
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7652–7662
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

7652

Learning Web-based Procedures by Reasoning over Explanations and
Demonstrations in Context

Shashank Srivastava1∗ Oleksandr Polozov2 Nebojsa Jojic2 Christopher Meek2

1University of North Carolina, Chapel Hill 2Microsoft Research, Redmond
ssrivastava@cs.unc.edu {polozov, jojic, meek}@microsoft.com

Abstract

We explore learning web-based tasks from a
human teacher through natural language expla-
nations and a single demonstration. Our ap-
proach investigates a new direction for seman-
tic parsing that models explaining a demon-
stration in a context, rather than mapping
explanations to demonstrations. By leverag-
ing the idea of inverse semantics from pro-
gram synthesis to reason backwards from ob-
served demonstrations, we ensure that all con-
sidered interpretations are consistent with ex-
ecutable actions in any context, thus simplify-
ing the problem of search over logical forms.
We present a dataset of explanations paired
with demonstrations for web-based tasks. Our
methods show better task completion rates
than a supervised semantic parsing baseline
(40% relative improvement on average), and
are competitive with simple exploration-and-
demonstration based methods, while requiring
no exploration of the environment. In learn-
ing to align explanations with demonstrations,
basic properties of natural language syntax
emerge as learned behavior. This is an interest-
ing example of pragmatic language acquisition
without any linguistic annotation.

1 Introduction

People routinely perform repetitive web-based
tasks, involving sequences of clicking and typing
actions. These include activities such as forwarding
emails, booking flight tickets, ordering pizza, etc.
These activities largely consist of small sequences
of actions in an environment with restricted seman-
tics, and are potentially amenable to automation.
In this work, we explore whether an AI agent can
be taught such tasks through natural language ex-
planations and a single demonstration by a user (as
one might teach such a task to a human assistant).

∗*Work done while the first author was at Microsoft Re-
search.

Type ‘news.com’ in the URL bar in the
browser, and press enter

Type ‘NLP’ in the search at the top-right,
and press enter

Email me the link to the three most
recent articles

nlp

Date

Date

Send me NLP news everyday at 8am

Step 1:

Step 2:

Step 3:

Can you show me how?

Let me teach you …

Figure 1: AI assistants that can be taught web-based proce-
dures by their users can have diverse practical applications.
Here, we explore learning very simple tasks from the Mini
World-of-Bits framework using natural language explanations
and a single demonstration of the task

From the perspective of language understand-
ing, this involves challenges such as converting
instructional language to actions, resolving ambi-
guities through pragmatics, and learning script-like
behavior. The web domain is rich in textual, struc-
tural and spatial features, allowing for exploration
of multiple types of grounding behavior including
spatial and visual language understanding, as well
as reasoning over semi-structured data. Also, de-
spite its richness, the tasks involved usually do not
require much background knowledge.

From a practical perspective, teachable AI as-
sistants can change the way people interact with
computers. Today’s conversational assistants such
as Alexa or Cortana act on a small number of pre-
programmed language commands (e.g., “What is
the weather going to be like?”). However, they
cannot be taught new functionalities important to a
user (as in Figure 1). Enabling users to teach com-
puters personalized procedures through explained
demonstrations can make conversational AI sys-
tems fundamentally more useful.

In Section 2, we situate our work in the broader
body of work on grounded semantic parsing and

7653

learning from language. Section 3 summarizes our
framework and dataset. In Section 4, we describe
our approach in detail. Here, we investigate a new
paradigm for interpreting language in grounded
contexts. Instead of mapping statements to logical
forms that then execute in a context as in traditional
semantic parsing, the method considers the set of
possible typing and clicking actions in a context,
identifies features of corresponding web elements
and their relationships with other elements on the
webpage, and aligns these to natural language ex-
planations through a generative model. Section 5
describes the empirical evaluation. Our contribu-
tions are:

• An approach towards learning web-based
tasks from a single explained demonstration.

• A dataset of explanations and demonstrations
for tasks from the MiniWoB framework.

• Empirical results showing that explained
demonstrations can be an effective mode of
supervision for learning such tasks. Lan-
guage can significantly reduce the number of
samples needed compared to learning from
demonstrations alone.

2 Related Work

Semantic Parsing: Supervised models for convert-
ing statements to logical forms have long been stud-
ied in a wide range of settings (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Wong and
Mooney, 2007; Kwiatkowksi et al., 2010; Yin and
Neubig, 2017). More recent approaches focused
on using weaker forms of supervision such as de-
notations or observations of world state (Berant
et al., 2013; Clarke et al., 2010; Krishnamurthy
and Mitchell, 2012) and semi-supervised methods
aimed at efficient prototyping (Pasupat and Liang,
2015; Wang et al., 2015). These methods require
more readily available supervision, such as ques-
tion/answer pairs for model training, rather than
annotations of logical forms. (Artzi and Zettle-
moyer, 2013) learn to follow instructions in the
context of robot navigation by conditioning parsing
on environmental context. Artzi and Zettlemoyer
(2011) use conversational feedback as a signal to
induce logical forms for individual utterances from
transcripts of conversations in a dialog-based setup.
Some other recent approaches (Long et al., 2016;
Guu et al., 2017) explore learning language from
sequences of utterances and interactions in simple
environments, which is conceptually similar to our

work. Muhlgay et al. (2019) and Guu et al. (2017)
explore better strategies to search the space of logi-
cal forms. While all of these methods are related to
multiple facets of work, our method diverges from
them in that the space of candidate logical forms
is driven by the constraints of possible actions in
an environment rather than the natural language ut-
terance. This guarantees that all of the considered
logical forms during search are consistent with exe-
cutable actions in any novel context. Finally, some
recent methods (Andreas et al., 2016) marginalize
over latent interpretations of language in context
of downstream tasks. We use a similar Bayesian
approach, where actions are chosen by marginal-
izing logical forms (rather than choosing a single
interpretation of an explanation).

Interactive Learning from Language: Several
frameworks have leveraged natural language su-
pervision to learn new tasks, starting with early
work on the SHRLDU system (Winograd, 1972)
and Interactive Task Learning (Laird et al., 2017).
In particular, several reinforcement learning ap-
proaches have been explored in text-based environ-
ments for learning strategies, following instruction
manuals, game playing, etc. (Branavan et al., 2009;
Goldwasser and Roth, 2014; Misra et al., 2018;
Narasimhan et al., 2015). These approaches lever-
age the ability to explore and interact with the envi-
ronment to learning policies that lead to favourable
outcomes. This is different from our goal here,
where the agent needs to learn from a single ex-
plained demonstration of a task, and no interactiv-
ity with the environment is assumed. Some recent
approaches have shown language explanations to
be effective for learning realistic tasks including
relation extraction, concept learning and question
answering (Hancock et al., 2018; Srivastava et al.,
2017, 2018; Andreas et al., 2018).

In terms of the goal and problem formulation,
our approach extends multiples lines of previous
work. Quirk et al. (2015)’s work is similar to ours
in motivation in learning user-specified recipes,
but has no aspects of grounding or demonstra-
tions.(Wang et al., 2016) explore interactive parser
training through language games in context of
block-world environments. Pasupat et al. (2018)
explore mapping natural language to specific el-
ements on complex and realistic web-pages, al-
though not in context of learning from demonstra-
tions. Our framework directly extends previous
work on learning web-based tasks from the Mini

7654

Figure 2: Crowd-worker interface used for collecting natural
language explanations and demonstrations

Word-of-Bits framework using multiple demonstra-
tions and exploration of the environment (Shi et al.,
2017; Liu et al., 2018). In particular, our DSL ex-
tends the constraint language defined in Liu et al.
(2018) to explore learning from explained demon-
strations instead.

3 Framework and dataset

We build on the Mini World-of-bits (MiniWoB)
framework (Shi et al., 2017), a collection of web-
based tasks initially proposed as a testbed for rein-
forcement learning agents. The tasks vary in dif-
ficulty in terms of the number of actions required,
variability between instances of the task, and types
of reasoning involved (including clicking specified
buttons, forwarding emails and playing tic-tac-toe).
See the top half of Figure 2 for an example of a
task. Each task consists of a task description (yel-
low box), and an interactive web interface.

While previous methods have focused on learn-
ing sequential decision making to complete these
tasks through a mixture of exploration (the frame-
work provides simulators, where correctly complet-
ing a task yields a reward) and behavior cloning
(by observing multiple demonstrations from human
users); our focus is on learning to complete these
tasks in a one-shot sense (without any exploration).
This is because the one-shot case is a much more re-
alistic scenario for learning web-based procedures
from a teacher. In practical situations (where there
are no simulators), it would not be feasible for an
AI agent to learn to book flights by booking mul-
tiple incorrect tickets, or manage a user’s email
by sending multiple incorrect emails. On the other
hand, a paradigm where the agent attempts to gener-
alize from a single demonstration and explanations
can be feasible for many more of such scenarios.

Task: Forward an email
Click on the segment that mentions Maureen
Click on the button name “Forward” at the bottom of the page
Type in the word ‘Amata’ in front of the row tagged ‘to’
Click on the arrow button at the top of the page

Task: Select a radio button
Focus on the word sequence after Select
Click on the radio button to the left of the word sequence
Press submit

Figure 3: Examples of collected explanations

3.1 Dataset

We created a dataset of natural language explana-
tions paired with demonstrations by human users
for tasks from the MiniWoB framework. For this,
crowdsourced workers on Amazon Mechanical
Turk were asked to demonstrate how to complete
these tasks and provide stepwise explanations to
an AI assistant on how to complete the task. Since
users would be unfamiliar with most of the tasks,
for each task they were allowed to experiment with
the interface as many times as they liked, and only
the final demonstration was logged.

In all, we collect 520 demonstrations (each con-
sisting of a sequence of click/type actions in the
context of a MiniWoB task) paired with stepwise
explanation sequences. Figure 3 shows samples
of collected explanations. On average, each ex-
planation sequence contains 3.3 explanations. The
dataset contains 1719 explanations in total (indi-
vidual steps), averaging 8.4 words per explanation.
The size of the vocabulary of the explanations is
995. In general, workers found the teaching pro-
cess to be engaging, with an average rating of 8.3
on a 1-10 scale on how they enjoyed the HIT in a
post-completion survey. The dataset is available at
https://aka.ms/Web-D-E.

Data characteristics: From a manual analysis of
100 randomly selected explanation sequences and
task demonstrations, we find that in almost all cases
(97%), the sequence of actions described in the ex-
planations corresponds to the sequence of actions in
the demonstration. More than 85% of explanations
mention a clicking or typing action, while around
10% identify an entity/string on the webpage that is
used in an action in the next step (e.g., the first ex-
planation for the second task in Figure 3). Around
3% of the explanations correspond to conditionals
and hypotheticals, which go beyond the scope of
our approach. Roughly 15% of the explanations
mention multiple entities on the webpage – usually
specifying one element in relation to the other (e.g.,

“the radio button to the right of the text-box”).

https://aka.ms/Web-D-E

7655

Return Type Operator Type Example invocation/description

Action Action Click (element) click the icon ...
enter the destination ...Action TypeString (element, string)

Identify
Web Element(s)

HasTag (tag)
Semantic

find the button ...
...that says ‘submit’
... the email that mentions Jeanette ...

HasText (string)
HasTextIncluding (string)
HasPosnHigh()

Spatial

the button at the top ...

the icon next to ...

the link below the icon ...

HasPosnLow()
RelnNear (element)
RelnSameRow (element)
RelnSameCol (element)
RelnBelow (element)
RelnAbove (element)
RelnRightOf (element)
RelnLeftOf (element)
HasNumericIndex (int) Count the last option in the list ...

Identify
String(s)

IndexedWord(int) From task
description

the last word ...
BeforeWord(string) the city after “from:”
AfterWord(string)
FindMatchingContext(string, context) enter “Seattle” as the source city ...

Table 1: Major operators in DSL for learning of web-based procedures

3.2 DSL for semantic parsing

We define a domain specific language (DSL) for
describing web-based procedures in terms of DOM
elements by expanding on the constraint language
in Liu et al. (2018). The DSL operators correspond
to actions on DOM elements, element features and
relations between them. The DSL defines the vo-
cabulary of logical forms for parsing of user expla-
nations, and grounds sensors and effectors in the
web environment. Table 1 summarizes the DSL.
There are three types of operations: (1) click and
type actions on specified web elements (with a
specified string, in case of a type action), (2) op-
erations that filter elements on a page that satisfy
a criterion, and (3) operations that filter strings
based on a criterion. We include a special oper-
ator FindMatchingContext to accommodate
cases in which the users provide explanations for
an instance of a task with specific arguments men-
tioned in the task description (e.g., see the last row
in Table 1). In this case, the operator can pick
out the corresponding argument for the new in-
stance by looking at the surrounding context in
the new task description. The evaluation of logi-
cal forms in the DSL in the context of a webpage
consists of set operations over all DOM elements
on the webpage (and text-spans of up to two to-
kens for string operators). For example, the logical
form HasTag(type=button) will evaluate to
the set of elements on a page that have a HTML
tag type with value button.

4 Learning from explanations and
demonstrations

Our approach for learning web-based tasks, which
we call LED – for Learning from Explained Demon-

𝑑click(elem3)

click(tag=square &
rightOf(triangle))

Click	the	square	to	the	
right	of	the	triangle

𝑙
𝑥

𝑐
(3)

(1)
(2)

Figure 4: Modeling principle for Learning from Explained
Demonstrations (LED). We prefer logical forms (l) that are
both consistent with the user demonstration (d) in the context
(c), and relevant to the user’s explanations (x).

strations, models the process of explaining a
demonstration of a task in a grounded context. We
assume that the reasoning behind each action in a
demonstration can be described by a logical form, l,
in the DSL.1 LED’s essential idea is that preferred
logical forms are both (1) consistent with the user
demonstration, d, in the observed context, c, and
(2) relevant to the user’s language explanations, x.

Figure 4 illustrates this for a toy-example, where
the context consists of a web-page with three ele-
ments, the demonstration consists of a single ac-
tion, and a corresponding explanation is provided.
Based on the observed demonstration (that elem3
was clicked), it is hard to infer the reason behind
clicking it. Multiple logical forms in the DSL can
be consistent with clicking elem3 in this context.
e.g., it is at the top of the page, its color is blue, etc.
However, these interpretations would not justify
the provided explanation as those logical forms are
not relevant to the explanation. Modeling relevance
between logical forms and explanations can help
identify the reasoning behind user demonstrations.

This framing diverges from traditional semantic
parsing, where statements x are mapped to logi-

1We do not infer individual logical forms corresponding
to an explanation, since we marginalize over all logical forms
that resolve to the same action in a context.

7656

cal forms l (e.g., database queries), which are then
are executed against a context c (e.g., a knowledge
base) to get a denotation (corresponds here with a
demonstration) d. i.e., d = Jl(x)Kc. In this model-
theoretic view of semantics, parsed logical forms
are not informed by the environmental context until
execution. In comparison, LED roots logical forms
in the observed context, and thus pragmatic con-
sistency is ensured by design.2 We maximize the
log-likelihood of observing the explanations given
the demonstration in a grounded context:

L(θ) = log p(x|d, c) = log
∑

l p(x|l)︸ ︷︷ ︸
relevance

p(l|d, c)︸ ︷︷ ︸
consistency

(1)

Here, the first term corresponds to scoring rel-
evance between logical forms and explanations
(modeled using a semantic parsing model). The
second term enforces consistency between candi-
date logical forms and the demonstration in the
context, and can be deterministically evaluated. As
we see in Section 4.2, consistency is enforced by
temperature-based annealing during training.

4.1 Grounded Logical forms as latent
variables

Eqn 1 marginalizes over latent logical forms. To
make this tractable, we represent a logical form
in a grounded context as an assignment of a tuple
of discrete variables, l := (e0, f0, r, e1, f1, a, t, ft).
These variables indicate things such as which DOM
element is acted upon (e0), if its relation (r) with
another element on the page (e1) is relevant, and
so on. These are defined below.
• e0 ∈ domElements(c) denotes the DOM-

element on which an action is performed. (e.g.,
e0 = elem3 in Fig 4) This is observed from the
demonstration, thus p(e0) = Ie0=eobserved .3

• f0 = (f01 . . . f0nF) is a set of selector variables,
where f0i denotes if feature i of element e0 is
relevant for choosing it. Its domain is {φ ∪ Fi},
where Fi is the range of values feature i can
take. f0i = φ denotes that the feature was not
relevant for choosing e0 (e.g., f0 color = φ in
Fig 4). If f0i 6= φ, it can only take the observed
value of the feature for e0 in the context (e.g.,
f0 tag = square in Fig 4). In Table 1, these
correspond to operators that return web-elements
and have names with prefix Has.

2For example, in Figure 4, click(tag=triangle &
rightOf(square)) won’t be considered for the provided
utterance, as it is inconsistent with the context.

3Icondition denotes an indicator function for condition.

• r denotes if relation r between e0 and another
element on the webpage is relevant for choosing
it. Its domain is {φ ∪R}, whereR is the set of
(binary) relations between elements in the DSL.
In Table 1, these are operators that have names
with prefix Reln. r = φ denotes that the no
relation was relevant for choosing e0. If r 6= φ,
it can only take the value of a relation that exists
between e0 and another element. (e.g., in Fig 4,
r can’t take the value LeftOf, since elem3 is
the rightmost element in the context). Our choice
of having a single variable for r disallows logical
forms with multiple or nested relations. This was
guided by an analysis of our dataset, where none
of the collected explanations show such behavior.

• e1 denotes that relation r between elements e0
and e1 is relevant for choosing e0. Its domain is
{φ∪domElements(c)}. e1 = φ if and only if r =
φ, i.e. if no relation is relevant for choosing e0.
If r = reln, e1 can only take values of elements
such that reln(e0, e1) is true in the context.

• f1 = (f11 . . . f1nF) is a set of selector variables,
where f1i denotes if feature i of element e1 is
relevant. e.g., for ‘click the checkbox next to the
button that says submit’, the HasText feature
of the button is relevant). f1i = φ denotes that
feature i was not relevant. If f1i 6= φ, it can only
take the observed value of the feature for e1.

• a denotes the action performed on e0 (click or
type). This is observed from the demonstration.

• t denotes the string to type, if a = type. This is
observed from the demonstration (and is a sub-
string of the task description text).

• ft = (ft1 . . . ftnT) is a set of selector variables,
where ftj denotes if the text feature j of t is rele-
vant for choosing it (In Table 1, operators with a
string return type correspond to text features).

Inverse Semantics: Assignments of values to
these variables represents a search in the DSL
space, since given any context, there is a mapping
a from logical forms to an assignment of these vari-
ables. A key idea here is that, borrowing from
program synthesis, we can leverage the inverse
semantics of operators in the DSL (Polozov and
Gulwani, 2015) to guarantee consistency of logical
forms with the grounded context. i.e., at any step,
the space of candidate logical forms we consider is
consistent with the observed demonstration. This is
possible because in our case, computing the inverse
semantics for all operators in the DSL is feasible.4

4Since there is only a relatively small number of candidates

7657

As just described, our approach will use the con-
text of the webpage leverage DSL inverse seman-
tics to maintain an implicit set of candidate logical
forms that are consistent with the observed demon-
stration. We will use variational inference to infer
the logical forms that are most relevant to the seen
explanations, and choose the action to take based
on the inferred distribution over logical forms.

4.2 Model Description

In Eqn 1, the second term corresponds to a prior
probability overs logical forms given a demonstra-
tion and context (webpage). Our representation of
logical forms as latent variable assignments (from
Section 4.1) enables us to decompose this prob-
ability into local factor distributions. We choose
these local priors to correspond to distributions that
are uniform over assignments that are consistent,
and has zero support otherwise, similar to previous
work on pragmatic reasoning (Frank and Goodman,
2012; Monroe et al., 2017). In other words, these
distributions are proportional to indicator function
over valid assignments of variables in each fac-
tor. As seen below, these define a prior over l that
is also proportional to a simple indicator function
over values of l that are consistent with the ob-
served demonstration and context.

p(l | d, c) = p(e0, f0, r, e1, f1, a, t, ft | d, c)
= p(e0|d) p(f0|e0, c) p(e1, r|e0, c)
× p(f1|e1, c) p(a, t|d) p(ft|t, c)
∝ IV alid(e0,d) IV alid(f0,e0,c) IV alid(e1,r,e0,c)

× IV alid(f1,e1,c) IV alid(a,t,d) IV alid(ft,t,c)

= IV alid(l,d,c)

(2)

Substituting this in Eqn 1 and using Jensen’s
inequality, any distribution q over logical forms
provides a lower-bound on the log-likelihood:

L(θ) ≥
∑
l

q(l) log
p(x|l) IV alid(l)

q(l)

=
∑
l

q(l)
(
log p(x|l) + log IV alid(l)

)
+Hq

(3)

where Hq is the entropy for distribution q. In
Sec 4.1, we represent l as a tuple of variables.
Next, we make a mean field approximation by
assuming the distribution q(l) decomposes as:

– DOM elements or strings on the webpage – to search over.
Compare this with an operation in arithmetic, e.g., add(int,
int), which might require a search over infinite co-domains.

q(l) = q(e0, a, t)
∏
i

qf0iqe1qr
∏
i

qf1i
∏
j

qftj (4)

Focusing on the unobserved variables (given a
demonstration), we have q(l) = qf0qe1qrqf1qft .

5

Parsing model: We assume that the probabil-
ity of an explanation decomposes into the prob-
ability of individual words as log pθ(x|l) =∑

w∈x log p(w|f0, r, f1, ft, a). Further, we assume
that individual words are generated from features,
relations and actions in the logical form as:

log p(w|f0, r, f1, ft, a) = log
1

C

{f0,r,f1,
ft,a}∑

k

p(w|k)zkwp(zkw)

≥

{f0,r,f1,
ft,a}∑

k

bkw
(
log p(w|k, zkw) + log p(zkw)

)
+Hbkw

(5)
Here, k is an index over values of f0, r, f1, ft

and a. zkw denotes an alignment between a partic-
ular value of a feature, relation or action (k) and
word w in the explanation, in which case the word
is generated from the distribution p(w|k). The
presence of a summation inside of a logarithm
makes maximizing this objective hard. We again
use Jensen’s inequality to get a bound by introduc-
ing variational distributions bkw over alignments
zkw. bkw can be thought of as representing the
proportions of an explanation word contributed by
specific feature values, relations or actions k in the
logical form. Each p(w|k) is parameterized as a
multinomial distribution, θkw, over the vocabulary.

Training and Inference: Our model training fol-
lows a variational EM approach, where in the E-
step, we perform inference for the latent logical
form variables and alignment proportions, keeping
the model parameters as fixed. In the M-step, we
update the parameters, θkw, taking the variational
distributions and alignments as fixed. Combining
Eqn 2, Eqn 3 and Eqn 5, we get:

L(θ) ≥
∑
l

qf0qe1qrqf1qft

((∑
w

∑
k

bkw[log θ
zkw
kw

+ log p(zkw)] +Hbkw

)
+ log IV alid(l,d,c)

)
+Hf0 +He1 +Hr +Hf1 +Hft

(6)

Maximizing this objective w.r.t. the variational

5Using qf0 as shorthand notation for the product of varia-
tional distributions

∏
i qf0i , and so on.

7658

distributions yields the following E-step updates:6

qf0i(vf0i) ∝ exp
(∑

w

bvf0iw log(θvf0iw) + log IV alid(vf0i
,

e0,c)

)
qe1(ve1) ∝ exp

((∑
f1i

∑
w

bf1iw
∑
vf1i

qf1i(vf1i) log θvf1iw

+ log I V alid
(vf1i

,e1,c)

)
+
(∑

vr

qr(vr)
∑
w

bvrw log θvrw

+ log IV alid(e1,vr,e0,c)

))
qr(vr) ∝ exp

(∑
ve1

qe1(ve1)
(∑

w

bvrw log θvrw
)

+ log IV alid(e1,vr,e0,c)

)
qf1i(vf1i) ∝ exp

(∑
ve1

qe1(ve1)
(∑

w

bvf1iw log θvf1iw
)

+ log IV alid(vf1i
,e1,c)

)
qftj (vftj) ∝ exp

(∑
w

bvftjw log(θvftjw)

+ log IV alid(vftj
,t,c)

)
(7)

Similarly, the updates for the alignment proportions
(taking p(zkw) in Eqn 6 to be uniform) are:

bkw ∝ exp
(∑

k

qk(k) log θkw
)

(8)

LED(+syntax): The above approach allows for
arbitrary alignments between words and features,
relations or actions in the grounded logical form
(k), essentially representing x as a bag-of-words.7

We also explore a variant that models x as a se-
quence of tokens by introducing a prior over joint
alignments zkx = zk1w1 . . . zkTwT

in a sentence
x := w1 . . . wT (in Eqn 5). This is done by simply
modeling p(zkx) with pairwise transition probabil-
ities as p(zkx) :=

∏
n p(zkt |zkt−1) =

∏
n Tkt,kt−1 .

In this case, updates for alignment proportions
(Eqn. 8) correspond with emission probabilities
in a HMM (which we omit here for brevity).

Since the updates in Eqn 7 and Eqn 8 are cyclic,
in each E-step, we make 20 iterations of updates to
the variational distributions and alignment propor-
tions in a round-robin schedule. We note that con-
sistency is enforced during training by the log-of-
indicator-variable terms in Eqn 7. This is because
any inconsistent assignments get a score of log(0),
which tends to negative infinity. However, to en-
sure smooth training (and alleviate modeling issues
from our mean field approximation), we leverage
an annealing based strategy, where we incremen-

6The optimal value for the concave problem
∑

j xj log
yj
xj

s.t.
∑

j xj = 1 is achieved when x∗j ∝ yj .
7E.g., this won’t differentiate between “click the URL be-

low the button” and “click the button below the URL”.

tally increase the penalty for log(0) terms during
training as −N/2 for the N ’th EM iteration (for
large N , this also is a prohibitive penalty). In our
experiments, this was seen to improve training.

In the M-step, we maximize the objective w.r.t.
θk:

θk(w) ∝ exp
(∑

n

∑
w∈xn

bnkwqk
)

(9)

The one exception is a special copy mechanism
for string-valued features. For these, θkw is not
learned, but simply corresponds to an indicator
function denoting if w matches the value of the
feature. e.g., θHasText(‘submit’),‘submit’ = 1.

5 Experiments

We next discuss LED’s empirical performance.

5.1 Procedure Learning performance
First, we evaluate the method for completion rates
on tasks from the MiniWoB framework. Follow-
ing Liu et al. (2018), we filtered 40 tasks from the
MiniWoB framework (Shi et al., 2017) that require
only clicking and typing actions. During training
of the LED model, we sample an explained demon-
stration for each of the 40 tasks, and models are
trained on the aggregate of these (the model sees
one explanation-demonstration pair for a task). For
testing, models are evaluated on a new instance
of a task, where the model greedily computes the
demonstration d (specifying a click or typing ac-
tion on a web element in the current DOM) that
would maximize p(x|d, c) (see Eqn 1) and executes
the corresponding actions. The method then moves
to the next explanations. This requires an enumer-
ation of all possibly clicking and typing actions
that can be performed in a context c at every step.8

Since the number of actions in a demonstration
can be different from the number of steps in the
explanation, we heuristically align the sequence of
actions in demonstrations to the sequence of sen-
tences in the explanations in our dataset based on a
small manually defined list of trigger words.

A direct comparison of LED with other ap-
proaches is not possible, since they differ consider-
ably in the type of supervision and resources used.
Nonetheless, here we compare LED’s performance
with the following two methods to get a coarse
sense of its effectiveness:

8This is possible since the set of actionable elements on
a webpage, and the set of candidate strings that can be typed
(up to two length tokens from task description) are not large.

7659

Figure 5: Task-completion rates for MiniWoB tasks with
varying difficulty. Rates are calculated over 100 new instances
of each task

1. SemParse: This is a supervised semantic pars-
ing baseline, trained on a manually annotated
dataset of around 300 explanations labeled with
their DSL logical forms (covering roughly one
annotated explanation sequence for every task).
The model is based on a sequence-to-sequence
neural semantic parser from Jia and Liang
(2016). During testing, the method parses the
sequence of explanations to logical forms, and
sequentially (attempts to) executes the predicted
logical forms. In contrast, LED requires no logi-
cal form annotations. However, it leverages the
inverse semantics of the DSL operators, which
may not be feasible for every DSL.

2. BC+RL: This is the original approach from Shi
et al. (2017), who proposed the MiniWoB frame-
work and consists of behavior cloning and explo-
ration. This learns a task by supervised learning
on about 200 demonstrations, followed by explo-
ration via reinforcement learning to fine-tune the
learned policies. In comparison, LED requires
no exploration of the environment but lever-
ages additional supervision in the form of nat-
ural language explanations. Multiple methods
have since explored other RL-based approaches,
resulting in much improved performance (Liu
et al., 2018; Luo, 2019; Jia et al., 2019). In par-
ticular, Liu et al. (2018) leverage a constraint
language similar to our DSL to train a RL policy
to get large gains in performance. However, all
these methods require multiple demonstrations
and exploration of the environment.

Figure 5 shows task completion performance for
different methods on a subset of tasks from the
MiniWoB framework. We compute task comple-

Approach Action-prediction accuracy
LED (+Syntax) 0.45
LED 0.43
SemParse 0.39
Random 0.28

Table 2: Semantic parsing performance (predicted action
match) for interpreting individual explanations in a context

tion rates over 100 randomly selected test instances
of each task. The differences between instances
involves different arguments for a task and differ-
ences in the state of the environment. Firstly, we
note that the LED approaches consistently outper-
forms SemParse across all tasks. This is a strong
result, since LED does not have access to logi-
cal form annotations for explanations as SemParse
does. This strongly indicates that knowledge of the
pragmatic context is important for language inter-
pretation in this domain, since our approach which
roots logical forms in observed demonstrations per-
forms better or as well for all but one task.

We note that there is a large variance among
tasks in terms of amenability to learning from ex-
planations or exploration. For tasks like tic-tac-
toe, explanation-based methods perform poorly as
expected, since learning the game involves rea-
soning that is hard to explain through step-wise
explanation of a demonstration, but can be more
naturally learned from exploration. On the other
hand, explanation-based methods perform well on
tasks that are easily expressed through language.
On the whole, the LED approaches and are roughly
competitive with BC+RL, while requiring no ex-
ploration and only a single demonstration. Note
that unlike exploration-based methods, LED and
SemParse can potentially generalize to new tasks
during testing (where no demonstration is seen dur-
ing training) from explanations and context only.

We also note that LED(+Syntax) generally out-
performs vanilla LED, although the effect size is
not large. However, this trend is statistically signif-
icant (binomial test, p < 0.1).

5.2 Language Interpretation performance
Next, we quantitatively evaluate the parsing per-
formance of our method at the level of individual
explanations (rather than task completion rate). For
this, we evaluate the trained models on explana-
tions from a set of 80 demonstrations from the
dataset (unseen during training), where we calcu-
late the match between the predicted action from
an explanation in the context, and the actual ac-
tion in the logged demonstration (accuracy of pre-

7660

Figure 6: Heatmap showing learned values of θkw for 20
frequent words w in and representative values of k. Darker
shades correspond to higher probability values.

dicted action in a context). Table 2 summarizes
this performance, which shows a similar trend as
Section 5.1. Both LED methods perform substan-
tially better than SemParse, and all three methods
perform much better than randomly choosing the
next executable action in the context (Random).
We note again that LED’s involves no logical form
annotations, and is driven purely by grounding ex-
planations in observed demonstrations.

5.3 Visualizing learned language

Figure 6 depicts the learned lexicon by visualizing
a representative subset of learned θkw values for
LED (+Syntax) (from Sec 4.2) as a heatmap. We
note that the model correctly induces mappings
between words and DSL operators. The rows and
columns are manually ordered to emphasize the
block diagonal structure.

Table 3 shows the learned transition probabili-
ties, Tk1,k2 , for LED (+Syntax). To reduce model
size, we share parameters for values of k corre-
sponding to types f0, r, f1, ft and a. A common
template about the general structure of user ex-
planations is reflected from the parameter values.
Most explanations start with the description of the
action a, followed by mentioning features that iden-
tify the relevant element f0. In fact, f0 distributions
generate the majority of words in most explana-
tions. Relation mentions, when present, usually fol-
low this, in turn followed by features corresponding
to f0, reflective of a VSO word order in most expla-
nations. Diagonal values are substantially higher,
indicating that words describing specific objects
and actions tend to cluster together, as would be
expected from the semantics of natural language.

5.4 Common Errors

From a qualitative error analysis, we note that most
errors in task learning come from three sources.
Firstly, although the method learns reasonable map-
pings between words and semantic operators, the
method often misaligns attributes of different ele-

a f0 r f1 ft

a 0.12 0.70 0.07 0.04 0.07
f0 0.05 0.82 0.08 0.04 0.01
r 0.01 0.12 0.57 0.26 0.04
f1 0.03 0.07 0.22 0.63 0.04
ft 0.08 0.30 0.09 0.06 0.47

Table 3: Learned transition probabilities between latent vari-
able categories for LED (+Syntax). These reflect a prominence
of VSO sentence structures in user explanations.

ments, even with the LED(+Syntax) model. This is
likely because the training data is not adequate to
learn these constraints, and methods that enforce
these through informed priors maybe more effec-
tive. Another common error is due to challenges
with anaphora resolution and discourse referents.
Finally, a large number of explanations are not ex-
plicit in describing the sequence of actions required
to perform a task, and some needed actions remain
unmentioned. While this would be expected in re-
alistic computer-human interactions, fixing these
errors is beyond the scope of the current method.

6 Conclusion

Our work here is a step in the direction of teachable
AI agents that can learn new behavior from conver-
sational interactions with ordinary users. In terms
of technique, our bottom-up approach to generating
logical forms ensures consistency between inter-
pretations and the ambient context during search.
Conversely, this would be complicated in domains
with rich composition and nesting in logical forms,
which go beyond simple features and relations. e.g.,
“click the third email from Jeanette”, and where
modeling inverse semantics is infeasible.

Here, we posed the learning of web-based tasks
as similar to instruction-following problem, with
no aspect of interactivity or exploration of the en-
vironment. In future work, the possibility of learn-
ing from a mix of explanations, exploration and
a limited budget of interaction with the environ-
ment can be explored. Also, language grounding
models that incorporate richer alignments between
explanations and demonstrations can lead to more
effective learning. Since LED only requires tok-
enization as pre-processing, it can possibly extend
to low resource scenarios. In terms of problem
framing, interactive use-cases that enable the agent
to ask questions when it is confused may also be
realistic. Future work can also explore curriculum
learning in this domain, by first learning simpler
tasks, which can be compositionally invoked in
explanations for complex tasks.

7661

References
Jacob Andreas, Dan Klein, and Sergey Levine. 2018.

Learning with latent language. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 2166–2179. Association for Computa-
tional Linguistics.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 39–48. IEEE Computer Society.

Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrapping
semantic parsers from conversations. In Proceed-
ings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pages 421–432,
Edinburgh, Scotland, UK. Association for Compu-
tational Linguistics.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA. Association for Computational Lin-
guistics.

S.R.K. Branavan, Harr Chen, Luke Zettlemoyer, and
Regina Barzilay. 2009. Reinforcement learning for
mapping instructions to actions. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP,
pages 82–90, Suntec, Singapore. Association for
Computational Linguistics.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from
the world’s response. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, pages 18–27, Uppsala, Sweden. As-
sociation for Computational Linguistics.

Michael C. Frank and Noah D. Goodman. 2012. Pre-
dicting pragmatic reasoning in language games. Sci-
ence, 336(6084):998–998.

Dan Goldwasser and Dan Roth. 2014. Learning from
natural instructions. Mach. Learn., 94(2):205–232.

Kelvin Guu, Panupong Pasupat, Evan Liu, and Percy
Liang. 2017. From language to programs: Bridg-
ing reinforcement learning and maximum marginal
likelihood. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1051–1062, Van-
couver, Canada. Association for Computational Lin-
guistics.

Braden Hancock, Paroma Varma, Stephanie Wang,
Martin Bringmann, Percy Liang, and Christopher
Ré. 2018. Training classifiers with natural language
explanations. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1884–1895.
Association for Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Sheng Jia, Jamie Kiros, and Jimmy Ba. 2019. DOM-
Q-NET: grounded RL on structured language. In
7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

Jayant Krishnamurthy and Tom Mitchell. 2012.
Weakly supervised training of semantic parsers. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
754–765, Jeju Island, Korea. Association for Com-
putational Linguistics.

Tom Kwiatkowksi, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1223–1233, Cambridge, MA. As-
sociation for Computational Linguistics.

John E. Laird, Kevin A. Gluck, John R. Anderson, Ken-
neth D. Forbus, Odest Chadwicke Jenkins, Christian
Lebiere, Dario D. Salvucci, Matthias Scheutz, An-
drea Thomaz, J. Gregory Trafton, Robert E. Wray,
Shiwali Mohan, and James R. Kirk. 2017. Interac-
tive task learning. IEEE Intell. Syst., 32(4):6–21.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tian-
lin Shi, and Percy Liang. 2018. Reinforcement learn-
ing on web interfaces using workflow-guided explo-
ration. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track
Proceedings.

Reginald Long, Panupong Pasupat, and Percy Liang.
2016. Simpler context-dependent logical forms via
model projections. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1456–
1465, Berlin, Germany. Association for Computa-
tional Linguistics.

Katie Luo. 2019. Goal-induced inverse reinforcement
learning. Technical Report EECS-2019-81, Univer-
sity of California, Berkeley.

https://doi.org/10.18653/v1/N18-1197
https://doi.org/10.1109/CVPR.2016.12
https://www.aclweb.org/anthology/D11-1039
https://www.aclweb.org/anthology/D11-1039
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://www.aclweb.org/anthology/D13-1160
https://www.aclweb.org/anthology/D13-1160
https://www.aclweb.org/anthology/P09-1010
https://www.aclweb.org/anthology/P09-1010
https://www.aclweb.org/anthology/W10-2903
https://www.aclweb.org/anthology/W10-2903
https://doi.org/10.1126/science.1218633
https://doi.org/10.1126/science.1218633
https://doi.org/10.1007/s10994-013-5407-y
https://doi.org/10.1007/s10994-013-5407-y
https://doi.org/10.18653/v1/P17-1097
https://doi.org/10.18653/v1/P17-1097
https://doi.org/10.18653/v1/P17-1097
http://aclweb.org/anthology/P18-1175
http://aclweb.org/anthology/P18-1175
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://openreview.net/forum?id=HJgd1nAqFX
https://openreview.net/forum?id=HJgd1nAqFX
https://www.aclweb.org/anthology/D12-1069
https://www.aclweb.org/anthology/D10-1119
https://www.aclweb.org/anthology/D10-1119
https://www.aclweb.org/anthology/D10-1119
https://doi.org/10.1109/MIS.2017.3121552
https://doi.org/10.1109/MIS.2017.3121552
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
https://doi.org/10.18653/v1/P16-1138
https://doi.org/10.18653/v1/P16-1138
http://vm133.lib.berkeley.edu:90/reports/TRWebData/accessPages/EECS-2019-81.html
http://vm133.lib.berkeley.edu:90/reports/TRWebData/accessPages/EECS-2019-81.html

7662

Dipendra Misra, Ming-Wei Chang, Xiaodong He, and
Wen-tau Yih. 2018. Policy shaping and generalized
update equations for semantic parsing from denota-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2442–2452, Brussels, Belgium. Association
for Computational Linguistics.

Will Monroe, Robert X.D. Hawkins, Noah D. Good-
man, and Christopher Potts. 2017. Colors in context:
A pragmatic neural model for grounded language
understanding. Transactions of the Association for
Computational Linguistics, 5:325–338.

Dor Muhlgay, Jonathan Herzig, and Jonathan Berant.
2019. Value-based search in execution space for
mapping instructions to programs. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 1942–1954, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzi-
lay. 2015. Language understanding for text-based
games using deep reinforcement learning. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1–11,
Lisbon, Portugal. Association for Computational
Linguistics.

Panupong Pasupat, Tian-Shun Jiang, Evan Liu, Kelvin
Guu, and Percy Liang. 2018. Mapping natural lan-
guage commands to Web elements. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4970–4976,
Brussels, Belgium. Association for Computational
Linguistics.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1470–1480, Beijing, China. Association for Compu-
tational Linguistics.

Oleksandr Polozov and Sumit Gulwani. 2015. Flash-
Meta: A framework for inductive program synthesis.
In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOP-
SLA 2015, pages 107–126, New York, NY, USA.
ACM.

Chris Quirk, Raymond Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for If-This-Then-That recipes. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 878–888, Beijing,
China. Association for Computational Linguistics.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her-
nandez, and Percy Liang. 2017. World of bits: An
open-domain platform for Web-based agents. In
Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, pages 3135–3144.

Shashank Srivastava, Igor Labutov, and Tom Mitchell.
2017. Joint concept learning and semantic parsing
from natural language explanations. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1527–1536,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Shashank Srivastava, Igor Labutov, and Tom Mitchell.
2018. Zero-shot learning of classifiers from natu-
ral language quantification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
306–316. Association for Computational Linguis-
tics.

Sida I. Wang, Percy Liang, and Christopher D. Man-
ning. 2016. Learning language games through in-
teraction. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2016, August 7-12, 2016, Berlin, Germany, Vol-
ume 1: Long Papers.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1332–1342,
Beijing, China. Association for Computational Lin-
guistics.

Terry Winograd. 1972. Understanding natural lan-
guage. Cognitive psychology, 3(1):1–191.

Yuk Wah Wong and Raymond Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing
with lambda calculus. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 960–967, Prague, Czech Repub-
lic. Association for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, AAAI’96, pages 1050–1055. AAAI Press.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In UAI, pages 658–666. AUAI Press.

https://doi.org/10.18653/v1/D18-1266
https://doi.org/10.18653/v1/D18-1266
https://doi.org/10.18653/v1/D18-1266
https://doi.org/10.1162/tacl_a_00064
https://doi.org/10.1162/tacl_a_00064
https://doi.org/10.1162/tacl_a_00064
https://doi.org/10.18653/v1/N19-1193
https://doi.org/10.18653/v1/N19-1193
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D18-1540
https://doi.org/10.18653/v1/D18-1540
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.3115/v1/P15-1085
https://doi.org/10.3115/v1/P15-1085
http://proceedings.mlr.press/v70/shi17a.html
http://proceedings.mlr.press/v70/shi17a.html
https://doi.org/10.18653/v1/D17-1161
https://doi.org/10.18653/v1/D17-1161
http://aclweb.org/anthology/P18-1029
http://aclweb.org/anthology/P18-1029
http://aclweb.org/anthology/P/P16/P16-1224.pdf
http://aclweb.org/anthology/P/P16/P16-1224.pdf
https://doi.org/10.3115/v1/P15-1129
https://www.aclweb.org/anthology/P07-1121
https://www.aclweb.org/anthology/P07-1121
https://www.aclweb.org/anthology/P07-1121
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
http://dblp.uni-trier.de/db/conf/aaai/aaai96-2.html#ZelleM96
http://dblp.uni-trier.de/db/conf/aaai/aaai96-2.html#ZelleM96
http://dblp.uni-trier.de/db/conf/aaai/aaai96-2.html#ZelleM96
http://dblp.uni-trier.de/db/conf/uai/uai2005.html#ZettlemoyerC05
http://dblp.uni-trier.de/db/conf/uai/uai2005.html#ZettlemoyerC05
http://dblp.uni-trier.de/db/conf/uai/uai2005.html#ZettlemoyerC05

