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Abstract

Distributed representations of words have been
an indispensable component for natural lan-
guage processing (NLP) tasks. However, the
large memory footprint of word embeddings
makes it challenging to deploy NLP mod-
els to memory-constrained devices (e.g., self-
driving cars, mobile devices). In this pa-
per, we propose a novel method to adaptively
compress word embeddings. We fundamen-
tally follow a code-book approach that repre-
sents words as discrete codes such as (8, 5,
2, 4). However, unlike prior works that as-
sign the same length of codes to all words, we
adaptively assign different lengths of codes to
each word by learning downstream tasks. The
proposed method works in two steps. First,
each word directly learns to select its code
length in an end-to-end manner by applying
the Gumbel-softmax tricks. After selecting
the code length, each word learns discrete
codes through a neural network with a bi-
nary constraint. To showcase the general ap-
plicability of the proposed method, we eval-
uate the performance on four different down-
stream tasks. Comprehensive evaluation re-
sults clearly show that our method is effec-
tive and makes the highly compressed word
embeddings without hurting the task accuracy.
Moreover, we show that our model assigns
word to each code-book by considering the sig-
nificance of tasks.

1 Introduction

Deep neural networks have greatly improved the
performance in various tasks, such as image clas-
sification (Huang et al., 2017), text classification
(Liu and Lapata, 2018), and machine translation
(Edunov et al., 2018). This break-through perfor-
mance facilitates the demand to deploy such mod-
els to embedded systems (e.g., self-driving cars,
mobile devices). However, the neural models typi-
cally require a large storage or memory footprint,

which is a significant concern when deploying neu-
ral models to memory-constrained devices (Hinton
et al., 2015). To alleviate this limitation, several
works have proposed methods that compress the
neural models while minimizing loss of accuracy
as much as possible (Han et al., 2015, 2016; Liu
and Zhu, 2018).

However, deploying models for natural language
processing (NLP) tasks is challenging. Unlike
other domains, NLP models have an embedding
layer which maps words and phrases to real-valued
vectors. The problem is that these embeddings usu-
ally take more parameters than the remaining net-
works. In practice, for a neural translation model
in OpenNMT (Klein et al., 2017), the word em-
bedding parameters accout for 80% of the total
parameters. Therefore, it is significant to reduce
the parameters of the embedding layer for deploy-
ing NLP models to memory-constrained devices.

To compress word embeddings, several works
proposed code-book based approaches (Shu and
Nakayama, 2018; Tissier et al., 2019), which rep-
resent each word as few discrete and shared codes.
For example, the word dog and dogs could be rep-
resented as (3, 5, 2, 1) and (3, 5, 2, 7), respec-
tively. This sharing scheme and discrete codes
make the embeddings have smaller parameters and
interpretability to some extent. However, these
methods assign the same length of codes to each
word without considering the significance of down-
stream tasks. It means that, for a sentiment analysis,
excellent and the require the same amount of mem-
ory. This observation makes room for improvement
in compressing word embeddings.

In this paper, we attempt to further compress
word embeddings by adaptively assigning different
lengths of codes to each word in an end-to-end man-
ner. We propose AdaComp that adaptively learns to
compress word embeddings by considering down-
stream tasks. The proposed compression works
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in two steps. First, each word in pre-trained word
embeddings learns to select its code length in an
end-to-end manner by applying Gumbel-softmax
tricks (Jang et al., 2016). After selecting its code
length, each word learns discrete codes through
a binary-constraint encoder and decoder network.
To instill task-specific features to the selection pro-
cess, we compress each word embedding by learn-
ing a downstream task. This allows us to learn the
task-specific features naturally. Compared to prior
works, AdaComp could give each word more op-
tions to represent their meaning since the proposed
model utilizes a number of different code-books.

To showcase the general applicability of Ada-
Comp, we conduct four different NLP tasks, which
are sentiment classification, chunking, natural lan-
guage inference, and language modeling. Com-
prehensive evaluation results not only show that
our method could compress original word embed-
dings quite well without hurting task accuracy but
also demonstrate that AdaComp assigns each word
to different code-books by considering the signifi-
cance of a task. AdaComp could be applied to most
existing NLP systems with minor modifications
since the proposed model is a network-agnostic,
in-place architecture. We thus believe that existing
NLP systems could benefit from our work.

We organize the remainder of this paper as fol-
lows. In Section 2, we discuss related work. In
Section 3, we describe the proposed method. We
report our performance evaluation results and an-
alyze our methodology in detail in Section 4 and
5, respectively. Finally, we conclude this paper in
Section 6.

2 Related Work

In this section, we review several studies that at-
tempt to compress neural models, including an em-
bedding layer.

2.1 Neural Networks Compression

The majority of works for compression is to com-
press neural networks itself (e.g., convolutional
neural network, recurrent neural network), and
most of them focus on compressing neural models
in the field of computer vision. These approaches
usually include pruning, quantization, and low pre-
cision representation methods. For pruning, sev-
eral works (Han et al., 2015; Li et al., 2017; Lee
et al., 2019) focus on how each connection (i.e.,
weights) affects to tasks, and they remove redun-

dant or unimportant connections from the networks.
Some works (Han et al., 2016; Chen et al., 2016;
Louizos et al., 2019) quantize the connections into
several bins to enforce weight sharing. These ap-
proaches represent each connection as some rep-
resentative values, and such values are selected
by clustering (centroids) or hashing (hash buckets)
techniques. Representing each connection with
low precision (i.e., few bits or binary) is also ap-
pealing for compressing neural networks (Anwar
et al., 2015; Courbariaux et al., 2015; Hubara et al.,
2016). In particular, Courbariaux et al. (2015) and
Hubara et al. (2016) show that binary constraint is
sufficiently effective in network learning without
largely affecting the task accuracy.

2.2 Word Embeddings Compression

Several studies have proposed compressing meth-
ods for word embeddings because the majority of
parameters in NLP models lies in an embedding
layer. For example, Ling et al. (2016) reduces the
memory requirement of word embeddings by quan-
tizing each dimension of embeddings into signifi-
cantly fewer bits than the standard 64 bits. It shows
that 4 or 8 bit is enough to represent each word
embedding. Instead of reducing the parameters of
each word embedding, Chen et al. (2016) reduces
the number of words in vocabulary by filtering out
uncommon words. For the removed words, they re-
construct these embeddings by combining several
frequent words. Recently, several methods (Shu
and Nakayama, 2018; Shi and Yu, 2018; Tissier
et al., 2019) decompose each word into a few num-
bers of codes and learn corresponding code vec-
tors to represent the original embeddings. Shu and
Nakayama (2018) uses a deep code-book approach
to represent each word. To automatically learn dis-
crete codes, they utilize reparameterization tricks
in an encoder and decoder architecture. Similarly,
Tissier et al. (2019) utilizes an auto-encoder with a
binary constraint to represent words. Compared to
the aforementioned methods, AdaComp is the first
work that represents each word differently in terms
of length of codes. Furthermore, we learn task-
specific features directly by learning a downstream
task at the same time.

3 Adaptive Compression

In this section, we describe the proposed method,
which is denoted as AdaComp, in detail. The pri-
mary strategy of AdaComp is straightforward and
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Figure 1: Main strategy of our compression model
(AdaComp). Solid line indicates the selected code-
book.

is shown in Figure 1. We start with the pre-trained
word embeddings (e.g., GloVe (Pennington et al.,
2014), word2vec (Mikolov et al., 2013)), and the
compression method works in two steps. Given an
input embedding, AdaComp learns to adaptively
select its code length in an end-to-end manner by
applying Gumbel-softmax tricks (Jang et al., 2016)
(Section 3.1). After selecting a code length, each
word learns its discrete codes through an encoder
and decoder, which has a binary latent space (Sec-
tion 3.2).

3.1 Adaptive Code-book Selection

To represent each word as discrete codes, several
code-book approaches build a single code-book
Ck where k is the length of codes. Instead of as-
signing the same length of codes, we adaptively
assign different lengths of codes to each word. To
this end, we have a set of different code-books
C = {Ck1 , Ck2 , ..., Ckn}. The objective for the
first phase is to select a single code-book from the
set of code-books in an end-to-end manner.

Given an input embedding ew, we first compute
an encoding vector αw by feeding it to neural net-
works.

αw = σ1(θ
Tσ2(θ

′T
ew + b

′
) + b) (1)

where θ ∈ Rd×|C|, θ′ ∈ Rd×d and b, b
′

are train-
able weight matrices and biases of the networks,
respectively, where d is the dimension of the orig-
inal embeddings. The functions σ1(·), σ2(·) are
the softplus and tanh function, respectively. Then,
we could select a single code-book by applying an
argmax or a sign function into the resultant encod-
ing. However, deriving discrete values (i.e., the
index of the code-books) in the neural networks is

not trivial since the aforementioned functions are
not differentiable.

To handle such problem, several methods pro-
posed to deal with discrete values in a neural net-
work naturally. In our work, we use the Gum-
bel softmax tricks since we need a one-hot vector
to represent the discrete index of the set of code-
books. The Gumbel softmax allows the neural net-
works to naturally have a k-dimensional one-hot
vector in the intermediate of the networks. Let uw
be the one-hot vector for a word w, the i-th element
of the vector is computed as follows:

uiw = softmaxτ (logα
i
w + gi))

=
exp((logαiw + gi)/τ)∑|C|
j=1 exp((logα

j
w + gj)/τ)

(2)

where gi, ..., g|C| are i.i.d noise samples drawn
from Gumbel distribution1 and τ is the relaxation
factor of the Gumbel softmax. Similarly, (Shu
and Nakayama, 2018) utilized Gumbel softmax
for compression. However, they used it to derive
discrete codes of each word, not the index of the
set of code-books as in AdaComp.

3.2 Binarized Codes Learning

After selecting a specific code-book from the set C,
AdaComp learns the discrete codes in the selected
code-book. To this end, we use a binary constraint
encoder and decoder, which has a binary latent
space. When the training converges, the binary
latent vector of each word is used as the discrete
code, and the decoder is used as the code vectors
in each code-book.

Again, we start from the original word embed-
ding. To produce discrete codes, we feed the em-
beddings to the binary constraint networks. Let w
be the word in an input text and n be the code length
of the selected code-book, and the code learning
works as follows:

e
′
w =Wφ(W T ew + b) + b

′
(3)

where W ∈ Rd×n and b, b
′

are trainable weight
matrices and biases in the encoder and decoder,
respectively. As can be seen from the equation, we
use the same weights at the encoding and decoding
phase. This is because such tied weights enable

1Gumbel distribution can be sampled using inverse trans-
form sampling by drawing u ∼ Uniform[0, 1] and computing
g = − log(− log(u))
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faster training and have a greater regularization
effect than individual weights (Alain and Bengio,
2014; Gulordava et al., 2018). The function φ is the
binary constraint function. We use the following
threshold function2:

φ(xi) = ReLU(Sign(xi)) =

{
+1 xi≥ 0,
0 otherwise,

This function produces the binary codes, which
consist of 1 and 0. However, we face the same prob-
lem with the previous section. The derivative of the
sign function is zero almost everywhere, making it
incompatible with back-propagation. To naturally
learn the binary codes in an end-to-end manner, we
apply the straight-through estimator (Hinton, 2013)
to the threshold function. This estimator allows gra-
dients to skip the threshold function. In our work,
we use a different version of the straight-through
estimator to take into account a saturation effect.
Let the gradients above the threshold function as
∂L
∂N , we obtain gradients of the threshold function
as follows:

∂L

∂φ
=
∂L

∂N
1|g|≤1 (4)

where g is the value of the gradients above the
threshold function. This function allows us to nat-
urally learn binary codes by preserving the infor-
mation of the gradients and canceling the gradient
when g is too large, which could mess up the train-
ing.

Thus far, we adaptively select the code-book
from the set, which has a different length of code-
books, and produce the binary codes of each word.
To jointly learn the above two phases in an end-to-
end manner, we relate them as follows:

ow = ETwuw (5)

where ETw ∈ R|C|×d is the reconstructed embed-
dings of w for all code lengths. By multiplying
the selection vector (i.e., uw) by the reconstructed
embeddings, AdaComp learns two phases in an
end-to-end manner. We feed the reconstructed em-
bedding ow to task-specific networks for learning a
downstream task.

2We also experimented with only applying sign function
which results in -1 and +1. We empirically found that the two
functions produced nearly identical results. We thus use ReLU
with Sign function for a decoding efficiency.

3.3 Orthogonality Constraint
To cover a large number of words in the vocabu-
lary, reducing the redundancy of representations
for each code vector is significant. We thus put the
orthogonality constraint into code vectors, which
penalizes redundant latent representations and en-
courages each code vector to encode different as-
pects of the original word embeddings.

P = ‖W TW − I‖2F (6)

where W is the parameters of the code vectors (i.e.,
decoder), I is an identity matrix. ‖ · ‖F stands for
Frobenius norm of a matrix. We add this term to
our objective function.

3.4 Optimization
Since AdaComp learns compression by learning a
downstream task, the objective function depends on
each task. For example, if the task is sentiment clas-
sification, the objective function could be negative
log-likelihood over sentiments. Let the objective
function be Ltask, the total objective function is as
follows:

L = Ltask + λ · P (7)

where λ is the control factor of orthogonality,
and we set this to 0.01.

We empirically found that pretraining AdaComp
significantly increases the performance for several
tasks (detailed in Section 5.1). We thus pretrain
our model using an auto-encoder loss, which is as
follows:

Lpre =
∑
w∈V
‖ow − ew‖22 (8)

When the loss of pretraining converges, we at-
tach the pre-trained AdaComp to an embedding
layer of task-specific networks and learn a down-
stream task using Eq.7.

4 Experiments

In this section, we show the performance evaluation
of the proposed model. To showcase the general ap-
plicability of AdaComp, we conduct four different
tasks, which are sentence classification, chunking,
natural language inference, and language model.
Through the above tasks, we validate the efficacy
of AdaComp on the settings of many-to-one (senti-
ment classification), many-to-many (chunking, lan-
guage modeling), and multiple inputs (natural lan-
guage inference).
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Task Vocabulary size Memory size (MB)

SST-5 17,080 20.5

CoNLL-2000 19,072 22.9

SNLI 34,045 40.9

PTB 9,809 11.8

Table 1: Memory size of the original word embeddings
(i.e., GloVe) and the number of words in each task.
Each embedding is 300 dimensional vectors and is rep-
resented by 32 bit floating point.

Experimental settings
The proposed compressing model starts from pre-
trained word embeddings. In the experiments,
we use the publicly available GloVe3 (Penning-
ton et al., 2014) with 300 dimension for 400k
words. For hyper-parameter settings, we use Adam
(Kingma and Ba, 2014) optimizer with 0.001 learn-
ing rate and the batch size is 64. We choose the
above parameters by validating both sentiment clas-
sification and natural language inference tasks.

Model Comparison
In this paper, we examine the following methods
which use different kind of compressing methods:

• QWE (Ling et al., 2016): This model quan-
tizes the weights from floating-point to few
bits of precision less than standard 64 bits. We
evaluate two settings, which are 4 and 8-bit
representations.

• Pruning (Han et al., 2015): This model
prunes redundant weights from the networks.
We prune the weights of word embeddings
until this technique removes 80% or 90% neu-
rons from the embeddings.

• NC (Shu and Nakayama, 2018): This model
compresses the pre-trained embeddings us-
ing a single code-book using a deep neural
network. We compare two different settings,
which are the moderate size (16x16 code-
book) and the large size (32x16 code-book).

• Bin (Tissier et al., 2019): This model com-
presses word embeddings through an auto-
encoder which has binary constraint on a la-
tent space. Among their two methods, we
choose rec since it performs better with deep

3https://nlp.stanford.edu/projects/glove/

neural networks (i.e., LSTM, CNN). We com-
pare two settings that have 64 and 128 binary
codes.

• AdaComp (Ours): This is the proposed model
in this paper. We use four different code-
books since we found that using four code-
books leads to the most effective performance
with a memory requirement (detailed in Sec-
tion 5.2). We use three different settings on
the four code-books which have (128, 64, 32,
16), (64, 32, 16, 8) and (32, 16, 8, 4) length of
code-books. On the tables and figures, we use
the max length of codes to denote each model.

The aforementioned methods do not learn task-
specific features since they learn to compress em-
beddings using the auto-encoder loss. To fairly
compare with our method, we apply the strategy
in (Shu and Nakayama, 2018) to each model. In
short, we first fine-tune the original embeddings to
tasks and then compress the learned embeddings
through the above methods.4

Evaluation metrics
We report both a task performance and a total mem-
ory size. The total memory size is estimated from
all parameters which are used to represent all words
in tasks. Note that it does not contain the size of
task-specific networks. For our method, we report
memory size and performance when we deploy our
model to other systems. It contains the parame-
ters of multiple code-books and binary codes about
each word. The memory size of the original em-
beddings about each task is listed in Table 1.

4.1 Experimental Results

Table 2 shows the overall results on four tasks. We
describe each task and the task-specific networks
as below.

Sentiment classification
Sentence classification is the task of classifying
a sentence into pre-defined classes. We use the
stanford sentiment treebank (SST) dataset as a rep-
resentative dataset. The SST has 5 classes about
sentiment (very negative, negative, neutral, posi-
tive, very positive). The performance is measured

4We have also applied an end-to-end compression learning
to each model. However, we confirmed that this training
was only significant in AdaComp and, for the other methods,
produced nearly identical results with the strategy in (Shu and
Nakayama, 2018).
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Model
SST-5 CoNLL-2000 SNLI PTB

accuracy ratio F1 ratio accuracy ratio ppl ratio

GloVe 42.1 x1 93.1 x1 79 x1 100.3 x1

QWE (4-bit) (Ling et al., 2016) 41.8 x8 93.1 x8 77.9 x8 113.8 x8
QWE (8-bit) (Ling et al., 2016) 41.9 x4 93.3 x4 78.6 x4 109.1 x4

Pruning 90% (Han et al., 2015) 35.4 x10 90.4 x10 78 x10 113.2 x10
Pruning 80% (Han et al., 2015) 41.6 x5 91.7 x5 78.2 x5 124.7 x5

NC (16×16) (Shu and Nakayama, 2018) 37.2 x46 91.8 x50 77.8 x71 119.2 x30
NC (32×16) (Shu and Nakayama, 2018) 40.9 x23 92.4 x25 78.5 x35 112.4 x15

Bin (64) (Tissier et al., 2019) 36.8 x95 91.5 x100 77.3 x116 116 x74
Bin(128) (Tissier et al., 2019) 39.1 x48 92.7 x49 77.6 x59 110.1 x37

AdaComp (32) 42.0 x171 92.1 x173 77.6 x232 110.8 x105
AdaComp (64) 43.2 x84 93 x89 78.4 x119 106 x52
AdaComp (128) 42.9 x45 93.1 x44 78.7 x60 108.9 x26

Table 2: Comparison results on four tasks. The ratio on the table is calculated by dividing the size of the original
embeddings by that of comparison models. Higher performance means better model except for PTB (perplexity).

by the accuracy on test set. For text classification
model, we reproduce the LSTM model used in
(Zhang et al., 2015) as a baseline. It feeds word em-
beddings in sequence, and averages hidden states of
the last layer to represent an input sentence for clas-
sification. In this model, we set the hidden states
to 450 dimension and use two-stacked LSTMs.

As can be seen from the table, code-book ap-
proaches (i.e., NC, Bin, AdaComp) basically show
better results than others in both performance and
memory size. Among them, AdaComp makes more
highly compressed embeddings than others with
better performance. For example, AdaComp (32)
achieve as much as 11% improvement on test ac-
curacy compared to other code-book approaches
which use the same number of codes with the
longest codes in ours. Furthermore, our model
requires nearly 2x less memory sizes compared to
others.

Chunking

Chunking is the task of dividing a sentence into syn-
tactically correlated parts of words. The CoNLL
2000 shared task (Tjong Kim Sang and Buchholz,
2000) is a benchmark dataset for text chunking. It
has 24 tags about each word with its start and end
symbols. The performance is measured by F1 score.
For the chunking model, we use an LSTM-based
sequence tagger which was proposed by (Huang
et al., 2015). We set the hidden states to 300 dimen-
sions and use two-stacked LSTMs.

The results are shown in the same table. Even

though the quantization method (i.e., QWE 8-bit)
achieves the best performance when they restrict
the values into 8-bits, the compression ratio is quite
lower than other methods, and the performance
starts to degrade as they use smaller bits to rep-
resent words. Compared to the other code-book
methods, AdaComp achieves strong performance
with highly compressed embeddings. For exam-
ple, AdaComp (128) does not hurt the accuracy of
the original embeddings with approximately 44x
compressed embeddings.

Textual entailment

Textual entailment is the task of determining
whether a hypothesis is true, given a premise. The
Stanford Natural Language Inference (SNLI) (Bow-
man et al., 2015) dataset is a benchmark for this
task. This dataset contains approximately 550K
hypothesis/premise pairs with entailment, contra-
diction, and neutral labels. For this task, we use an
LSTM-based encoder model which was proposed
by (Bowman et al., 2016). It uses two different
LSTMs with 300-dimensional hidden states to en-
code each information (i.e., premise and hypothe-
sis). The concatenated vectors for two sentences
are classified into the three labels.

Even though the performance of our method, in-
cluding others, is lower than the elementary embed-
dings, AdaComp yields strong performance with
a high compression ratio in this task. Compared
to other methods that use the largest memory, the
proposed model (i.e., AdaComp (128)) requires the
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Figure 2: Ratio of code-book assignment on each set-
ting. Best viewed in color.

least memory size while resulting in the closest
performance with the original embeddings.

Language modeling
Language modeling is the task of scoring a sen-
tence whether it is natural or not comparing to the
training dataset. This task has been widely used
in several mobile applications by recommending
the next word or sentence based on a user text. In
this task, we use Penn Treebank (PTB) to eval-
uate the performance. We report test perplexity
about each method. For this task, we use a word-
based LSTM model which was used in (Kim et al.,
2016). We select a medium-size model with 650-
dimensional hidden states to encode each word and
apply dropout (Srivastava et al., 2014) to the top of
LSTMs.

Similar to the previous task, the performance of
the methods is lower than the original embeddings.
We conjecture the lower performance comes from
that these tasks (i.e., language modeling, natural
language inference) require more generalized fea-
tures than other tasks. This is why these tasks are
used to pretrain neural models for various NLP
tasks (Cer et al., 2018; Radford et al.). Compared
to others, again, AdaComp achieves the best results
in terms of both metrics.

5 Analysis

5.1 Utility of pre-training and Fine-tuning
AdaComp

Before AdaComp learns to compress word embed-
dings, we pretrain the model using the auto-encoder
loss (Eq. 8). To show that pretraining step is in-
deed effective, we report accuracy and a ratio of
code-book assignment. Here, we evaluate the per-
formance of all tasks when we use different set of
code-books (detailed in Section 5.3). Figure 3a
shows the performance results. The result shows

(a)

(b)

Figure 3: Performance variation when we use differ-
ent settings (the length and the number of code-books)
on each task. Dashed line indicates the model which
is not pretrained. Performance (y-axis) indicates eval-
uation metrics for each task. Note that the evaluation
metric for language modeling is perplexity, thus, the
performance is reversed on PTB. Best viewed in color.

that the model with pretraining performs better than
the model, which is not pretrained. This is clearly
evident when we use smaller code-books to repre-
sent words. We believe that the pretraining step
guides our model towards basins of attraction of
minima that support a better generalization. This
is the similar results with (Erhan et al., 2010).

Figure 2 shows the comparison of the code-
book assignment on each setting for the SNLI task.
When we only pretrain the compressing model, the
large portion of words, around 80%, is assigned to
the largest code-book (i.e., 128). However, when
we fine-tune the pre-trained models to the task, the
ratio of the large one is significantly decreased.
This means that fine-tuning could reduce the mem-
ory requirement by a large margin. Without the pre-
training step, fine-tuning model achieves a smaller
memory size than the pre-trained models. How-
ever, we have shown that pretraining leads to better
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Figure 4: Visualization of the reconstructed embed-
dings with their code-book assignment. Best viewed
in color.

performance. To achieve a reasonable memory size
with reliable performance, we have applied both
pretraining and finetuning to AdaComp.

5.2 Effectiveness of the length or number of
code-books

We evaluate the performance of our method when
we use different lengths or numbers of code-books.
We first plot the results of different lengths of code-
books in Figure 3a. Here, we use four code-books
as default and the length of codes is divided by
two along with the next smaller code-book. For
example, the value 64 in the axis means (64, 32,
16, 8) and 32 means (32, 16, 8, 4).

As you can see in Figure 3a, utilizing the large
size of code-books leads to improved performance
than the models with smaller lengths. These results
come from that larger code-books could represent
more aspects of original embeddings. Figure 3b
shows the performance variation of different num-
ber of code-books. Here, we use 128 code vectors
and divide these vectors into several code-books.
The x-axis means the number of code-books that
correspond to (128), (64, 64), (64, 32, 32), (64, 32,
16, 16), (64, 32, 16, 8, 8). We observe that the per-
formance does not depend on different code-books
very much compared to lengths of code-books. To
get better performance with high compression ratio,
we have used four code-books in the experiments.

5.3 Code-book distribution for a task

Unlike other methods, AdaComp learns to com-
press embeddings with learning a downstream task.

To confirm how the model assigns each word to dif-
ferent code-books, we visualize the code-book as-
signment. To this end, we project the reconstructed
embeddings into 2-dimensional space using t-SNE
(Maaten and Hinton, 2008), and we use the embed-
dings when we perform the sentiment classifica-
tion task using AdaComp (64). To show important
words (i.e., sentiment words) to the task, we take
the sentiment words (positive and negative) from
(Hu and Liu, 2004) and denote these words if they
existed in the embeddings of AdaComp.

Figure 4 shows the 2-dimensional projection of
the reconstructed embeddings with their assigned
code-books. We observe that important sentiment
words are assigned to the longest code-book, and
the ratio of sentiment words are significantly de-
creased along with the smaller code-books. This
result shows that AdaComp uses longer codes to
represent task-sensitive words and shorter codes to
represent less significant words to the task.

6 Conclusion

In this paper, we have described AdaComp that
adaptively compresses word embeddings by us-
ing different lengths of code-books. To this end,
we have used the Gumbel-softmax tricks and the
binary-constraint networks to learn the code-book
selection and its discrete codes in an end-to-end
manner. To showcase the general applicability of
AdaComp, we conduct four different NLP tasks,
which are sentence classification, chunking, natural
language inference, and language modeling. Eval-
uation results have clearly shown that AdaComp
could obtain better results than other methods in
terms of both accuracy and memory requirement.
We also found that AdaComp assigns each word
to different code-books by considering the signifi-
cance of tasks. Although we have focused on com-
pressing the embeddings by learning task-specific
features, AdaComp could be used at NLP tasks
without fine-tuning. We believe that our method
can benefit simultaneously from other compression
techniques, such as pruning (Han et al., 2016) and
low-precision representation (Ling et al., 2016).
We leave this as an avenue for future work.
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