
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6197–6208
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

6197

Extractive Summarization as Text Matching

Ming Zhong∗, Pengfei Liu∗, Yiran Chen, Danqing Wang, Xipeng Qiu†, Xuanjing Huang
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

School of Computer Science, Fudan University
825 Zhangheng Road, Shanghai, China

{mzhong18,pfliu14,yrchen19,dqwang18,xpqiu,xjhuang}@fudan.edu.cn

Abstract

This paper creates a paradigm shift with regard
to the way we build neural extractive summa-
rization systems. Instead of following the com-
monly used framework of extracting sentences
individually and modeling the relationship be-
tween sentences, we formulate the extractive
summarization task as a semantic text match-
ing problem, in which a source document
and candidate summaries will be (extracted
from the original text) matched in a semantic
space. Notably, this paradigm shift to seman-
tic matching framework is well-grounded in
our comprehensive analysis of the inherent gap
between sentence-level and summary-level ex-
tractors based on the property of the dataset.

Besides, even instantiating the framework with
a simple form of a matching model, we
have driven the state-of-the-art extractive re-
sult on CNN/DailyMail to a new level (44.41
in ROUGE-1). Experiments on the other five
datasets also show the effectiveness of the
matching framework. We believe the power
of this matching-based summarization frame-
work has not been fully exploited. To encour-
age more instantiations in the future, we have
released our codes, processed dataset, as well
as generated summaries in https://github.
com/maszhongming/MatchSum.

1 Introduction

The task of automatic text summarization aims to
compress a textual document to a shorter highlight
while keeping salient information on the original
text. In this paper, we focus on extractive summa-
rization since it usually generates semantically and
grammatically correct sentences (Dong et al., 2018;
Nallapati et al., 2017) and computes faster.

Currently, most of the neural extractive summa-
rization systems score and extract sentences (or
smaller semantic unit (Xu et al., 2019)) one by

∗These two authors contributed equally.
†Corresponding author.

Document

Candidate Summary

Gold Summary

extract

Semantic Space

BERT

BERT

BERT

Figure 1: MATCHSUM framework. We match the con-
textual representations of the document with gold sum-
mary and candidate summaries (extracted from the doc-
ument). Intuitively, better candidate summaries should
be semantically closer to the document, while the gold
summary should be the closest.

one from the original text, model the relationship
between the sentences, and then select several sen-
tences to form a summary. Cheng and Lapata
(2016); Nallapati et al. (2017) formulate the ex-
tractive summarization task as a sequence label-
ing problem and solve it with an encoder-decoder
framework. These models make independent bi-
nary decisions for each sentence, resulting in high
redundancy. A natural way to address the above
problem is to introduce an auto-regressive decoder
(Chen and Bansal, 2018; Jadhav and Rajan, 2018;
Zhou et al., 2018), allowing the scoring operations
of different sentences to influence on each other.
Trigram Blocking (Paulus et al., 2017; Liu and La-
pata, 2019), as a more popular method recently, has
the same motivation. At the stage of selecting sen-
tences to form a summary, it will skip the sentence
that has trigram overlapping with the previously se-
lected sentences. Surprisingly, this simple method
of removing duplication brings a remarkable per-
formance improvement on CNN/DailyMail.

The above systems of modeling the relationship
between sentences are essentially sentence-level
extractors, rather than considering the semantics

https://github.com/maszhongming/MatchSum
https://github.com/maszhongming/MatchSum

6198

of the entire summary. This makes them more
inclined to select highly generalized sentences
while ignoring the coupling of multiple sentences.
Narayan et al. (2018b); Bae et al. (2019) utilize
reinforcement learning (RL) to achieve summary-
level scoring, but still limited to the architecture of
sentence-level summarizers.

To better understand the advantages and limi-
tations of sentence-level and summary-level ap-
proaches, we conduct an analysis on six benchmark
datasets (in Section 3) to explore the characteristics
of these two methods. We find that there is indeed
an inherent gap between the two approaches across
these datasets, which motivates us to propose the
following summary-level method.

In this paper, we propose a novel summary-level
framework (MATCHSUM, Figure 1) and conceptu-
alize extractive summarization as a semantic text
matching problem. The principle idea is that a good
summary should be more semantically similar as a
whole to the source document than the unqualified
summaries. Semantic text matching is an important
research problem to estimate semantic similarity
between a source and a target text fragment, which
has been applied in many fields, such as informa-
tion retrieval (Mitra et al., 2017), question answer-
ing (Yih et al., 2013; Severyn and Moschitti, 2015),
natural language inference (Wang and Jiang, 2016;
Wang et al., 2017) and so on. One of the most con-
ventional approaches to semantic text matching is
to learn a vector representation for each text frag-
ment, and then apply typical similarity metrics to
compute the matching scores.

Specific to extractive summarization, we pro-
pose a Siamese-BERT architecture to compute the
similarity between the source document and the
candidate summary. Siamese BERT leverages the
pre-trained BERT (Devlin et al., 2019) in a Siamese
network structure (Bromley et al., 1994; Hoffer and
Ailon, 2015; Reimers and Gurevych, 2019) to de-
rive semantically meaningful text embeddings that
can be compared using cosine-similarity. A good
summary has the highest similarity among a set of
candidate summaries.

We evaluate the proposed matching framework
and perform significance testing on a range of
benchmark datasets. Our model outperforms strong
baselines significantly in all cases and improve the
state-of-the-art extractive result on CNN/DailyMail.
Besides, we design experiments to observe the
gains brought by our framework.

We summarize our contributions as follows:
1) Instead of scoring and extracting sentences

one by one to form a summary, we formulate ex-
tractive summarization as a semantic text match-
ing problem and propose a novel summary-level
framework. Our approach bypasses the difficulty
of summary-level optimization by contrastive learn-
ing, that is, a good summary should be more se-
mantically similar to the source document than the
unqualified summaries.

2) We conduct an analysis to investigate whether
extractive models must do summary-level extrac-
tion based on the property of dataset, and attempt
to quantify the inherent gap between sentence-level
and summary-level methods.

3) Our proposed framework has achieved supe-
rior performance compared with strong baselines
on six benchmark datasets. Notably, we obtain a
state-of-the-art extractive result on CNN/DailyMail
(44.41 in ROUGE-1) by only using the base version
of BERT. Moreover, we seek to observe where the
performance gain of our model comes from.

2 Related Work

2.1 Extractive Summarization

Recent research work on extractive summarization
spans a large range of approaches. These work usu-
ally instantiate their encoder-decoder framework
by choosing RNN (Zhou et al., 2018), Transformer
(Zhong et al., 2019b; Wang et al., 2019) or GNN
(Wang et al., 2020) as encoder, non-auto-regressive
(Narayan et al., 2018b; Arumae and Liu, 2018) or
auto-regressive decoders (Jadhav and Rajan, 2018;
Liu and Lapata, 2019). Despite the effectiveness,
these models are essentially sentence-level extrac-
tors with individual scoring process favor the high-
est scoring sentence, which probably is not the
optimal one to form summary1.

The application of RL provides a means of
summary-level scoring and brings improvement
(Narayan et al., 2018b; Bae et al., 2019). However,
these efforts are still limited to auto-regressive or
non-auto-regressive architectures. Besides, in the
non-neural approaches, the Integer Linear Program-
ming (ILP) method can also be used for summary-
level scoring (Wan et al., 2015).

In addition, there is some work to solve extrac-
tive summarization from a semantic perspective be-
fore this paper, such as concept coverage (Gillick

1We will quantify this phenomenon in Section 3.

6199

and Favre, 2009), reconstruction (Miao and Blun-
som, 2016) and maximize semantic volume (Yo-
gatama et al., 2015).

2.2 Two-stage Summarization

Recent studies (Alyguliyev, 2009; Galanis and An-
droutsopoulos, 2010; Zhang et al., 2019a) have
attempted to build two-stage document summariza-
tion systems. Specific to extractive summarization,
the first stage is usually to extract some fragments
of the original text, and the second stage is to select
or modify on the basis of these fragments.

Chen and Bansal (2018) and Bae et al. (2019)
follow a hybrid extract-then-rewrite architecture,
with policy-based RL to bridge the two networks
together. Lebanoff et al. (2019); Xu and Durrett
(2019); Mendes et al. (2019) focus on the extract-
then-compress learning paradigm, which will first
train an extractor for content selection. Our model
can be viewed as an extract-then-match framework,
which also employs a sentence extractor to prune
unnecessary information.

3 Sentence-Level or Summary-Level? A
Dataset-dependent Analysis

Although previous work has pointed out the weak-
ness of sentence-level extractors, there is no sys-
tematic analysis towards the following questions:
1) For extractive summarization, is the summary-
level extractor better than the sentence-level extrac-
tor? 2) Given a dataset, which extractor should
we choose based on the characteristics of the data,
and what is the inherent gap between these two
extractors?

In this section, we investigate the gap between
sentence-level and summary-level methods on six
benchmark datasets, which can instruct us to search
for an effective learning framework. It is worth not-
ing that the sentence-level extractor we use here
doesn’t include a redundancy removal process so
that we can estimate the effect of the summary-
level extractor on redundancy elimination. Notably,
the analysis method to estimate the theoretical ef-
fectiveness presented in this section is generalized
and can be applicable to any summary-level ap-
proach.

3.1 Definition

We refer to D = {s1, · · · , sn} as a single
document consisting of n sentences, and C =
{s1, · · · , sk, |si ∈ D} as a candidate summary in-

cluding k (k ≤ n) sentences extracted from a docu-
ment. Given a document D with its gold summary
C∗, we measure a candidate summary C by cal-
culating the ROUGE (Lin and Hovy, 2003) value
between C and C∗ in two levels:

1) Sentence-Level Score:

gsen(C) =
1

|C|
∑
s∈C

R(s,C∗), (1)

where s is the sentence in C and |C| represents
the number of sentences. R(·) denotes the average
ROUGE score2. Thus, gsen(C) indicates the aver-
age overlaps between each sentence in C and the
gold summary C∗.

2) Summary-Level Score:

gsum(C) = R(C,C∗), (2)

where gsum(C) considers sentences in C as a
whole and then calculates the ROUGE score with
the gold summary C∗.

Pearl-Summary We define the pearl-summary
to be the summary that has a lower sentence-level
score but a higher summary-level score.

Definition 1 A candidate summary C is defined
as a pearl-summary if there exists another can-
didate summary C ′ that satisfies the inequality:
gsen(C ′) > gsen(C) while gsum(C ′) < gsum(C).

Clearly, if a candidate summary is a pearl-summary,
it is challenging for sentence-level summarizers to
extract it.

Best-Summary The best-summary refers to a
summary has highest summary-level score among
all the candidate summaries.

Definition 2 A summary Ĉ is defined as the best-
summary when it satisfies: Ĉ = argmax

C∈C
gsum(C),

where C denotes all the candidate summaries of the
document.

3.2 Ranking of Best-Summary

For each document, we sort all candidate sum-
maries3 in descending order based on the sentence-
level score, and then define z as the rank index of
the best-summary Ĉ.

2Here we use mean F1 of ROUGE-1, ROUGE-2 and
ROUGE-L.

3We use an approximate method here: take #Ext (see Table
1) of ten highest-scoring sentences to form candidate sum-
maries.

6200

Datasets Source Type # Pairs # Tokens # Ext
Train Valid Test Doc. Sum.

Reddit Social Media SDS 41,675 645 645 482.2 28.0 2
XSum News SDS 203,028 11,273 11,332 430.2 23.3 2
CNN/DM News SDS 287,084 13,367 11,489 766.1 58.2 3
WikiHow Knowledge Base SDS 168,126 6,000 6,000 580.8 62.6 4
PubMed Scientific Paper SDS 83,233 4,946 5,025 444.0 209.5 6
Multi-News News MDS 44,972 5,622 5,622 487.3 262.0 9

Table 1: Datasets overview. SDS represents single-document summarization and MDS represents multi-document
summarization. The data in Doc. and Sum. indicates the average length of document and summary in the test set
respectively. # Ext denotes the number of sentences should extract in different datasets.

(a) Reddit (b) XSum

(c) CNN/DM (d) WikiHow

(e) PubMed (f) Multi-News

Figure 2: Distribution of z(%) on six datasets. Because
the number of candidate summaries for each document
is different (short text may have relatively few candi-
dates), we use z / number of candidate summaries as
the X-axis. The Y-axis represents the proportion of the
best-summaries with this rank in the test set.

Intuitively, 1) if z = 1 (Ĉ comes first), it means
that the best-summary is composed of sentences
with the highest score; 2) If z > 1, then the best-
summary is a pearl-summary. And as z increases
(Ĉ gets lower rankings), we could find more can-
didate summaries whose sentence-level score is
higher than best-summary, which leads to the learn-
ing difficulty for sentence-level extractors.

Since the appearance of the pearl-summary will
bring challenges to sentence-level extractors, we
attempt to investigate the proportion of pearl-
summary in different datasets on six benchmark
datasets. A detailed description of these datasets is
displayed in Table 1.

As demonstrated in Figure 2, we can observe that
for all datasets, most of the best-summaries are not
made up of the highest-scoring sentences. Specifi-
cally, for CNN/DM, only 18.9% of best-summaries
are not pearl-summary, indicating sentence-level
extractors will easily fall into a local optimization,
missing better candidate summaries.

Different from CNN/DM, PubMed is most suit-
able for sentence-level summarizers, because most
of best-summary sets are not pearl-summary. Ad-
ditionally, it is challenging to achieve good perfor-
mance on WikiHow and Multi-News without
a summary-level learning process, as these two
datasets are most evenly distributed, that is, the
appearance of pearl-summary makes the selection
of the best-summary more complicated.

In conclusion, the proportion of the pearl-
summaries in all the best-summaries is a prop-
erty to characterize a dataset, which will affect
our choices of summarization extractors.

3.3 Inherent Gap between Sentence-Level
and Summary-Level Extractors

Above analysis has explicated that the summary-
level method is better than the sentence-level
method because it can pick out pearl-summaries,
but how much improvement can it bring given a
specific dataset?

Based on the definition of Eq. (1) and (2), we
can characterize the upper bound of the sentence-
level and summary-level summarization systems
for a document D as:

6201

Reddit XSum CNN/DM WikiHow PubMed Multi-News
0

1

2

3

4

5

∆
(D

)

Figure 3: ∆(D) for different datasets.

αsen(D) = max
C∈CD

gsen(C), (3)

αsum(D) = max
C∈CD

gsum(C), (4)

where CD is the set of candidate summaries ex-
tracted from D.

Then, we quantify the potential gain for a doc-
ument D by calculating the difference between
αsen(D) and αsum(D):

∆(D) = αsum(D)− αsen(D). (5)

Finally, a dataset-level potential gain can be ob-
tained as:

∆(D) =
1

|D|
∑
D∈D

∆(D), (6)

where D represents a specific dataset and |D| is the
number of documents in this dataset.

We can see from Figure 3, the performance
gain of the summary-level method varies with
the dataset and has an improvement at a max-
imum 4.7 on CNN/DM. From Figure 3 and Ta-
ble 1, we can find the performance gain is re-
lated to the length of reference summary for dif-
ferent datasets. In the case of short summaries
(Reddit and XSum), the perfect identification of
pearl-summaries does not lead to much improve-
ment. Similarly, multiple sentences in a long sum-
mary (PubMed and Multi-News) already have
a large degree of semantic overlap, making the
improvement of the summary-level method rela-
tively small. But for a medium-length summary
(CNN/DM and WikiHow, about 60 words), the
summary-level learning process is rewarding. We
will discuss this performance gain with specific
models in Section 5.4.

4 Summarization as Matching

The above quantitative analysis suggests that for
most of the datasets, sentence-level extractors are

inherently unaware of pearl-summary, so obtain-
ing the best-summary is difficult. To better utilize
the above characteristics of the data, we propose a
summary-level framework which could score and
extract a summary directly.

Specifically, we formulate the extractive summa-
rization task as a semantic text matching problem,
in which a source document and candidate sum-
maries will be (extracted from the original text)
matched in a semantic space. The following section
will detail how we instantiate our proposed match-
ing summarization framework by using a simple
siamese-based architecture.

4.1 Siamese-BERT

Inspired by siamese network structure (Bromley
et al., 1994), we construct a Siamese-BERT archi-
tecture to match the document D and the candidate
summary C. Our Siamese-BERT consists of two
BERTs with tied-weights and a cosine-similarity
layer during the inference phase.

Unlike the modified BERT used in (Liu, 2019;
Bae et al., 2019), we directly use the original BERT
to derive the semantically meaningful embeddings
from document D and candidate summary C since
we need not obtain the sentence-level representa-
tion. Thus, we use the vector of the ‘[CLS]’ token
from the top BERT layer as the representation of
a document or summary. Let rD and rC denote
the embeddings of the document D and candidate
summary C. Their similarity score is measured by
f(D,C) = cosine(rD, rC).

In order to fine-tune Siamese-BERT, we use a
margin-based triplet loss to update the weights. In-
tuitively, the gold summary C∗ should be semanti-
cally closest to the source document, which is the
first principle our loss should follow:

L1 = max(0, f(D,C)− f(D,C∗) + γ1), (7)

where C is the candidate summary in D and γ1 is
a margin value. Besides, we also design a pairwise
margin loss for all the candidate summaries. We
sort all candidate summaries in descending order of
ROUGE scores with the gold summary. Naturally,
the candidate pair with a larger ranking gap should
have a larger margin, which is the second principle
to design our loss function:

L2 = max(0, f(D,Cj)− f(D,Ci)

+ (j − i) ∗ γ2) (i < j),
(8)

6202

where Ci represents the candidate summary ranked
i and γ2 is a hyperparameter used to distinguish be-
tween good and bad candidate summaries. Finally,
our margin-based triplet loss can be written as:

L = L1 + L2. (9)

The basic idea is to let the gold summary have the
highest matching score, and at the same time, a bet-
ter candidate summary should obtain a higher score
compared with the unqualified candidate summary.
Figure 1 illustrate this idea.

In the inference phase, we formulate extractive
summarization as a task to search for the best sum-
mary among all the candidates C extracted from
the document D.

Ĉ = arg max
C∈C

f(D,C). (10)

4.2 Candidates Pruning
Curse of Combination The matching idea is
more intuitive while it suffers from combinatorial
explosion problems. For example, how could we
determine the size of the candidate summary set or
should we score all possible candidates? To allevi-
ate these difficulties, we propose a simple candidate
pruning strategy.

Concretely, we introduce a content selection
module to pre-select salient sentences. The mod-
ule learns to assign each sentence a salience score
and prunes sentences irrelevant with the current
document, resulting in a pruned document D

′
=

{s′1, · · · , s
′
ext|s

′
i ∈ D}.

Similar to much previous work on two-stage
summarization, our content selection module is a
parameterized neural network. In this paper, we
use BERTSUM (Liu and Lapata, 2019) without tri-
gram blocking (we call it BERTEXT) to score each
sentence. Then, we use a simple rule to obtain
the candidates: generating all combinations of sel
sentences subject to the pruned document, and re-
organize the order of sentences according to the
original position in the document to form candidate
summaries. Therefore, we have a total of

(
ext
sel

)
candidate sets.

5 Experiment

5.1 Datasets
In order to verify the effectiveness of our frame-
work and obtain more convicing explanations, we
perform experiments on six divergent mainstream
datasets as follows.

Reddit XSum CNN/DM Wiki PubMed M-News

Ext 5 5 5 5 7 10
Sel 1, 2 1, 2 2, 3 3, 4, 5 6 9
Size 15 15 20 16 7 9

Table 2: Details about the candidate summary for dif-
ferent datasets. Ext denotes the number of sentences
after we prune the original document, Sel denotes the
number of sentences to form a candidate summary and
Size is the number of final candidate summaries.

CNN/DailyMail (Hermann et al., 2015) is a
commonly used news summarization dataset mod-
ified by Nallapati et al. (2016). PubMed (Co-
han et al., 2018) is collected from scientific pa-
pers. We modify this dataset by using the intro-
duction section as the document and the abstract
section as the corresponding summary. WikiHow
(Koupaee and Wang, 2018) is a diverse dataset
extracted from an online knowledge base. XSum
(Narayan et al., 2018a) is a one-sentence summary
dataset to answer the question “What is the article
about?”. Multi-News (Fabbri et al., 2019) is a
multi-document news summarization dataset, we
concatenate the source documents as a single input.
Reddit (Kim et al., 2019) is a highly abstractive
dataset collected from social media platform. We
use the TIFU-long version of Reddit.

5.2 Implementation Details
We use the base version of BERT to implement
our models in all experiments. Adam optimizer
(Kingma and Ba, 2014) with warming-up is used
and our learning rate schedule follows Vaswani
et al. (2017) as:

lr = 2e−3 ·min(step−0.5, step · wm−1.5), (11)

where each step is a batch size of 32 and wm
denotes warmup steps of 10,000. We choose
γ1 = 0 and γ2 = 0.01. When γ1<0.05 and
0.005<γ2<0.05 they have little effect on perfor-
mance, otherwise they will cause performance
degradation. We use the validation set to save three
best checkpoints during training, and record the
performance of the best checkpoints on the test set.
Importantly, all the experimental results listed in
this paper are the average of three runs. To obtain a
Siamese-BERT model on CNN/DM, we use 8 Tesla-
V100-16G GPUs for about 30 hours of training.

For datasets, we remove samples with empty
document or summary and truncate the document

6203

Model R-1 R-2 R-L

LEAD 40.43 17.62 36.67
ORACLE 52.59 31.23 48.87
MATCH-ORACLE 51.08 26.94 47.22

BANDITSUM (Dong et al., 2018) 41.50 18.70 37.60
NEUSUM (Zhou et al., 2018) 41.59 19.01 37.98
JECS (Xu and Durrett, 2019) 41.70 18.50 37.90
HIBERT (Zhang et al., 2019b) 42.37 19.95 38.83
PNBERT (Zhong et al., 2019a) 42.39 19.51 38.69
PNBERT + RL 42.69 19.60 38.85
BERTEXT† (Bae et al., 2019) 42.29 19.38 38.63
BERTEXT† + RL 42.76 19.87 39.11
BERTEXT (Liu, 2019) 42.57 19.96 39.04
BERTEXT + Tri-Blocking 43.23 20.22 39.60
BERTSUM∗ (Liu and Lapata, 2019) 43.85 20.34 39.90

BERTEXT (Ours) 42.73 20.13 39.20
BERTEXT + Tri-Blocking (Ours) 43.18 20.16 39.56
MATCHSUM (BERT-base) 44.22 20.62 40.38
MATCHSUM (RoBERTa-base) 44.41 20.86 40.55

Table 3: Results on CNN/DM test set. The model
with ∗ indicates that the large version of BERT is used.
BERTEXT† add an additional Pointer Network com-
pared to other BERTEXT in this table.

to 512 tokens, therefore ORACLE in this paper
is calculated on the truncated datasets. Details of
candidate summary for the different datasets can
be found in Table 2.

5.3 Experimental Results

Results on CNN/DM As shown in Table 3, we
list strong baselines with different learning ap-
proaches. The first section contains LEAD, OR-
ACLE and MATCH-ORACLE4. Because we prune
documents before matching, MATCH-ORACLE is
relatively low.

We can see from the second section, although
RL can score the entire summary, it does not lead
to much performance improvement. This is prob-
ably because it still relies on the sentence-level
summarizers such as Pointer network or sequence
labeling models, which select sentences one by one,
rather than distinguishing the semantics of differ-
ent summaries as a whole. Trigram Blocking is a
simple yet effective heuristic on CNN/DM, even
better than all redundancy removal methods based
on neural models.

4LEAD and ORACLE are common baselines in the sum-
marization task. The former means extracting the first sev-
eral sentences of a document as a summary, the latter is the
groundtruth used in extractive models training. MATCH-
ORACLE is the groundtruth used to train MATCHSUM.

Model R-1 R-2 R-L

Reddit

BERTEXT (Num = 1) 21.99 5.21 16.99
BERTEXT (Num = 2) 23.86 5.85 19.11
MATCHSUM (Sel = 1) 22.87 5.15 17.40
MATCHSUM (Sel = 2) 24.90 5.91 20.03
MATCHSUM (Sel = 1, 2) 25.09 6.17 20.13

XSum

BERTEXT (Num = 1) 22.53 4.36 16.23
BERTEXT (Num = 2) 22.86 4.48 17.16
MATCHSUM (Sel = 1) 23.35 4.46 16.71
MATCHSUM (Sel = 2) 24.48 4.58 18.31
MATCHSUM (Sel = 1, 2) 24.86 4.66 18.41

Table 4: Results on test sets of Reddit and XSum.
Num indicates how many sentences BERTEXT ex-
tracts as a summary and Sel indicates the number of
sentences we choose to form a candidate summary.

Compared with these models, our proposed
MATCHSUM has outperformed all competitors by
a large margin. For example, it beats BERTEXT

by 1.51 ROUGE-1 score when using BERT-base
as the encoder. Additionally, even compared with
the baseline with BERT-large pre-trained encoder,
our model MATCHSUM (BERT-base) still perform
better. Furthermore, when we change the encoder
to RoBERTa-base (Liu et al., 2019), the perfor-
mance can be further improved. We think the im-
provement here is because RoBERTa introduced
63 million English news articles during pretraining.
The superior performance on this dataset demon-
strates the effectiveness of our proposed matching
framework.

Results on Datasets with Short Summaries
Reddit and XSum have been heavily evaluated
by abstractive summarizer due to their short sum-
maries. Here, we evaluate our model on these
two datasets to investigate whether MATCHSUM

could achieve improvement when dealing with
summaries containing fewer sentences compared
with other typical extractive models.

When taking just one sentence to match the orig-
inal document, MATCHSUM degenerates into a
re-ranking of sentences. Table 4 illustrates that
this degradation can still bring a small improve-
ment (compared to BERTEXT (Num = 1), 0.88
∆R-1 on Reddit, 0.82 ∆R-1 on XSum). How-
ever, when the number of sentences increases to
two and summary-level semantics need to be taken
into account, MATCHSUM can obtain a more re-

6204

Model WikiHow PubMed Multi-News
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

LEAD 24.97 5.83 23.24 37.58 12.22 33.44 43.08 14.27 38.97
ORACLE 35.59 12.98 32.68 45.12 20.33 40.19 49.06 21.54 44.27
MATCH-ORACLE 35.22 10.55 32.87 42.21 15.42 37.67 47.45 17.41 43.14

BERTEXT 30.31 8.71 28.24 41.05 14.88 36.57 45.80 16.42 41.53
+ 3gram-Blocking 30.37 8.45 28.28 38.81 13.62 34.52 44.94 15.47 40.63
+ 4gram-Blocking 30.40 8.67 28.32 40.29 14.37 35.88 45.86 16.23 41.57

MATCHSUM (BERT-base) 31.85 8.98 29.58 41.21 14.91 36.75 46.20 16.51 41.89

Table 5: Results on test sets of WikiHow, PubMed and Multi-News. MATCHSUM beats the state-of-the-art BERT
model with Ngram Blocking on all different domain datasets.

markable improvement (compared to BERTEXT

(Num = 2), 1.04 ∆R-1 on Reddit, 1.62 ∆R-1 on
XSum).

In addition, our model maps candidate summary
as a whole into semantic space, so it can flexibly
choose any number of sentences, while most other
methods can only extract a fixed number of sen-
tences. From Table 4, we can see this advantage
leads to further performance improvement.

Results on Datasets with Long Summaries
When the summary is relatively long, summary-
level matching becomes more complicated and is
harder to learn. We aim to compare the difference
between Trigram Blocking and our model when
dealing with long summaries.

Table 5 presents that although Trigram Blocking
works well on CNN/DM, it does not always main-
tain a stable improvement. Ngram Blocking has
little effect on WikiHow and Multi-News, and
it causes a large performance drop on PubMed.
We think the reason is that Ngram Blocking can-
not really understand the semantics of sentences
or summaries, just restricts the presence of entities
with many words to only once, which is obviously
not suitable for the scientific domain where entities
may often appear multiple times.

On the contrary, our proposed method does not
have strong constraints but aligns the document
with the summary from semantic space. Experi-
ment results display that our model is robust on all
domains, especially on WikiHow, MATCHSUM

beats the state-of-the-art model by 1.54 R-1 score.

5.4 Analysis

Our analysis here is driven by two questions:
1) Whether the benefits of MATCHSUM are con-

sistent with the property of the dataset analyzed in
Section 3?

2) Why have our model achieved different per-
formance gains on diverse datasets?

Dataset Splitting Testing Typically, we choose
three datasets (XSum, CNN/DM and WikiHow)
with the largest performance gain for this exper-
iment. We split each test set into roughly equal
numbers of five parts according to z described in
Section 3.2, and then experiment with each subset.

Figure 4 shows that the performance gap be-
tween MATCHSUM and BERTEXT is always the
smallest when the best-summary is not a pearl-
summary (z = 1). The phenomenon is in line with
our understanding, in these samples, the ability
of the summary-level extractor to discover pearl-
summaries does not bring advantages.

As z increases, the performance gap gener-
ally tends to increase. Specifically, the benefit
of MATCHSUM on CNN/DM is highly consistent
with the appearance of pearl-summary. It can only
bring an improvement of 0.49 in the subset with
the smallest z, but it rises sharply to 1.57 when z
reaches its maximum value. WikiHow is similar
to CNN/DM, when best-summary consists entirely
of highest-scoring sentences, the performance gap
is obviously smaller than in other samples. XSum
is slightly different, although the trend remains
the same, our model does not perform well in the
samples with the largest z, which needs further
improvement and exploration.

From the above comparison, we can see that
the performance improvement of MATCHSUM

is concentrated in the samples with more pearl-
summaries, which illustrates our semantic-based
summary-level model can capture sentences that
are not particularly good when viewed individually,
thereby forming a better summary.

Comparison Across Datasets Intuitively, im-
provements brought by MATCHSUM framework

6205

1 2 3 4 5
1.05

1.1

1.15

1.2

1.25

1.3

z: Small =⇒ Large

∆
R

(a) XSum

1 2 3 4 5
0.4

0.6

0.8

1

1.2

1.4

1.6

z: Small =⇒ Large

∆
R

(b) CNN/DM

1 2 3 4 5

0.8

1

1.2

z: Small =⇒ Large

∆
R

(c) WikiHow

Figure 4: Datasets splitting experiment. We split test sets into five parts according to z described in Section 3.2.
The X-axis from left to right indicates the subsets of the test set with the value of z from small to large, and the
Y-axis represents the ROUGE improvement of MATCHSUM over BERTEXT on this subset.

XSum
CNN/DM

WikiHow
PubMed

Multi-N
ews0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ψ
(D

)

Figure 5: ψ of different datasets. Reddit is excluded
because it has too few samples in the test set.

should be associated with inherent gaps presented
in Section 3.3. To better understand their relation,
we introduce ∆(D)∗ as follows:

∆(D)∗ = gsum(CMS)− gsum(CBE), (12)

∆(D)∗ =
1

|D|
∑
D∈D

∆(D)∗, (13)

where CMS and CBE represent the candidate sum-
mary selected by MATCHSUM and BERTEXT in
the document D, respectively. Therefore, ∆(D)∗

can indicate the improvement by MATCHSUM over
BERTEXT on dataset D. Moreover, compared
with the inherent gap between sentence-level and
summary-level extractors, we define the ratio that
MATCHSUM can learn on dataset D as:

ψ(D) = ∆(D)∗/∆(D), (14)

where ∆(D) is the inherent gap between sentence-
level and summary-level extractos.

It is clear from Figure 5, the value of ψ(D) de-
pends on z (see Figure 2) and the length of the gold
summary (see Table 1). As the gold summaries
get longer, the upper bound of summary-level ap-
proaches becomes more difficult for our model to

reach. MATCHSUM can achieve 0.64 ψ(D) on
XSum (23.3 words summary), however, ψ(D) is
less than 0.2 in PubMed and Multi-Newswhose
summary length exceeds 200. From another per-
spective, when the summary length are similar, our
model performs better on datasets with more pearl-
summaries. For instance, z is evenly distributed
in Multi-News (see Figure 2), so higher ψ(D)
(0.18) can be obtained than PubMed (0.09), which
has the least pearl-summaries.

A better understanding of the dataset allows us
to get a clear awareness of the strengths and lim-
itations of our framework, and we also hope that
the above analysis could provide useful clues for
future research on extractive summarization.

6 Conclusion

We formulate the extractive summarization task
as a semantic text matching problem and propose
a novel summary-level framework to match the
source document and candidate summaries in the
semantic space. We conduct an analysis to show
how our model could better fit the characteristic of
the data. Experimental results show MATCHSUM

outperforms the current state-of-the-art extractive
model on six benchmark datasets, which demon-
strates the effectiveness of our method.

Acknowledgment

We would like to thank the anonymous reviewers
for their valuable comments. This work is sup-
ported by the National Key Research and Develop-
ment Program of China (No. 2018YFC0831103),
National Natural Science Foundation of China
(No. U1936214 and 61672162), Shanghai Mu-
nicipal Science and Technology Major Project (No.
2018SHZDZX01) and ZJLab.

6206

References
RM Alyguliyev. 2009. The two-stage unsupervised ap-

proach to multidocument summarization. Automatic
Control and Computer Sciences, 43(5):276.

Kristjan Arumae and Fei Liu. 2018. Reinforced extrac-
tive summarization with question-focused rewards.
In Proceedings of ACL 2018, Student Research
Workshop, pages 105–111.

Sanghwan Bae, Taeuk Kim, Jihoon Kim, and Sang-
goo Lee. 2019. Summary level training of sentence
rewriting for abstractive summarization. In Proceed-
ings of the 2nd Workshop on New Frontiers in Sum-
marization, pages 10–20.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. 1994. Signature verifi-
cation using a” siamese” time delay neural network.
In Advances in neural information processing sys-
tems, pages 737–744.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 675–686.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 484–494.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), volume 2, pages 615–621.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Yue Dong, Yikang Shen, Eric Crawford, Herke van
Hoof, and Jackie Chi Kit Cheung. 2018. Bandit-
sum: Extractive summarization as a contextual ban-
dit. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3739–3748.

Alexander Richard Fabbri, Irene Li, Tianwei She, Suyi
Li, and Dragomir R. Radev. 2019. Multi-news: A
large-scale multi-document summarization dataset
and abstractive hierarchical model. In ACL (1),
pages 1074–1084. Association for Computational
Linguistics.

Dimitrios Galanis and Ion Androutsopoulos. 2010. An
extractive supervised two-stage method for sentence
compression. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 885–893. Association for Computa-
tional Linguistics.

Dan Gillick and Benoit Favre. 2009. A scalable global
model for summarization. In Proceedings of the
Workshop on Integer Linear Programming for Nat-
ural Language Processing, pages 10–18.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Informa-
tion Processing Systems, pages 1684–1692.

Elad Hoffer and Nir Ailon. 2015. Deep metric learning
using triplet network. In International Workshop on
Similarity-Based Pattern Recognition, pages 84–92.
Springer.

Aishwarya Jadhav and Vaibhav Rajan. 2018. Extrac-
tive summarization with swap-net: Sentences and
words from alternating pointer networks. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 142–151.

Byeongchang Kim, Hyunwoo Kim, and Gunhee Kim.
2019. Abstractive summarization of reddit posts
with multi-level memory networks. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2519–2531.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mahnaz Koupaee and William Yang Wang. 2018. Wik-
ihow: A large scale text summarization dataset.
arXiv preprint arXiv:1810.09305.

Logan Lebanoff, Kaiqiang Song, Franck Dernoncourt,
Doo Soon Kim, Seokhwan Kim, Walter Chang, and
Fei Liu. 2019. Scoring sentence singletons and
pairs for abstractive summarization. arXiv preprint
arXiv:1906.00077.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003 Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 150–157.

Yang Liu. 2019. Fine-tune bert for extractive summa-
rization. arXiv preprint arXiv:1903.10318.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of

6207

the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3721–3731.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Alfonso Mendes, Shashi Narayan, Sebastião Miranda,
Zita Marinho, André FT Martins, and Shay B Co-
hen. 2019. Jointly extracting and compressing doc-
uments with summary state representations. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 3955–3966.

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 319–328.

Bhaskar Mitra, Fernando Diaz, and Nick Craswell.
2017. Learning to match using local and distributed
representations of text for web search. In Proceed-
ings of the 26th International Conference on World
Wide Web, pages 1291–1299. International World
Wide Web Conferences Steering Committee.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In Thirty-First AAAI Conference on Artificial
Intelligence.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Ça glar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
rnns and beyond. CoNLL 2016, page 280.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018a. Dont give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018b. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), volume 1, pages 1747–1759.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3973–3983.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th in-
ternational ACM SIGIR conference on research and
development in information retrieval, pages 373–
382. ACM.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Xiaojun Wan, Ziqiang Cao, Furu Wei, Sujian Li, and
Ming Zhou. 2015. Multi-document summariza-
tion via discriminative summary reranking. arXiv
preprint arXiv:1507.02062.

Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng
Qiu, and Xuan-Jing Huang. 2020. Heterogeneous
graph neural networks for extractive document sum-
marization. In Proceedings of the 58th Conference
of the Association for Computational Linguistics.

Danqing Wang, Pengfei Liu, Ming Zhong, Jie Fu,
Xipeng Qiu, and Xuanjing Huang. 2019. Exploring
domain shift in extractive text summarization. arXiv
preprint arXiv:1908.11664.

Shuohang Wang and Jing Jiang. 2016. Learning natu-
ral language inference with lstm. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1442–1451.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017.
Bilateral multi-perspective matching for natural lan-
guage sentences. In Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence,
pages 4144–4150. AAAI Press.

Jiacheng Xu and Greg Durrett. 2019. Neural extrac-
tive text summarization with syntactic compression.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing, Hong
Kong, China. Association for Computational Lin-
guistics.

Jiacheng Xu, Zhe Gan, Yu Cheng, and Jingjing
Liu. 2019. Discourse-aware neural extractive
model for text summarization. arXiv preprint
arXiv:1910.14142.

Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and
Andrzej Pastusiak. 2013. Question answering using
enhanced lexical semantic models. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1744–1753.

6208

Dani Yogatama, Fei Liu, and Noah A Smith. 2015. Ex-
tractive summarization by maximizing semantic vol-
ume. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1961–1966.

Haoyu Zhang, Yeyun Gong, Yu Yan, Nan Duan, Jian-
jun Xu, Ji Wang, Ming Gong, and Ming Zhou.
2019a. Pretraining-based natural language gen-
eration for text summarization. arXiv preprint
arXiv:1902.09243.

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019b.
Hibert: Document level pre-training of hierarchical
bidirectional transformers for document summariza-
tion. In ACL.

Ming Zhong, Pengfei Liu, Danqing Wang, Xipeng Qiu,
and Xuan-Jing Huang. 2019a. Searching for effec-
tive neural extractive summarization: What works
and whats next. In Proceedings of the 57th Confer-
ence of the Association for Computational Linguis-
tics, pages 1049–1058.

Ming Zhong, Danqing Wang, Pengfei Liu, Xipeng
Qiu, and Xuanjing Huang. 2019b. A closer look at
data bias in neural extractive summarization models.
EMNLP-IJCNLP 2019, page 80.

Qingyu Zhou, Nan Yang, Furu Wei, Shaohan Huang,
Ming Zhou, and Tiejun Zhao. 2018. Neural docu-
ment summarization by jointly learning to score and
select sentences. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
654–663.

