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Abstract

Emotion-cause pair extraction aims to extract
all potential pairs of emotions and correspond-
ing causes from unannotated emotion text.
Most existing methods are pipelined frame-
work, which identifies emotions and extracts
causes separately, leading to a drawback of er-
ror propagation. Towards this issue, we pro-
pose a transition-based model to transform the
task into a procedure of parsing-like directed
graph construction. The proposed model in-
crementally generates the directed graph with
labeled edges based on a sequence of ac-
tions, from which we can recognize emotions
with the corresponding causes simultaneously,
thereby optimizing separate subtasks jointly
and maximizing mutual benefits of tasks inter-
dependently. Experimental results show that
our approach achieves the best performance,
outperforming the state-of-the-art methods by
6.71% (p < 0.01) in F1 measure.

1 Introduction

Emotion-cause pair extraction (ECPE) is a new
task to identify emotions and the corresponding
causes from unannotated emotion text (Xia and
Ding, 2019). This involves several subtasks, in-
cluding 1) Extracting pair components from input
text, e.g., emotion detection and cause detection;
2) Combining all the elements of the two sets into
emotion-cause pairs and eliminating the pairs that
do not exist a causal relationship. For the former
subtask, a clause can be categorized into “emo-
tion”, which usually contains an emotion keyword
to express specific sentiment polarity, or “cause”,
which contains the reason or stimuli of an observed
emotion. Then, the set of all possible emotion-
cause pairs will be fed into the second subtask to
determine the relationship. In general, it is an es-
sential issue in emotion analysis since it provides
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Figure 1: An example of emotion-cause pair extraction.

a new perspective to investigate how emotions are
provoked, expressed, and perceived.

Figure 1 shows an example of ECPE, and the text
is segmented into three clauses. In this instance,
only the second clause and the third clause hold an
emotion causality, where “I lost my phone while
shopping” is the cause of emotion “ I feel sad now”.
Thus, the extracted results of this sample should be
{I lost my phone while shopping, I feel sad now}.
The goal of ECPE is to identify all the pairs that
have emotion causality in an emotion text.

However, from both theoretical and computa-
tional perspectives, due to the inherent ambiguity
and subtlety of emotions, it is hard for machines
to build a mechanism for understanding emotion
causality like human beings. Previous approaches
mostly focused on detecting the causes towards
the given annotation of emotions, which was fol-
lowed by most of the recent studies in this field
(Lee et al., 2010; Gui et al., 2014; Gao et al., 2015;
Gui et al., 2016, 2017; Li et al., 2018; Xu et al.,
2019; Fan et al., 2019). Nevertheless, it suffers that
emotions must be annotated before extracting the
causes, which limits the applications in real-world
scenarios. Towards this issue, Xia and Ding (2019)
presented a new task to extract emotion-cause pairs
from the unannotated text. However, they followed
a pipelined framework, which models emotions
and causes separately, rather than joint decoding.
Hence, to overcome the drawback of error prop-
agation may occur in existing methods. Ideally,
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the emotion-cause structure should be considered
as an integral framework, including representation
learning, emotion-cause extraction, and reasoning.

To this end, we transform the ECPE problem into
a procedure of directed graph construction, from
which emotions and the corresponding causes can
be extracted simultaneously based on the labeled
edges. The directed graph is constructed by design-
ing a novel transition-based parsing model, which
incrementally creates the labeled edges according
to the causal relationship between the connected
nodes, through a sequence of defined actions. In
this process, the emotion detection, cause detec-
tion, and their causality association can be jointly
learned through joint decoding, without differen-
tiating subtask structures, so that the maximum
potential of information interaction between emo-
tions and causes can be exploited. Besides, the
proposed model processes the input sequence in
a psycholinguistically motivated left to right or-
der, consequently, reducing the number of potential
pairs needed to be parsed and leading to speed up
(if all clauses are connected by Cartesian products,
the time complexity will be O(n2)).

Regarding feature representation, BERT (Devlin
et al., 2019) is used to produce the deep and contex-
tualized representation for each clause, and LSTMs
(Hochreiter and Schmidhuber, 1997) are performed
to capture long-term dependencies among input se-
quences. In addition, action history and relative
distance information between the emotion-cause
pairs are also encoded to benefit the task.

To summarize, our contribution includes:

• Learning with a transition-based framework,
so that end-to-end emotion-cause pair extrac-
tion can be easily transformed into a parsing-
like directed graph construction task.

• With the proposed joint learning framework,
our model can extract emotions with the cor-
responding causes simultaneously, often with
linear time complexity.

• Performance evaluation shows that our model
statistically significant improvements over the
state-of-the-art methods on all the tasks1.

2 Task Definition

The formal definition of emotion-cause pair ex-
traction is given in (Xia and Ding, 2019). Briefly,

1The code and dataset are available at: https://
github.com/HLT-HITSZ/TransECPE

Figure 2: The architecture of our model. Dashed lines
denote the components only work in training stage.

given a piece of emotion text dn1 = (c1, c2, . . . , cn),
which consists of several manually segmented
clauses. The goal of ECPE is to output all potential
pairs where exist emotion causality:

P = {· · · , (ce, cc), · · · } (1)

where ce is an emotion clause, and cc is the corre-
sponding cause clause.

Note that, the previous emotion cause extraction
(ECE) task aims to extract cc given the annotation
of ce: {cc → ce}. In comparison, the ECPE is a
new and challenging task since there is no annota-
tion provided in the emotion text. Similar as the
traditional ECE task, the ECPE is also defined at
the clause level, because it is difficult to describe
emotion causes at the word or phrase level. That is,
in this paper, the “emotion” and “cause” are refer to
“emotion clause” and “cause clause”, respectively.

3 Our Approach

We present a new framework aimed at integrating
the emotion-cause pair extraction into a procedure
of parsing-like directed graph construction. The
proposed framework incrementally constructs and
labels the graph from input sequences, scoring par-
tially segmented results using rich non-local fea-
tures. Figure 2 shows the overall architecture of
the proposed framework. In the following, we first
introduce how to construct the directed graph based
on a novel transition-based system, then the details
of feature representation will be described.

3.1 Directed Graph Construction
Let G = (V,R) be an edge-labeled directed graph
where: V = {1, 2, . . . , n} is the set of nodes
that correspond to clauses in the input text and

https://github.com/HLT-HITSZ/TransECPE
https://github.com/HLT-HITSZ/TransECPE
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Action Change of state

SH (σ|σ1|σ0, β0|β,E,C,R)
(σ|σ0|β0, β′, E, C,R)

RAlt

(σ|σ1|σ0, β0|β,E,C,R)

(σ|σ0|, β0|β,E ∪{σ0}, C ∪{σ1}, R∪{σ1
lt−→σ0})

LAlt

(σ|σ1|σ0, β0|β,E,C,R)

(σ|σ1|, β0|β,E ∪{σ1}, C ∪{σ0}, R∪{σ1
lt←−σ0})

RAln

(σ|σ1|σ0, β0|β,E,C,R)

(σ|σ0, β0|β,E ∪{σ0}, C,R∪{σ1
ln−→σ0})

LAln

(σ|σ1|σ0, β0|β,E,C,R)

(σ|σ0|β0, β′, E ∪{σ1}, C,R∪{σ1
ln←−σ0})

CA
(σ|σ0, β0|β,E,C,R)

(σ|σ0, β0|β,E ∪{σ0}, C ∪{σ0}, R∪{σ0
lt−→σ0})

Table 1: Defined transition actions in our parser. For
ease of illustration, we use the subscript i ∈ {0, 1, ...}
to denote the item index in the stack (starting from
right), buffer and action (starting from left). That is,
the top two items in the stack can be marked as σ|σ1|σ0
(similar to buffer and action).

R = V
R−→ V is the set of labeled edges. We will

denote a connection between a head node i ∈ V
and a modifier node j ∈ V as i l−→ j, where
l ∈ {lt, ln} is the causality label connecting them.
lt indicates the node i is the cause of the emotion
node j while ln indicates node j is an emotion but
node i is not the corresponding cause. Besides,
other nodes irrelevant to the final result have no
edges. Note that, in this task, a node can be emo-
tion and the corresponding cause simultaneously.
Furthermore, an emotion node can also be associ-
ated with multiple causes. Thus, the acyclicity and
single-head constraints are not necessary for our
model, as arbitrary graphs are allowed.

We build the directed graph by designing a
novel transition-based parser. Formally, each state
of our parser is represented by a tuple: S =
(σ, β,E,C,R), where σ and β are disjoint lists
called stack and buffer, which store the indices of
nodes that have been processed and to be processed,
respectively. E is the set of emotions, and C is the
set of causes. R is used to store the edges generated
so far. Besides, action history is stored to a list A.

The definition of action set plays a crucial role in
the transition-based system, and it relies on the type
of task. As shown in Table 1, we define 6 types
of actions based on our empirical observation, and
their logics are summarized as follows:

• SHIFT (SH). Pops β0 and puts it on the top of
σ. It is legal only when the β is not empty.

Stack Buffer Action Emotion Cause Edge

[] [1,2,3,$] SH ∅ ∅ ∅
[1] [2,3,$] SH ∅ ∅ ∅
[1,2] [3,$] SH ∅ ∅ ∅
[1,2,3] [$] RAlt ∅ ∪ {3} ∅∪{2} 2

lt−→ 3

[1,3] [$] RAln {3} ∪ {3} – 1
ln−→ 3

[3] [$] SH – – –
[3,$] [] – – – –

Table 2: Transition sequence for the text in Figure 1.

• RIGHT-ARClt (RAlt). It assigns an edge from

σ1 to σ0 with label lt: σ1
lt−→ σ0, then copies

σ0 to E and pops σ1 from σ to C.

• LEFT-ARClt (LAlt). It assigns an edge from

σ0 to σ1 with label lt: σ1
lt←− σ0. Then copies

σ1 to E and pops σ0 from σ to C

• RIGHT-ARCln (RAln). Adds a relation from

σ1 to σ0 with label ln: σ1
ln−→ σ0. Then pops

σ1 out of σ and only copies σ0 to E.

• LEFT-ARCln (LAln). It denotes a relation from

σ0 to σ1: σ1
ln←− σ0 and copies σ1 to E. Note

that, we move β0 to the top of σ to improve
coverage rather than pops σ0, because σ0 may
be the cause of incoming nodes in the β.

• CYCLE-ARC (CA). It assigns a loop edge on
the node σ0 with label lt and then copies σ0
to both E and C.

Action Constraints. To ensure that each parser
state is valid, we need to specify some constraints
on the action. For example, RIGHT-∗ and LEFT-
∗ can only be conducted when there are at least
two elements in the σ. We also empirically set
a constraint that RIGHT-ARCln will be performed
when σ|σ1|σ0 are both emotions but has no emo-
tion causality. Additionally, in practical, CYCLE-
ARC may conflict with other actions, e.g., σ0 is the
cause of itself but is also the cause of σ1, which
conflicts with the LEFT-ARClt . For simplicity and
efficiency, we separate it from other actions and
distinguish it by training a binary classifier only
depends on the representation of σ0.

Table 2 illustrates the gold-standard sequence of
transitions for the text in Figure 1. The parser state
is initialized to ([ ], [1, 2, 3],∅,∅,∅) and the termi-
nal state is ([. . . , $], [ ], E, C,R), where $ indicates
the termination of transitions.
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Search Algorithm. For the ECPE task, we trans-
form it into a procedure of directed graph con-
struction by a sequence of actions. The input
is an emotion text dn1 = (c1, c2, . . . , cn) and the
output is the corresponding sequence of actions
Am1 = (a1, a2, . . . , am). Hence, the task can be re-
garded as searching for an optimal action sequence
A∗ given the stream of clauses dn1 :

A∗ = argmaxAp(A
m
1 |dn1 ) (2)

Formally, at step t, our model predicts the next
action based on the current system state St and the
action history At−11 . Thus, the task is modeled as:

(A∗, S∗) = argmaxA,S

∏
t

p(at, St+1|At−11 , St)

(3)
where at is the generated action at step t, and St+1

is the updated system state according to at.
Let rt to denote the representation for computing

the probability of the action at at step t, this yields:

p(at|rt) =
exp(w>atrt + bat)∑

a′∈A(S) exp(w
>
a′rt + ba′)

(4)

where wa denotes a learnable parameter vector and
ba is a bias term. The set A(S) represents the legal
actions that can be taken given the current parser
state. Finally, the overall optimization function is:

(A∗, S∗) = argmaxA,S

∏
t

p(at, St+1|At−11 , St)

= argmaxA,S

∏
t

p(at|rt)

(5)
where the ECPE is merged into a transition-based
action prediction task. For efficient decoding, the
maximum probability action is chosen greedily un-
til the parsing procedure is termination.

3.2 Neural Transition-based Model
We apply BERT to produce the representation for
each clause and use LSTMs to capture long-term
dependencies of each parser state.

Representation of Clause. Given an emotion
text dn1 = (c1, c2, . . . , cn) consisting of n clauses
and each clause ci = (wi1, wi2, . . . , wil) contains
l words. We formulate each clause as a sequence
xi = ([CLS], wi1, . . . , wil, [SEP]), where [CLS]
is a special classification token that the final hid-
den state is used as the aggregate sequence fea-
tures and [SEP] is a dummy token not used in our

model. Thus, we obtain the hidden representation
as hci = BERT(xi) ∈ Rdb∗|xi| where db is the size
of hidden dimension and |xi| is the length of se-
quence xi. Then, the text dn1 can be represented as
hd = [hc1 , hc2 , . . . , hcn ].

Representation of Parser State. When the pars-
ing starts, the parser state will be initialized to
([ ], [1, 2, . . . , n],∅,∅,∅) and a series of actions
will consume the clauses in the buffer to incremen-
tally build an output until reaches the terminal state
([. . . , $], [ ], E, C,R), as shown in Table 2.

Specifically, at step t, considering the triple
(σt, βt, At), where σt = (. . . , σ1, σ0), βt =
(β0, β1, . . .) and At = (. . . , at−2, at−1). For the
stack, to summarize the information from both di-
rections, we use bidirectional LSTM to exploit two
parallel passes, thus, the feature representation of
σt is denoted as:

st = LSTMs([. . . ,
−→σ1,−→σ0], [. . . ,←−σ1,←−σ0]) (6)

where st = [−→st ,←−st ] that both −→st and←−st ∈ Rdl∗|σt|,
dl is the size of hidden dimension of LSTM and
|σt| is the size of σt . Similarly, we can get the
representation for βt by:

bt = LSTMb([
−→
β0,
−→
β1, . . .], [

←−
β0,
←−
β1, . . .]) (7)

where bt = [
−→
bt ,
←−
bt ] that

−→
bt and

←−
bt ∈ Rdl∗|βt|

where βt is the size of βt. For action sequence,
we map each action a to a distributed representa-
tion ea through a looking-up tableEa, and apply an
unidirectional LSTM to obtain the complete history
of actions from left-to-right:

αt = LSTMa(. . . , at−2, at−1) (8)

Once a new action at is generated, the embedding
eat will be added into the rightmost position of the
LSTMa. To enhance the position relation between
the pair (σ1, σ0), we also represent their relative
distance d as an embedding ed from a looking-up
table Ed. The final representation of parser state at
step t is the combination of these features.

Action Reversal. Let us visit the example in Fig-
ure 1 again. Reading it from left-to-right, as shown
in the top of Figure 3, we see the clause “I lost my
phone while shopping” trigger the emotion “I feel
sad now”, so the predicted action would be RIGHT-
ARClt . However, from a different perspective, we
read it from right-to-left, as shown in the bottom
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Figure 3: Illustration of action reversal.

of Figure 3, the cause “I lost my phone while shop-
ping” behind the emotion “I feel sad now”, so the
predicted action should be reversed to LEFT-ARClt .
That is, −→st and ←−st should be regarded as differ-
ent features to produce different action. Based on
this observation, we apply rt and r̂t to predict the
original action and reversed action, respectively,
which can be used to mine the deep directional
information for this task:

rt = ReLU([−→st 1;−→st 0; b0t ;α−1t ; ed]) (9)

r̂t = ReLU([←−st 1;←−st 0; b0t ;α−1t ; ed]) (10)

where ReLU is an activation function for nonlin-
earity. Index 0 and 1 indicate the first and second
representation of σ and β, −1 indicates the last
representation of action history.

Training. By learning with the transition-based
framework, we convert the gold output structure
in a set of training data into a gold sequence of
defined actions. For each parser state at step t,
we maximize the log-likelihood of the classifier in
formula (5), which can be revised as:

J (θ) =
∑
t

logp(at|rt) + logp(ât|r̂t)

+ logp(ct|s0t ) +
λ

2
||θ||2

(11)

where ât is the reversed action, and p(ct|s0t ) is
the predictive distribution of CYCLE-ARC which is
separated from the other actions due to the action
constraints. λ is the coefficient of L2-norm regu-
larization, and θ denotes all the parameters in this
model. Note that, during the test decoding, only rt
and s0t are used to predict the next action.

4 Dataset and Implementation Details

4.1 Dataset
To be consistent with previous approaches, we
adopt the only benchmark (Gui et al., 2016) to
evaluate our model by following (Xia and Ding,

Item Num. Item Num. Item Num.
Emo1 1816 Cau1 1769 ECP1 1746
Emo2 118 Cau2 156 ECP2 177
Other 11 Other 20 Other 22

Table 3: Statistical information about the dataset.
Emo1 (Cau1/ECP1), Emo2 (Cau2/ECP2) and other rep-
resent the texts with 1, 2 or more than 2 emotions
(causes/emotion-cause-pairs).

2019). The corpus collected from SINA city news
2 and the details are summarized in Table 3.

4.2 Implementation Details
In this paper, we stochastically divide the corpus
into a training/development/test set in a ratio of
8:1:1. In order to obtain statistically credible re-
sults, we evaluate our method 20 times with differ-
ent data splits by following (Xia and Ding, 2019)
and then perform one sample t-test on the exper-
imental results. The average results of Precision
(P ), Recall (R) and F-measure (F1) are employed
to measure the performance. Note that when we
extract the emotion-cause pairs, we obtain the emo-
tions and causes for each text simultaneously. Thus,
we also evaluate the performance of emotion ex-
traction and cause extraction in our model.

We adopt BERTChinese as the basis in this
work3. Adam optimizer is used for online learning
(Kingma and Ba, 2015), and initial learning rates
for the BERT layer and top MLP layer are set to 1e-
5 and 1e-3, respectively. The hidden size of MLP
layer is set to 256, and the hidden size of all LSTMs
is set to 128 with 1 layer. The embeddings of posi-
tion and action are initialized randomly with dimen-
sion 128 and keep unchanged during the training
stage. The dropout rate is 0.5, the batch size is 3,
and the coefficient of L2 term is 1e-5. We train the
model 10 epochs in total and adopt early stopping
strategy based on the performance of development
set. Then, the highest F-measure model on the
development set is used to evaluate the test set.

5 Experiments

5.1 Baselines
We first compare our transition-based model with
the method proposed by (Xia and Ding, 2019),

2http://news.sina.com.cn/society/
3Our BERT model is adapted from this imple-

mentation: https://github.com/huggingface/
pytorch-pretrained-BERT

http://news.sina.com.cn/society/
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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Method
Emotion extraction Cause extraction Emotion-cause pair extraction

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Indep 83.75 80.71 82.10 69.02 56.73 62.05 68.32 50.82 58.18
Inter-CE 84.94 81.22 83.00 68.09 56.34 61.51 69.02 51.35 59.01
Inter-EC 83.64 81.07 82.30 70.41 60.83 65.07 67.21 57.05 61.28
SL-BERT† 77.24 67.75 72.18 70.60 60.75 65.30 67.63 58.04 62.47
MT-BERT† 82.89 72.12 77.13 72.20 61.54 66.44 70.35 59.83 64.66
Ours† 87.16 82.44 84.74 75.62 64.71 69.74 73.74 63.07 67.99
LSTM†based 80.80 84.39 82.56 67.42 65.34 66.36 65.15 63.54 64.34
-transition† 80.66 71.99 76.08 66.34 62.68 64.31 58.93 61.37 60.12

Table 4: Comparison with competitive baselines. † denotes the results are implemented in this paper. The results
are average score over 20 runs, and the best scores are in bold.

which contains three models: 1) Indep: Emotion
extraction and cause extraction are independently
trained, then filtering the pairs that have no emotion
causality; 2) Inter-CE: The difference is that the
predictions of cause extraction are used to improve
emotion extraction; 3) Inter-EC: Contrary to the
Inter-CE, the predictions of emotion extraction are
used to improve cause extraction. It is the current
state-of-the-art model for this task.

To compare with other joint models, we imple-
ment SL-BERT (Zheng et al., 2017) and MT-BERT
(Caruana, 1993) for this task. The former aims
to joint extract entities and relations based on a
novel tagging scheme with multiple labels and the
other is a multi-task learning framework by sharing
the hidden layers among all tasks. We implement
them both based on BERT to be consistent with our
experimental setting.

We also evaluate our model by only removing
the transition procedure to reveal the effect of the
transition-based algorithm, denoted as “-transition”.
Besides, for a fair comparison, we use LSTM as
the basic encoder of clauses instead of BERT and
keep the same experimental setting by following
(Xia and Ding, 2019), namely LSTMbased.

5.2 Main Analysis

Table 4 shows the experimental results. With the
transition-based algorithm, our proposed model
achieves the best performance over all the three
tasks, outperforming a number of competitive base-
lines by at least 1.74%, 3.30% and 3.33% in F1
score, respectively. The improvements are signifi-
cant with p < 0.01 in one sample t-test.

Regarding pipelined approaches, Indep consid-
ers framework individually and ignores the fact that

emotions and causes are usually mutually indica-
tive, leading to the lowest performance. On the
contrary, Inter-CE and Inter-EC yield better results
by exploiting the relevance between emotions and
causes. By comparing Inter-CE and Inter-EC, we
find that the improvement of Inter-EC on cause
extraction is much more than the improvement
of Inter-CE on emotion extraction, thus Inter-EC
shows better results. Differently, our model jointly
extracts emotion-cause pairs and shows consistent
performance improvement over the Indep-CE and
Indep-EC, demonstrating the superiority of one-
stage model by reducing error propagation.

In comparison with other joint models, our pro-
posed model significantly outperforms SL-BERT
by 12.56%, 4.44 % and 5.52% in F1 measure, re-
spectively. We guess that SL-BERT jointly identi-
fies emotion-cause pairs but still follows an emo-
tion→ cause pipelined decoding order. In contrast,
we achieve fully joint decoding with interleaving
actions for all the three tasks, thereby achieving
better information interaction. Besides, our model
also yields better results than MT-BERT, one possi-
ble reason is that the interdependence between the
emotions and causes cannot be mined effectively
only through parameter sharing.

We also show the results where BERT embed-
dings are replaced by LSTM from the input. It can
be seen that the results still outperform the existing
methods by at least 3.06% in F1 score. Further-
more, when we remove the transition procedure,
the performance drops heavily over all the three
tasks, especially with a 7.87% decrease in F1 mea-
sure on the ECPE task. These results show that the
improvements provided by the proposed transition
system are more noticeable than other components.
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Method
Emotion extraction Cause extraction Emotion-cause pair extraction

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Ours 87.16 82.44 84.74 75.62 64.71 69.74 73.74 63.07 67.99
-reversal 85.26 83.63 84.43 76.49 63.08 69.14 74.59 61.35 67.33
-buffer 80.92 86.94 83.82 72.51 65.65 68.91 70.44 63.73 66.91
-action 82.18 86.69 84.34 76.49 61.69 68.30 74.61 60.04 66.53
-distance 81.60 85.05 83.29 75.93 57.89 65.69 74.06 56.29 63.96
-LSTM 81.23 83.37 83.29 72.19 59.20 65.06 70.64 57.82 63.59

Table 5: Feature ablation experiments. The results are average score over 20 runs, and the best scores are in bold.

5.3 Ablation Study
To further evaluate the contribution of neural com-
ponents, we conduct feature ablation experiments
to study the effects of different parts. As shown in
Table 5, the F1 score decreases most heavily with-
out LSTM (-4.40%), which indicates that it is nec-
essary to capture non-local dependencies among
input clauses, and our model can benefit from it
effectively. Distance is also particularly relevant
to the model by capturing the position information
between the emotions and causes, which is con-
sistent with our intuition that the closer a clause
is to the emotion, the higher probability it should
be the cause. Seen from the results, the history of
actions stored in action has a crucial influence on
predicting the next action. The results also show
that reversal, which can be regarded as a data aug-
mentation strategy, is useful by exploring the deep
directional information. Without buffer, the F1
score drops 1.8% over the ECPE task. It may be
due to the reason that buffer can provide more valu-
able information about the succeeding sequence.

5.4 Action Set Validation
To gain more insights into the parsing procedure,
we analyze the situations that emotion-cause pairs
in an emotion text cannot be extracted entirely by
our defined actions, as illustrated in Figure 4. For
the pseudo sample in Figure 4(a), it can be parsed
by the transition system using computation:

SH(1); SH(2); SH(3);RAln(2
ln−→ 3);

RAlt(1
lt−→ 3); SH(4); RAln(3

ln−→ 4); SH($)

Similarity, for the pseudo sample in Figure 4(b),
we get the transition sequence by:

SH(1); SH(2);RAlt(1
lt−→ 2); SH(3);

RAln(2
ln−→ 3); SH(4); LAln(3

ln←− 4); SH($)

(a) (1 lt−→ 3) and (2 lt−→ 4). (b) (1 lt−→ 2) and (1 lt−→ 3).

Figure 4: Pseudo samples that cannot be extracted en-
tirely by our defined actions.

In both situations, our model can only extract
one emotion-cause pair (i.e., RAlt(1

lt−→ 3) and

RAlt(1
lt−→ 2), respectively.), because the cause

which belongs to another emotion has been popped
during the parsing procedure.

Based on this observation, one crucial problem
about the proposed model is how many situations
involving the emotion-cause transformation can be
covered by the action set defined here. Although a
formal theoretical proof is beyond the scope of this
paper, we can empirically verify that the action set
works well from Table 4. Going one step further, to
further validate the actions, we input the texts into
our transition system to obtain the “pseudo-gold”
emotion-cause pairs P ′ based on the annotation,
which can give us the correct action to take for a
given parse state. Then we compare P ′ with the
gold-standard emotion-cause pairs P to see how
similar they are. On the whole dataset, we obtain
an overall 98.5% F1 score for 〈P, P ′〉, which indi-
cates the upper bound of our transition system can
achieve 98.5% in F1 score. Thus, the defined ac-
tion set here is capable of extracting emotion-cause
pairs through a sequence of actions.

5.5 Error Analysis

We also perform an experiment to understand the
impact of action reversal on the performance. Fig-
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(a) Without action reversal. (b) With action reversal.

Figure 5: Confusion matrices on test set. Vertical direc-
tion indicates the predicted action type and horizontal
direction indicates the gold action type.

ure 5 shows the confusion matrices that present a
comparison between the predicted actions and cor-
rective actions. The results shows that SHIFT, LEFT-
ARCln and RIGHT-ARCln yield higher accuracy on
both Figure 5(a) and Figure 5(b) since they are
account for a large proportion of the total actions.
As expected, our model makes more mistakes in-
volving the RIGHT-ARClt and LEFT-ARClt , which
play decisive roles in identifying the emotion-cause
pairs. Especially for the LEFT-ARClt action, there
is only about 0.43% in the total actions, turning
out to be the most difficult action to learn given the
relatively small training samples. Thus, as shown
in Figure 5(a), the accuracy for LEFT-ARClt is 0,
which drops the overall performance heavily. How-
ever, when we apply the action reversal into our
model, boosting the accuracy of LEFT-ARClt by
58.8% and further improving the overall perfor-
mance. We guess that based on action reversal, the
original RIGHT-∗ action can be reversed to LEFT-∗
and vice versa, so that double the training actions.
The results in Figure 5 show that our proposed
model can capture this subtlety of emotions effec-
tively by exploiting the deep directional informa-
tion through action reversal strategy.

6 Related Work

Different from the traditional emotion analysis,
which aims to identify emotion categories in text.
Emotion cause extraction (ECE) reveals the essen-
tial information about what causes a certain emo-
tion and why there is an emotional change. It is a
more challenging task due to the inherent ambigu-
ity and subtlety of emotion expressions.

Lee et al. (2010) first defined the emotion cause
extraction as a word-level extraction task. They

manually constructed a dataset from the Academia
Sinica Balanced Chinese Corpus and generalized
a series of linguistics rules based on the dataset.
Based on this setting, there are some studies have
been exploited for this task such as rule-based meth-
ods (Li and Xu, 2014; Gao et al., 2015; Yada et al.,
2017) and machine learning methods (Ghazi et al.,
2015; Song and Meng, 2015). Chen et al. (2010)
converted the task from word-level to clause-level
due to a clause may be the most appropriate unit
to detect causes, and extracted causes using six
groups of manually constructed linguistic cues. By
following this task setting, Gui et al. (2014) ex-
tended the rule-based features to 25 linguistics cues,
then trained classifiers on SVM and CRFs to detect
causes. Gui et al. (2016) released a new Chinese
emotion cause dataset collected from SINA city
news 4 and proposed a multi-kernel based method
to identify emotion causes. Following this cor-
pus, Xu et al. (2019) proposed a learning to re-rank
method based on a series of emotion-dependent and
emotion-independent features. Recently, inspired
by the success of deep learning architecture, some
studies focused on identifying emotion causes with
well designed neural network and attention mech-
anism (Gui et al., 2017; Li et al., 2018, 2019; Fan
et al., 2019; Xia et al., 2019; Ding et al., 2019).

All of the above studies extracted emotion causes
rely on the given emotion annotations, which lim-
its the application in real-world scenarios due to
the expensive annotations. Targeting this problem,
Xia and Ding (2019) proposed a novel task based
on ECE, namely emotion-cause pair extraction
(ECPE), which aims at extracting emotions and the
corresponding causes from unannotated emotion
text. However, they followed a pipelined frame-
work which first detects emotions and causes with
individual learning frameworks, then performed
emotion-cause pairing to eliminate the unmatched
pairs, leading to a drawback of error propagation.

In this work, we design a novel transition-based
model to extract emotions and causes simultane-
ously to maximize the mutual benefits of subtasks,
thus alleviating the drawback of error propaga-
tion. Transition-based system is usually designed
to model the chunk-level relation in a sentence
for dependency parsing (Zhang and Nivre, 2011;
Wang et al., 2015; Fernández-González and Gómez-
Rodrı́guez, 2018). Apart from its application in
dependency parsing, transition-based method has

4http://news.sina.com.cn/society/

http://news.sina.com.cn/society/
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also achieved great success in other natural lan-
guage processing tasks, such as word segmentation
(Zhang et al., 2016), information extraction (Wang
et al., 2018b; Zhang et al., 2019), disfluency de-
tection (Wang et al., 2017) and nested mention
recognition (Wang et al., 2018a). To the best of our
knowledge, this is the first work which extracts the
emotion-cause pairs in an end-to-end manner.

7 Conclusion

In this paper, we present a novel transition-based
framework to extract emotion-cause pairs as a pro-
cedure of directed graph construction. Instead of
previous pipelined approaches, the proposed frame-
work incrementally outputs the emotion-cause
pairs as a single task, thereby the interdependence
between emotions and causes can be exploited
more effectively. Experimental results on a stan-
dard benchmark demonstrate the superiority and
robustness of the proposed model compared to a
number of competitive methods.

In the future, one possible direction is creat-
ing complete graphs with their nodes being input
clauses to achieve full coverage. Besides, graph
neural network-based (Kipf and Welling, 2016)
methods are also worth investigating to model the
relations among nodes for this task.
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