to be attracted towards a
highly crowded table. This phenomenon is one part
of our equation to understand creation of clusters
over time. The CRP represents the draws from dis-
tribution G, while the stick-breaking process shows

the property of G explicitly:

G(N ) =
∞∑
k=1

θkδ (N −Nk) , Nk ∼ N0 (1)

The mixture weights θ = {θk}∞k=1 can be for-
malized by θ ∼ GEM(γ) (Neal, 2000). We ex-
ploit Equation (1) for the generative process of
the Dirichlet process multinomial mixture model
(DPMM) as follows.

zd|θ ∼ Mult(θ) d = 1, . . . ,∞

Nk|β ∼ Dir(β) k = 1, . . . ,∞

d |zd, {Nk}∞k=1 ∼ p (d|Nzd)

Here, zd is the assigned documents to the cluster,
which are multinomial distributed. The probability
of document d generated by topic z is summarized
as:

p (d|Nz) =
∏
w∈d

Mult (w|Nz) (2)

Here, the naive Bayes assumption is considered
where words in a document are independently gen-
erated by the topic. Whereas, the sequential draw
of the sample can be derived by following the CRP.
It is also assumed that the position of words in a
document is not considered while calculating the
probability.

4 Proposed Approach

This section gives a brief discussion about the rep-
resentation and formulation of the proposed algo-
rithm.

4.1 Model Representation
We build our model upon the DPMM (Yin and
Wang, 2016a), which is an extension of the DMM
model to deal with evolving clusters. We call
our model as OSDM (Online Semantic-enhanced
Dirichlet Model), aiming at incorporating the se-
mantic information and cluster evolution simulta-
neously for short text stream clustering in an online
way. The graphical model of OSDM is given in
Figure 1a.

We show two major differences in our model
to highlight the novelty. First, for word-topic dis-
tribution, we embed semantic information by cap-
turing the ratio of word co-occurrence. Thereby,
independent word generating process and word
co-occurrence weight are well considered in topic
generation. Secondly, our model works instance
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(b) MStreamF

Figure 1: The graphical representation of OSDM and
MStream. Here MStream works in a batch way while
OSDM works in an online way.

by instance fashion to cluster the documents, in-
stead of batch by batch. For comparison, Figure
1b further show the MStreamF (Yin et al., 2018)
model. At initial stage before clustering documents
of a batch, MStreamF update vocabulary set (active
terms) from all the documents in a batch, then it
starts the clustering each document of the batch.
However, OSDM does not consider fixed number
of documents to create vocabulary set, instead it in-
crementally updates with each arriving document.

4.2 Model Formulation

Defining the relationship between documents and
clusters is the most crucial task while dealing with
the text stream clustering problem. The threshold-
based methodology (Nguyen et al., 2015) adapts
similarity measures to define the homogeneity
threshold between a cluster and a document. If
the dissimilarity between the exiting clusters and a
new arriving document is above the threshold, then
a new cluster is created. However, due to the dy-
namic nature of the stream, it is very hard to define
the similarity threshold manually.

In contrast, we assume that documents are gener-
ated by DPMM (see Section 3). Most recent algo-
rithm MStreamF improved DPMM to cluster short
text documents in the stream. As a further study,
we integrate the semantic component in DPMM
model. Additionally, we integrate term importance
on the basis of cluster frequency. The derived equa-
tion for calculating the probability of a document
d choosing existing cluster z is given in Equation

(3).

p
(
zd = z|~z, ~d, α, β

)
=

(
mz

D − 1 + αD

)
·∏w∈d

∏Nw
d

j=1 (nwz · lCFw) + β + j − 1∏Nd
i=1 nz + V β + i− 1

 ·
1 +

∑
wi∈d∧wj∈d

cwij

 (3)

The first term of this Equation
(

mz
D−1+αD

)
repre-

sents completeness of the cluster. Here, mz is the
number of documents contained by the cluster z
andD is the number of current documents in active
clusters2. Whereas, α is the concentration parame-
ter of the model. The middle term of the equation
based on multinomial distribution (see Equation
(2)) with psuedo weight of words β defines the ho-
mogeneity between a cluster and a document. Nd

and Nw
d represents total number of words and term

frequency of word w in document d, respectively.
The symbol nwz is the term frequency of the word
w in the cluster z. The current vocabulary size of
the model is represented by V . nz is the number of
words in the cluster z. ICFw calculates the term
importance over the active clusters in the model,
which is defined as follows.

ICF (w ∈ d) = log

(
|Z|
|wεZ|

)
(4)

Here, |Z| represents the number of active clusters
in the model. The denominator part of Equation
(4) is the number of those cluster which contains
the word w. The term

(
1 +

∑
wi∈d∧wj∈d cwij

)
defines the semantic weight of term co-occurrence
between the cluster and a document. Formally, we
define a value of an entry cwij in the co-occurrence
matrix as follows.

cwij =

∑
d′⊆z

nwi
d′∑

d′⊆z
nwi
d′ +

∑
d′⊆z

n
wj

d′
(wi, wj) ∈ d′ (5)

Here, nd
′
z is frequency count of word wi in docu-

ment d′. The ratio between wi and wj must satisfy
the property cwij + cwji = 1 . We calculate the
term co-occurrence weight of those terms which are

2Active clusters refer to those clusters which are not yet
deleted from the model.
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common in the cluster z and document d. Term co-
occurrence matrix is constructed where two terms
are co-occurred in a single document. Therefore,
if the size of cluster feature set (discussed in Sec-
tion 4.3) is |Vz|, then it is not necessary that the
co-occurrence matrix would be |Vz| × |Vz|.

So far, we have defined the probability of a
document choosing existing cluster, then we have
to define the probability for a document to cre-
ating a new cluster. By following the DPMM
for infinite number of clusters, which transform
θ ∼ GEM(γ) into θ ∼ GEM(αD), because the
hyper-parameter for the mixture model should be
dynamically change over time. Therefore, the prob-
ability of creating a new cluster is as follows.

p
(
zd = z|~z¬d, ~d, α, β

)
=

(
αD

D − 1 + αD

)

·

∏w∈d
∏Nw

d
j=1 β + j − 1∏Nd

i=1 V β + i− 1

 (6)

Here, the pseudo number of clusters related doc-
uments in the model is represented as αD , and β
is the pseudo term frequency of each word (exist
in document) of the new cluster.

4.3 The cluster feature (CF) set
The similarity-based text clustering approaches usu-
ally follow vector space model (VSM) to repre-
sent the cluster feature space (Din and Shao, 2020).
However, a topic needs to be represented as the
subspace of global feature space. Here, we use a
micro-cluster feature set to represent each cluster.
Namely, a cluster is represented as the summary
statistics of a set of words of related documents. In
our model, a cluster feature (CF) set is defined as
a 6-tuple {mz, n

w
z , cwz, lenz, lz, uz}, where mz is

the number of documents in the cluster z, nwz is
the number of frequency of the word w in the clus-
ter, cwz is the word to word co-occurrence matrix,
lenz is the number of words in the cluster z which
is sum of all frequencies of words, lz is the cluster
weight, and uz is the last updated time stamp.

The desirable addition property of cluster feature
allows updating each micro-cluster in an online
way.

Definition 1: A document d can be added to a
cluster z by using the addition property.

mz = mz + 1
nwz = nwz +Nw

d ∀w ∈ d
cwz = cwz ∪ cwd

Algorithm 1: OSDM
Input: St : {dt}∞t=1 , α : concentration

parameter, β : pseudo weight of
term in cluster, λ : decay factor

Output: Cluster assignments zd

1 K = φ
2 while dt in St do
3 t = t+ 1
4 K = removeOldZi(K)
5 K = reduceClusterWeight(λ,K)
6 foreach zi ∈ K do
7 PZi = prob(zi, dt) using Eq. (3)
8 end
9 i = arg max

i
(PZi)

10 PZn = calculate the probability of new
cluster using Eq. (6)

11 if PZi < PZn then
12 mzn = 1
13 nwzn = Nw

dt

14 cwzn = cwdt
15 lenzn = lendt
16 lzn = 1, uzn = t
17 K = K ∪ zn
18 else
19 mzi = mzi + 1
20 nwzi = nwzi +Nw

dt

21 cwzi = cwzi ∪ cwdt
22 lenzi = lenzi + lendt
23 lzi = 1, uzi = t

24 end
25 end

lenz = lenz + lend
Here, cwd is word to word co-occurrence of the

document, and lend represents the number of total
words in the document. The complexity of updat-
ing a cluster by adding a document is O(L), where
L is the average length of the document. This prop-
erty is useful to update evolving micro-clusters in
the text stream clustering procedure.

4.4 OSDM Algorithm

We propose a semantic-enhanced non-parametric
dirichlet model to cluster the short text streams in
an online way, called OSDM. The proposed algo-
rithm allows processing each instance incremen-
tally and updates the model accordingly.

The procedure of OSDM is given in Algorithm
1. Initially, it creates a new cluster for the first doc-
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ument and the document is assigned to the newly
created CF set. Afterward, each arriving document
in the stream either choose an existing cluster or
generate a new cluster. The corresponding proba-
bility for choosing either of an existing cluster or
a new cluster is computed using Equation (6) and
(3), respectively. The CF vector with the highest
probability is updated using the addition property.

To deal with the cluster evolution (i.e., evolving
topics) in text streams, many existing approaches
often delete the old clusters by using some of the
forgetting mechanisms (e.g., decay rate) (Zhong,
2005; Aggarwal and Yu, 2010; Islam et al., 2019).
Instead of deleting old clusters, MStreamF (Yin
et al., 2018) deletes old batches. In this study, we
investigate the importance of each micro-cluster to
handle the cluster evolution problem. Specifically,
the importance of each micro-cluster is decreased
over time if it is not updated. lz in CF stores weight
of each cluster. If the weight is approximately
equals to zero, then the cluster is removed from
the model, i.e., it cannot capture recent topics in
the text stream. For this purpose, we applied the
exponential decay function, lz = lz × 2−λ×(4t).
Here,4t is the elapsed time from the last update,
and λ is the decay rate. The decay rate must be
adjusted depending upon the applications at hand.
The initial value of lz (See Line 16 of Algorithm
1) is set to 1. Afterward, the importance of micro-
cluster is exponentially decreases over time. We
can also store the deleted clusters in a permanent
disk for offline analysis.

Complexity Analysis. The OSDM algorithm
always maintains the average K̄ number of current
topics (CF sets). Every CF set store average V̄
number of words in nwz and at most |V̄z| × |V̄z|
in cwz . Thus the space complexity of OSDM is
O(K̄(V̄ + V̄ 2) + V D), where V is the size of
active vocabulary and D is the number of active
documents. On other side, OSDM calculates the
probability of arriving document with each cluster
(see Line 6 of Algorithm 1). Therefore, the time
complexity of OSDM is O(K̄(LV̄ )), where L is
the average size of arriving document.

5 Experimental Study

5.1 Datasets and evaluation metrics

To evaluate the performance of the proposed algo-
rithm, we conduct experiments on three real and
two synthetic datasets. These datasets were also
used in (Yin and Wang, 2016a; Liang et al., 2016;

Qiang et al., 2018; Yin et al., 2018; Jia et al., 2018;
Chen et al., 2019) to evaluate short text clustering
models. In the preprocessing step, we removed
stop words, converted all text into lowercase, and
stemming. The description of the datasets is as
follows.

• News (Ns): This dataset is collected by (Yin
and Wang, 2014), which contains 11,109 news
title belong to 152 topics.

• Reuters (Rs): Similar to (Yin and Wang,
2016b) we skip the documents with more than
one class and obtained the dataset consists of
9,447 documents from 66 topics.

• Tweets (Ts): This dataset contain 30,322
tweets which are relevant to 269 topics in the
TREC 3 microblog.

• News-T (Ns-T) and Reuters-T (Rs-T): Nat-
urally, we may find a situation where topics
in social media appear only for a certain time
period and then disappear. However, the doc-
uments of each topic in original dataset is ob-
served for long period of time. Therefore, to
construct synthetic dataset we sorted docu-
ments datasets by topic in two datasets includ-
ing Reuters and News. After sorting, we then
divide each dataset into sixteen equal chunks
and shuffled them.

We adopted five different evaluation metrics for
deep analysis of all algorithms, which include Nor-
malized Mutual Information (NMI), Homogeneity
(Ho.), V-Measure (VM), Accuracy (Acc.) and clus-
ter Purity (Pur.). We utilized sklearn4 API to im-
plement these metrics. We compute the measures
on overall clustering results (Yin and Wang, 2014).
Homogeneity measures that each cluster should
have only members of a single class. Whereas, V-
measure calculates how successfully the criteria of
completeness and homogeneity are satisfied. Clus-
ter purity measures the true positive instances in
each cluster. The typical NMI measure calculates
the overall clustering quality.

5.2 Baselines

We have selected four state-of-the-art representa-
tive algorithms for stream text clustering to com-

3http://trec.nist.gov/data/microblog.
html

4http://scikit-learn.org

http://trec.nist.gov/data/microblog.html
http://trec.nist.gov/data/microblog.html
http://scikit-learn.org
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pare OSDM (Os). A brief description of these
algorithms are given as follows.

(1) DTM (Blei and Lafferty, 2006) is an exten-
sion of Latent Dirichlet Allocation which
traces the evolution of hidden topics from cor-
pus over time. It was designed to deal with
the sequential documents.

(2) Sumblr (Sb) (Shou et al., 2013) is an online
stream clustering algorithm for tweets. With
only one pass, it enables the model to clus-
ter the tweets efficiently while maintaining
cluster statistics.

(3) DMM (Yin and Wang, 2014) is a Dirichlet
multinomial mixture model for short text clus-
tering, which does not consider temporal de-
pendency of instances.

(4) MStreamF (Yin et al., 2018) is the latest
model to deal with infinite number of latent
topics in short text while processing one batch
at a time. Two models of MStreamF were pro-
posed, one with one-pass clustering process,
and another with gibbs sampling. We refer to
the former algorithm as MStreamF-O (MF-O)
and the latter as MStreamF-G (MF-G).

We try to find the optimal parameter values of
all baseline algorithms with grid search. Finally,
we set α = 0.01 for DTM, β = 0.02 for Sum-
blr. For MStreamF-O and MStreamF-G, we set
α = 0.03 and β = 0.03. As defined in (Yin
et al., 2018), we set the number of iterations to
10 and saved-batches = 2 for MStreamF-G. We
set α = 0.3 and β = 0.3 for DMM. The DTM,
DMM and Sumblr needs fixed number of cluster
as input therefore we set K = 300,K = 170 and
K = 80 for Tweets, News and Reuters datasets,
respectively. We set α = 2e−3, β = 4e−5 and
λ = 6e−6 for OSDM. The source code of OSDM
is publicly available at: https://github.com/

JayKumarr/OSDM.

5.3 Comparison with state-of-the-art
methods

In this section, we provide a detailed comparative
analysis of OSDM with state-of-the-art algorithms.
The overall results are summarized in Table 1. We
report NMI, Homogeneity, v-measure, purity and
accuracy of each algorithm. Additionally, we also
evaluate the performance of each algorithm over
different time-stamps of the stream (see Figure 2).
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Figure 2: The performance of different text steam clus-
tering algorithm over time (in thousand points) in terms
of NMI measure.

Further, we studied the parameter sensitivity and
runtime of OSDM, respectively.

From Table 1, we can see that OSDM outper-
formed all baseline algorithms on almost every
dataset in terms of all measures. Here, MStreamF-
G yielded much better results on the Ns-T data in
terms of NMI measure. The reason behind might be
the multiple iterations of each batch in the stream.
However, MStreamF-G requires more execution
time to process the data. In contrast, our proposed
algorithm OSDM processes the data only once.
And we can also observe that OSDM achieves the
highest NMI in other data sets. In addition, the
crucial part of evaluating the cluster similarity is
measured by the homogeneity measure. We can
see that OSDM outperformed all previous algo-
rithms. It also shows the same statistics except for
v-measure of DTM. Likewise, our model generates
more pure clusters. Furthermore, to investigate the
performance over time, we plot the performance of

https://github.com/JayKumarr/OSDM
https://github.com/JayKumarr/OSDM
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Figure 3: The sensitivity analysis with different parameters, including α, β and λ.

Alg. Eva.
Datasets

Ns Ts Rs Ns-T Rs-T
OSDM

NMI

0.815 0.836 0.552 0.858 0.554
MF-O 0.685 0.746 0.361 0.803 0.381
MF-G 0.780 0.795 0.364 0.888 0.405
Sb 0.575 0.698 0.464 0.723 0.494
DTM 0.808 0.800 0.537 0.810 0.537
DMM 0.586 0.636 0.448 0.582 0.476
OSDM

Ho.

0.951 0.936 0.954 0.900 0.964
MF-O 0.654 0.695 0.374 0.778 0.385
MF-G 0.751 0.738 0.319 0.900 0.343
Sb 0.547 0.758 0.402 0.747 0.574
DTM 0.833 0.822 0.659 0.837 0.657
DMM 0.588 0.622 0.466 0.565 0.497
OSDM

VM

0.805 0.831 0.479 0.857 0.478
MF-O 0.684 0.744 0.361 0.803 0.380
MF-G 0.779 0.793 0.361 0.888 0.400
Sb 0.575 0.696 0.458 0.723 0.436
DTM 0.808 0.800 0.526 0.810 0.527
DMM 0.586 0.636 0.448 0.582 0.476
OSDM

Pur.

0.907 0.890 0.962 0.851 0.972
MF-O 0.552 0.529 0.602 0.636 0.608
MF-G 0.653 0.801 0.530 0.835 0.606
Sb 0.414 0.609 0.609 0.580 0.770
DTM 0.767 0.749 0.793 0.765 0.795
DMM 0.456 0.473 0.673 0.398 0.694
OSDM

Acc.

0.880 0.665 0.927 0.769 0.952
MF-O 0.420 0.246 0.577 0.584 0.447
MF-G 0.517 0.707 0.452 0.606 0.461
Sb 0.606 0.539 0.652 0.653 0.620
DTM 0.647 0.246 0.669 0.294 0.644
DMM 0.334 0.150 0.649 0.073 0.500

Table 1: The performance of different algorithms on
five data sets in terms of different measures includ-
ing Mutual Information (NMI), Homogeneity (Ho.), V-
Measure (VM), Accuracy (Acc.) and cluster Purity
(Pur.).

all algorithms over time in Figure 2.

5.4 Sensitivity Analysis

We perform sensitivity analysis for OSDM with
respects to three input parameters: concentration
parameter α, β, and decay function parameter λ
on the Tweets dataset. From Figure 3a, we can
observe the effect of α, which ranges from 9e−3

to 9e−1. The performance in terms of all evalu-
ation measures is stable over the different values
of parameters. The α parameter is responsible for
finer clustering, that is why we can observe a lit-
tle fluctuation in initial values. Figure 3b shows
the performance on different values of β, which
ranges from 1e−4 to 1e−2. As we already defined
that we modified homogeneity part of the cluster-
ing model (see Equation (3)), and β is the related
hyper-parameter. We can observe that after a cer-
tain range, the values of all the evaluation measure
become stable. The crucial point to be observed is
the stability of homogeneity on different values of
β. Figure 3c shows effect of λ ranges from 9e−4 to
9e−6. Our model follows the forgetting mechanism
on decay factor λ and the clusters are deleted from
model when the value is approximately equals to
zero. We can observe the performance of OSDM
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Figure 4: The runtime of different text stream cluster-
ing algorithms.
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on different decay factors. It can be observed that
the behavior of a given evaluation measure is stable
over time.

5.5 Runtime

To compare the runtime of different algorithms, we
performed all experiments on a PC with core i5-
3470 and 8GB memory. Figure 4 shows the runtime
of all algorithms on the tweets dataset. We can
observe that Sumblr required the highest execution
time to cluster the instances. Whereas, the runtime
of other algorithms are comparable. Due to simple
execution process of each instance MStreamF-O
took least time because it does not need to maintain
semantic similarity. Comparatively, MStreamF-
G required much higher time than OSDM. The
reason is that it needs to execute each batch data
multiple times. Due to online nature, the overall
speed of OSDM is more efficient than most existing
algorithms, and the benefit is strengthened with
more and more arriving instances.

6 Conclusion

In this paper, we propose a new online semantic-
enhanced dirichlet model for short text stream clus-
tering. In contrast to existing approaches, OSDM
does not require to specify the batch size and the
dynamic number evolving clusters. It dynamically
assigns each arriving document into an existing
cluster or generating a new cluster based on the
poly urn scheme. More importantly, OSDM tried to
incorporate semantic information in the proposed
graphical representation model to remove the term
ambiguity problem in short-text clustering. Build-
ing upon the semantic embedding and online learn-
ing, our method allows finding high-quality evolv-
ing clusters. Extensive results further demonstrate
that OSDM has better performance compared to
many state-of-the-art algorithms.
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